1*25c28e83SPiotr Jasiukajtis /* 2*25c28e83SPiotr Jasiukajtis * CDDL HEADER START 3*25c28e83SPiotr Jasiukajtis * 4*25c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 5*25c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 6*25c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 7*25c28e83SPiotr Jasiukajtis * 8*25c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9*25c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 10*25c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 11*25c28e83SPiotr Jasiukajtis * and limitations under the License. 12*25c28e83SPiotr Jasiukajtis * 13*25c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 14*25c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15*25c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 16*25c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 17*25c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 18*25c28e83SPiotr Jasiukajtis * 19*25c28e83SPiotr Jasiukajtis * CDDL HEADER END 20*25c28e83SPiotr Jasiukajtis */ 21*25c28e83SPiotr Jasiukajtis 22*25c28e83SPiotr Jasiukajtis /* 23*25c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24*25c28e83SPiotr Jasiukajtis */ 25*25c28e83SPiotr Jasiukajtis /* 26*25c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27*25c28e83SPiotr Jasiukajtis * Use is subject to license terms. 28*25c28e83SPiotr Jasiukajtis */ 29*25c28e83SPiotr Jasiukajtis 30*25c28e83SPiotr Jasiukajtis /* INDENT OFF */ 31*25c28e83SPiotr Jasiukajtis /* 32*25c28e83SPiotr Jasiukajtis * __k_tan( double x; double y; int k ) 33*25c28e83SPiotr Jasiukajtis * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164 34*25c28e83SPiotr Jasiukajtis * Input x is assumed to be bounded by ~pi/4 in magnitude. 35*25c28e83SPiotr Jasiukajtis * Input y is the tail of x. 36*25c28e83SPiotr Jasiukajtis * Input k indicate -- tan if k=0; else -1/tan 37*25c28e83SPiotr Jasiukajtis * 38*25c28e83SPiotr Jasiukajtis * Table look up algorithm 39*25c28e83SPiotr Jasiukajtis * 1. by tan(-x) = -tan(x), need only to consider positive x 40*25c28e83SPiotr Jasiukajtis * 2. if x < 5/32 = [0x3fc40000, 0] = 0.15625 , then 41*25c28e83SPiotr Jasiukajtis * if x < 2^-27 (hx < 0x3e400000 0), set w=x with inexact if x != 0 42*25c28e83SPiotr Jasiukajtis * else 43*25c28e83SPiotr Jasiukajtis * z = x*x; 44*25c28e83SPiotr Jasiukajtis * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6)))))) 45*25c28e83SPiotr Jasiukajtis * return (k == 0)? w: 1/w; 46*25c28e83SPiotr Jasiukajtis * 3. else 47*25c28e83SPiotr Jasiukajtis * ht = (hx + 0x4000)&0x7fff8000 (round x to a break point t) 48*25c28e83SPiotr Jasiukajtis * lt = 0 49*25c28e83SPiotr Jasiukajtis * i = (hy-0x3fc40000)>>15; (i<=64) 50*25c28e83SPiotr Jasiukajtis * x' = (x - t)+y (|x'| ~<= 2^-7) 51*25c28e83SPiotr Jasiukajtis * By 52*25c28e83SPiotr Jasiukajtis * tan(t+x') 53*25c28e83SPiotr Jasiukajtis * = (tan(t)+tan(x'))/(1-tan(x')tan(t)) 54*25c28e83SPiotr Jasiukajtis * We have 55*25c28e83SPiotr Jasiukajtis * sin(x')+tan(t)*(tan(t)*sin(x')) 56*25c28e83SPiotr Jasiukajtis * = tan(t) + ------------------------------- for k=0 57*25c28e83SPiotr Jasiukajtis * cos(x') - tan(t)*sin(x') 58*25c28e83SPiotr Jasiukajtis * 59*25c28e83SPiotr Jasiukajtis * cos(x') - tan(t)*sin(x') 60*25c28e83SPiotr Jasiukajtis * = - -------------------------------------- for k=1 61*25c28e83SPiotr Jasiukajtis * tan(t) + tan(t)*(cos(x')-1) + sin(x') 62*25c28e83SPiotr Jasiukajtis * 63*25c28e83SPiotr Jasiukajtis * 64*25c28e83SPiotr Jasiukajtis * where tan(t) is from the table, 65*25c28e83SPiotr Jasiukajtis * sin(x') = x + pp1*x^3 + pp2*x^5 66*25c28e83SPiotr Jasiukajtis * cos(x') = 1 + qq1*x^2 + qq2*x^4 67*25c28e83SPiotr Jasiukajtis */ 68*25c28e83SPiotr Jasiukajtis 69*25c28e83SPiotr Jasiukajtis #include "libm.h" 70*25c28e83SPiotr Jasiukajtis 71*25c28e83SPiotr Jasiukajtis extern const double _TBL_tan_hi[], _TBL_tan_lo[]; 72*25c28e83SPiotr Jasiukajtis static const double q[] = { 73*25c28e83SPiotr Jasiukajtis /* one = */ 1.0, 74*25c28e83SPiotr Jasiukajtis /* 75*25c28e83SPiotr Jasiukajtis * 2 2 -59.56 76*25c28e83SPiotr Jasiukajtis * |sin(x) - pp1*x*(pp2+x *(pp3+x )| <= 2 for |x|<1/64 77*25c28e83SPiotr Jasiukajtis */ 78*25c28e83SPiotr Jasiukajtis /* pp1 = */ 8.33326120969096230395312119298978359438478946686e-0003, 79*25c28e83SPiotr Jasiukajtis /* pp2 = */ 1.20001038589438965215025680596868692381425944526e+0002, 80*25c28e83SPiotr Jasiukajtis /* pp3 = */ -2.00001730975089451192161504877731204032897949219e+0001, 81*25c28e83SPiotr Jasiukajtis 82*25c28e83SPiotr Jasiukajtis /* 83*25c28e83SPiotr Jasiukajtis * 2 2 -56.19 84*25c28e83SPiotr Jasiukajtis * |cos(x) - (1+qq1*x (qq2+x ))| <= 2 for |x|<=1/128 85*25c28e83SPiotr Jasiukajtis */ 86*25c28e83SPiotr Jasiukajtis /* qq1 = */ 4.16665486385721928197511942926212213933467864990e-0002, 87*25c28e83SPiotr Jasiukajtis /* qq2 = */ -1.20000339921340035687080671777948737144470214844e+0001, 88*25c28e83SPiotr Jasiukajtis 89*25c28e83SPiotr Jasiukajtis /* 90*25c28e83SPiotr Jasiukajtis * |tan(x) - PF(x)| 91*25c28e83SPiotr Jasiukajtis * |--------------| <= 2^-58.57 for |x|<0.15625 92*25c28e83SPiotr Jasiukajtis * | x | 93*25c28e83SPiotr Jasiukajtis * 94*25c28e83SPiotr Jasiukajtis * where (let z = x*x) 95*25c28e83SPiotr Jasiukajtis * PF(x) = x + (t1*x*z)(t2 + z(t3 + z))(t4 + z)(t5 + z(t6 + z)) 96*25c28e83SPiotr Jasiukajtis */ 97*25c28e83SPiotr Jasiukajtis /* t1 = */ 3.71923358986516816929168705030406272271648049355e-0003, 98*25c28e83SPiotr Jasiukajtis /* t2 = */ 6.02645120354857866118436504621058702468872070312e+0000, 99*25c28e83SPiotr Jasiukajtis /* t3 = */ 2.42627327587398156083509093150496482849121093750e+0000, 100*25c28e83SPiotr Jasiukajtis /* t4 = */ 2.44968983934252770851003333518747240304946899414e+0000, 101*25c28e83SPiotr Jasiukajtis /* t5 = */ 6.07089252571767978849948121933266520500183105469e+0000, 102*25c28e83SPiotr Jasiukajtis /* t6 = */ -2.49403756995593761658369658107403665781021118164e+0000, 103*25c28e83SPiotr Jasiukajtis }; 104*25c28e83SPiotr Jasiukajtis 105*25c28e83SPiotr Jasiukajtis 106*25c28e83SPiotr Jasiukajtis #define one q[0] 107*25c28e83SPiotr Jasiukajtis #define pp1 q[1] 108*25c28e83SPiotr Jasiukajtis #define pp2 q[2] 109*25c28e83SPiotr Jasiukajtis #define pp3 q[3] 110*25c28e83SPiotr Jasiukajtis #define qq1 q[4] 111*25c28e83SPiotr Jasiukajtis #define qq2 q[5] 112*25c28e83SPiotr Jasiukajtis #define t1 q[6] 113*25c28e83SPiotr Jasiukajtis #define t2 q[7] 114*25c28e83SPiotr Jasiukajtis #define t3 q[8] 115*25c28e83SPiotr Jasiukajtis #define t4 q[9] 116*25c28e83SPiotr Jasiukajtis #define t5 q[10] 117*25c28e83SPiotr Jasiukajtis #define t6 q[11] 118*25c28e83SPiotr Jasiukajtis 119*25c28e83SPiotr Jasiukajtis /* INDENT ON */ 120*25c28e83SPiotr Jasiukajtis 121*25c28e83SPiotr Jasiukajtis 122*25c28e83SPiotr Jasiukajtis double 123*25c28e83SPiotr Jasiukajtis __k_tan(double x, double y, int k) { 124*25c28e83SPiotr Jasiukajtis double a, t, z, w = 0.0L, s, c, r, rh, xh, xl; 125*25c28e83SPiotr Jasiukajtis int i, j, hx, ix; 126*25c28e83SPiotr Jasiukajtis 127*25c28e83SPiotr Jasiukajtis t = one; 128*25c28e83SPiotr Jasiukajtis hx = ((int *) &x)[HIWORD]; 129*25c28e83SPiotr Jasiukajtis ix = hx & 0x7fffffff; 130*25c28e83SPiotr Jasiukajtis if (ix < 0x3fc40000) { /* 0.15625 */ 131*25c28e83SPiotr Jasiukajtis if (ix < 0x3e400000) { /* 2^-27 */ 132*25c28e83SPiotr Jasiukajtis if ((i = (int) x) == 0) /* generate inexact */ 133*25c28e83SPiotr Jasiukajtis w = x; 134*25c28e83SPiotr Jasiukajtis t = y; 135*25c28e83SPiotr Jasiukajtis } else { 136*25c28e83SPiotr Jasiukajtis z = x * x; 137*25c28e83SPiotr Jasiukajtis t = y + (((t1 * x) * z) * (t2 + z * (t3 + z))) * 138*25c28e83SPiotr Jasiukajtis ((t4 + z) * (t5 + z * (t6 + z))); 139*25c28e83SPiotr Jasiukajtis w = x + t; 140*25c28e83SPiotr Jasiukajtis } 141*25c28e83SPiotr Jasiukajtis if (k == 0) 142*25c28e83SPiotr Jasiukajtis return (w); 143*25c28e83SPiotr Jasiukajtis /* 144*25c28e83SPiotr Jasiukajtis * Compute -1/(x+T) with great care 145*25c28e83SPiotr Jasiukajtis * Let r = -1/(x+T), rh = r chopped to 20 bits. 146*25c28e83SPiotr Jasiukajtis * Also let xh = x+T chopped to 20 bits, xl = (x-xh)+T. Then 147*25c28e83SPiotr Jasiukajtis * -1/(x+T) = rh + (-1/(x+T)-rh) = rh + r*(1+rh*(x+T)) 148*25c28e83SPiotr Jasiukajtis * = rh + r*((1+rh*xh)+rh*xl). 149*25c28e83SPiotr Jasiukajtis */ 150*25c28e83SPiotr Jasiukajtis rh = r = -one / w; 151*25c28e83SPiotr Jasiukajtis ((int *) &rh)[LOWORD] = 0; 152*25c28e83SPiotr Jasiukajtis xh = w; 153*25c28e83SPiotr Jasiukajtis ((int *) &xh)[LOWORD] = 0; 154*25c28e83SPiotr Jasiukajtis xl = (x - xh) + t; 155*25c28e83SPiotr Jasiukajtis return (rh + r * ((one + rh * xh) + rh * xl)); 156*25c28e83SPiotr Jasiukajtis } 157*25c28e83SPiotr Jasiukajtis j = (ix + 0x4000) & 0x7fff8000; 158*25c28e83SPiotr Jasiukajtis i = (j - 0x3fc40000) >> 15; 159*25c28e83SPiotr Jasiukajtis ((int *) &t)[HIWORD] = j; 160*25c28e83SPiotr Jasiukajtis if (hx > 0) 161*25c28e83SPiotr Jasiukajtis x = y - (t - x); 162*25c28e83SPiotr Jasiukajtis else 163*25c28e83SPiotr Jasiukajtis x = -y - (t + x); 164*25c28e83SPiotr Jasiukajtis a = _TBL_tan_hi[i]; 165*25c28e83SPiotr Jasiukajtis z = x * x; 166*25c28e83SPiotr Jasiukajtis s = (pp1 * x) * (pp2 + z * (pp3 + z)); /* sin(x) */ 167*25c28e83SPiotr Jasiukajtis t = (qq1 * z) * (qq2 + z); /* cos(x) - 1 */ 168*25c28e83SPiotr Jasiukajtis if (k == 0) { 169*25c28e83SPiotr Jasiukajtis w = a * s; 170*25c28e83SPiotr Jasiukajtis t = _TBL_tan_lo[i] + (s + a * w) / (one - (w - t)); 171*25c28e83SPiotr Jasiukajtis return (hx < 0 ? -a - t : a + t); 172*25c28e83SPiotr Jasiukajtis } else { 173*25c28e83SPiotr Jasiukajtis w = s + a * t; 174*25c28e83SPiotr Jasiukajtis c = w + _TBL_tan_lo[i]; 175*25c28e83SPiotr Jasiukajtis t = a * s - t; 176*25c28e83SPiotr Jasiukajtis /* 177*25c28e83SPiotr Jasiukajtis * Now try to compute [(1-T)/(a+c)] accurately 178*25c28e83SPiotr Jasiukajtis * 179*25c28e83SPiotr Jasiukajtis * Let r = 1/(a+c), rh = (1-T)*r chopped to 20 bits. 180*25c28e83SPiotr Jasiukajtis * Also let xh = a+c chopped to 20 bits, xl = (a-xh)+c. Then 181*25c28e83SPiotr Jasiukajtis * (1-T)/(a+c) = rh + ((1-T)/(a+c)-rh) 182*25c28e83SPiotr Jasiukajtis * = rh + r*(1-T-rh*(a+c)) 183*25c28e83SPiotr Jasiukajtis * = rh + r*((1-T-rh*xh)-rh*xl) 184*25c28e83SPiotr Jasiukajtis * = rh + r*(((1-rh*xh)-T)-rh*xl) 185*25c28e83SPiotr Jasiukajtis */ 186*25c28e83SPiotr Jasiukajtis r = one / (a + c); 187*25c28e83SPiotr Jasiukajtis rh = (one - t) * r; 188*25c28e83SPiotr Jasiukajtis ((int *) &rh)[LOWORD] = 0; 189*25c28e83SPiotr Jasiukajtis xh = a + c; 190*25c28e83SPiotr Jasiukajtis ((int *) &xh)[LOWORD] = 0; 191*25c28e83SPiotr Jasiukajtis xl = (a - xh) + c; 192*25c28e83SPiotr Jasiukajtis z = rh + r * (((one - rh * xh) - t) - rh * xl); 193*25c28e83SPiotr Jasiukajtis return (hx >= 0 ? -z : z); 194*25c28e83SPiotr Jasiukajtis } 195*25c28e83SPiotr Jasiukajtis } 196