1*25c28e83SPiotr Jasiukajtis /* 2*25c28e83SPiotr Jasiukajtis * CDDL HEADER START 3*25c28e83SPiotr Jasiukajtis * 4*25c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 5*25c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 6*25c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 7*25c28e83SPiotr Jasiukajtis * 8*25c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9*25c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 10*25c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 11*25c28e83SPiotr Jasiukajtis * and limitations under the License. 12*25c28e83SPiotr Jasiukajtis * 13*25c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 14*25c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15*25c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 16*25c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 17*25c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 18*25c28e83SPiotr Jasiukajtis * 19*25c28e83SPiotr Jasiukajtis * CDDL HEADER END 20*25c28e83SPiotr Jasiukajtis */ 21*25c28e83SPiotr Jasiukajtis /* 22*25c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23*25c28e83SPiotr Jasiukajtis */ 24*25c28e83SPiotr Jasiukajtis /* 25*25c28e83SPiotr Jasiukajtis * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 26*25c28e83SPiotr Jasiukajtis * Use is subject to license terms. 27*25c28e83SPiotr Jasiukajtis */ 28*25c28e83SPiotr Jasiukajtis 29*25c28e83SPiotr Jasiukajtis /* INDENT OFF */ 30*25c28e83SPiotr Jasiukajtis /* 31*25c28e83SPiotr Jasiukajtis * double __k_sincos(double x, double y, double *c); 32*25c28e83SPiotr Jasiukajtis * kernel sincos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 33*25c28e83SPiotr Jasiukajtis * Input x is assumed to be bounded by ~pi/4 in magnitude. 34*25c28e83SPiotr Jasiukajtis * Input y is the tail of x. 35*25c28e83SPiotr Jasiukajtis * return sin(x) with *c = cos(x) 36*25c28e83SPiotr Jasiukajtis * 37*25c28e83SPiotr Jasiukajtis * Accurate Table look-up algorithm by K.C. Ng, May, 1995. 38*25c28e83SPiotr Jasiukajtis * 39*25c28e83SPiotr Jasiukajtis * 1. Reduce x to x>0 by sin(-x)=-sin(x),cos(-x)=cos(x). 40*25c28e83SPiotr Jasiukajtis * 2. For 0<= x < pi/4, let i = (64*x chopped)-10. Let d = x - a[i], where 41*25c28e83SPiotr Jasiukajtis * a[i] is a double that is close to (i+10.5)/64 and such that 42*25c28e83SPiotr Jasiukajtis * sin(a[i]) and cos(a[i]) is close to a double (with error less 43*25c28e83SPiotr Jasiukajtis * than 2**-8 ulp). Then 44*25c28e83SPiotr Jasiukajtis * cos(x) = cos(a[i]+d) = cos(a[i])cos(d) - sin(a[i])*sin(d) 45*25c28e83SPiotr Jasiukajtis * = TBL_cos_a[i]*(1+QQ1*d^2+QQ2*d^4) - 46*25c28e83SPiotr Jasiukajtis * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5) 47*25c28e83SPiotr Jasiukajtis * = TBL_cos_a[i] + (TBL_cos_a[i]*d^2*(QQ1+QQ2*d^2) - 48*25c28e83SPiotr Jasiukajtis * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5)) 49*25c28e83SPiotr Jasiukajtis * sin(x) = sin(a[i]+d) = sin(a[i])cos(d) + cos(a[i])*sin(d) 50*25c28e83SPiotr Jasiukajtis * = TBL_sin_a[i]*(1+QQ1*d^2+QQ2*d^4) + 51*25c28e83SPiotr Jasiukajtis * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5) 52*25c28e83SPiotr Jasiukajtis * = TBL_sin_a[i] + (TBL_sin_a[i]*d^2*(QQ1+QQ2*d^2) + 53*25c28e83SPiotr Jasiukajtis * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5)) 54*25c28e83SPiotr Jasiukajtis * 55*25c28e83SPiotr Jasiukajtis * For |y| less than 10.5/64 = 0.1640625, use 56*25c28e83SPiotr Jasiukajtis * sin(y) = y + y^3*(p1+y^2*(p2+y^2*(p3+y^2*p4))) 57*25c28e83SPiotr Jasiukajtis * cos(y) = 1 + y^2*(q1+y^2*(q2+y^2*(q3+y^2*q4))) 58*25c28e83SPiotr Jasiukajtis * 59*25c28e83SPiotr Jasiukajtis * For |y| less than 0.008, use 60*25c28e83SPiotr Jasiukajtis * sin(y) = y + y^3*(pp1+y^2*pp2) 61*25c28e83SPiotr Jasiukajtis * cos(y) = 1 + y^2*(qq1+y^2*qq2) 62*25c28e83SPiotr Jasiukajtis * 63*25c28e83SPiotr Jasiukajtis * Accuracy: 64*25c28e83SPiotr Jasiukajtis * TRIG(x) returns trig(x) nearly rounded (less than 1 ulp) 65*25c28e83SPiotr Jasiukajtis */ 66*25c28e83SPiotr Jasiukajtis 67*25c28e83SPiotr Jasiukajtis #include "libm.h" 68*25c28e83SPiotr Jasiukajtis 69*25c28e83SPiotr Jasiukajtis static const double sc[] = { 70*25c28e83SPiotr Jasiukajtis /* ONE = */ 1.0, 71*25c28e83SPiotr Jasiukajtis /* NONE = */ -1.0, 72*25c28e83SPiotr Jasiukajtis /* 73*25c28e83SPiotr Jasiukajtis * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008 74*25c28e83SPiotr Jasiukajtis */ 75*25c28e83SPiotr Jasiukajtis /* PP1 = */ -0.166666666666316558867252052378889521480627858683055567, 76*25c28e83SPiotr Jasiukajtis /* PP2 = */ .008333315652997472323564894248466758248475374977974017927, 77*25c28e83SPiotr Jasiukajtis /* 78*25c28e83SPiotr Jasiukajtis * |(sin(x) - (x+p1*x^3+...+p4*x^9)| 79*25c28e83SPiotr Jasiukajtis * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125 80*25c28e83SPiotr Jasiukajtis * | x | 81*25c28e83SPiotr Jasiukajtis */ 82*25c28e83SPiotr Jasiukajtis /* P1 = */ -1.666666666666629669805215138920301589656e-0001, 83*25c28e83SPiotr Jasiukajtis /* P2 = */ 8.333333332390951295683993455280336376663e-0003, 84*25c28e83SPiotr Jasiukajtis /* P3 = */ -1.984126237997976692791551778230098403960e-0004, 85*25c28e83SPiotr Jasiukajtis /* P4 = */ 2.753403624854277237649987622848330351110e-0006, 86*25c28e83SPiotr Jasiukajtis /* 87*25c28e83SPiotr Jasiukajtis * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d) 88*25c28e83SPiotr Jasiukajtis */ 89*25c28e83SPiotr Jasiukajtis /* QQ1 = */ -0.4999999999975492381842911981948418542742729, 90*25c28e83SPiotr Jasiukajtis /* QQ2 = */ 0.041666542904352059294545209158357640398771740, 91*25c28e83SPiotr Jasiukajtis /* 92*25c28e83SPiotr Jasiukajtis * |cos(x) - (1+q1*x^2+...+q4*x^8)| <= 2^-55.86 for |x| <= 0.1640625 (10.5/64) 93*25c28e83SPiotr Jasiukajtis */ 94*25c28e83SPiotr Jasiukajtis /* Q1 = */ -0.5, 95*25c28e83SPiotr Jasiukajtis /* Q2 = */ 4.166666666500350703680945520860748617445e-0002, 96*25c28e83SPiotr Jasiukajtis /* Q3 = */ -1.388888596436972210694266290577848696006e-0003, 97*25c28e83SPiotr Jasiukajtis /* Q4 = */ 2.478563078858589473679519517892953492192e-0005, 98*25c28e83SPiotr Jasiukajtis }; 99*25c28e83SPiotr Jasiukajtis /* INDENT ON */ 100*25c28e83SPiotr Jasiukajtis 101*25c28e83SPiotr Jasiukajtis #define ONE sc[0] 102*25c28e83SPiotr Jasiukajtis #define NONE sc[1] 103*25c28e83SPiotr Jasiukajtis #define PP1 sc[2] 104*25c28e83SPiotr Jasiukajtis #define PP2 sc[3] 105*25c28e83SPiotr Jasiukajtis #define P1 sc[4] 106*25c28e83SPiotr Jasiukajtis #define P2 sc[5] 107*25c28e83SPiotr Jasiukajtis #define P3 sc[6] 108*25c28e83SPiotr Jasiukajtis #define P4 sc[7] 109*25c28e83SPiotr Jasiukajtis #define QQ1 sc[8] 110*25c28e83SPiotr Jasiukajtis #define QQ2 sc[9] 111*25c28e83SPiotr Jasiukajtis #define Q1 sc[10] 112*25c28e83SPiotr Jasiukajtis #define Q2 sc[11] 113*25c28e83SPiotr Jasiukajtis #define Q3 sc[12] 114*25c28e83SPiotr Jasiukajtis #define Q4 sc[13] 115*25c28e83SPiotr Jasiukajtis 116*25c28e83SPiotr Jasiukajtis extern const double _TBL_sincos[], _TBL_sincosx[]; 117*25c28e83SPiotr Jasiukajtis 118*25c28e83SPiotr Jasiukajtis double 119*25c28e83SPiotr Jasiukajtis __k_sincos(double x, double y, double *c) { 120*25c28e83SPiotr Jasiukajtis double z, w, s, v, p, q; 121*25c28e83SPiotr Jasiukajtis int i, j, n, hx, ix; 122*25c28e83SPiotr Jasiukajtis 123*25c28e83SPiotr Jasiukajtis hx = ((int *)&x)[HIWORD]; 124*25c28e83SPiotr Jasiukajtis ix = hx & ~0x80000000; 125*25c28e83SPiotr Jasiukajtis 126*25c28e83SPiotr Jasiukajtis if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */ 127*25c28e83SPiotr Jasiukajtis if (ix < 0x3e400000) { /* |x| < 2**-27 */ 128*25c28e83SPiotr Jasiukajtis if ((int)x == 0) 129*25c28e83SPiotr Jasiukajtis *c = ONE; 130*25c28e83SPiotr Jasiukajtis return (x + y); 131*25c28e83SPiotr Jasiukajtis } else { 132*25c28e83SPiotr Jasiukajtis z = x * x; 133*25c28e83SPiotr Jasiukajtis if (ix < 0x3f800000) { /* |x| < 0.008 */ 134*25c28e83SPiotr Jasiukajtis q = z * (QQ1 + z * QQ2); 135*25c28e83SPiotr Jasiukajtis p = (x * z) * (PP1 + z * PP2) + y; 136*25c28e83SPiotr Jasiukajtis } else { 137*25c28e83SPiotr Jasiukajtis q = z * ((Q1 + z * Q2) + (z * z) * (Q3 + 138*25c28e83SPiotr Jasiukajtis z * Q4)); 139*25c28e83SPiotr Jasiukajtis p = (x * z) * ((P1 + z * P2) + (z * z) * (P3 + 140*25c28e83SPiotr Jasiukajtis z * P4)) + y; 141*25c28e83SPiotr Jasiukajtis } 142*25c28e83SPiotr Jasiukajtis *c = ONE + q; 143*25c28e83SPiotr Jasiukajtis return (x + p); 144*25c28e83SPiotr Jasiukajtis } 145*25c28e83SPiotr Jasiukajtis } else { /* 0.164062500 < |x| < ~pi/4 */ 146*25c28e83SPiotr Jasiukajtis n = ix >> 20; 147*25c28e83SPiotr Jasiukajtis i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n); 148*25c28e83SPiotr Jasiukajtis j = i - 10; 149*25c28e83SPiotr Jasiukajtis if (hx < 0) 150*25c28e83SPiotr Jasiukajtis v = -y - (_TBL_sincosx[j] + x); 151*25c28e83SPiotr Jasiukajtis else 152*25c28e83SPiotr Jasiukajtis v = y - (_TBL_sincosx[j] - x); 153*25c28e83SPiotr Jasiukajtis s = v * v; 154*25c28e83SPiotr Jasiukajtis j <<= 1; 155*25c28e83SPiotr Jasiukajtis w = _TBL_sincos[j]; 156*25c28e83SPiotr Jasiukajtis z = _TBL_sincos[j+1]; 157*25c28e83SPiotr Jasiukajtis p = s * (PP1 + s * PP2); 158*25c28e83SPiotr Jasiukajtis q = s * (QQ1 + s * QQ2); 159*25c28e83SPiotr Jasiukajtis p = v + v * p; 160*25c28e83SPiotr Jasiukajtis *c = z - (w * p - z * q); 161*25c28e83SPiotr Jasiukajtis s = w * q + z * p; 162*25c28e83SPiotr Jasiukajtis return ((hx >= 0)? w + s : -(w + s)); 163*25c28e83SPiotr Jasiukajtis } 164*25c28e83SPiotr Jasiukajtis } 165