xref: /titanic_51/usr/src/lib/libipadm/common/libipadm.c (revision 188eaed9d5f14c73dfba1cd0dabaa430bdfd4a9a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <errno.h>
29 #include <fcntl.h>
30 #include <unistd.h>
31 #include <stropts.h>
32 #include <sys/sockio.h>
33 #include <sys/types.h>
34 #include <sys/stat.h>
35 #include <sys/socket.h>
36 #include <net/route.h>
37 #include <netinet/in.h>
38 #include <inet/ip.h>
39 #include <arpa/inet.h>
40 #include <libintl.h>
41 #include <libdlpi.h>
42 #include <libinetutil.h>
43 #include <libdladm.h>
44 #include <libdllink.h>
45 #include <libdliptun.h>
46 #include <strings.h>
47 #include <zone.h>
48 #include <ctype.h>
49 #include <limits.h>
50 #include <assert.h>
51 #include <netdb.h>
52 #include <pwd.h>
53 #include <auth_attr.h>
54 #include <secdb.h>
55 #include <nss_dbdefs.h>
56 #include "libipadm_impl.h"
57 
58 /* error codes and text description */
59 static struct ipadm_error_info {
60 	ipadm_status_t	error_code;
61 	const char	*error_desc;
62 } ipadm_errors[] = {
63 	{ IPADM_SUCCESS,	"Operation succeeded" },
64 	{ IPADM_FAILURE,	"Operation failed" },
65 	{ IPADM_EAUTH,		"Insufficient user authorizations" },
66 	{ IPADM_EPERM,		"Permission denied" },
67 	{ IPADM_NO_BUFS,	"No buffer space available" },
68 	{ IPADM_NO_MEMORY,	"Insufficient memory" },
69 	{ IPADM_BAD_ADDR,	"Invalid address" },
70 	{ IPADM_BAD_PROTOCOL,	"Incorrect protocol family for operation" },
71 	{ IPADM_DAD_FOUND,	"Duplicate address detected" },
72 	{ IPADM_EXISTS,		"Already exists" },
73 	{ IPADM_IF_EXISTS,	"Interface already exists" },
74 	{ IPADM_ADDROBJ_EXISTS, "Address object already exists" },
75 	{ IPADM_ADDRCONF_EXISTS, "Addrconf already in progress" },
76 	{ IPADM_ENXIO,		"Interface does not exist" },
77 	{ IPADM_GRP_NOTEMPTY,	"IPMP group is not empty" },
78 	{ IPADM_INVALID_ARG,	"Invalid argument provided" },
79 	{ IPADM_INVALID_NAME,	"Invalid name" },
80 	{ IPADM_DLPI_FAILURE,	"Could not open DLPI link" },
81 	{ IPADM_DLADM_FAILURE,	"Datalink does not exist" },
82 	{ IPADM_PROP_UNKNOWN,   "Unknown property" },
83 	{ IPADM_ERANGE,		"Value is outside the allowed range" },
84 	{ IPADM_ESRCH,		"Value does not exist" },
85 	{ IPADM_EOVERFLOW,	"Number of values exceeds the allowed limit" },
86 	{ IPADM_NOTFOUND,	"Object not found" },
87 	{ IPADM_IF_INUSE,	"Interface already in use" },
88 	{ IPADM_ADDR_INUSE,	"Address already in use" },
89 	{ IPADM_BAD_HOSTNAME,	"Hostname maps to multiple IP addresses" },
90 	{ IPADM_ADDR_NOTAVAIL,	"Can't assign requested address" },
91 	{ IPADM_ALL_ADDRS_NOT_ENABLED, "All addresses could not be enabled" },
92 	{ IPADM_NDPD_NOT_RUNNING, "IPv6 autoconf daemon in.ndpd not running" },
93 	{ IPADM_DHCP_START_ERROR, "Could not start dhcpagent" },
94 	{ IPADM_DHCP_IPC_ERROR,	"Could not communicate with dhcpagent" },
95 	{ IPADM_DHCP_IPC_TIMEOUT, "Communication with dhcpagent timed out" },
96 	{ IPADM_TEMPORARY_OBJ,	"Persistent operation on temporary object" },
97 	{ IPADM_IPC_ERROR,	"Could not communicate with ipmgmtd" },
98 	{ IPADM_NOTSUP,		"Operation not supported" },
99 	{ IPADM_OP_DISABLE_OBJ, "Operation not supported on disabled object" },
100 	{ IPADM_EBADE,		"Invalid data exchange with daemon" }
101 };
102 
103 #define	IPADM_NUM_ERRORS	(sizeof (ipadm_errors) / sizeof (*ipadm_errors))
104 
105 ipadm_status_t
106 ipadm_errno2status(int error)
107 {
108 	switch (error) {
109 	case 0:
110 		return (IPADM_SUCCESS);
111 	case ENXIO:
112 		return (IPADM_ENXIO);
113 	case ENOMEM:
114 		return (IPADM_NO_MEMORY);
115 	case ENOBUFS:
116 		return (IPADM_NO_BUFS);
117 	case EINVAL:
118 		return (IPADM_INVALID_ARG);
119 	case EBUSY:
120 		return (IPADM_IF_INUSE);
121 	case EEXIST:
122 		return (IPADM_EXISTS);
123 	case EADDRNOTAVAIL:
124 		return (IPADM_ADDR_NOTAVAIL);
125 	case EADDRINUSE:
126 		return (IPADM_ADDR_INUSE);
127 	case ENOENT:
128 		return (IPADM_NOTFOUND);
129 	case ERANGE:
130 		return (IPADM_ERANGE);
131 	case EPERM:
132 		return (IPADM_EPERM);
133 	case ENOTSUP:
134 	case EOPNOTSUPP:
135 		return (IPADM_NOTSUP);
136 	case EBADF:
137 		return (IPADM_IPC_ERROR);
138 	case EBADE:
139 		return (IPADM_EBADE);
140 	case ESRCH:
141 		return (IPADM_ESRCH);
142 	case EOVERFLOW:
143 		return (IPADM_EOVERFLOW);
144 	default:
145 		return (IPADM_FAILURE);
146 	}
147 }
148 
149 /*
150  * Returns a message string for the given libipadm error status.
151  */
152 const char *
153 ipadm_status2str(ipadm_status_t status)
154 {
155 	int	i;
156 
157 	for (i = 0; i < IPADM_NUM_ERRORS; i++) {
158 		if (status == ipadm_errors[i].error_code)
159 			return (dgettext(TEXT_DOMAIN,
160 			    ipadm_errors[i].error_desc));
161 	}
162 
163 	return (dgettext(TEXT_DOMAIN, "<unknown error>"));
164 }
165 
166 /*
167  * Opens a handle to libipadm.
168  * Possible values for flags:
169  *  IPH_VRRP:	Used by VRRP daemon to set the socket option SO_VRRP.
170  *  IPH_LEGACY:	This is used whenever an application needs to provide a
171  *		logical interface name while creating or deleting
172  *		interfaces and static addresses.
173  *  IPH_INIT:   Used by ipadm_init_prop(), to initialize protocol properties
174  *		on reboot.
175  */
176 ipadm_status_t
177 ipadm_open(ipadm_handle_t *handle, uint32_t flags)
178 {
179 	ipadm_handle_t	iph;
180 	ipadm_status_t	status = IPADM_SUCCESS;
181 	zoneid_t	zoneid;
182 	ushort_t	zflags;
183 	int		on = B_TRUE;
184 
185 	if (handle == NULL)
186 		return (IPADM_INVALID_ARG);
187 	*handle = NULL;
188 
189 	if (flags & ~(IPH_VRRP|IPH_LEGACY|IPH_INIT))
190 		return (IPADM_INVALID_ARG);
191 
192 	if ((iph = calloc(1, sizeof (struct ipadm_handle))) == NULL)
193 		return (IPADM_NO_MEMORY);
194 	iph->iph_sock = -1;
195 	iph->iph_sock6 = -1;
196 	iph->iph_door_fd = -1;
197 	iph->iph_flags = flags;
198 	(void) pthread_mutex_init(&iph->iph_lock, NULL);
199 
200 	if ((iph->iph_sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 ||
201 	    (iph->iph_sock6 = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) {
202 		goto errnofail;
203 	}
204 
205 	/*
206 	 * We open a handle to libdladm here, to facilitate some daemons (like
207 	 * nwamd) which opens handle to libipadm before devfsadmd installs the
208 	 * right device permissions into the kernel and requires "all"
209 	 * privileges to open DLD_CONTROL_DEV.
210 	 *
211 	 * In a non-global shared-ip zone there will be no DLD_CONTROL_DEV node
212 	 * and dladm_open() will fail. So, we avoid this by not calling
213 	 * dladm_open() for such zones.
214 	 */
215 	zoneid = getzoneid();
216 	if (zoneid != GLOBAL_ZONEID) {
217 		if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &zflags,
218 		    sizeof (zflags)) < 0) {
219 			goto errnofail;
220 		}
221 	}
222 	if ((zoneid == GLOBAL_ZONEID) || (zflags & ZF_NET_EXCL)) {
223 		if (dladm_open(&iph->iph_dlh) != DLADM_STATUS_OK) {
224 			ipadm_close(iph);
225 			return (IPADM_DLADM_FAILURE);
226 		}
227 	} else {
228 		assert(zoneid != GLOBAL_ZONEID);
229 		iph->iph_dlh = NULL;
230 	}
231 	if (flags & IPH_VRRP) {
232 		if (setsockopt(iph->iph_sock6, SOL_SOCKET, SO_VRRP, &on,
233 		    sizeof (on)) < 0 || setsockopt(iph->iph_sock, SOL_SOCKET,
234 		    SO_VRRP, &on, sizeof (on)) < 0) {
235 			goto errnofail;
236 		}
237 	}
238 	*handle = iph;
239 	return (status);
240 
241 errnofail:
242 	status = ipadm_errno2status(errno);
243 	ipadm_close(iph);
244 	return (status);
245 }
246 
247 /*
248  * Closes and frees the libipadm handle.
249  */
250 void
251 ipadm_close(ipadm_handle_t iph)
252 {
253 	if (iph == NULL)
254 		return;
255 	if (iph->iph_sock != -1)
256 		(void) close(iph->iph_sock);
257 	if (iph->iph_sock6 != -1)
258 		(void) close(iph->iph_sock6);
259 	if (iph->iph_door_fd != -1)
260 		(void) close(iph->iph_door_fd);
261 	dladm_close(iph->iph_dlh);
262 	(void) pthread_mutex_destroy(&iph->iph_lock);
263 	free(iph);
264 }
265 
266 /*
267  * Checks if the caller has the authorization to configure network
268  * interfaces.
269  */
270 boolean_t
271 ipadm_check_auth(void)
272 {
273 	struct passwd	pwd;
274 	char		buf[NSS_BUFLEN_PASSWD];
275 
276 	/* get the password entry for the given user ID */
277 	if (getpwuid_r(getuid(), &pwd, buf, sizeof (buf)) == NULL)
278 		return (B_FALSE);
279 
280 	/* check for presence of given authorization */
281 	return (chkauthattr(NETWORK_INTERFACE_CONFIG_AUTH, pwd.pw_name) != 0);
282 }
283 
284 /*
285  * Stores the index value of the interface in `ifname' for the address
286  * family `af' into the buffer pointed to by `index'.
287  */
288 static ipadm_status_t
289 i_ipadm_get_index(ipadm_handle_t iph, const char *ifname, sa_family_t af,
290     int *index)
291 {
292 	struct lifreq	lifr;
293 	int		sock;
294 
295 	bzero(&lifr, sizeof (lifr));
296 	(void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
297 	if (af == AF_INET)
298 		sock = iph->iph_sock;
299 	else
300 		sock = iph->iph_sock6;
301 
302 	if (ioctl(sock, SIOCGLIFINDEX, (caddr_t)&lifr) < 0)
303 		return (ipadm_errno2status(errno));
304 	*index = lifr.lifr_index;
305 
306 	return (IPADM_SUCCESS);
307 }
308 
309 /*
310  * Maximum amount of time (in milliseconds) to wait for Duplicate Address
311  * Detection to complete in the kernel.
312  */
313 #define	DAD_WAIT_TIME		1000
314 
315 /*
316  * Any time that flags are changed on an interface where either the new or the
317  * existing flags have IFF_UP set, we'll get a RTM_NEWADDR message to
318  * announce the new address added and its flag status.
319  * We wait here for that message and look for IFF_UP.
320  * If something's amiss with the kernel, though, we don't wait forever.
321  * (Note that IFF_DUPLICATE is a high-order bit, and we cannot see
322  * it in the routing socket messages.)
323  */
324 static ipadm_status_t
325 i_ipadm_dad_wait(ipadm_handle_t handle, const char *lifname, sa_family_t af,
326     int rtsock)
327 {
328 	struct pollfd	fds[1];
329 	union {
330 		struct if_msghdr ifm;
331 		char buf[1024];
332 	} msg;
333 	int		index;
334 	ipadm_status_t	retv;
335 	uint64_t	flags;
336 	hrtime_t	starttime, now;
337 
338 	fds[0].fd = rtsock;
339 	fds[0].events = POLLIN;
340 	fds[0].revents = 0;
341 
342 	retv = i_ipadm_get_index(handle, lifname, af, &index);
343 	if (retv != IPADM_SUCCESS)
344 		return (retv);
345 
346 	starttime = gethrtime();
347 	for (;;) {
348 		now = gethrtime();
349 		now = (now - starttime) / 1000000;
350 		if (now >= DAD_WAIT_TIME)
351 			break;
352 		if (poll(fds, 1, DAD_WAIT_TIME - (int)now) <= 0)
353 			break;
354 		if (read(rtsock, &msg, sizeof (msg)) <= 0)
355 			break;
356 		if (msg.ifm.ifm_type != RTM_NEWADDR)
357 			continue;
358 		/* Note that ifm_index is just 16 bits */
359 		if (index == msg.ifm.ifm_index && (msg.ifm.ifm_flags & IFF_UP))
360 			return (IPADM_SUCCESS);
361 	}
362 
363 	retv = i_ipadm_get_flags(handle, lifname, af, &flags);
364 	if (retv != IPADM_SUCCESS)
365 		return (retv);
366 	if (flags & IFF_DUPLICATE)
367 		return (IPADM_DAD_FOUND);
368 
369 	return (IPADM_SUCCESS);
370 }
371 
372 /*
373  * Sets the flags `on_flags' and resets the flags `off_flags' for the logical
374  * interface in `lifname'.
375  *
376  * If the new flags value will transition the interface from "down" to "up"
377  * then duplicate address detection is performed by the kernel.  This routine
378  * waits to get the outcome of that test.
379  */
380 ipadm_status_t
381 i_ipadm_set_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af,
382     uint64_t on_flags, uint64_t off_flags)
383 {
384 	struct lifreq	lifr;
385 	uint64_t	oflags;
386 	ipadm_status_t	ret;
387 	int		rtsock = -1;
388 	int		sock, err;
389 
390 	ret = i_ipadm_get_flags(iph, lifname, af, &oflags);
391 	if (ret != IPADM_SUCCESS)
392 		return (ret);
393 
394 	sock = (af == AF_INET ? iph->iph_sock : iph->iph_sock6);
395 
396 	/*
397 	 * Any time flags are changed on an interface that has IFF_UP set,
398 	 * we get a routing socket message.  We care about the status,
399 	 * though, only when the new flags are marked "up."
400 	 */
401 	if (!(oflags & IFF_UP) && (on_flags & IFF_UP))
402 		rtsock = socket(PF_ROUTE, SOCK_RAW, af);
403 
404 	oflags |= on_flags;
405 	oflags &= ~off_flags;
406 	bzero(&lifr, sizeof (lifr));
407 	(void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name));
408 	lifr.lifr_flags = oflags;
409 	if (ioctl(sock, SIOCSLIFFLAGS, (caddr_t)&lifr) < 0) {
410 		err = errno;
411 		if (rtsock != -1)
412 			(void) close(rtsock);
413 		return (ipadm_errno2status(err));
414 	}
415 	if (rtsock == -1) {
416 		return (IPADM_SUCCESS);
417 	} else {
418 		/* Wait for DAD to complete. */
419 		ret = i_ipadm_dad_wait(iph, lifname, af, rtsock);
420 		(void) close(rtsock);
421 		return (ret);
422 	}
423 }
424 
425 /*
426  * Returns the flags value for the logical interface in `lifname'
427  * in the buffer pointed to by `flags'.
428  */
429 ipadm_status_t
430 i_ipadm_get_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af,
431     uint64_t *flags)
432 {
433 	struct lifreq	lifr;
434 	int		sock;
435 
436 	bzero(&lifr, sizeof (lifr));
437 	(void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name));
438 	if (af == AF_INET)
439 		sock = iph->iph_sock;
440 	else
441 		sock = iph->iph_sock6;
442 
443 	if (ioctl(sock, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) {
444 		return (ipadm_errno2status(errno));
445 	}
446 	*flags = lifr.lifr_flags;
447 
448 	return (IPADM_SUCCESS);
449 }
450 
451 /*
452  * Determines whether or not an interface name represents a loopback
453  * interface, before the interface has been plumbed.
454  * It is assumed that the interface name in `ifname' is of correct format
455  * as verified by ifparse_ifspec().
456  *
457  * Returns: B_TRUE if loopback, B_FALSE if not.
458  */
459 boolean_t
460 i_ipadm_is_loopback(const char *ifname)
461 {
462 	int len = strlen(LOOPBACK_IF);
463 
464 	return (strncmp(ifname, LOOPBACK_IF, len) == 0 &&
465 	    (ifname[len] == '\0' || ifname[len] == IPADM_LOGICAL_SEP));
466 }
467 
468 /*
469  * Determines whether or not an interface name represents a vni
470  * interface, before the interface has been plumbed.
471  * It is assumed that the interface name in `ifname' is of correct format
472  * as verified by ifparse_ifspec().
473  *
474  * Returns: B_TRUE if vni, B_FALSE if not.
475  */
476 boolean_t
477 i_ipadm_is_vni(const char *ifname)
478 {
479 	ifspec_t	ifsp;
480 
481 	return (ifparse_ifspec(ifname, &ifsp) &&
482 	    strcmp(ifsp.ifsp_devnm, "vni") == 0);
483 }
484 
485 /*
486  * Returns B_TRUE if `ifname' is an IP interface on a 6to4 tunnel.
487  */
488 boolean_t
489 i_ipadm_is_6to4(ipadm_handle_t iph, char *ifname)
490 {
491 	dladm_status_t		dlstatus;
492 	datalink_class_t	class;
493 	iptun_params_t		params;
494 	datalink_id_t		linkid;
495 
496 	if (iph->iph_dlh == NULL) {
497 		assert(getzoneid() != GLOBAL_ZONEID);
498 		return (B_FALSE);
499 	}
500 	dlstatus = dladm_name2info(iph->iph_dlh, ifname, &linkid, NULL,
501 	    &class, NULL);
502 	if (dlstatus == DLADM_STATUS_OK && class == DATALINK_CLASS_IPTUN) {
503 		params.iptun_param_linkid = linkid;
504 		dlstatus = dladm_iptun_getparams(iph->iph_dlh, &params,
505 		    DLADM_OPT_ACTIVE);
506 		if (dlstatus == DLADM_STATUS_OK &&
507 		    params.iptun_param_type == IPTUN_TYPE_6TO4) {
508 			return (B_TRUE);
509 		}
510 	}
511 	return (B_FALSE);
512 }
513 
514 /*
515  * Returns B_TRUE if `ifname' represents an IPMP underlying interface.
516  */
517 boolean_t
518 i_ipadm_is_under_ipmp(ipadm_handle_t iph, const char *ifname)
519 {
520 	struct lifreq	lifr;
521 
522 	(void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
523 	if (ioctl(iph->iph_sock, SIOCGLIFGROUPNAME, (caddr_t)&lifr) < 0) {
524 		if (ioctl(iph->iph_sock6, SIOCGLIFGROUPNAME,
525 		    (caddr_t)&lifr) < 0) {
526 			return (B_FALSE);
527 		}
528 	}
529 	return (lifr.lifr_groupname[0] != '\0');
530 }
531 
532 /*
533  * Returns B_TRUE if `ifname' represents an IPMP meta-interface.
534  */
535 boolean_t
536 i_ipadm_is_ipmp(ipadm_handle_t iph, const char *ifname)
537 {
538 	uint64_t flags;
539 
540 	if (i_ipadm_get_flags(iph, ifname, AF_INET, &flags) != IPADM_SUCCESS &&
541 	    i_ipadm_get_flags(iph, ifname, AF_INET6, &flags) != IPADM_SUCCESS)
542 		return (B_FALSE);
543 
544 	return ((flags & IFF_IPMP) != 0);
545 }
546 
547 /*
548  * For a given interface name, ipadm_if_enabled() checks if v4
549  * or v6 or both IP interfaces exist in the active configuration.
550  */
551 boolean_t
552 ipadm_if_enabled(ipadm_handle_t iph, const char *ifname, sa_family_t af)
553 {
554 	struct lifreq	lifr;
555 	int		s4 = iph->iph_sock;
556 	int		s6 = iph->iph_sock6;
557 
558 	bzero(&lifr, sizeof (lifr));
559 	(void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
560 	switch (af) {
561 	case AF_INET:
562 		if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0)
563 			return (B_TRUE);
564 		break;
565 	case AF_INET6:
566 		if (ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0)
567 			return (B_TRUE);
568 		break;
569 	case AF_UNSPEC:
570 		if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0 ||
571 		    ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) {
572 			return (B_TRUE);
573 		}
574 	}
575 	return (B_FALSE);
576 }
577 
578 /*
579  * Apply the interface property by retrieving information from nvl.
580  */
581 static ipadm_status_t
582 i_ipadm_init_ifprop(ipadm_handle_t iph, nvlist_t *nvl)
583 {
584 	nvpair_t	*nvp;
585 	char		*name, *pname = NULL;
586 	char		*protostr = NULL, *ifname = NULL, *pval = NULL;
587 	uint_t		proto;
588 	int		err = 0;
589 
590 	for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
591 	    nvp = nvlist_next_nvpair(nvl, nvp)) {
592 		name = nvpair_name(nvp);
593 		if (strcmp(name, IPADM_NVP_IFNAME) == 0) {
594 			if ((err = nvpair_value_string(nvp, &ifname)) != 0)
595 				break;
596 		} else if (strcmp(name, IPADM_NVP_PROTONAME) == 0) {
597 			if ((err = nvpair_value_string(nvp, &protostr)) != 0)
598 				break;
599 		} else {
600 			assert(!IPADM_PRIV_NVP(name));
601 			pname = name;
602 			if ((err = nvpair_value_string(nvp, &pval)) != 0)
603 				break;
604 		}
605 	}
606 	if (err != 0)
607 		return (ipadm_errno2status(err));
608 	proto = ipadm_str2proto(protostr);
609 	return (ipadm_set_ifprop(iph, ifname, pname, pval, proto,
610 	    IPADM_OPT_ACTIVE));
611 }
612 
613 /*
614  * Instantiate the address object or set the address object property by
615  * retrieving the configuration from the nvlist `nvl'.
616  */
617 ipadm_status_t
618 i_ipadm_init_addrobj(ipadm_handle_t iph, nvlist_t *nvl)
619 {
620 	nvpair_t	*nvp;
621 	char		*name;
622 	char		*aobjname = NULL, *pval = NULL, *ifname = NULL;
623 	sa_family_t	af = AF_UNSPEC;
624 	ipadm_addr_type_t atype = IPADM_ADDR_NONE;
625 	int		err = 0;
626 	ipadm_status_t	status = IPADM_SUCCESS;
627 
628 	for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
629 	    nvp = nvlist_next_nvpair(nvl, nvp)) {
630 		name = nvpair_name(nvp);
631 		if (strcmp(name, IPADM_NVP_IFNAME) == 0) {
632 			if ((err = nvpair_value_string(nvp, &ifname)) != 0)
633 				break;
634 		} else if (strcmp(name, IPADM_NVP_AOBJNAME) == 0) {
635 			if ((err = nvpair_value_string(nvp, &aobjname)) != 0)
636 				break;
637 		} else if (i_ipadm_name2atype(name, &af, &atype)) {
638 			break;
639 		} else {
640 			assert(!IPADM_PRIV_NVP(name));
641 			err = nvpair_value_string(nvp, &pval);
642 			break;
643 		}
644 	}
645 	if (err != 0)
646 		return (ipadm_errno2status(err));
647 
648 	switch (atype) {
649 	case IPADM_ADDR_STATIC:
650 		status = i_ipadm_enable_static(iph, ifname, nvl, af);
651 		break;
652 	case IPADM_ADDR_DHCP:
653 		status = i_ipadm_enable_dhcp(iph, ifname, nvl);
654 		if (status == IPADM_DHCP_IPC_TIMEOUT)
655 			status = IPADM_SUCCESS;
656 		break;
657 	case IPADM_ADDR_IPV6_ADDRCONF:
658 		status = i_ipadm_enable_addrconf(iph, ifname, nvl);
659 		break;
660 	case IPADM_ADDR_NONE:
661 		status = ipadm_set_addrprop(iph, name, pval, aobjname,
662 		    IPADM_OPT_ACTIVE);
663 		break;
664 	}
665 
666 	return (status);
667 }
668 
669 /*
670  * Instantiate the interface object by retrieving the configuration from
671  * `ifnvl'. The nvlist `ifnvl' contains all the persistent configuration
672  * (interface properties and address objects on that interface) for the
673  * given `ifname'.
674  */
675 ipadm_status_t
676 i_ipadm_init_ifobj(ipadm_handle_t iph, const char *ifname, nvlist_t *ifnvl)
677 {
678 	nvlist_t	*nvl = NULL;
679 	nvpair_t	*nvp;
680 	char		*afstr;
681 	ipadm_status_t	status;
682 	ipadm_status_t	ret_status = IPADM_SUCCESS;
683 	char		newifname[LIFNAMSIZ];
684 	char		*aobjstr;
685 
686 	(void) strlcpy(newifname, ifname, sizeof (newifname));
687 	/*
688 	 * First plumb the given interface and then apply all the persistent
689 	 * interface properties and then instantiate any persistent addresses
690 	 * objects on that interface.
691 	 */
692 	for (nvp = nvlist_next_nvpair(ifnvl, NULL); nvp != NULL;
693 	    nvp = nvlist_next_nvpair(ifnvl, nvp)) {
694 		if (nvpair_value_nvlist(nvp, &nvl) != 0)
695 			continue;
696 
697 		if (nvlist_lookup_string(nvl, IPADM_NVP_FAMILY, &afstr) == 0) {
698 			status = i_ipadm_plumb_if(iph, newifname, atoi(afstr),
699 			    IPADM_OPT_ACTIVE);
700 			/*
701 			 * If the interface is already plumbed, we should
702 			 * ignore this error because there might be address
703 			 * address objects on that interface that needs to
704 			 * be enabled again.
705 			 */
706 			if (status == IPADM_IF_EXISTS)
707 				status = IPADM_SUCCESS;
708 		} else if (nvlist_lookup_string(nvl, IPADM_NVP_AOBJNAME,
709 		    &aobjstr) == 0) {
710 			/*
711 			 * For a static address, we need to search for
712 			 * the prefixlen in the nvlist `ifnvl'.
713 			 */
714 			if (nvlist_exists(nvl, IPADM_NVP_IPV4ADDR) ||
715 			    nvlist_exists(nvl, IPADM_NVP_IPV6ADDR)) {
716 				status = i_ipadm_merge_prefixlen_from_nvl(ifnvl,
717 				    nvl, aobjstr);
718 				if (status != IPADM_SUCCESS)
719 					continue;
720 			}
721 			status = i_ipadm_init_addrobj(iph, nvl);
722 			/*
723 			 * If this address is in use on some other interface,
724 			 * we want to record an error to be returned as
725 			 * a soft error and continue processing the rest of
726 			 * the addresses.
727 			 */
728 			if (status == IPADM_ADDR_NOTAVAIL) {
729 				ret_status = IPADM_ALL_ADDRS_NOT_ENABLED;
730 				status = IPADM_SUCCESS;
731 			}
732 		} else {
733 			assert(nvlist_exists(nvl, IPADM_NVP_PROTONAME));
734 			status = i_ipadm_init_ifprop(iph, nvl);
735 		}
736 		if (status != IPADM_SUCCESS)
737 			return (status);
738 	}
739 	return (ret_status);
740 }
741 
742 /*
743  * Retrieves the persistent configuration for the given interface(s) in `ifs'
744  * by contacting the daemon and dumps the information in `allifs'.
745  */
746 ipadm_status_t
747 i_ipadm_init_ifs(ipadm_handle_t iph, const char *ifs, nvlist_t **allifs)
748 {
749 	nvlist_t		*nvl = NULL;
750 	size_t			nvlsize, bufsize;
751 	ipmgmt_initif_arg_t	*iargp;
752 	char			*buf = NULL, *nvlbuf = NULL;
753 	ipmgmt_get_rval_t	*rvalp = NULL;
754 	int			err;
755 	ipadm_status_t		status = IPADM_SUCCESS;
756 
757 	if ((err = ipadm_str2nvlist(ifs, &nvl, IPADM_NORVAL)) != 0)
758 		return (ipadm_errno2status(err));
759 
760 	err = nvlist_pack(nvl, &nvlbuf, &nvlsize, NV_ENCODE_NATIVE, 0);
761 	if (err != 0) {
762 		status = ipadm_errno2status(err);
763 		goto done;
764 	}
765 	bufsize = sizeof (*iargp) + nvlsize;
766 	if ((buf = malloc(bufsize)) == NULL) {
767 		status = ipadm_errno2status(errno);
768 		goto done;
769 	}
770 
771 	/* populate the door_call argument structure */
772 	iargp = (void *)buf;
773 	iargp->ia_cmd = IPMGMT_CMD_INITIF;
774 	iargp->ia_flags = 0;
775 	iargp->ia_family = AF_UNSPEC;
776 	iargp->ia_nvlsize = nvlsize;
777 	(void) bcopy(nvlbuf, buf + sizeof (*iargp), nvlsize);
778 
779 	if ((rvalp = malloc(sizeof (ipmgmt_get_rval_t))) == NULL) {
780 		status = ipadm_errno2status(errno);
781 		goto done;
782 	}
783 	if ((err = ipadm_door_call(iph, iargp, bufsize, (void **)&rvalp,
784 	    sizeof (*rvalp), B_TRUE)) != 0) {
785 		status = ipadm_errno2status(err);
786 		goto done;
787 	}
788 	nvlsize = rvalp->ir_nvlsize;
789 	nvlbuf = (char *)rvalp + sizeof (ipmgmt_get_rval_t);
790 
791 	/*
792 	 * nvlbuf contains a list of nvlists, each of which represents
793 	 * configuration information for the given interface(s)
794 	 */
795 	err = nvlist_unpack(nvlbuf, nvlsize, allifs, NV_ENCODE_NATIVE);
796 	if (err != 0)
797 		status = ipadm_errno2status(err);
798 done:
799 	nvlist_free(nvl);
800 	free(buf);
801 	free(nvlbuf);
802 	free(rvalp);
803 	return (status);
804 }
805 
806 /*
807  * Returns B_FALSE if
808  * (1) `ifname' is NULL or has no string or has a string of invalid length
809  * (2) ifname is a logical interface and IPH_LEGACY is not set, or
810  */
811 boolean_t
812 i_ipadm_validate_ifname(ipadm_handle_t iph, const char *ifname)
813 {
814 	ifspec_t ifsp;
815 
816 	if (ifname == NULL || ifname[0] == '\0' ||
817 	    !ifparse_ifspec(ifname, &ifsp))
818 		return (B_FALSE);
819 	if (ifsp.ifsp_lunvalid)
820 		return (ifsp.ifsp_lun > 0 && (iph->iph_flags & IPH_LEGACY));
821 	return (B_TRUE);
822 }
823 
824 /*
825  * Wrapper for sending a non-transparent I_STR ioctl().
826  * Returns: Result from ioctl().
827  */
828 int
829 i_ipadm_strioctl(int s, int cmd, char *buf, int buflen)
830 {
831 	struct strioctl ioc;
832 
833 	(void) memset(&ioc, 0, sizeof (ioc));
834 	ioc.ic_cmd = cmd;
835 	ioc.ic_timout = 0;
836 	ioc.ic_len = buflen;
837 	ioc.ic_dp = buf;
838 
839 	return (ioctl(s, I_STR, (char *)&ioc));
840 }
841 
842 /*
843  * Make a door call to the server and checks if the door call succeeded or not.
844  * `is_varsize' specifies that the data returned by ipmgmtd daemon is of
845  * variable size and door will allocate buffer using mmap(). In such cases
846  * we re-allocate the required memory,n assign it to `rbufp', copy the data to
847  * `rbufp' and then call munmap() (see below).
848  *
849  * It also checks to see if the server side procedure ran successfully by
850  * checking for ir_err. Therefore, for some callers who just care about the
851  * return status can set `rbufp' to NULL and set `rsize' to 0.
852  */
853 int
854 ipadm_door_call(ipadm_handle_t iph, void *arg, size_t asize, void **rbufp,
855     size_t rsize, boolean_t is_varsize)
856 {
857 	door_arg_t	darg;
858 	int		err;
859 	ipmgmt_retval_t	rval, *rvalp;
860 	boolean_t	reopen = B_FALSE;
861 
862 	if (rbufp == NULL) {
863 		rvalp = &rval;
864 		rbufp = (void **)&rvalp;
865 		rsize = sizeof (rval);
866 	}
867 
868 	darg.data_ptr = arg;
869 	darg.data_size = asize;
870 	darg.desc_ptr = NULL;
871 	darg.desc_num = 0;
872 	darg.rbuf = *rbufp;
873 	darg.rsize = rsize;
874 
875 reopen:
876 	(void) pthread_mutex_lock(&iph->iph_lock);
877 	/* The door descriptor is opened if it isn't already */
878 	if (iph->iph_door_fd == -1) {
879 		if ((iph->iph_door_fd = open(IPMGMT_DOOR, O_RDONLY)) < 0) {
880 			err = errno;
881 			(void) pthread_mutex_unlock(&iph->iph_lock);
882 			return (err);
883 		}
884 	}
885 	(void) pthread_mutex_unlock(&iph->iph_lock);
886 
887 	if (door_call(iph->iph_door_fd, &darg) == -1) {
888 		/*
889 		 * Stale door descriptor is possible if ipmgmtd was restarted
890 		 * since last iph_door_fd was opened, so try re-opening door
891 		 * descriptor.
892 		 */
893 		if (!reopen && errno == EBADF) {
894 			(void) close(iph->iph_door_fd);
895 			iph->iph_door_fd = -1;
896 			reopen = B_TRUE;
897 			goto reopen;
898 		}
899 		return (errno);
900 	}
901 	err = ((ipmgmt_retval_t *)(void *)(darg.rbuf))->ir_err;
902 	if (darg.rbuf != *rbufp) {
903 		/*
904 		 * if the caller is expecting the result to fit in specified
905 		 * buffer then return failure.
906 		 */
907 		if (!is_varsize)
908 			err = EBADE;
909 		/*
910 		 * The size of the buffer `*rbufp' was not big enough
911 		 * and the door itself allocated buffer, for us. We will
912 		 * hit this, on several occasion as for some cases
913 		 * we cannot predict the size of the return structure.
914 		 * Reallocate the buffer `*rbufp' and memcpy() the contents
915 		 * to new buffer.
916 		 */
917 		if (err == 0) {
918 			void *newp;
919 
920 			/* allocated memory will be freed by the caller */
921 			if ((newp = realloc(*rbufp, darg.rsize)) == NULL) {
922 				err = ENOMEM;
923 			} else {
924 				*rbufp = newp;
925 				(void) memcpy(*rbufp, darg.rbuf, darg.rsize);
926 			}
927 		}
928 		/* munmap() the door buffer */
929 		(void) munmap(darg.rbuf, darg.rsize);
930 	} else {
931 		if (darg.rsize != rsize)
932 			err = EBADE;
933 	}
934 	return (err);
935 }
936