xref: /titanic_51/usr/src/lib/libfakekernel/common/taskq.c (revision 3f745f41d6d087602fbb2f748e1baabc3768f5fb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
27  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
28  */
29 
30 #include <sys/taskq_impl.h>
31 
32 #include <sys/class.h>
33 #include <sys/debug.h>
34 #include <sys/ksynch.h>
35 #include <sys/kmem.h>
36 #include <sys/time.h>
37 #include <sys/systm.h>
38 #include <sys/sysmacros.h>
39 #include <sys/unistd.h>
40 
41 /* avoid <unistd.h> */
42 extern long sysconf(int);
43 
44 /* avoiding <thread.h> */
45 typedef unsigned int thread_t;
46 typedef unsigned int thread_key_t;
47 
48 extern int thr_create(void *, size_t, void *(*)(void *), void *, long,
49 			thread_t *);
50 extern int thr_join(thread_t, thread_t *, void **);
51 
52 /*
53  * POSIX.1c Note:
54  * THR_BOUND is defined same as PTHREAD_SCOPE_SYSTEM in <pthread.h>
55  * THR_DETACHED is defined same as PTHREAD_CREATE_DETACHED in <pthread.h>
56  * Any changes in these definitions should be reflected in <pthread.h>
57  */
58 #define	THR_BOUND		0x00000001	/* = PTHREAD_SCOPE_SYSTEM */
59 #define	THR_NEW_LWP		0x00000002
60 #define	THR_DETACHED		0x00000040	/* = PTHREAD_CREATE_DETACHED */
61 #define	THR_SUSPENDED		0x00000080
62 #define	THR_DAEMON		0x00000100
63 
64 
65 int taskq_now;
66 taskq_t *system_taskq;
67 
68 #define	TASKQ_ACTIVE	0x00010000
69 
70 struct taskq {
71 	kmutex_t	tq_lock;
72 	krwlock_t	tq_threadlock;
73 	kcondvar_t	tq_dispatch_cv;
74 	kcondvar_t	tq_wait_cv;
75 	thread_t	*tq_threadlist;
76 	int		tq_flags;
77 	int		tq_active;
78 	int		tq_nthreads;
79 	int		tq_nalloc;
80 	int		tq_minalloc;
81 	int		tq_maxalloc;
82 	kcondvar_t	tq_maxalloc_cv;
83 	int		tq_maxalloc_wait;
84 	taskq_ent_t	*tq_freelist;
85 	taskq_ent_t	tq_task;
86 };
87 
88 static taskq_ent_t *
89 task_alloc(taskq_t *tq, int tqflags)
90 {
91 	taskq_ent_t *t;
92 	int rv;
93 
94 again:	if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
95 		tq->tq_freelist = t->tqent_next;
96 	} else {
97 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
98 			if (!(tqflags & KM_SLEEP))
99 				return (NULL);
100 
101 			/*
102 			 * We don't want to exceed tq_maxalloc, but we can't
103 			 * wait for other tasks to complete (and thus free up
104 			 * task structures) without risking deadlock with
105 			 * the caller.  So, we just delay for one second
106 			 * to throttle the allocation rate. If we have tasks
107 			 * complete before one second timeout expires then
108 			 * taskq_ent_free will signal us and we will
109 			 * immediately retry the allocation.
110 			 */
111 			tq->tq_maxalloc_wait++;
112 			rv = cv_timedwait(&tq->tq_maxalloc_cv,
113 			    &tq->tq_lock, ddi_get_lbolt() + hz);
114 			tq->tq_maxalloc_wait--;
115 			if (rv > 0)
116 				goto again;		/* signaled */
117 		}
118 		mutex_exit(&tq->tq_lock);
119 
120 		t = kmem_alloc(sizeof (taskq_ent_t), tqflags);
121 
122 		mutex_enter(&tq->tq_lock);
123 		if (t != NULL)
124 			tq->tq_nalloc++;
125 	}
126 	return (t);
127 }
128 
129 static void
130 task_free(taskq_t *tq, taskq_ent_t *t)
131 {
132 	if (tq->tq_nalloc <= tq->tq_minalloc) {
133 		t->tqent_next = tq->tq_freelist;
134 		tq->tq_freelist = t;
135 	} else {
136 		tq->tq_nalloc--;
137 		mutex_exit(&tq->tq_lock);
138 		kmem_free(t, sizeof (taskq_ent_t));
139 		mutex_enter(&tq->tq_lock);
140 	}
141 
142 	if (tq->tq_maxalloc_wait)
143 		cv_signal(&tq->tq_maxalloc_cv);
144 }
145 
146 taskqid_t
147 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
148 {
149 	taskq_ent_t *t;
150 
151 	if (taskq_now) {
152 		func(arg);
153 		return (1);
154 	}
155 
156 	mutex_enter(&tq->tq_lock);
157 	ASSERT(tq->tq_flags & TASKQ_ACTIVE);
158 	if ((t = task_alloc(tq, tqflags)) == NULL) {
159 		mutex_exit(&tq->tq_lock);
160 		return (0);
161 	}
162 	if (tqflags & TQ_FRONT) {
163 		t->tqent_next = tq->tq_task.tqent_next;
164 		t->tqent_prev = &tq->tq_task;
165 	} else {
166 		t->tqent_next = &tq->tq_task;
167 		t->tqent_prev = tq->tq_task.tqent_prev;
168 	}
169 	t->tqent_next->tqent_prev = t;
170 	t->tqent_prev->tqent_next = t;
171 	t->tqent_func = func;
172 	t->tqent_arg = arg;
173 	t->tqent_flags = 0;
174 	cv_signal(&tq->tq_dispatch_cv);
175 	mutex_exit(&tq->tq_lock);
176 	return (1);
177 }
178 
179 void
180 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
181     taskq_ent_t *t)
182 {
183 	ASSERT(func != NULL);
184 	ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
185 
186 	/*
187 	 * Mark it as a prealloc'd task.  This is important
188 	 * to ensure that we don't free it later.
189 	 */
190 	t->tqent_flags |= TQENT_FLAG_PREALLOC;
191 	/*
192 	 * Enqueue the task to the underlying queue.
193 	 */
194 	mutex_enter(&tq->tq_lock);
195 
196 	if (flags & TQ_FRONT) {
197 		t->tqent_next = tq->tq_task.tqent_next;
198 		t->tqent_prev = &tq->tq_task;
199 	} else {
200 		t->tqent_next = &tq->tq_task;
201 		t->tqent_prev = tq->tq_task.tqent_prev;
202 	}
203 	t->tqent_next->tqent_prev = t;
204 	t->tqent_prev->tqent_next = t;
205 	t->tqent_func = func;
206 	t->tqent_arg = arg;
207 	cv_signal(&tq->tq_dispatch_cv);
208 	mutex_exit(&tq->tq_lock);
209 }
210 
211 void
212 taskq_wait(taskq_t *tq)
213 {
214 	mutex_enter(&tq->tq_lock);
215 	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
216 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
217 	mutex_exit(&tq->tq_lock);
218 }
219 
220 static void *
221 taskq_thread(void *arg)
222 {
223 	taskq_t *tq = arg;
224 	taskq_ent_t *t;
225 	boolean_t prealloc;
226 
227 	mutex_enter(&tq->tq_lock);
228 	while (tq->tq_flags & TASKQ_ACTIVE) {
229 		if ((t = tq->tq_task.tqent_next) == &tq->tq_task) {
230 			if (--tq->tq_active == 0)
231 				cv_broadcast(&tq->tq_wait_cv);
232 			cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
233 			tq->tq_active++;
234 			continue;
235 		}
236 		t->tqent_prev->tqent_next = t->tqent_next;
237 		t->tqent_next->tqent_prev = t->tqent_prev;
238 		t->tqent_next = NULL;
239 		t->tqent_prev = NULL;
240 		prealloc = t->tqent_flags & TQENT_FLAG_PREALLOC;
241 		mutex_exit(&tq->tq_lock);
242 
243 		rw_enter(&tq->tq_threadlock, RW_READER);
244 		t->tqent_func(t->tqent_arg);
245 		rw_exit(&tq->tq_threadlock);
246 
247 		mutex_enter(&tq->tq_lock);
248 		if (!prealloc)
249 			task_free(tq, t);
250 	}
251 	tq->tq_nthreads--;
252 	cv_broadcast(&tq->tq_wait_cv);
253 	mutex_exit(&tq->tq_lock);
254 	return (NULL);
255 }
256 
257 /*ARGSUSED*/
258 taskq_t *
259 taskq_create(const char *name, int nthr, pri_t pri, int minalloc,
260     int maxalloc, uint_t flags)
261 {
262 	return (taskq_create_proc(name, nthr, pri,
263 	    minalloc, maxalloc, NULL, flags));
264 }
265 
266 /*ARGSUSED*/
267 taskq_t *
268 taskq_create_proc(const char *name, int nthreads, pri_t pri,
269 	int minalloc, int maxalloc, proc_t *proc, uint_t flags)
270 {
271 	taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
272 	int t;
273 
274 	if (flags & TASKQ_THREADS_CPU_PCT) {
275 		int pct;
276 		ASSERT3S(nthreads, >=, 0);
277 		ASSERT3S(nthreads, <=, 100);
278 		pct = MIN(nthreads, 100);
279 		pct = MAX(pct, 0);
280 
281 		nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
282 		nthreads = MAX(nthreads, 1);	/* need at least 1 thread */
283 	} else {
284 		ASSERT3S(nthreads, >=, 1);
285 	}
286 
287 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
288 	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
289 	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
290 	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
291 	cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
292 	tq->tq_flags = flags | TASKQ_ACTIVE;
293 	tq->tq_active = nthreads;
294 	tq->tq_nthreads = nthreads;
295 	tq->tq_minalloc = minalloc;
296 	tq->tq_maxalloc = maxalloc;
297 	tq->tq_task.tqent_next = &tq->tq_task;
298 	tq->tq_task.tqent_prev = &tq->tq_task;
299 	tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
300 
301 	if (flags & TASKQ_PREPOPULATE) {
302 		mutex_enter(&tq->tq_lock);
303 		while (minalloc-- > 0)
304 			task_free(tq, task_alloc(tq, KM_SLEEP));
305 		mutex_exit(&tq->tq_lock);
306 	}
307 
308 	for (t = 0; t < nthreads; t++)
309 		(void) thr_create(0, 0, taskq_thread,
310 		    tq, THR_BOUND, &tq->tq_threadlist[t]);
311 
312 	return (tq);
313 }
314 
315 void
316 taskq_destroy(taskq_t *tq)
317 {
318 	int t;
319 	int nthreads = tq->tq_nthreads;
320 
321 	taskq_wait(tq);
322 
323 	mutex_enter(&tq->tq_lock);
324 
325 	tq->tq_flags &= ~TASKQ_ACTIVE;
326 	cv_broadcast(&tq->tq_dispatch_cv);
327 
328 	while (tq->tq_nthreads != 0)
329 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
330 
331 	tq->tq_minalloc = 0;
332 	while (tq->tq_nalloc != 0) {
333 		ASSERT(tq->tq_freelist != NULL);
334 		task_free(tq, task_alloc(tq, KM_SLEEP));
335 	}
336 
337 	mutex_exit(&tq->tq_lock);
338 
339 	for (t = 0; t < nthreads; t++)
340 		(void) thr_join(tq->tq_threadlist[t], NULL, NULL);
341 
342 	kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
343 
344 	rw_destroy(&tq->tq_threadlock);
345 	mutex_destroy(&tq->tq_lock);
346 	cv_destroy(&tq->tq_dispatch_cv);
347 	cv_destroy(&tq->tq_wait_cv);
348 	cv_destroy(&tq->tq_maxalloc_cv);
349 
350 	kmem_free(tq, sizeof (taskq_t));
351 }
352 
353 int
354 taskq_member(taskq_t *tq, struct _kthread *t)
355 {
356 	int i;
357 
358 	if (taskq_now)
359 		return (1);
360 
361 	for (i = 0; i < tq->tq_nthreads; i++)
362 		if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
363 			return (1);
364 
365 	return (0);
366 }
367 
368 void
369 system_taskq_init(void)
370 {
371 	system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
372 	    TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
373 }
374 
375 void
376 system_taskq_fini(void)
377 {
378 	taskq_destroy(system_taskq);
379 	system_taskq = NULL; /* defensive */
380 }
381