xref: /titanic_51/usr/src/lib/libdtrace/common/dt_consume.c (revision f7b98820db2e767eb246fc6aef8f740f838f03c6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #include <alloca.h>
39 #include <dt_impl.h>
40 #include <dt_pq.h>
41 
42 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
43 
44 /*
45  * We declare this here because (1) we need it and (2) we want to avoid a
46  * dependency on libm in libdtrace.
47  */
48 static long double
49 dt_fabsl(long double x)
50 {
51 	if (x < 0)
52 		return (-x);
53 
54 	return (x);
55 }
56 
57 static int
58 dt_ndigits(long long val)
59 {
60 	int rval = 1;
61 	long long cmp = 10;
62 
63 	if (val < 0) {
64 		val = val == INT64_MIN ? INT64_MAX : -val;
65 		rval++;
66 	}
67 
68 	while (val > cmp && cmp > 0) {
69 		rval++;
70 		cmp *= 10;
71 	}
72 
73 	return (rval < 4 ? 4 : rval);
74 }
75 
76 /*
77  * 128-bit arithmetic functions needed to support the stddev() aggregating
78  * action.
79  */
80 static int
81 dt_gt_128(uint64_t *a, uint64_t *b)
82 {
83 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
84 }
85 
86 static int
87 dt_ge_128(uint64_t *a, uint64_t *b)
88 {
89 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
90 }
91 
92 static int
93 dt_le_128(uint64_t *a, uint64_t *b)
94 {
95 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
96 }
97 
98 /*
99  * Shift the 128-bit value in a by b. If b is positive, shift left.
100  * If b is negative, shift right.
101  */
102 static void
103 dt_shift_128(uint64_t *a, int b)
104 {
105 	uint64_t mask;
106 
107 	if (b == 0)
108 		return;
109 
110 	if (b < 0) {
111 		b = -b;
112 		if (b >= 64) {
113 			a[0] = a[1] >> (b - 64);
114 			a[1] = 0;
115 		} else {
116 			a[0] >>= b;
117 			mask = 1LL << (64 - b);
118 			mask -= 1;
119 			a[0] |= ((a[1] & mask) << (64 - b));
120 			a[1] >>= b;
121 		}
122 	} else {
123 		if (b >= 64) {
124 			a[1] = a[0] << (b - 64);
125 			a[0] = 0;
126 		} else {
127 			a[1] <<= b;
128 			mask = a[0] >> (64 - b);
129 			a[1] |= mask;
130 			a[0] <<= b;
131 		}
132 	}
133 }
134 
135 static int
136 dt_nbits_128(uint64_t *a)
137 {
138 	int nbits = 0;
139 	uint64_t tmp[2];
140 	uint64_t zero[2] = { 0, 0 };
141 
142 	tmp[0] = a[0];
143 	tmp[1] = a[1];
144 
145 	dt_shift_128(tmp, -1);
146 	while (dt_gt_128(tmp, zero)) {
147 		dt_shift_128(tmp, -1);
148 		nbits++;
149 	}
150 
151 	return (nbits);
152 }
153 
154 static void
155 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
156 {
157 	uint64_t result[2];
158 
159 	result[0] = minuend[0] - subtrahend[0];
160 	result[1] = minuend[1] - subtrahend[1] -
161 	    (minuend[0] < subtrahend[0] ? 1 : 0);
162 
163 	difference[0] = result[0];
164 	difference[1] = result[1];
165 }
166 
167 static void
168 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
169 {
170 	uint64_t result[2];
171 
172 	result[0] = addend1[0] + addend2[0];
173 	result[1] = addend1[1] + addend2[1] +
174 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
175 
176 	sum[0] = result[0];
177 	sum[1] = result[1];
178 }
179 
180 /*
181  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
182  * use native multiplication on those, and then re-combine into the
183  * resulting 128-bit value.
184  *
185  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
186  *     hi1 * hi2 << 64 +
187  *     hi1 * lo2 << 32 +
188  *     hi2 * lo1 << 32 +
189  *     lo1 * lo2
190  */
191 static void
192 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
193 {
194 	uint64_t hi1, hi2, lo1, lo2;
195 	uint64_t tmp[2];
196 
197 	hi1 = factor1 >> 32;
198 	hi2 = factor2 >> 32;
199 
200 	lo1 = factor1 & DT_MASK_LO;
201 	lo2 = factor2 & DT_MASK_LO;
202 
203 	product[0] = lo1 * lo2;
204 	product[1] = hi1 * hi2;
205 
206 	tmp[0] = hi1 * lo2;
207 	tmp[1] = 0;
208 	dt_shift_128(tmp, 32);
209 	dt_add_128(product, tmp, product);
210 
211 	tmp[0] = hi2 * lo1;
212 	tmp[1] = 0;
213 	dt_shift_128(tmp, 32);
214 	dt_add_128(product, tmp, product);
215 }
216 
217 /*
218  * This is long-hand division.
219  *
220  * We initialize subtrahend by shifting divisor left as far as possible. We
221  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
222  * subtract and set the appropriate bit in the result.  We then shift
223  * subtrahend right by one bit for the next comparison.
224  */
225 static void
226 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
227 {
228 	uint64_t result[2] = { 0, 0 };
229 	uint64_t remainder[2];
230 	uint64_t subtrahend[2];
231 	uint64_t divisor_128[2];
232 	uint64_t mask[2] = { 1, 0 };
233 	int log = 0;
234 
235 	assert(divisor != 0);
236 
237 	divisor_128[0] = divisor;
238 	divisor_128[1] = 0;
239 
240 	remainder[0] = dividend[0];
241 	remainder[1] = dividend[1];
242 
243 	subtrahend[0] = divisor;
244 	subtrahend[1] = 0;
245 
246 	while (divisor > 0) {
247 		log++;
248 		divisor >>= 1;
249 	}
250 
251 	dt_shift_128(subtrahend, 128 - log);
252 	dt_shift_128(mask, 128 - log);
253 
254 	while (dt_ge_128(remainder, divisor_128)) {
255 		if (dt_ge_128(remainder, subtrahend)) {
256 			dt_subtract_128(remainder, subtrahend, remainder);
257 			result[0] |= mask[0];
258 			result[1] |= mask[1];
259 		}
260 
261 		dt_shift_128(subtrahend, -1);
262 		dt_shift_128(mask, -1);
263 	}
264 
265 	quotient[0] = result[0];
266 	quotient[1] = result[1];
267 }
268 
269 /*
270  * This is the long-hand method of calculating a square root.
271  * The algorithm is as follows:
272  *
273  * 1. Group the digits by 2 from the right.
274  * 2. Over the leftmost group, find the largest single-digit number
275  *    whose square is less than that group.
276  * 3. Subtract the result of the previous step (2 or 4, depending) and
277  *    bring down the next two-digit group.
278  * 4. For the result R we have so far, find the largest single-digit number
279  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
280  *    (Note that this is doubling R and performing a decimal left-shift by 1
281  *    and searching for the appropriate decimal to fill the one's place.)
282  *    The value x is the next digit in the square root.
283  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
284  * dealing with integers, so the above is sufficient.)
285  *
286  * In decimal, the square root of 582,734 would be calculated as so:
287  *
288  *     __7__6__3
289  *    | 58 27 34
290  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
291  *      --
292  *       9 27    (Subtract and bring down the next group.)
293  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
294  *      -----     the square root)
295  *         51 34 (Subtract and bring down the next group.)
296  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
297  *         -----  the square root)
298  *          5 65 (remainder)
299  *
300  * The above algorithm applies similarly in binary, but note that the
301  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
302  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
303  * preceding difference?
304  *
305  * In binary, the square root of 11011011 would be calculated as so:
306  *
307  *     __1__1__1__0
308  *    | 11 01 10 11
309  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
310  *      --
311  *      10 01 10 11
312  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
313  *      -----
314  *       1 00 10 11
315  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
316  *       -------
317  *          1 01 11
318  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
319  *
320  */
321 static uint64_t
322 dt_sqrt_128(uint64_t *square)
323 {
324 	uint64_t result[2] = { 0, 0 };
325 	uint64_t diff[2] = { 0, 0 };
326 	uint64_t one[2] = { 1, 0 };
327 	uint64_t next_pair[2];
328 	uint64_t next_try[2];
329 	uint64_t bit_pairs, pair_shift;
330 	int i;
331 
332 	bit_pairs = dt_nbits_128(square) / 2;
333 	pair_shift = bit_pairs * 2;
334 
335 	for (i = 0; i <= bit_pairs; i++) {
336 		/*
337 		 * Bring down the next pair of bits.
338 		 */
339 		next_pair[0] = square[0];
340 		next_pair[1] = square[1];
341 		dt_shift_128(next_pair, -pair_shift);
342 		next_pair[0] &= 0x3;
343 		next_pair[1] = 0;
344 
345 		dt_shift_128(diff, 2);
346 		dt_add_128(diff, next_pair, diff);
347 
348 		/*
349 		 * next_try = R << 2 + 1
350 		 */
351 		next_try[0] = result[0];
352 		next_try[1] = result[1];
353 		dt_shift_128(next_try, 2);
354 		dt_add_128(next_try, one, next_try);
355 
356 		if (dt_le_128(next_try, diff)) {
357 			dt_subtract_128(diff, next_try, diff);
358 			dt_shift_128(result, 1);
359 			dt_add_128(result, one, result);
360 		} else {
361 			dt_shift_128(result, 1);
362 		}
363 
364 		pair_shift -= 2;
365 	}
366 
367 	assert(result[1] == 0);
368 
369 	return (result[0]);
370 }
371 
372 uint64_t
373 dt_stddev(uint64_t *data, uint64_t normal)
374 {
375 	uint64_t avg_of_squares[2];
376 	uint64_t square_of_avg[2];
377 	int64_t norm_avg;
378 	uint64_t diff[2];
379 
380 	/*
381 	 * The standard approximation for standard deviation is
382 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
383 	 * of the average of the squares minus the square of the average.
384 	 */
385 	dt_divide_128(data + 2, normal, avg_of_squares);
386 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
387 
388 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
389 
390 	if (norm_avg < 0)
391 		norm_avg = -norm_avg;
392 
393 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
394 
395 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
396 
397 	return (dt_sqrt_128(diff));
398 }
399 
400 static int
401 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
402     dtrace_bufdesc_t *buf, size_t offs)
403 {
404 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
405 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
406 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
407 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
408 	const char *str = NULL;
409 	static const char *e_str[2] = { " -> ", " => " };
410 	static const char *r_str[2] = { " <- ", " <= " };
411 	static const char *ent = "entry", *ret = "return";
412 	static int entlen = 0, retlen = 0;
413 	dtrace_epid_t next, id = epd->dtepd_epid;
414 	int rval;
415 
416 	if (entlen == 0) {
417 		assert(retlen == 0);
418 		entlen = strlen(ent);
419 		retlen = strlen(ret);
420 	}
421 
422 	/*
423 	 * If the name of the probe is "entry" or ends with "-entry", we
424 	 * treat it as an entry; if it is "return" or ends with "-return",
425 	 * we treat it as a return.  (This allows application-provided probes
426 	 * like "method-entry" or "function-entry" to participate in flow
427 	 * indentation -- without accidentally misinterpreting popular probe
428 	 * names like "carpentry", "gentry" or "Coventry".)
429 	 */
430 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
431 	    (sub == n || sub[-1] == '-')) {
432 		flow = DTRACEFLOW_ENTRY;
433 		str = e_str[strcmp(p, "syscall") == 0];
434 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
435 	    (sub == n || sub[-1] == '-')) {
436 		flow = DTRACEFLOW_RETURN;
437 		str = r_str[strcmp(p, "syscall") == 0];
438 	}
439 
440 	/*
441 	 * If we're going to indent this, we need to check the ID of our last
442 	 * call.  If we're looking at the same probe ID but a different EPID,
443 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
444 	 * this scheme -- it's a heuristic.)
445 	 */
446 	if (flow == DTRACEFLOW_ENTRY) {
447 		if ((last != DTRACE_EPIDNONE && id != last &&
448 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
449 			flow = DTRACEFLOW_NONE;
450 	}
451 
452 	/*
453 	 * If we're going to unindent this, it's more difficult to see if
454 	 * we don't actually want to unindent it -- we need to look at the
455 	 * _next_ EPID.
456 	 */
457 	if (flow == DTRACEFLOW_RETURN) {
458 		offs += epd->dtepd_size;
459 
460 		do {
461 			if (offs >= buf->dtbd_size)
462 				goto out;
463 
464 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
465 
466 			if (next == DTRACE_EPIDNONE)
467 				offs += sizeof (id);
468 		} while (next == DTRACE_EPIDNONE);
469 
470 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
471 			return (rval);
472 
473 		if (next != id && npd->dtpd_id == pd->dtpd_id)
474 			flow = DTRACEFLOW_NONE;
475 	}
476 
477 out:
478 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
479 		data->dtpda_prefix = str;
480 	} else {
481 		data->dtpda_prefix = "| ";
482 	}
483 
484 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
485 		data->dtpda_indent -= 2;
486 
487 	data->dtpda_flow = flow;
488 
489 	return (0);
490 }
491 
492 static int
493 dt_nullprobe()
494 {
495 	return (DTRACE_CONSUME_THIS);
496 }
497 
498 static int
499 dt_nullrec()
500 {
501 	return (DTRACE_CONSUME_NEXT);
502 }
503 
504 static void
505 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
506 {
507 	long double val = dt_fabsl((long double)datum);
508 
509 	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
510 		*total += val;
511 		return;
512 	}
513 
514 	/*
515 	 * If we're zooming in on an aggregation, we want the height of the
516 	 * highest value to be approximately 95% of total bar height -- so we
517 	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
518 	 * our highest value.
519 	 */
520 	val *= 1 / DTRACE_AGGZOOM_MAX;
521 
522 	if (*total < val)
523 		*total = val;
524 }
525 
526 static int
527 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
528 {
529 	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
530 	    width ? width : 16, width ? "key" : "value",
531 	    "------------- Distribution -------------", "count"));
532 }
533 
534 static int
535 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
536     const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
537 {
538 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
539 	int minwidth, maxwidth, i;
540 
541 	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
542 
543 	if (action == DTRACEAGG_QUANTIZE) {
544 		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
545 			min--;
546 
547 		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
548 			max++;
549 
550 		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
551 		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
552 	} else {
553 		maxwidth = 8;
554 		minwidth = maxwidth - 1;
555 		max++;
556 	}
557 
558 	if (dt_printf(dtp, fp, "\n%*s %*s .",
559 	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
560 		return (-1);
561 
562 	for (i = min; i <= max; i++) {
563 		if (dt_printf(dtp, fp, "-") < 0)
564 			return (-1);
565 	}
566 
567 	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
568 }
569 
570 /*
571  * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
572  * inclusive) to represent aggregations via UTF-8 -- which are expressed via
573  * 3-byte UTF-8 sequences.
574  */
575 #define	DTRACE_AGGUTF8_FULL	0x2588
576 #define	DTRACE_AGGUTF8_BASE	0x258f
577 #define	DTRACE_AGGUTF8_LEVELS	8
578 
579 #define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
580 #define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
581 #define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
582 
583 static int
584 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
585     uint64_t normal, long double total)
586 {
587 	uint_t len = 40, i, whole, partial;
588 	long double f = (dt_fabsl((long double)val) * len) / total;
589 	const char *spaces = "                                        ";
590 
591 	whole = (uint_t)f;
592 	partial = (uint_t)((f - (long double)(uint_t)f) *
593 	    (long double)DTRACE_AGGUTF8_LEVELS);
594 
595 	if (dt_printf(dtp, fp, "|") < 0)
596 		return (-1);
597 
598 	for (i = 0; i < whole; i++) {
599 		if (dt_printf(dtp, fp, "%c%c%c",
600 		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
601 		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
602 		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
603 			return (-1);
604 	}
605 
606 	if (partial != 0) {
607 		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
608 
609 		if (dt_printf(dtp, fp, "%c%c%c",
610 		    DTRACE_AGGUTF8_BYTE0(partial),
611 		    DTRACE_AGGUTF8_BYTE1(partial),
612 		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
613 			return (-1);
614 
615 		i++;
616 	}
617 
618 	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
619 	    (long long)val / normal));
620 }
621 
622 static int
623 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
624     uint64_t normal, long double total, char positives, char negatives)
625 {
626 	long double f;
627 	uint_t depth, len = 40;
628 
629 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
630 	const char *spaces = "                                        ";
631 
632 	assert(strlen(ats) == len && strlen(spaces) == len);
633 	assert(!(total == 0 && (positives || negatives)));
634 	assert(!(val < 0 && !negatives));
635 	assert(!(val > 0 && !positives));
636 	assert(!(val != 0 && total == 0));
637 
638 	if (!negatives) {
639 		if (positives) {
640 			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
641 				return (dt_print_quantline_utf8(dtp, fp, val,
642 				    normal, total));
643 			}
644 
645 			f = (dt_fabsl((long double)val) * len) / total;
646 			depth = (uint_t)(f + 0.5);
647 		} else {
648 			depth = 0;
649 		}
650 
651 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
652 		    spaces + depth, (long long)val / normal));
653 	}
654 
655 	if (!positives) {
656 		f = (dt_fabsl((long double)val) * len) / total;
657 		depth = (uint_t)(f + 0.5);
658 
659 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
660 		    ats + len - depth, (long long)val / normal));
661 	}
662 
663 	/*
664 	 * If we're here, we have both positive and negative bucket values.
665 	 * To express this graphically, we're going to generate both positive
666 	 * and negative bars separated by a centerline.  These bars are half
667 	 * the size of normal quantize()/lquantize() bars, so we divide the
668 	 * length in half before calculating the bar length.
669 	 */
670 	len /= 2;
671 	ats = &ats[len];
672 	spaces = &spaces[len];
673 
674 	f = (dt_fabsl((long double)val) * len) / total;
675 	depth = (uint_t)(f + 0.5);
676 
677 	if (val <= 0) {
678 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
679 		    ats + len - depth, len, "", (long long)val / normal));
680 	} else {
681 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
682 		    ats + len - depth, spaces + depth,
683 		    (long long)val / normal));
684 	}
685 }
686 
687 /*
688  * As with UTF-8 printing of aggregations, we use a subset of the Unicode
689  * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
690  * aggregation.
691  */
692 #define	DTRACE_AGGPACK_BASE	0x2581
693 #define	DTRACE_AGGPACK_LEVELS	8
694 
695 static int
696 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
697     long double datum, long double total)
698 {
699 	static boolean_t utf8_checked = B_FALSE;
700 	static boolean_t utf8;
701 	char *ascii = "__xxxxXX";
702 	char *neg = "vvvvVV";
703 	unsigned int len;
704 	long double val;
705 
706 	if (!utf8_checked) {
707 		char *term;
708 
709 		/*
710 		 * We want to determine if we can reasonably emit UTF-8 for our
711 		 * packed aggregation.  To do this, we will check for terminals
712 		 * that are known to be primitive to emit UTF-8 on these.
713 		 */
714 		utf8_checked = B_TRUE;
715 
716 		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
717 			utf8 = B_FALSE;
718 		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
719 			utf8 = B_TRUE;
720 		} else if ((term = getenv("TERM")) != NULL &&
721 		    (strcmp(term, "sun") == 0 ||
722 		    strcmp(term, "sun-color") == 0) ||
723 		    strcmp(term, "dumb") == 0) {
724 			utf8 = B_FALSE;
725 		} else {
726 			utf8 = B_TRUE;
727 		}
728 	}
729 
730 	if (datum == 0)
731 		return (dt_printf(dtp, fp, " "));
732 
733 	if (datum < 0) {
734 		len = strlen(neg);
735 		val = dt_fabsl(datum * (len - 1)) / total;
736 		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
737 	}
738 
739 	if (utf8) {
740 		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
741 		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
742 
743 		return (dt_printf(dtp, fp, "%c%c%c",
744 		    DTRACE_AGGUTF8_BYTE0(block),
745 		    DTRACE_AGGUTF8_BYTE1(block),
746 		    DTRACE_AGGUTF8_BYTE2(block)));
747 	}
748 
749 	len = strlen(ascii);
750 	val = (datum * (len - 1)) / total;
751 	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
752 }
753 
754 int
755 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
756     size_t size, uint64_t normal)
757 {
758 	const int64_t *data = addr;
759 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
760 	long double total = 0;
761 	char positives = 0, negatives = 0;
762 
763 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
764 		return (dt_set_errno(dtp, EDT_DMISMATCH));
765 
766 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
767 		first_bin++;
768 
769 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
770 		/*
771 		 * There isn't any data.  This is possible if the aggregation
772 		 * has been clear()'d or if negative increment values have been
773 		 * used.  Regardless, we'll print the buckets around 0.
774 		 */
775 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
776 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
777 	} else {
778 		if (first_bin > 0)
779 			first_bin--;
780 
781 		while (last_bin > 0 && data[last_bin] == 0)
782 			last_bin--;
783 
784 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
785 			last_bin++;
786 	}
787 
788 	for (i = first_bin; i <= last_bin; i++) {
789 		positives |= (data[i] > 0);
790 		negatives |= (data[i] < 0);
791 		dt_quantize_total(dtp, data[i], &total);
792 	}
793 
794 	if (dt_print_quanthdr(dtp, fp, 0) < 0)
795 		return (-1);
796 
797 	for (i = first_bin; i <= last_bin; i++) {
798 		if (dt_printf(dtp, fp, "%16lld ",
799 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
800 			return (-1);
801 
802 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
803 		    positives, negatives) < 0)
804 			return (-1);
805 	}
806 
807 	return (0);
808 }
809 
810 int
811 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
812     size_t size, const dtrace_aggdata_t *aggdata)
813 {
814 	const int64_t *data = addr;
815 	long double total = 0, count = 0;
816 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
817 	int64_t minval, maxval;
818 
819 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
820 		return (dt_set_errno(dtp, EDT_DMISMATCH));
821 
822 	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
823 		min--;
824 
825 	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
826 		max++;
827 
828 	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
829 	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
830 
831 	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
832 	    (long long)minval) < 0)
833 		return (-1);
834 
835 	for (i = min; i <= max; i++) {
836 		dt_quantize_total(dtp, data[i], &total);
837 		count += data[i];
838 	}
839 
840 	for (i = min; i <= max; i++) {
841 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
842 			return (-1);
843 	}
844 
845 	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
846 	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
847 		return (-1);
848 
849 	return (0);
850 }
851 
852 int
853 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
854     size_t size, uint64_t normal)
855 {
856 	const int64_t *data = addr;
857 	int i, first_bin, last_bin, base;
858 	uint64_t arg;
859 	long double total = 0;
860 	uint16_t step, levels;
861 	char positives = 0, negatives = 0;
862 
863 	if (size < sizeof (uint64_t))
864 		return (dt_set_errno(dtp, EDT_DMISMATCH));
865 
866 	arg = *data++;
867 	size -= sizeof (uint64_t);
868 
869 	base = DTRACE_LQUANTIZE_BASE(arg);
870 	step = DTRACE_LQUANTIZE_STEP(arg);
871 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
872 
873 	first_bin = 0;
874 	last_bin = levels + 1;
875 
876 	if (size != sizeof (uint64_t) * (levels + 2))
877 		return (dt_set_errno(dtp, EDT_DMISMATCH));
878 
879 	while (first_bin <= levels + 1 && data[first_bin] == 0)
880 		first_bin++;
881 
882 	if (first_bin > levels + 1) {
883 		first_bin = 0;
884 		last_bin = 2;
885 	} else {
886 		if (first_bin > 0)
887 			first_bin--;
888 
889 		while (last_bin > 0 && data[last_bin] == 0)
890 			last_bin--;
891 
892 		if (last_bin < levels + 1)
893 			last_bin++;
894 	}
895 
896 	for (i = first_bin; i <= last_bin; i++) {
897 		positives |= (data[i] > 0);
898 		negatives |= (data[i] < 0);
899 		dt_quantize_total(dtp, data[i], &total);
900 	}
901 
902 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
903 	    "------------- Distribution -------------", "count") < 0)
904 		return (-1);
905 
906 	for (i = first_bin; i <= last_bin; i++) {
907 		char c[32];
908 		int err;
909 
910 		if (i == 0) {
911 			(void) snprintf(c, sizeof (c), "< %d", base);
912 			err = dt_printf(dtp, fp, "%16s ", c);
913 		} else if (i == levels + 1) {
914 			(void) snprintf(c, sizeof (c), ">= %d",
915 			    base + (levels * step));
916 			err = dt_printf(dtp, fp, "%16s ", c);
917 		} else {
918 			err = dt_printf(dtp, fp, "%16d ",
919 			    base + (i - 1) * step);
920 		}
921 
922 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
923 		    total, positives, negatives) < 0)
924 			return (-1);
925 	}
926 
927 	return (0);
928 }
929 
930 /*ARGSUSED*/
931 int
932 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
933     size_t size, const dtrace_aggdata_t *aggdata)
934 {
935 	const int64_t *data = addr;
936 	long double total = 0, count = 0;
937 	int min, max, base, err;
938 	uint64_t arg;
939 	uint16_t step, levels;
940 	char c[32];
941 	unsigned int i;
942 
943 	if (size < sizeof (uint64_t))
944 		return (dt_set_errno(dtp, EDT_DMISMATCH));
945 
946 	arg = *data++;
947 	size -= sizeof (uint64_t);
948 
949 	base = DTRACE_LQUANTIZE_BASE(arg);
950 	step = DTRACE_LQUANTIZE_STEP(arg);
951 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
952 
953 	if (size != sizeof (uint64_t) * (levels + 2))
954 		return (dt_set_errno(dtp, EDT_DMISMATCH));
955 
956 	min = 0;
957 	max = levels + 1;
958 
959 	if (min == 0) {
960 		(void) snprintf(c, sizeof (c), "< %d", base);
961 		err = dt_printf(dtp, fp, "%8s :", c);
962 	} else {
963 		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
964 	}
965 
966 	if (err < 0)
967 		return (-1);
968 
969 	for (i = min; i <= max; i++) {
970 		dt_quantize_total(dtp, data[i], &total);
971 		count += data[i];
972 	}
973 
974 	for (i = min; i <= max; i++) {
975 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
976 			return (-1);
977 	}
978 
979 	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
980 	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
981 }
982 
983 int
984 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
985     size_t size, uint64_t normal)
986 {
987 	int i, first_bin, last_bin, bin = 1, order, levels;
988 	uint16_t factor, low, high, nsteps;
989 	const int64_t *data = addr;
990 	int64_t value = 1, next, step;
991 	char positives = 0, negatives = 0;
992 	long double total = 0;
993 	uint64_t arg;
994 	char c[32];
995 
996 	if (size < sizeof (uint64_t))
997 		return (dt_set_errno(dtp, EDT_DMISMATCH));
998 
999 	arg = *data++;
1000 	size -= sizeof (uint64_t);
1001 
1002 	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1003 	low = DTRACE_LLQUANTIZE_LOW(arg);
1004 	high = DTRACE_LLQUANTIZE_HIGH(arg);
1005 	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1006 
1007 	/*
1008 	 * We don't expect to be handed invalid llquantize() parameters here,
1009 	 * but sanity check them (to a degree) nonetheless.
1010 	 */
1011 	if (size > INT32_MAX || factor < 2 || low >= high ||
1012 	    nsteps == 0 || factor > nsteps)
1013 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1014 
1015 	levels = (int)size / sizeof (uint64_t);
1016 
1017 	first_bin = 0;
1018 	last_bin = levels - 1;
1019 
1020 	while (first_bin < levels && data[first_bin] == 0)
1021 		first_bin++;
1022 
1023 	if (first_bin == levels) {
1024 		first_bin = 0;
1025 		last_bin = 1;
1026 	} else {
1027 		if (first_bin > 0)
1028 			first_bin--;
1029 
1030 		while (last_bin > 0 && data[last_bin] == 0)
1031 			last_bin--;
1032 
1033 		if (last_bin < levels - 1)
1034 			last_bin++;
1035 	}
1036 
1037 	for (i = first_bin; i <= last_bin; i++) {
1038 		positives |= (data[i] > 0);
1039 		negatives |= (data[i] < 0);
1040 		dt_quantize_total(dtp, data[i], &total);
1041 	}
1042 
1043 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1044 	    "------------- Distribution -------------", "count") < 0)
1045 		return (-1);
1046 
1047 	for (order = 0; order < low; order++)
1048 		value *= factor;
1049 
1050 	next = value * factor;
1051 	step = next > nsteps ? next / nsteps : 1;
1052 
1053 	if (first_bin == 0) {
1054 		(void) snprintf(c, sizeof (c), "< %lld", value);
1055 
1056 		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1057 			return (-1);
1058 
1059 		if (dt_print_quantline(dtp, fp, data[0], normal,
1060 		    total, positives, negatives) < 0)
1061 			return (-1);
1062 	}
1063 
1064 	while (order <= high) {
1065 		if (bin >= first_bin && bin <= last_bin) {
1066 			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1067 				return (-1);
1068 
1069 			if (dt_print_quantline(dtp, fp, data[bin],
1070 			    normal, total, positives, negatives) < 0)
1071 				return (-1);
1072 		}
1073 
1074 		assert(value < next);
1075 		bin++;
1076 
1077 		if ((value += step) != next)
1078 			continue;
1079 
1080 		next = value * factor;
1081 		step = next > nsteps ? next / nsteps : 1;
1082 		order++;
1083 	}
1084 
1085 	if (last_bin < bin)
1086 		return (0);
1087 
1088 	assert(last_bin == bin);
1089 	(void) snprintf(c, sizeof (c), ">= %lld", value);
1090 
1091 	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1092 		return (-1);
1093 
1094 	return (dt_print_quantline(dtp, fp, data[bin], normal,
1095 	    total, positives, negatives));
1096 }
1097 
1098 /*ARGSUSED*/
1099 static int
1100 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1101     size_t size, uint64_t normal)
1102 {
1103 	/* LINTED - alignment */
1104 	int64_t *data = (int64_t *)addr;
1105 
1106 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1107 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1108 }
1109 
1110 /*ARGSUSED*/
1111 static int
1112 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1113     size_t size, uint64_t normal)
1114 {
1115 	/* LINTED - alignment */
1116 	uint64_t *data = (uint64_t *)addr;
1117 
1118 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1119 	    (unsigned long long) dt_stddev(data, normal) : 0));
1120 }
1121 
1122 /*ARGSUSED*/
1123 static int
1124 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1125     size_t nbytes, int width, int quiet, int forceraw)
1126 {
1127 	/*
1128 	 * If the byte stream is a series of printable characters, followed by
1129 	 * a terminating byte, we print it out as a string.  Otherwise, we
1130 	 * assume that it's something else and just print the bytes.
1131 	 */
1132 	int i, j, margin = 5;
1133 	char *c = (char *)addr;
1134 
1135 	if (nbytes == 0)
1136 		return (0);
1137 
1138 	if (forceraw)
1139 		goto raw;
1140 
1141 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1142 		goto raw;
1143 
1144 	for (i = 0; i < nbytes; i++) {
1145 		/*
1146 		 * We define a "printable character" to be one for which
1147 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1148 		 * or a character which is either backspace or the bell.
1149 		 * Backspace and the bell are regrettably special because
1150 		 * they fail the first two tests -- and yet they are entirely
1151 		 * printable.  These are the only two control characters that
1152 		 * have meaning for the terminal and for which isprint(3C) and
1153 		 * isspace(3C) return 0.
1154 		 */
1155 		if (isprint(c[i]) || isspace(c[i]) ||
1156 		    c[i] == '\b' || c[i] == '\a')
1157 			continue;
1158 
1159 		if (c[i] == '\0' && i > 0) {
1160 			/*
1161 			 * This looks like it might be a string.  Before we
1162 			 * assume that it is indeed a string, check the
1163 			 * remainder of the byte range; if it contains
1164 			 * additional non-nul characters, we'll assume that
1165 			 * it's a binary stream that just happens to look like
1166 			 * a string, and we'll print out the individual bytes.
1167 			 */
1168 			for (j = i + 1; j < nbytes; j++) {
1169 				if (c[j] != '\0')
1170 					break;
1171 			}
1172 
1173 			if (j != nbytes)
1174 				break;
1175 
1176 			if (quiet) {
1177 				return (dt_printf(dtp, fp, "%s", c));
1178 			} else {
1179 				return (dt_printf(dtp, fp, " %s%*s",
1180 				    width < 0 ? " " : "", width, c));
1181 			}
1182 		}
1183 
1184 		break;
1185 	}
1186 
1187 	if (i == nbytes) {
1188 		/*
1189 		 * The byte range is all printable characters, but there is
1190 		 * no trailing nul byte.  We'll assume that it's a string and
1191 		 * print it as such.
1192 		 */
1193 		char *s = alloca(nbytes + 1);
1194 		bcopy(c, s, nbytes);
1195 		s[nbytes] = '\0';
1196 		return (dt_printf(dtp, fp, "  %-*s", width, s));
1197 	}
1198 
1199 raw:
1200 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1201 		return (-1);
1202 
1203 	for (i = 0; i < 16; i++)
1204 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1205 			return (-1);
1206 
1207 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1208 		return (-1);
1209 
1210 
1211 	for (i = 0; i < nbytes; i += 16) {
1212 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1213 			return (-1);
1214 
1215 		for (j = i; j < i + 16 && j < nbytes; j++) {
1216 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1217 				return (-1);
1218 		}
1219 
1220 		while (j++ % 16) {
1221 			if (dt_printf(dtp, fp, "   ") < 0)
1222 				return (-1);
1223 		}
1224 
1225 		if (dt_printf(dtp, fp, "  ") < 0)
1226 			return (-1);
1227 
1228 		for (j = i; j < i + 16 && j < nbytes; j++) {
1229 			if (dt_printf(dtp, fp, "%c",
1230 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1231 				return (-1);
1232 		}
1233 
1234 		if (dt_printf(dtp, fp, "\n") < 0)
1235 			return (-1);
1236 	}
1237 
1238 	return (0);
1239 }
1240 
1241 int
1242 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1243     caddr_t addr, int depth, int size)
1244 {
1245 	dtrace_syminfo_t dts;
1246 	GElf_Sym sym;
1247 	int i, indent;
1248 	char c[PATH_MAX * 2];
1249 	uint64_t pc;
1250 
1251 	if (dt_printf(dtp, fp, "\n") < 0)
1252 		return (-1);
1253 
1254 	if (format == NULL)
1255 		format = "%s";
1256 
1257 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1258 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1259 	else
1260 		indent = _dtrace_stkindent;
1261 
1262 	for (i = 0; i < depth; i++) {
1263 		switch (size) {
1264 		case sizeof (uint32_t):
1265 			/* LINTED - alignment */
1266 			pc = *((uint32_t *)addr);
1267 			break;
1268 
1269 		case sizeof (uint64_t):
1270 			/* LINTED - alignment */
1271 			pc = *((uint64_t *)addr);
1272 			break;
1273 
1274 		default:
1275 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1276 		}
1277 
1278 		if (pc == NULL)
1279 			break;
1280 
1281 		addr += size;
1282 
1283 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1284 			return (-1);
1285 
1286 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1287 			if (pc > sym.st_value) {
1288 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1289 				    dts.dts_object, dts.dts_name,
1290 				    pc - sym.st_value);
1291 			} else {
1292 				(void) snprintf(c, sizeof (c), "%s`%s",
1293 				    dts.dts_object, dts.dts_name);
1294 			}
1295 		} else {
1296 			/*
1297 			 * We'll repeat the lookup, but this time we'll specify
1298 			 * a NULL GElf_Sym -- indicating that we're only
1299 			 * interested in the containing module.
1300 			 */
1301 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1302 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1303 				    dts.dts_object, pc);
1304 			} else {
1305 				(void) snprintf(c, sizeof (c), "0x%llx", pc);
1306 			}
1307 		}
1308 
1309 		if (dt_printf(dtp, fp, format, c) < 0)
1310 			return (-1);
1311 
1312 		if (dt_printf(dtp, fp, "\n") < 0)
1313 			return (-1);
1314 	}
1315 
1316 	return (0);
1317 }
1318 
1319 int
1320 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1321     caddr_t addr, uint64_t arg)
1322 {
1323 	/* LINTED - alignment */
1324 	uint64_t *pc = (uint64_t *)addr;
1325 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1326 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1327 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1328 	const char *str = strsize ? strbase : NULL;
1329 	int err = 0;
1330 
1331 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1332 	struct ps_prochandle *P;
1333 	GElf_Sym sym;
1334 	int i, indent;
1335 	pid_t pid;
1336 
1337 	if (depth == 0)
1338 		return (0);
1339 
1340 	pid = (pid_t)*pc++;
1341 
1342 	if (dt_printf(dtp, fp, "\n") < 0)
1343 		return (-1);
1344 
1345 	if (format == NULL)
1346 		format = "%s";
1347 
1348 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1349 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1350 	else
1351 		indent = _dtrace_stkindent;
1352 
1353 	/*
1354 	 * Ultimately, we need to add an entry point in the library vector for
1355 	 * determining <symbol, offset> from <pid, address>.  For now, if
1356 	 * this is a vector open, we just print the raw address or string.
1357 	 */
1358 	if (dtp->dt_vector == NULL)
1359 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1360 	else
1361 		P = NULL;
1362 
1363 	if (P != NULL)
1364 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1365 
1366 	for (i = 0; i < depth && pc[i] != NULL; i++) {
1367 		const prmap_t *map;
1368 
1369 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1370 			break;
1371 
1372 		if (P != NULL && Plookup_by_addr(P, pc[i],
1373 		    name, sizeof (name), &sym) == 0) {
1374 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1375 
1376 			if (pc[i] > sym.st_value) {
1377 				(void) snprintf(c, sizeof (c),
1378 				    "%s`%s+0x%llx", dt_basename(objname), name,
1379 				    (u_longlong_t)(pc[i] - sym.st_value));
1380 			} else {
1381 				(void) snprintf(c, sizeof (c),
1382 				    "%s`%s", dt_basename(objname), name);
1383 			}
1384 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1385 		    (P == NULL || (map = Paddr_to_map(P, pc[i])) == NULL ||
1386 		    map->pr_mflags & MA_WRITE)) {
1387 			/*
1388 			 * If the current string pointer in the string table
1389 			 * does not point to an empty string _and_ the program
1390 			 * counter falls in a writable region, we'll use the
1391 			 * string from the string table instead of the raw
1392 			 * address.  This last condition is necessary because
1393 			 * some (broken) ustack helpers will return a string
1394 			 * even for a program counter that they can't
1395 			 * identify.  If we have a string for a program
1396 			 * counter that falls in a segment that isn't
1397 			 * writable, we assume that we have fallen into this
1398 			 * case and we refuse to use the string.  Finally,
1399 			 * note that if we could not grab the process (e.g.,
1400 			 * because it exited), the information from the helper
1401 			 * is better than nothing.
1402 			 */
1403 			(void) snprintf(c, sizeof (c), "%s", str);
1404 		} else {
1405 			if (P != NULL && Pobjname(P, pc[i], objname,
1406 			    sizeof (objname)) != NULL) {
1407 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1408 				    dt_basename(objname), (u_longlong_t)pc[i]);
1409 			} else {
1410 				(void) snprintf(c, sizeof (c), "0x%llx",
1411 				    (u_longlong_t)pc[i]);
1412 			}
1413 		}
1414 
1415 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1416 			break;
1417 
1418 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1419 			break;
1420 
1421 		if (str != NULL && str[0] == '@') {
1422 			/*
1423 			 * If the first character of the string is an "at" sign,
1424 			 * then the string is inferred to be an annotation --
1425 			 * and it is printed out beneath the frame and offset
1426 			 * with brackets.
1427 			 */
1428 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1429 				break;
1430 
1431 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1432 
1433 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1434 				break;
1435 
1436 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1437 				break;
1438 		}
1439 
1440 		if (str != NULL) {
1441 			str += strlen(str) + 1;
1442 			if (str - strbase >= strsize)
1443 				str = NULL;
1444 		}
1445 	}
1446 
1447 	if (P != NULL) {
1448 		dt_proc_unlock(dtp, P);
1449 		dt_proc_release(dtp, P);
1450 	}
1451 
1452 	return (err);
1453 }
1454 
1455 static int
1456 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1457 {
1458 	/* LINTED - alignment */
1459 	uint64_t pid = ((uint64_t *)addr)[0];
1460 	/* LINTED - alignment */
1461 	uint64_t pc = ((uint64_t *)addr)[1];
1462 	const char *format = "  %-50s";
1463 	char *s;
1464 	int n, len = 256;
1465 
1466 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1467 		struct ps_prochandle *P;
1468 
1469 		if ((P = dt_proc_grab(dtp, pid,
1470 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1471 			GElf_Sym sym;
1472 
1473 			dt_proc_lock(dtp, P);
1474 
1475 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1476 				pc = sym.st_value;
1477 
1478 			dt_proc_unlock(dtp, P);
1479 			dt_proc_release(dtp, P);
1480 		}
1481 	}
1482 
1483 	do {
1484 		n = len;
1485 		s = alloca(n);
1486 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1487 
1488 	return (dt_printf(dtp, fp, format, s));
1489 }
1490 
1491 int
1492 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1493 {
1494 	/* LINTED - alignment */
1495 	uint64_t pid = ((uint64_t *)addr)[0];
1496 	/* LINTED - alignment */
1497 	uint64_t pc = ((uint64_t *)addr)[1];
1498 	int err = 0;
1499 
1500 	char objname[PATH_MAX], c[PATH_MAX * 2];
1501 	struct ps_prochandle *P;
1502 
1503 	if (format == NULL)
1504 		format = "  %-50s";
1505 
1506 	/*
1507 	 * See the comment in dt_print_ustack() for the rationale for
1508 	 * printing raw addresses in the vectored case.
1509 	 */
1510 	if (dtp->dt_vector == NULL)
1511 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1512 	else
1513 		P = NULL;
1514 
1515 	if (P != NULL)
1516 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1517 
1518 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) {
1519 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1520 	} else {
1521 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1522 	}
1523 
1524 	err = dt_printf(dtp, fp, format, c);
1525 
1526 	if (P != NULL) {
1527 		dt_proc_unlock(dtp, P);
1528 		dt_proc_release(dtp, P);
1529 	}
1530 
1531 	return (err);
1532 }
1533 
1534 static int
1535 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1536 {
1537 	/* LINTED - alignment */
1538 	uint64_t pc = *((uint64_t *)addr);
1539 	dtrace_syminfo_t dts;
1540 	GElf_Sym sym;
1541 	char c[PATH_MAX * 2];
1542 
1543 	if (format == NULL)
1544 		format = "  %-50s";
1545 
1546 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1547 		(void) snprintf(c, sizeof (c), "%s`%s",
1548 		    dts.dts_object, dts.dts_name);
1549 	} else {
1550 		/*
1551 		 * We'll repeat the lookup, but this time we'll specify a
1552 		 * NULL GElf_Sym -- indicating that we're only interested in
1553 		 * the containing module.
1554 		 */
1555 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1556 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1557 			    dts.dts_object, (u_longlong_t)pc);
1558 		} else {
1559 			(void) snprintf(c, sizeof (c), "0x%llx",
1560 			    (u_longlong_t)pc);
1561 		}
1562 	}
1563 
1564 	if (dt_printf(dtp, fp, format, c) < 0)
1565 		return (-1);
1566 
1567 	return (0);
1568 }
1569 
1570 int
1571 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1572 {
1573 	/* LINTED - alignment */
1574 	uint64_t pc = *((uint64_t *)addr);
1575 	dtrace_syminfo_t dts;
1576 	char c[PATH_MAX * 2];
1577 
1578 	if (format == NULL)
1579 		format = "  %-50s";
1580 
1581 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1582 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1583 	} else {
1584 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1585 	}
1586 
1587 	if (dt_printf(dtp, fp, format, c) < 0)
1588 		return (-1);
1589 
1590 	return (0);
1591 }
1592 
1593 typedef struct dt_normal {
1594 	dtrace_aggvarid_t dtnd_id;
1595 	uint64_t dtnd_normal;
1596 } dt_normal_t;
1597 
1598 static int
1599 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1600 {
1601 	dt_normal_t *normal = arg;
1602 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1603 	dtrace_aggvarid_t id = normal->dtnd_id;
1604 
1605 	if (agg->dtagd_nrecs == 0)
1606 		return (DTRACE_AGGWALK_NEXT);
1607 
1608 	if (agg->dtagd_varid != id)
1609 		return (DTRACE_AGGWALK_NEXT);
1610 
1611 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1612 	return (DTRACE_AGGWALK_NORMALIZE);
1613 }
1614 
1615 static int
1616 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1617 {
1618 	dt_normal_t normal;
1619 	caddr_t addr;
1620 
1621 	/*
1622 	 * We (should) have two records:  the aggregation ID followed by the
1623 	 * normalization value.
1624 	 */
1625 	addr = base + rec->dtrd_offset;
1626 
1627 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1628 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1629 
1630 	/* LINTED - alignment */
1631 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1632 	rec++;
1633 
1634 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1635 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1636 
1637 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1638 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1639 
1640 	addr = base + rec->dtrd_offset;
1641 
1642 	switch (rec->dtrd_size) {
1643 	case sizeof (uint64_t):
1644 		/* LINTED - alignment */
1645 		normal.dtnd_normal = *((uint64_t *)addr);
1646 		break;
1647 	case sizeof (uint32_t):
1648 		/* LINTED - alignment */
1649 		normal.dtnd_normal = *((uint32_t *)addr);
1650 		break;
1651 	case sizeof (uint16_t):
1652 		/* LINTED - alignment */
1653 		normal.dtnd_normal = *((uint16_t *)addr);
1654 		break;
1655 	case sizeof (uint8_t):
1656 		normal.dtnd_normal = *((uint8_t *)addr);
1657 		break;
1658 	default:
1659 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1660 	}
1661 
1662 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1663 
1664 	return (0);
1665 }
1666 
1667 static int
1668 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1669 {
1670 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1671 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1672 
1673 	if (agg->dtagd_nrecs == 0)
1674 		return (DTRACE_AGGWALK_NEXT);
1675 
1676 	if (agg->dtagd_varid != id)
1677 		return (DTRACE_AGGWALK_NEXT);
1678 
1679 	return (DTRACE_AGGWALK_DENORMALIZE);
1680 }
1681 
1682 static int
1683 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1684 {
1685 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1686 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1687 
1688 	if (agg->dtagd_nrecs == 0)
1689 		return (DTRACE_AGGWALK_NEXT);
1690 
1691 	if (agg->dtagd_varid != id)
1692 		return (DTRACE_AGGWALK_NEXT);
1693 
1694 	return (DTRACE_AGGWALK_CLEAR);
1695 }
1696 
1697 typedef struct dt_trunc {
1698 	dtrace_aggvarid_t dttd_id;
1699 	uint64_t dttd_remaining;
1700 } dt_trunc_t;
1701 
1702 static int
1703 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1704 {
1705 	dt_trunc_t *trunc = arg;
1706 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1707 	dtrace_aggvarid_t id = trunc->dttd_id;
1708 
1709 	if (agg->dtagd_nrecs == 0)
1710 		return (DTRACE_AGGWALK_NEXT);
1711 
1712 	if (agg->dtagd_varid != id)
1713 		return (DTRACE_AGGWALK_NEXT);
1714 
1715 	if (trunc->dttd_remaining == 0)
1716 		return (DTRACE_AGGWALK_REMOVE);
1717 
1718 	trunc->dttd_remaining--;
1719 	return (DTRACE_AGGWALK_NEXT);
1720 }
1721 
1722 static int
1723 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1724 {
1725 	dt_trunc_t trunc;
1726 	caddr_t addr;
1727 	int64_t remaining;
1728 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1729 
1730 	/*
1731 	 * We (should) have two records:  the aggregation ID followed by the
1732 	 * number of aggregation entries after which the aggregation is to be
1733 	 * truncated.
1734 	 */
1735 	addr = base + rec->dtrd_offset;
1736 
1737 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1738 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1739 
1740 	/* LINTED - alignment */
1741 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1742 	rec++;
1743 
1744 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1745 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1746 
1747 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1748 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1749 
1750 	addr = base + rec->dtrd_offset;
1751 
1752 	switch (rec->dtrd_size) {
1753 	case sizeof (uint64_t):
1754 		/* LINTED - alignment */
1755 		remaining = *((int64_t *)addr);
1756 		break;
1757 	case sizeof (uint32_t):
1758 		/* LINTED - alignment */
1759 		remaining = *((int32_t *)addr);
1760 		break;
1761 	case sizeof (uint16_t):
1762 		/* LINTED - alignment */
1763 		remaining = *((int16_t *)addr);
1764 		break;
1765 	case sizeof (uint8_t):
1766 		remaining = *((int8_t *)addr);
1767 		break;
1768 	default:
1769 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1770 	}
1771 
1772 	if (remaining < 0) {
1773 		func = dtrace_aggregate_walk_valsorted;
1774 		remaining = -remaining;
1775 	} else {
1776 		func = dtrace_aggregate_walk_valrevsorted;
1777 	}
1778 
1779 	assert(remaining >= 0);
1780 	trunc.dttd_remaining = remaining;
1781 
1782 	(void) func(dtp, dt_trunc_agg, &trunc);
1783 
1784 	return (0);
1785 }
1786 
1787 static int
1788 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1789     caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
1790     uint64_t normal, dt_print_aggdata_t *pd)
1791 {
1792 	int err, width;
1793 	dtrace_actkind_t act = rec->dtrd_action;
1794 	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
1795 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1796 
1797 	static struct {
1798 		size_t size;
1799 		int width;
1800 		int packedwidth;
1801 	} *fmt, fmttab[] = {
1802 		{ sizeof (uint8_t),	3,	3 },
1803 		{ sizeof (uint16_t),	5,	5 },
1804 		{ sizeof (uint32_t),	8,	8 },
1805 		{ sizeof (uint64_t),	16,	16 },
1806 		{ 0,			-50,	16 }
1807 	};
1808 
1809 	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
1810 		dtrace_recdesc_t *r;
1811 
1812 		width = 0;
1813 
1814 		/*
1815 		 * To print our quantization header for either an agghist or
1816 		 * aggpack aggregation, we need to iterate through all of our
1817 		 * of our records to determine their width.
1818 		 */
1819 		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
1820 			for (fmt = fmttab; fmt->size &&
1821 			    fmt->size != r->dtrd_size; fmt++)
1822 				continue;
1823 
1824 			width += fmt->packedwidth + 1;
1825 		}
1826 
1827 		if (pd->dtpa_agghist) {
1828 			if (dt_print_quanthdr(dtp, fp, width) < 0)
1829 				return (-1);
1830 		} else {
1831 			if (dt_print_quanthdr_packed(dtp, fp,
1832 			    width, aggdata, r->dtrd_action) < 0)
1833 				return (-1);
1834 		}
1835 
1836 		pd->dtpa_agghisthdr = agg->dtagd_varid;
1837 	}
1838 
1839 	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
1840 		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
1841 		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
1842 		int64_t val;
1843 
1844 		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
1845 		val = (long long)*((uint64_t *)addr);
1846 
1847 		if (dt_printf(dtp, fp, " ") < 0)
1848 			return (-1);
1849 
1850 		return (dt_print_quantline(dtp, fp, val, normal,
1851 		    aggdata->dtada_total, positives, negatives));
1852 	}
1853 
1854 	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
1855 		switch (act) {
1856 		case DTRACEAGG_QUANTIZE:
1857 			return (dt_print_quantize_packed(dtp,
1858 			    fp, addr, size, aggdata));
1859 		case DTRACEAGG_LQUANTIZE:
1860 			return (dt_print_lquantize_packed(dtp,
1861 			    fp, addr, size, aggdata));
1862 		default:
1863 			break;
1864 		}
1865 	}
1866 
1867 	switch (act) {
1868 	case DTRACEACT_STACK:
1869 		return (dt_print_stack(dtp, fp, NULL, addr,
1870 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1871 
1872 	case DTRACEACT_USTACK:
1873 	case DTRACEACT_JSTACK:
1874 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1875 
1876 	case DTRACEACT_USYM:
1877 	case DTRACEACT_UADDR:
1878 		return (dt_print_usym(dtp, fp, addr, act));
1879 
1880 	case DTRACEACT_UMOD:
1881 		return (dt_print_umod(dtp, fp, NULL, addr));
1882 
1883 	case DTRACEACT_SYM:
1884 		return (dt_print_sym(dtp, fp, NULL, addr));
1885 
1886 	case DTRACEACT_MOD:
1887 		return (dt_print_mod(dtp, fp, NULL, addr));
1888 
1889 	case DTRACEAGG_QUANTIZE:
1890 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1891 
1892 	case DTRACEAGG_LQUANTIZE:
1893 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1894 
1895 	case DTRACEAGG_LLQUANTIZE:
1896 		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1897 
1898 	case DTRACEAGG_AVG:
1899 		return (dt_print_average(dtp, fp, addr, size, normal));
1900 
1901 	case DTRACEAGG_STDDEV:
1902 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1903 
1904 	default:
1905 		break;
1906 	}
1907 
1908 	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
1909 		continue;
1910 
1911 	width = packed ? fmt->packedwidth : fmt->width;
1912 
1913 	switch (size) {
1914 	case sizeof (uint64_t):
1915 		err = dt_printf(dtp, fp, " %*lld", width,
1916 		    /* LINTED - alignment */
1917 		    (long long)*((uint64_t *)addr) / normal);
1918 		break;
1919 	case sizeof (uint32_t):
1920 		/* LINTED - alignment */
1921 		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
1922 		    (uint32_t)normal);
1923 		break;
1924 	case sizeof (uint16_t):
1925 		/* LINTED - alignment */
1926 		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
1927 		    (uint32_t)normal);
1928 		break;
1929 	case sizeof (uint8_t):
1930 		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
1931 		    (uint32_t)normal);
1932 		break;
1933 	default:
1934 		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
1935 		break;
1936 	}
1937 
1938 	return (err);
1939 }
1940 
1941 int
1942 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1943 {
1944 	int i, aggact = 0;
1945 	dt_print_aggdata_t *pd = arg;
1946 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1947 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1948 	FILE *fp = pd->dtpa_fp;
1949 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1950 	dtrace_recdesc_t *rec;
1951 	dtrace_actkind_t act;
1952 	caddr_t addr;
1953 	size_t size;
1954 
1955 	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
1956 	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
1957 
1958 	/*
1959 	 * Iterate over each record description in the key, printing the traced
1960 	 * data, skipping the first datum (the tuple member created by the
1961 	 * compiler).
1962 	 */
1963 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1964 		rec = &agg->dtagd_rec[i];
1965 		act = rec->dtrd_action;
1966 		addr = aggdata->dtada_data + rec->dtrd_offset;
1967 		size = rec->dtrd_size;
1968 
1969 		if (DTRACEACT_ISAGG(act)) {
1970 			aggact = i;
1971 			break;
1972 		}
1973 
1974 		if (dt_print_datum(dtp, fp, rec, addr,
1975 		    size, aggdata, 1, pd) < 0)
1976 			return (-1);
1977 
1978 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1979 		    DTRACE_BUFDATA_AGGKEY) < 0)
1980 			return (-1);
1981 	}
1982 
1983 	assert(aggact != 0);
1984 
1985 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1986 		uint64_t normal;
1987 
1988 		aggdata = aggsdata[i];
1989 		agg = aggdata->dtada_desc;
1990 		rec = &agg->dtagd_rec[aggact];
1991 		act = rec->dtrd_action;
1992 		addr = aggdata->dtada_data + rec->dtrd_offset;
1993 		size = rec->dtrd_size;
1994 
1995 		assert(DTRACEACT_ISAGG(act));
1996 		normal = aggdata->dtada_normal;
1997 
1998 		if (dt_print_datum(dtp, fp, rec, addr,
1999 		    size, aggdata, normal, pd) < 0)
2000 			return (-1);
2001 
2002 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2003 		    DTRACE_BUFDATA_AGGVAL) < 0)
2004 			return (-1);
2005 
2006 		if (!pd->dtpa_allunprint)
2007 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2008 	}
2009 
2010 	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2011 		if (dt_printf(dtp, fp, "\n") < 0)
2012 			return (-1);
2013 	}
2014 
2015 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2016 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2017 		return (-1);
2018 
2019 	return (0);
2020 }
2021 
2022 int
2023 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2024 {
2025 	dt_print_aggdata_t *pd = arg;
2026 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2027 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2028 
2029 	if (pd->dtpa_allunprint) {
2030 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2031 			return (0);
2032 	} else {
2033 		/*
2034 		 * If we're not printing all unprinted aggregations, then the
2035 		 * aggregation variable ID denotes a specific aggregation
2036 		 * variable that we should print -- skip any other aggregations
2037 		 * that we encounter.
2038 		 */
2039 		if (agg->dtagd_nrecs == 0)
2040 			return (0);
2041 
2042 		if (aggvarid != agg->dtagd_varid)
2043 			return (0);
2044 	}
2045 
2046 	return (dt_print_aggs(&aggdata, 1, arg));
2047 }
2048 
2049 int
2050 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2051     const char *option, const char *value)
2052 {
2053 	int len, rval;
2054 	char *msg;
2055 	const char *errstr;
2056 	dtrace_setoptdata_t optdata;
2057 
2058 	bzero(&optdata, sizeof (optdata));
2059 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2060 
2061 	if (dtrace_setopt(dtp, option, value) == 0) {
2062 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2063 		optdata.dtsda_probe = data;
2064 		optdata.dtsda_option = option;
2065 		optdata.dtsda_handle = dtp;
2066 
2067 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2068 			return (rval);
2069 
2070 		return (0);
2071 	}
2072 
2073 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2074 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2075 	msg = alloca(len);
2076 
2077 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2078 	    option, value, errstr);
2079 
2080 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2081 		return (0);
2082 
2083 	return (rval);
2084 }
2085 
2086 static int
2087 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2088     dtrace_bufdesc_t *buf, boolean_t just_one,
2089     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2090 {
2091 	dtrace_epid_t id;
2092 	size_t offs;
2093 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2094 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2095 	int rval, i, n;
2096 	uint64_t tracememsize = 0;
2097 	dtrace_probedata_t data;
2098 	uint64_t drops;
2099 
2100 	bzero(&data, sizeof (data));
2101 	data.dtpda_handle = dtp;
2102 	data.dtpda_cpu = cpu;
2103 	data.dtpda_flow = dtp->dt_flow;
2104 	data.dtpda_indent = dtp->dt_indent;
2105 	data.dtpda_prefix = dtp->dt_prefix;
2106 
2107 	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2108 		dtrace_eprobedesc_t *epd;
2109 
2110 		/*
2111 		 * We're guaranteed to have an ID.
2112 		 */
2113 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2114 
2115 		if (id == DTRACE_EPIDNONE) {
2116 			/*
2117 			 * This is filler to assure proper alignment of the
2118 			 * next record; we simply ignore it.
2119 			 */
2120 			offs += sizeof (id);
2121 			continue;
2122 		}
2123 
2124 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2125 		    &data.dtpda_pdesc)) != 0)
2126 			return (rval);
2127 
2128 		epd = data.dtpda_edesc;
2129 		data.dtpda_data = buf->dtbd_data + offs;
2130 
2131 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2132 			rval = dt_handle(dtp, &data);
2133 
2134 			if (rval == DTRACE_CONSUME_NEXT)
2135 				goto nextepid;
2136 
2137 			if (rval == DTRACE_CONSUME_ERROR)
2138 				return (-1);
2139 		}
2140 
2141 		if (flow)
2142 			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2143 			    buf, offs);
2144 
2145 		rval = (*efunc)(&data, arg);
2146 
2147 		if (flow) {
2148 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2149 				data.dtpda_indent += 2;
2150 		}
2151 
2152 		if (rval == DTRACE_CONSUME_NEXT)
2153 			goto nextepid;
2154 
2155 		if (rval == DTRACE_CONSUME_ABORT)
2156 			return (dt_set_errno(dtp, EDT_DIRABORT));
2157 
2158 		if (rval != DTRACE_CONSUME_THIS)
2159 			return (dt_set_errno(dtp, EDT_BADRVAL));
2160 
2161 		for (i = 0; i < epd->dtepd_nrecs; i++) {
2162 			caddr_t addr;
2163 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2164 			dtrace_actkind_t act = rec->dtrd_action;
2165 
2166 			data.dtpda_data = buf->dtbd_data + offs +
2167 			    rec->dtrd_offset;
2168 			addr = data.dtpda_data;
2169 
2170 			if (act == DTRACEACT_LIBACT) {
2171 				uint64_t arg = rec->dtrd_arg;
2172 				dtrace_aggvarid_t id;
2173 
2174 				switch (arg) {
2175 				case DT_ACT_CLEAR:
2176 					/* LINTED - alignment */
2177 					id = *((dtrace_aggvarid_t *)addr);
2178 					(void) dtrace_aggregate_walk(dtp,
2179 					    dt_clear_agg, &id);
2180 					continue;
2181 
2182 				case DT_ACT_DENORMALIZE:
2183 					/* LINTED - alignment */
2184 					id = *((dtrace_aggvarid_t *)addr);
2185 					(void) dtrace_aggregate_walk(dtp,
2186 					    dt_denormalize_agg, &id);
2187 					continue;
2188 
2189 				case DT_ACT_FTRUNCATE:
2190 					if (fp == NULL)
2191 						continue;
2192 
2193 					(void) fflush(fp);
2194 					(void) ftruncate(fileno(fp), 0);
2195 					(void) fseeko(fp, 0, SEEK_SET);
2196 					continue;
2197 
2198 				case DT_ACT_NORMALIZE:
2199 					if (i == epd->dtepd_nrecs - 1)
2200 						return (dt_set_errno(dtp,
2201 						    EDT_BADNORMAL));
2202 
2203 					if (dt_normalize(dtp,
2204 					    buf->dtbd_data + offs, rec) != 0)
2205 						return (-1);
2206 
2207 					i++;
2208 					continue;
2209 
2210 				case DT_ACT_SETOPT: {
2211 					uint64_t *opts = dtp->dt_options;
2212 					dtrace_recdesc_t *valrec;
2213 					uint32_t valsize;
2214 					caddr_t val;
2215 					int rv;
2216 
2217 					if (i == epd->dtepd_nrecs - 1) {
2218 						return (dt_set_errno(dtp,
2219 						    EDT_BADSETOPT));
2220 					}
2221 
2222 					valrec = &epd->dtepd_rec[++i];
2223 					valsize = valrec->dtrd_size;
2224 
2225 					if (valrec->dtrd_action != act ||
2226 					    valrec->dtrd_arg != arg) {
2227 						return (dt_set_errno(dtp,
2228 						    EDT_BADSETOPT));
2229 					}
2230 
2231 					if (valsize > sizeof (uint64_t)) {
2232 						val = buf->dtbd_data + offs +
2233 						    valrec->dtrd_offset;
2234 					} else {
2235 						val = "1";
2236 					}
2237 
2238 					rv = dt_setopt(dtp, &data, addr, val);
2239 
2240 					if (rv != 0)
2241 						return (-1);
2242 
2243 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2244 					    DTRACEOPT_UNSET);
2245 					quiet = (opts[DTRACEOPT_QUIET] !=
2246 					    DTRACEOPT_UNSET);
2247 
2248 					continue;
2249 				}
2250 
2251 				case DT_ACT_TRUNC:
2252 					if (i == epd->dtepd_nrecs - 1)
2253 						return (dt_set_errno(dtp,
2254 						    EDT_BADTRUNC));
2255 
2256 					if (dt_trunc(dtp,
2257 					    buf->dtbd_data + offs, rec) != 0)
2258 						return (-1);
2259 
2260 					i++;
2261 					continue;
2262 
2263 				default:
2264 					continue;
2265 				}
2266 			}
2267 
2268 			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2269 			    rec->dtrd_size == sizeof (uint64_t)) {
2270 				/* LINTED - alignment */
2271 				tracememsize = *((unsigned long long *)addr);
2272 				continue;
2273 			}
2274 
2275 			rval = (*rfunc)(&data, rec, arg);
2276 
2277 			if (rval == DTRACE_CONSUME_NEXT)
2278 				continue;
2279 
2280 			if (rval == DTRACE_CONSUME_ABORT)
2281 				return (dt_set_errno(dtp, EDT_DIRABORT));
2282 
2283 			if (rval != DTRACE_CONSUME_THIS)
2284 				return (dt_set_errno(dtp, EDT_BADRVAL));
2285 
2286 			if (act == DTRACEACT_STACK) {
2287 				int depth = rec->dtrd_arg;
2288 
2289 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2290 				    rec->dtrd_size / depth) < 0)
2291 					return (-1);
2292 				goto nextrec;
2293 			}
2294 
2295 			if (act == DTRACEACT_USTACK ||
2296 			    act == DTRACEACT_JSTACK) {
2297 				if (dt_print_ustack(dtp, fp, NULL,
2298 				    addr, rec->dtrd_arg) < 0)
2299 					return (-1);
2300 				goto nextrec;
2301 			}
2302 
2303 			if (act == DTRACEACT_SYM) {
2304 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2305 					return (-1);
2306 				goto nextrec;
2307 			}
2308 
2309 			if (act == DTRACEACT_MOD) {
2310 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2311 					return (-1);
2312 				goto nextrec;
2313 			}
2314 
2315 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2316 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2317 					return (-1);
2318 				goto nextrec;
2319 			}
2320 
2321 			if (act == DTRACEACT_UMOD) {
2322 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2323 					return (-1);
2324 				goto nextrec;
2325 			}
2326 
2327 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2328 				void *fmtdata;
2329 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2330 				    const dtrace_probedata_t *,
2331 				    const dtrace_recdesc_t *, uint_t,
2332 				    const void *buf, size_t);
2333 
2334 				if ((fmtdata = dt_format_lookup(dtp,
2335 				    rec->dtrd_format)) == NULL)
2336 					goto nofmt;
2337 
2338 				switch (act) {
2339 				case DTRACEACT_PRINTF:
2340 					func = dtrace_fprintf;
2341 					break;
2342 				case DTRACEACT_PRINTA:
2343 					func = dtrace_fprinta;
2344 					break;
2345 				case DTRACEACT_SYSTEM:
2346 					func = dtrace_system;
2347 					break;
2348 				case DTRACEACT_FREOPEN:
2349 					func = dtrace_freopen;
2350 					break;
2351 				}
2352 
2353 				n = (*func)(dtp, fp, fmtdata, &data,
2354 				    rec, epd->dtepd_nrecs - i,
2355 				    (uchar_t *)buf->dtbd_data + offs,
2356 				    buf->dtbd_size - offs);
2357 
2358 				if (n < 0)
2359 					return (-1); /* errno is set for us */
2360 
2361 				if (n > 0)
2362 					i += n - 1;
2363 				goto nextrec;
2364 			}
2365 
2366 			/*
2367 			 * If this is a DIF expression, and the record has a
2368 			 * format set, this indicates we have a CTF type name
2369 			 * associated with the data and we should try to print
2370 			 * it out by type.
2371 			 */
2372 			if (act == DTRACEACT_DIFEXPR) {
2373 				const char *strdata = dt_strdata_lookup(dtp,
2374 				    rec->dtrd_format);
2375 				if (strdata != NULL) {
2376 					n = dtrace_print(dtp, fp, strdata,
2377 					    addr, rec->dtrd_size);
2378 
2379 					/*
2380 					 * dtrace_print() will return -1 on
2381 					 * error, or return the number of bytes
2382 					 * consumed.  It will return 0 if the
2383 					 * type couldn't be determined, and we
2384 					 * should fall through to the normal
2385 					 * trace method.
2386 					 */
2387 					if (n < 0)
2388 						return (-1);
2389 
2390 					if (n > 0)
2391 						goto nextrec;
2392 				}
2393 			}
2394 
2395 nofmt:
2396 			if (act == DTRACEACT_PRINTA) {
2397 				dt_print_aggdata_t pd;
2398 				dtrace_aggvarid_t *aggvars;
2399 				int j, naggvars = 0;
2400 				size_t size = ((epd->dtepd_nrecs - i) *
2401 				    sizeof (dtrace_aggvarid_t));
2402 
2403 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2404 					return (-1);
2405 
2406 				/*
2407 				 * This might be a printa() with multiple
2408 				 * aggregation variables.  We need to scan
2409 				 * forward through the records until we find
2410 				 * a record from a different statement.
2411 				 */
2412 				for (j = i; j < epd->dtepd_nrecs; j++) {
2413 					dtrace_recdesc_t *nrec;
2414 					caddr_t naddr;
2415 
2416 					nrec = &epd->dtepd_rec[j];
2417 
2418 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2419 						break;
2420 
2421 					if (nrec->dtrd_action != act) {
2422 						return (dt_set_errno(dtp,
2423 						    EDT_BADAGG));
2424 					}
2425 
2426 					naddr = buf->dtbd_data + offs +
2427 					    nrec->dtrd_offset;
2428 
2429 					aggvars[naggvars++] =
2430 					    /* LINTED - alignment */
2431 					    *((dtrace_aggvarid_t *)naddr);
2432 				}
2433 
2434 				i = j - 1;
2435 				bzero(&pd, sizeof (pd));
2436 				pd.dtpa_dtp = dtp;
2437 				pd.dtpa_fp = fp;
2438 
2439 				assert(naggvars >= 1);
2440 
2441 				if (naggvars == 1) {
2442 					pd.dtpa_id = aggvars[0];
2443 					dt_free(dtp, aggvars);
2444 
2445 					if (dt_printf(dtp, fp, "\n") < 0 ||
2446 					    dtrace_aggregate_walk_sorted(dtp,
2447 					    dt_print_agg, &pd) < 0)
2448 						return (-1);
2449 					goto nextrec;
2450 				}
2451 
2452 				if (dt_printf(dtp, fp, "\n") < 0 ||
2453 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2454 				    naggvars, dt_print_aggs, &pd) < 0) {
2455 					dt_free(dtp, aggvars);
2456 					return (-1);
2457 				}
2458 
2459 				dt_free(dtp, aggvars);
2460 				goto nextrec;
2461 			}
2462 
2463 			if (act == DTRACEACT_TRACEMEM) {
2464 				if (tracememsize == 0 ||
2465 				    tracememsize > rec->dtrd_size) {
2466 					tracememsize = rec->dtrd_size;
2467 				}
2468 
2469 				n = dt_print_bytes(dtp, fp, addr,
2470 				    tracememsize, -33, quiet, 1);
2471 
2472 				tracememsize = 0;
2473 
2474 				if (n < 0)
2475 					return (-1);
2476 
2477 				goto nextrec;
2478 			}
2479 
2480 			switch (rec->dtrd_size) {
2481 			case sizeof (uint64_t):
2482 				n = dt_printf(dtp, fp,
2483 				    quiet ? "%lld" : " %16lld",
2484 				    /* LINTED - alignment */
2485 				    *((unsigned long long *)addr));
2486 				break;
2487 			case sizeof (uint32_t):
2488 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2489 				    /* LINTED - alignment */
2490 				    *((uint32_t *)addr));
2491 				break;
2492 			case sizeof (uint16_t):
2493 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2494 				    /* LINTED - alignment */
2495 				    *((uint16_t *)addr));
2496 				break;
2497 			case sizeof (uint8_t):
2498 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2499 				    *((uint8_t *)addr));
2500 				break;
2501 			default:
2502 				n = dt_print_bytes(dtp, fp, addr,
2503 				    rec->dtrd_size, -33, quiet, 0);
2504 				break;
2505 			}
2506 
2507 			if (n < 0)
2508 				return (-1); /* errno is set for us */
2509 
2510 nextrec:
2511 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2512 				return (-1); /* errno is set for us */
2513 		}
2514 
2515 		/*
2516 		 * Call the record callback with a NULL record to indicate
2517 		 * that we're done processing this EPID.
2518 		 */
2519 		rval = (*rfunc)(&data, NULL, arg);
2520 nextepid:
2521 		offs += epd->dtepd_size;
2522 		dtp->dt_last_epid = id;
2523 		if (just_one) {
2524 			buf->dtbd_oldest = offs;
2525 			break;
2526 		}
2527 	}
2528 
2529 	dtp->dt_flow = data.dtpda_flow;
2530 	dtp->dt_indent = data.dtpda_indent;
2531 	dtp->dt_prefix = data.dtpda_prefix;
2532 
2533 	if ((drops = buf->dtbd_drops) == 0)
2534 		return (0);
2535 
2536 	/*
2537 	 * Explicitly zero the drops to prevent us from processing them again.
2538 	 */
2539 	buf->dtbd_drops = 0;
2540 
2541 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2542 }
2543 
2544 /*
2545  * Reduce memory usage by shrinking the buffer if it's no more than half full.
2546  * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2547  * only 4-byte aligned.
2548  */
2549 static void
2550 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2551 {
2552 	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2553 	if (used < cursize / 2) {
2554 		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2555 		char *newdata = dt_alloc(dtp, used + misalign);
2556 		if (newdata == NULL)
2557 			return;
2558 		bzero(newdata, misalign);
2559 		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2560 		    newdata + misalign, used);
2561 		dt_free(dtp, buf->dtbd_data);
2562 		buf->dtbd_oldest = misalign;
2563 		buf->dtbd_size = used + misalign;
2564 		buf->dtbd_data = newdata;
2565 	}
2566 }
2567 
2568 /*
2569  * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2570  * so that it is.  Note, we need to preserve the alignment of the data at
2571  * dtbd_oldest, which is only 4-byte aligned.
2572  */
2573 static int
2574 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2575 {
2576 	int misalign;
2577 	char *newdata, *ndp;
2578 
2579 	if (buf->dtbd_oldest == 0)
2580 		return (0);
2581 
2582 	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2583 	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2584 
2585 	if (newdata == NULL)
2586 		return (-1);
2587 
2588 	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2589 
2590 	bzero(ndp, misalign);
2591 	ndp += misalign;
2592 
2593 	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2594 	    buf->dtbd_size - buf->dtbd_oldest);
2595 	ndp += buf->dtbd_size - buf->dtbd_oldest;
2596 
2597 	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2598 
2599 	dt_free(dtp, buf->dtbd_data);
2600 	buf->dtbd_oldest = 0;
2601 	buf->dtbd_data = newdata;
2602 	buf->dtbd_size += misalign;
2603 
2604 	return (0);
2605 }
2606 
2607 static void
2608 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2609 {
2610 	dt_free(dtp, buf->dtbd_data);
2611 	dt_free(dtp, buf);
2612 }
2613 
2614 /*
2615  * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2616  * data, or NULL if there is no data for this CPU.
2617  * Returns -1 on failure and sets dt_errno.
2618  */
2619 static int
2620 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2621 {
2622 	dtrace_optval_t size;
2623 	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2624 	int error;
2625 
2626 	if (buf == NULL)
2627 		return (-1);
2628 
2629 	(void) dtrace_getopt(dtp, "bufsize", &size);
2630 	buf->dtbd_data = dt_alloc(dtp, size);
2631 	if (buf->dtbd_data == NULL) {
2632 		dt_free(dtp, buf);
2633 		return (-1);
2634 	}
2635 	buf->dtbd_size = size;
2636 	buf->dtbd_cpu = cpu;
2637 
2638 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2639 		dt_put_buf(dtp, buf);
2640 		/*
2641 		 * If we failed with ENOENT, it may be because the
2642 		 * CPU was unconfigured -- this is okay.  Any other
2643 		 * error, however, is unexpected.
2644 		 */
2645 		if (errno == ENOENT) {
2646 			*bufp = NULL;
2647 			return (0);
2648 		}
2649 
2650 		return (dt_set_errno(dtp, errno));
2651 	}
2652 
2653 	error = dt_unring_buf(dtp, buf);
2654 	if (error != 0) {
2655 		dt_put_buf(dtp, buf);
2656 		return (error);
2657 	}
2658 	dt_realloc_buf(dtp, buf, size);
2659 
2660 	*bufp = buf;
2661 	return (0);
2662 }
2663 
2664 typedef struct dt_begin {
2665 	dtrace_consume_probe_f *dtbgn_probefunc;
2666 	dtrace_consume_rec_f *dtbgn_recfunc;
2667 	void *dtbgn_arg;
2668 	dtrace_handle_err_f *dtbgn_errhdlr;
2669 	void *dtbgn_errarg;
2670 	int dtbgn_beginonly;
2671 } dt_begin_t;
2672 
2673 static int
2674 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2675 {
2676 	dt_begin_t *begin = arg;
2677 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2678 
2679 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2680 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2681 
2682 	if (begin->dtbgn_beginonly) {
2683 		if (!(r1 && r2))
2684 			return (DTRACE_CONSUME_NEXT);
2685 	} else {
2686 		if (r1 && r2)
2687 			return (DTRACE_CONSUME_NEXT);
2688 	}
2689 
2690 	/*
2691 	 * We have a record that we're interested in.  Now call the underlying
2692 	 * probe function...
2693 	 */
2694 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2695 }
2696 
2697 static int
2698 dt_consume_begin_record(const dtrace_probedata_t *data,
2699     const dtrace_recdesc_t *rec, void *arg)
2700 {
2701 	dt_begin_t *begin = arg;
2702 
2703 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2704 }
2705 
2706 static int
2707 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2708 {
2709 	dt_begin_t *begin = (dt_begin_t *)arg;
2710 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2711 
2712 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2713 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2714 
2715 	if (begin->dtbgn_beginonly) {
2716 		if (!(r1 && r2))
2717 			return (DTRACE_HANDLE_OK);
2718 	} else {
2719 		if (r1 && r2)
2720 			return (DTRACE_HANDLE_OK);
2721 	}
2722 
2723 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2724 }
2725 
2726 static int
2727 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
2728     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2729 {
2730 	/*
2731 	 * There's this idea that the BEGIN probe should be processed before
2732 	 * everything else, and that the END probe should be processed after
2733 	 * anything else.  In the common case, this is pretty easy to deal
2734 	 * with.  However, a situation may arise where the BEGIN enabling and
2735 	 * END enabling are on the same CPU, and some enabling in the middle
2736 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2737 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2738 	 * then set it aside.  We will then process every other CPU, and then
2739 	 * we'll return to the BEGIN CPU and process the rest of the data
2740 	 * (which will inevitably include the END probe, if any).  Making this
2741 	 * even more complicated (!) is the library's ERROR enabling.  Because
2742 	 * this enabling is processed before we even get into the consume call
2743 	 * back, any ERROR firing would result in the library's ERROR enabling
2744 	 * being processed twice -- once in our first pass (for BEGIN probes),
2745 	 * and again in our second pass (for everything but BEGIN probes).  To
2746 	 * deal with this, we interpose on the ERROR handler to assure that we
2747 	 * only process ERROR enablings induced by BEGIN enablings in the
2748 	 * first pass, and that we only process ERROR enablings _not_ induced
2749 	 * by BEGIN enablings in the second pass.
2750 	 */
2751 
2752 	dt_begin_t begin;
2753 	processorid_t cpu = dtp->dt_beganon;
2754 	int rval, i;
2755 	static int max_ncpus;
2756 	dtrace_bufdesc_t *buf;
2757 
2758 	dtp->dt_beganon = -1;
2759 
2760 	if (dt_get_buf(dtp, cpu, &buf) != 0)
2761 		return (-1);
2762 	if (buf == NULL)
2763 		return (0);
2764 
2765 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2766 		/*
2767 		 * This is the simple case.  We're either not stopped, or if
2768 		 * we are, we actually processed any END probes on another
2769 		 * CPU.  We can simply consume this buffer and return.
2770 		 */
2771 		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2772 		    pf, rf, arg);
2773 		dt_put_buf(dtp, buf);
2774 		return (rval);
2775 	}
2776 
2777 	begin.dtbgn_probefunc = pf;
2778 	begin.dtbgn_recfunc = rf;
2779 	begin.dtbgn_arg = arg;
2780 	begin.dtbgn_beginonly = 1;
2781 
2782 	/*
2783 	 * We need to interpose on the ERROR handler to be sure that we
2784 	 * only process ERRORs induced by BEGIN.
2785 	 */
2786 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2787 	begin.dtbgn_errarg = dtp->dt_errarg;
2788 	dtp->dt_errhdlr = dt_consume_begin_error;
2789 	dtp->dt_errarg = &begin;
2790 
2791 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2792 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2793 
2794 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2795 	dtp->dt_errarg = begin.dtbgn_errarg;
2796 
2797 	if (rval != 0) {
2798 		dt_put_buf(dtp, buf);
2799 		return (rval);
2800 	}
2801 
2802 	if (max_ncpus == 0)
2803 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2804 
2805 	for (i = 0; i < max_ncpus; i++) {
2806 		dtrace_bufdesc_t *nbuf;
2807 		if (i == cpu)
2808 			continue;
2809 
2810 		if (dt_get_buf(dtp, i, &nbuf) != 0) {
2811 			dt_put_buf(dtp, buf);
2812 			return (-1);
2813 		}
2814 		if (nbuf == NULL)
2815 			continue;
2816 
2817 		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
2818 		    pf, rf, arg);
2819 		dt_put_buf(dtp, nbuf);
2820 		if (rval != 0) {
2821 			dt_put_buf(dtp, buf);
2822 			return (rval);
2823 		}
2824 	}
2825 
2826 	/*
2827 	 * Okay -- we're done with the other buffers.  Now we want to
2828 	 * reconsume the first buffer -- but this time we're looking for
2829 	 * everything _but_ BEGIN.  And of course, in order to only consume
2830 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2831 	 * ERROR interposition function...
2832 	 */
2833 	begin.dtbgn_beginonly = 0;
2834 
2835 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2836 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2837 	dtp->dt_errhdlr = dt_consume_begin_error;
2838 	dtp->dt_errarg = &begin;
2839 
2840 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2841 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2842 
2843 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2844 	dtp->dt_errarg = begin.dtbgn_errarg;
2845 
2846 	return (rval);
2847 }
2848 
2849 /* ARGSUSED */
2850 static uint64_t
2851 dt_buf_oldest(void *elem, void *arg)
2852 {
2853 	dtrace_bufdesc_t *buf = elem;
2854 	size_t offs = buf->dtbd_oldest;
2855 
2856 	while (offs < buf->dtbd_size) {
2857 		dtrace_rechdr_t *dtrh =
2858 		    /* LINTED - alignment */
2859 		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
2860 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2861 			offs += sizeof (dtrace_epid_t);
2862 		} else {
2863 			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
2864 		}
2865 	}
2866 
2867 	/* There are no records left; use the time the buffer was retrieved. */
2868 	return (buf->dtbd_timestamp);
2869 }
2870 
2871 int
2872 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2873     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2874 {
2875 	dtrace_optval_t size;
2876 	static int max_ncpus;
2877 	int i, rval;
2878 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2879 	hrtime_t now = gethrtime();
2880 
2881 	if (dtp->dt_lastswitch != 0) {
2882 		if (now - dtp->dt_lastswitch < interval)
2883 			return (0);
2884 
2885 		dtp->dt_lastswitch += interval;
2886 	} else {
2887 		dtp->dt_lastswitch = now;
2888 	}
2889 
2890 	if (!dtp->dt_active)
2891 		return (dt_set_errno(dtp, EINVAL));
2892 
2893 	if (max_ncpus == 0)
2894 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2895 
2896 	if (pf == NULL)
2897 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2898 
2899 	if (rf == NULL)
2900 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2901 
2902 	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
2903 		/*
2904 		 * The output will not be in the order it was traced.  Rather,
2905 		 * we will consume all of the data from each CPU's buffer in
2906 		 * turn.  We apply special handling for the records from BEGIN
2907 		 * and END probes so that they are consumed first and last,
2908 		 * respectively.
2909 		 *
2910 		 * If we have just begun, we want to first process the CPU that
2911 		 * executed the BEGIN probe (if any).
2912 		 */
2913 		if (dtp->dt_active && dtp->dt_beganon != -1 &&
2914 		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
2915 			return (rval);
2916 
2917 		for (i = 0; i < max_ncpus; i++) {
2918 			dtrace_bufdesc_t *buf;
2919 
2920 			/*
2921 			 * If we have stopped, we want to process the CPU on
2922 			 * which the END probe was processed only _after_ we
2923 			 * have processed everything else.
2924 			 */
2925 			if (dtp->dt_stopped && (i == dtp->dt_endedon))
2926 				continue;
2927 
2928 			if (dt_get_buf(dtp, i, &buf) != 0)
2929 				return (-1);
2930 			if (buf == NULL)
2931 				continue;
2932 
2933 			dtp->dt_flow = 0;
2934 			dtp->dt_indent = 0;
2935 			dtp->dt_prefix = NULL;
2936 			rval = dt_consume_cpu(dtp, fp, i,
2937 			    buf, B_FALSE, pf, rf, arg);
2938 			dt_put_buf(dtp, buf);
2939 			if (rval != 0)
2940 				return (rval);
2941 		}
2942 		if (dtp->dt_stopped) {
2943 			dtrace_bufdesc_t *buf;
2944 
2945 			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
2946 				return (-1);
2947 			if (buf == NULL)
2948 				return (0);
2949 
2950 			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
2951 			    buf, B_FALSE, pf, rf, arg);
2952 			dt_put_buf(dtp, buf);
2953 			return (rval);
2954 		}
2955 	} else {
2956 		/*
2957 		 * The output will be in the order it was traced (or for
2958 		 * speculations, when it was committed).  We retrieve a buffer
2959 		 * from each CPU and put it into a priority queue, which sorts
2960 		 * based on the first entry in the buffer.  This is sufficient
2961 		 * because entries within a buffer are already sorted.
2962 		 *
2963 		 * We then consume records one at a time, always consuming the
2964 		 * oldest record, as determined by the priority queue.  When
2965 		 * we reach the end of the time covered by these buffers,
2966 		 * we need to stop and retrieve more records on the next pass.
2967 		 * The kernel tells us the time covered by each buffer, in
2968 		 * dtbd_timestamp.  The first buffer's timestamp tells us the
2969 		 * time covered by all buffers, as subsequently retrieved
2970 		 * buffers will cover to a more recent time.
2971 		 */
2972 
2973 		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
2974 		uint64_t first_timestamp = 0;
2975 		uint_t cookie = 0;
2976 		dtrace_bufdesc_t *buf;
2977 
2978 		bzero(drops, max_ncpus * sizeof (uint64_t));
2979 
2980 		if (dtp->dt_bufq == NULL) {
2981 			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
2982 			    dt_buf_oldest, NULL);
2983 			if (dtp->dt_bufq == NULL) /* ENOMEM */
2984 				return (-1);
2985 		}
2986 
2987 		/* Retrieve data from each CPU. */
2988 		(void) dtrace_getopt(dtp, "bufsize", &size);
2989 		for (i = 0; i < max_ncpus; i++) {
2990 			dtrace_bufdesc_t *buf;
2991 
2992 			if (dt_get_buf(dtp, i, &buf) != 0)
2993 				return (-1);
2994 			if (buf != NULL) {
2995 				if (first_timestamp == 0)
2996 					first_timestamp = buf->dtbd_timestamp;
2997 				assert(buf->dtbd_timestamp >= first_timestamp);
2998 
2999 				dt_pq_insert(dtp->dt_bufq, buf);
3000 				drops[i] = buf->dtbd_drops;
3001 				buf->dtbd_drops = 0;
3002 			}
3003 		}
3004 
3005 		/* Consume records. */
3006 		for (;;) {
3007 			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3008 			uint64_t timestamp;
3009 
3010 			if (buf == NULL)
3011 				break;
3012 
3013 			timestamp = dt_buf_oldest(buf, dtp);
3014 			assert(timestamp >= dtp->dt_last_timestamp);
3015 			dtp->dt_last_timestamp = timestamp;
3016 
3017 			if (timestamp == buf->dtbd_timestamp) {
3018 				/*
3019 				 * We've reached the end of the time covered
3020 				 * by this buffer.  If this is the oldest
3021 				 * buffer, we must do another pass
3022 				 * to retrieve more data.
3023 				 */
3024 				dt_put_buf(dtp, buf);
3025 				if (timestamp == first_timestamp &&
3026 				    !dtp->dt_stopped)
3027 					break;
3028 				continue;
3029 			}
3030 
3031 			if ((rval = dt_consume_cpu(dtp, fp,
3032 			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3033 				return (rval);
3034 			dt_pq_insert(dtp->dt_bufq, buf);
3035 		}
3036 
3037 		/* Consume drops. */
3038 		for (i = 0; i < max_ncpus; i++) {
3039 			if (drops[i] != 0) {
3040 				int error = dt_handle_cpudrop(dtp, i,
3041 				    DTRACEDROP_PRINCIPAL, drops[i]);
3042 				if (error != 0)
3043 					return (error);
3044 			}
3045 		}
3046 
3047 		/*
3048 		 * Reduce memory usage by re-allocating smaller buffers
3049 		 * for the "remnants".
3050 		 */
3051 		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3052 			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3053 	}
3054 
3055 	return (0);
3056 }
3057