xref: /titanic_51/usr/src/lib/libdtrace/common/dt_consume.c (revision 14c0b03165f67fc77b52e53701ea2a4a41976948)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
28  */
29 
30 #include <stdlib.h>
31 #include <strings.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <limits.h>
35 #include <assert.h>
36 #include <ctype.h>
37 #include <alloca.h>
38 #include <dt_impl.h>
39 
40 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
41 
42 /*
43  * We declare this here because (1) we need it and (2) we want to avoid a
44  * dependency on libm in libdtrace.
45  */
46 static long double
47 dt_fabsl(long double x)
48 {
49 	if (x < 0)
50 		return (-x);
51 
52 	return (x);
53 }
54 
55 /*
56  * 128-bit arithmetic functions needed to support the stddev() aggregating
57  * action.
58  */
59 static int
60 dt_gt_128(uint64_t *a, uint64_t *b)
61 {
62 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
63 }
64 
65 static int
66 dt_ge_128(uint64_t *a, uint64_t *b)
67 {
68 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
69 }
70 
71 static int
72 dt_le_128(uint64_t *a, uint64_t *b)
73 {
74 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
75 }
76 
77 /*
78  * Shift the 128-bit value in a by b. If b is positive, shift left.
79  * If b is negative, shift right.
80  */
81 static void
82 dt_shift_128(uint64_t *a, int b)
83 {
84 	uint64_t mask;
85 
86 	if (b == 0)
87 		return;
88 
89 	if (b < 0) {
90 		b = -b;
91 		if (b >= 64) {
92 			a[0] = a[1] >> (b - 64);
93 			a[1] = 0;
94 		} else {
95 			a[0] >>= b;
96 			mask = 1LL << (64 - b);
97 			mask -= 1;
98 			a[0] |= ((a[1] & mask) << (64 - b));
99 			a[1] >>= b;
100 		}
101 	} else {
102 		if (b >= 64) {
103 			a[1] = a[0] << (b - 64);
104 			a[0] = 0;
105 		} else {
106 			a[1] <<= b;
107 			mask = a[0] >> (64 - b);
108 			a[1] |= mask;
109 			a[0] <<= b;
110 		}
111 	}
112 }
113 
114 static int
115 dt_nbits_128(uint64_t *a)
116 {
117 	int nbits = 0;
118 	uint64_t tmp[2];
119 	uint64_t zero[2] = { 0, 0 };
120 
121 	tmp[0] = a[0];
122 	tmp[1] = a[1];
123 
124 	dt_shift_128(tmp, -1);
125 	while (dt_gt_128(tmp, zero)) {
126 		dt_shift_128(tmp, -1);
127 		nbits++;
128 	}
129 
130 	return (nbits);
131 }
132 
133 static void
134 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
135 {
136 	uint64_t result[2];
137 
138 	result[0] = minuend[0] - subtrahend[0];
139 	result[1] = minuend[1] - subtrahend[1] -
140 	    (minuend[0] < subtrahend[0] ? 1 : 0);
141 
142 	difference[0] = result[0];
143 	difference[1] = result[1];
144 }
145 
146 static void
147 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
148 {
149 	uint64_t result[2];
150 
151 	result[0] = addend1[0] + addend2[0];
152 	result[1] = addend1[1] + addend2[1] +
153 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
154 
155 	sum[0] = result[0];
156 	sum[1] = result[1];
157 }
158 
159 /*
160  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
161  * use native multiplication on those, and then re-combine into the
162  * resulting 128-bit value.
163  *
164  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
165  *     hi1 * hi2 << 64 +
166  *     hi1 * lo2 << 32 +
167  *     hi2 * lo1 << 32 +
168  *     lo1 * lo2
169  */
170 static void
171 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
172 {
173 	uint64_t hi1, hi2, lo1, lo2;
174 	uint64_t tmp[2];
175 
176 	hi1 = factor1 >> 32;
177 	hi2 = factor2 >> 32;
178 
179 	lo1 = factor1 & DT_MASK_LO;
180 	lo2 = factor2 & DT_MASK_LO;
181 
182 	product[0] = lo1 * lo2;
183 	product[1] = hi1 * hi2;
184 
185 	tmp[0] = hi1 * lo2;
186 	tmp[1] = 0;
187 	dt_shift_128(tmp, 32);
188 	dt_add_128(product, tmp, product);
189 
190 	tmp[0] = hi2 * lo1;
191 	tmp[1] = 0;
192 	dt_shift_128(tmp, 32);
193 	dt_add_128(product, tmp, product);
194 }
195 
196 /*
197  * This is long-hand division.
198  *
199  * We initialize subtrahend by shifting divisor left as far as possible. We
200  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
201  * subtract and set the appropriate bit in the result.  We then shift
202  * subtrahend right by one bit for the next comparison.
203  */
204 static void
205 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
206 {
207 	uint64_t result[2] = { 0, 0 };
208 	uint64_t remainder[2];
209 	uint64_t subtrahend[2];
210 	uint64_t divisor_128[2];
211 	uint64_t mask[2] = { 1, 0 };
212 	int log = 0;
213 
214 	assert(divisor != 0);
215 
216 	divisor_128[0] = divisor;
217 	divisor_128[1] = 0;
218 
219 	remainder[0] = dividend[0];
220 	remainder[1] = dividend[1];
221 
222 	subtrahend[0] = divisor;
223 	subtrahend[1] = 0;
224 
225 	while (divisor > 0) {
226 		log++;
227 		divisor >>= 1;
228 	}
229 
230 	dt_shift_128(subtrahend, 128 - log);
231 	dt_shift_128(mask, 128 - log);
232 
233 	while (dt_ge_128(remainder, divisor_128)) {
234 		if (dt_ge_128(remainder, subtrahend)) {
235 			dt_subtract_128(remainder, subtrahend, remainder);
236 			result[0] |= mask[0];
237 			result[1] |= mask[1];
238 		}
239 
240 		dt_shift_128(subtrahend, -1);
241 		dt_shift_128(mask, -1);
242 	}
243 
244 	quotient[0] = result[0];
245 	quotient[1] = result[1];
246 }
247 
248 /*
249  * This is the long-hand method of calculating a square root.
250  * The algorithm is as follows:
251  *
252  * 1. Group the digits by 2 from the right.
253  * 2. Over the leftmost group, find the largest single-digit number
254  *    whose square is less than that group.
255  * 3. Subtract the result of the previous step (2 or 4, depending) and
256  *    bring down the next two-digit group.
257  * 4. For the result R we have so far, find the largest single-digit number
258  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
259  *    (Note that this is doubling R and performing a decimal left-shift by 1
260  *    and searching for the appropriate decimal to fill the one's place.)
261  *    The value x is the next digit in the square root.
262  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
263  * dealing with integers, so the above is sufficient.)
264  *
265  * In decimal, the square root of 582,734 would be calculated as so:
266  *
267  *     __7__6__3
268  *    | 58 27 34
269  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
270  *      --
271  *       9 27    (Subtract and bring down the next group.)
272  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
273  *      -----     the square root)
274  *         51 34 (Subtract and bring down the next group.)
275  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
276  *         -----  the square root)
277  *          5 65 (remainder)
278  *
279  * The above algorithm applies similarly in binary, but note that the
280  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
281  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
282  * preceding difference?
283  *
284  * In binary, the square root of 11011011 would be calculated as so:
285  *
286  *     __1__1__1__0
287  *    | 11 01 10 11
288  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
289  *      --
290  *      10 01 10 11
291  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
292  *      -----
293  *       1 00 10 11
294  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
295  *       -------
296  *          1 01 11
297  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
298  *
299  */
300 static uint64_t
301 dt_sqrt_128(uint64_t *square)
302 {
303 	uint64_t result[2] = { 0, 0 };
304 	uint64_t diff[2] = { 0, 0 };
305 	uint64_t one[2] = { 1, 0 };
306 	uint64_t next_pair[2];
307 	uint64_t next_try[2];
308 	uint64_t bit_pairs, pair_shift;
309 	int i;
310 
311 	bit_pairs = dt_nbits_128(square) / 2;
312 	pair_shift = bit_pairs * 2;
313 
314 	for (i = 0; i <= bit_pairs; i++) {
315 		/*
316 		 * Bring down the next pair of bits.
317 		 */
318 		next_pair[0] = square[0];
319 		next_pair[1] = square[1];
320 		dt_shift_128(next_pair, -pair_shift);
321 		next_pair[0] &= 0x3;
322 		next_pair[1] = 0;
323 
324 		dt_shift_128(diff, 2);
325 		dt_add_128(diff, next_pair, diff);
326 
327 		/*
328 		 * next_try = R << 2 + 1
329 		 */
330 		next_try[0] = result[0];
331 		next_try[1] = result[1];
332 		dt_shift_128(next_try, 2);
333 		dt_add_128(next_try, one, next_try);
334 
335 		if (dt_le_128(next_try, diff)) {
336 			dt_subtract_128(diff, next_try, diff);
337 			dt_shift_128(result, 1);
338 			dt_add_128(result, one, result);
339 		} else {
340 			dt_shift_128(result, 1);
341 		}
342 
343 		pair_shift -= 2;
344 	}
345 
346 	assert(result[1] == 0);
347 
348 	return (result[0]);
349 }
350 
351 uint64_t
352 dt_stddev(uint64_t *data, uint64_t normal)
353 {
354 	uint64_t avg_of_squares[2];
355 	uint64_t square_of_avg[2];
356 	int64_t norm_avg;
357 	uint64_t diff[2];
358 
359 	/*
360 	 * The standard approximation for standard deviation is
361 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
362 	 * of the average of the squares minus the square of the average.
363 	 */
364 	dt_divide_128(data + 2, normal, avg_of_squares);
365 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
366 
367 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
368 
369 	if (norm_avg < 0)
370 		norm_avg = -norm_avg;
371 
372 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
373 
374 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
375 
376 	return (dt_sqrt_128(diff));
377 }
378 
379 static int
380 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
381     dtrace_bufdesc_t *buf, size_t offs)
382 {
383 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
384 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
385 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
386 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
387 	const char *str = NULL;
388 	static const char *e_str[2] = { " -> ", " => " };
389 	static const char *r_str[2] = { " <- ", " <= " };
390 	static const char *ent = "entry", *ret = "return";
391 	static int entlen = 0, retlen = 0;
392 	dtrace_epid_t next, id = epd->dtepd_epid;
393 	int rval;
394 
395 	if (entlen == 0) {
396 		assert(retlen == 0);
397 		entlen = strlen(ent);
398 		retlen = strlen(ret);
399 	}
400 
401 	/*
402 	 * If the name of the probe is "entry" or ends with "-entry", we
403 	 * treat it as an entry; if it is "return" or ends with "-return",
404 	 * we treat it as a return.  (This allows application-provided probes
405 	 * like "method-entry" or "function-entry" to participate in flow
406 	 * indentation -- without accidentally misinterpreting popular probe
407 	 * names like "carpentry", "gentry" or "Coventry".)
408 	 */
409 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
410 	    (sub == n || sub[-1] == '-')) {
411 		flow = DTRACEFLOW_ENTRY;
412 		str = e_str[strcmp(p, "syscall") == 0];
413 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
414 	    (sub == n || sub[-1] == '-')) {
415 		flow = DTRACEFLOW_RETURN;
416 		str = r_str[strcmp(p, "syscall") == 0];
417 	}
418 
419 	/*
420 	 * If we're going to indent this, we need to check the ID of our last
421 	 * call.  If we're looking at the same probe ID but a different EPID,
422 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
423 	 * this scheme -- it's a heuristic.)
424 	 */
425 	if (flow == DTRACEFLOW_ENTRY) {
426 		if ((last != DTRACE_EPIDNONE && id != last &&
427 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
428 			flow = DTRACEFLOW_NONE;
429 	}
430 
431 	/*
432 	 * If we're going to unindent this, it's more difficult to see if
433 	 * we don't actually want to unindent it -- we need to look at the
434 	 * _next_ EPID.
435 	 */
436 	if (flow == DTRACEFLOW_RETURN) {
437 		offs += epd->dtepd_size;
438 
439 		do {
440 			if (offs >= buf->dtbd_size) {
441 				/*
442 				 * We're at the end -- maybe.  If the oldest
443 				 * record is non-zero, we need to wrap.
444 				 */
445 				if (buf->dtbd_oldest != 0) {
446 					offs = 0;
447 				} else {
448 					goto out;
449 				}
450 			}
451 
452 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
453 
454 			if (next == DTRACE_EPIDNONE)
455 				offs += sizeof (id);
456 		} while (next == DTRACE_EPIDNONE);
457 
458 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
459 			return (rval);
460 
461 		if (next != id && npd->dtpd_id == pd->dtpd_id)
462 			flow = DTRACEFLOW_NONE;
463 	}
464 
465 out:
466 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
467 		data->dtpda_prefix = str;
468 	} else {
469 		data->dtpda_prefix = "| ";
470 	}
471 
472 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
473 		data->dtpda_indent -= 2;
474 
475 	data->dtpda_flow = flow;
476 
477 	return (0);
478 }
479 
480 static int
481 dt_nullprobe()
482 {
483 	return (DTRACE_CONSUME_THIS);
484 }
485 
486 static int
487 dt_nullrec()
488 {
489 	return (DTRACE_CONSUME_NEXT);
490 }
491 
492 int
493 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
494     uint64_t normal, long double total, char positives, char negatives)
495 {
496 	long double f;
497 	uint_t depth, len = 40;
498 
499 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
500 	const char *spaces = "                                        ";
501 
502 	assert(strlen(ats) == len && strlen(spaces) == len);
503 	assert(!(total == 0 && (positives || negatives)));
504 	assert(!(val < 0 && !negatives));
505 	assert(!(val > 0 && !positives));
506 	assert(!(val != 0 && total == 0));
507 
508 	if (!negatives) {
509 		if (positives) {
510 			f = (dt_fabsl((long double)val) * len) / total;
511 			depth = (uint_t)(f + 0.5);
512 		} else {
513 			depth = 0;
514 		}
515 
516 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
517 		    spaces + depth, (long long)val / normal));
518 	}
519 
520 	if (!positives) {
521 		f = (dt_fabsl((long double)val) * len) / total;
522 		depth = (uint_t)(f + 0.5);
523 
524 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
525 		    ats + len - depth, (long long)val / normal));
526 	}
527 
528 	/*
529 	 * If we're here, we have both positive and negative bucket values.
530 	 * To express this graphically, we're going to generate both positive
531 	 * and negative bars separated by a centerline.  These bars are half
532 	 * the size of normal quantize()/lquantize() bars, so we divide the
533 	 * length in half before calculating the bar length.
534 	 */
535 	len /= 2;
536 	ats = &ats[len];
537 	spaces = &spaces[len];
538 
539 	f = (dt_fabsl((long double)val) * len) / total;
540 	depth = (uint_t)(f + 0.5);
541 
542 	if (val <= 0) {
543 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
544 		    ats + len - depth, len, "", (long long)val / normal));
545 	} else {
546 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
547 		    ats + len - depth, spaces + depth,
548 		    (long long)val / normal));
549 	}
550 }
551 
552 int
553 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
554     size_t size, uint64_t normal)
555 {
556 	const int64_t *data = addr;
557 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
558 	long double total = 0;
559 	char positives = 0, negatives = 0;
560 
561 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
562 		return (dt_set_errno(dtp, EDT_DMISMATCH));
563 
564 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
565 		first_bin++;
566 
567 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
568 		/*
569 		 * There isn't any data.  This is possible if (and only if)
570 		 * negative increment values have been used.  In this case,
571 		 * we'll print the buckets around 0.
572 		 */
573 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
574 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
575 	} else {
576 		if (first_bin > 0)
577 			first_bin--;
578 
579 		while (last_bin > 0 && data[last_bin] == 0)
580 			last_bin--;
581 
582 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
583 			last_bin++;
584 	}
585 
586 	for (i = first_bin; i <= last_bin; i++) {
587 		positives |= (data[i] > 0);
588 		negatives |= (data[i] < 0);
589 		total += dt_fabsl((long double)data[i]);
590 	}
591 
592 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
593 	    "------------- Distribution -------------", "count") < 0)
594 		return (-1);
595 
596 	for (i = first_bin; i <= last_bin; i++) {
597 		if (dt_printf(dtp, fp, "%16lld ",
598 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
599 			return (-1);
600 
601 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
602 		    positives, negatives) < 0)
603 			return (-1);
604 	}
605 
606 	return (0);
607 }
608 
609 int
610 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
611     size_t size, uint64_t normal)
612 {
613 	const int64_t *data = addr;
614 	int i, first_bin, last_bin, base;
615 	uint64_t arg;
616 	long double total = 0;
617 	uint16_t step, levels;
618 	char positives = 0, negatives = 0;
619 
620 	if (size < sizeof (uint64_t))
621 		return (dt_set_errno(dtp, EDT_DMISMATCH));
622 
623 	arg = *data++;
624 	size -= sizeof (uint64_t);
625 
626 	base = DTRACE_LQUANTIZE_BASE(arg);
627 	step = DTRACE_LQUANTIZE_STEP(arg);
628 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
629 
630 	first_bin = 0;
631 	last_bin = levels + 1;
632 
633 	if (size != sizeof (uint64_t) * (levels + 2))
634 		return (dt_set_errno(dtp, EDT_DMISMATCH));
635 
636 	while (first_bin <= levels + 1 && data[first_bin] == 0)
637 		first_bin++;
638 
639 	if (first_bin > levels + 1) {
640 		first_bin = 0;
641 		last_bin = 2;
642 	} else {
643 		if (first_bin > 0)
644 			first_bin--;
645 
646 		while (last_bin > 0 && data[last_bin] == 0)
647 			last_bin--;
648 
649 		if (last_bin < levels + 1)
650 			last_bin++;
651 	}
652 
653 	for (i = first_bin; i <= last_bin; i++) {
654 		positives |= (data[i] > 0);
655 		negatives |= (data[i] < 0);
656 		total += dt_fabsl((long double)data[i]);
657 	}
658 
659 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
660 	    "------------- Distribution -------------", "count") < 0)
661 		return (-1);
662 
663 	for (i = first_bin; i <= last_bin; i++) {
664 		char c[32];
665 		int err;
666 
667 		if (i == 0) {
668 			(void) snprintf(c, sizeof (c), "< %d",
669 			    base / (uint32_t)normal);
670 			err = dt_printf(dtp, fp, "%16s ", c);
671 		} else if (i == levels + 1) {
672 			(void) snprintf(c, sizeof (c), ">= %d",
673 			    base + (levels * step));
674 			err = dt_printf(dtp, fp, "%16s ", c);
675 		} else {
676 			err = dt_printf(dtp, fp, "%16d ",
677 			    base + (i - 1) * step);
678 		}
679 
680 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
681 		    total, positives, negatives) < 0)
682 			return (-1);
683 	}
684 
685 	return (0);
686 }
687 
688 int
689 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
690     size_t size, uint64_t normal)
691 {
692 	int i, first_bin, last_bin, bin = 1, order, levels;
693 	uint16_t factor, low, high, nsteps;
694 	const int64_t *data = addr;
695 	int64_t value = 1, next, step;
696 	char positives = 0, negatives = 0;
697 	long double total = 0;
698 	uint64_t arg;
699 	char c[32];
700 
701 	if (size < sizeof (uint64_t))
702 		return (dt_set_errno(dtp, EDT_DMISMATCH));
703 
704 	arg = *data++;
705 	size -= sizeof (uint64_t);
706 
707 	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
708 	low = DTRACE_LLQUANTIZE_LOW(arg);
709 	high = DTRACE_LLQUANTIZE_HIGH(arg);
710 	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
711 
712 	/*
713 	 * We don't expect to be handed invalid llquantize() parameters here,
714 	 * but sanity check them (to a degree) nonetheless.
715 	 */
716 	if (size > INT32_MAX || factor < 2 || low >= high ||
717 	    nsteps == 0 || factor > nsteps)
718 		return (dt_set_errno(dtp, EDT_DMISMATCH));
719 
720 	levels = (int)size / sizeof (uint64_t);
721 
722 	first_bin = 0;
723 	last_bin = levels - 1;
724 
725 	while (first_bin < levels && data[first_bin] == 0)
726 		first_bin++;
727 
728 	if (first_bin == levels) {
729 		first_bin = 0;
730 		last_bin = 1;
731 	} else {
732 		if (first_bin > 0)
733 			first_bin--;
734 
735 		while (last_bin > 0 && data[last_bin] == 0)
736 			last_bin--;
737 
738 		if (last_bin < levels - 1)
739 			last_bin++;
740 	}
741 
742 	for (i = first_bin; i <= last_bin; i++) {
743 		positives |= (data[i] > 0);
744 		negatives |= (data[i] < 0);
745 		total += dt_fabsl((long double)data[i]);
746 	}
747 
748 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
749 	    "------------- Distribution -------------", "count") < 0)
750 		return (-1);
751 
752 	for (order = 0; order < low; order++)
753 		value *= factor;
754 
755 	next = value * factor;
756 	step = next > nsteps ? next / nsteps : 1;
757 
758 	if (first_bin == 0) {
759 		(void) snprintf(c, sizeof (c), "< %lld", value);
760 
761 		if (dt_printf(dtp, fp, "%16s ", c) < 0)
762 			return (-1);
763 
764 		if (dt_print_quantline(dtp, fp, data[0], normal,
765 		    total, positives, negatives) < 0)
766 			return (-1);
767 	}
768 
769 	while (order <= high) {
770 		if (bin >= first_bin && bin <= last_bin) {
771 			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
772 				return (-1);
773 
774 			if (dt_print_quantline(dtp, fp, data[bin],
775 			    normal, total, positives, negatives) < 0)
776 				return (-1);
777 		}
778 
779 		assert(value < next);
780 		bin++;
781 
782 		if ((value += step) != next)
783 			continue;
784 
785 		next = value * factor;
786 		step = next > nsteps ? next / nsteps : 1;
787 		order++;
788 	}
789 
790 	if (last_bin < bin)
791 		return (0);
792 
793 	assert(last_bin == bin);
794 	(void) snprintf(c, sizeof (c), ">= %lld", value);
795 
796 	if (dt_printf(dtp, fp, "%16s ", c) < 0)
797 		return (-1);
798 
799 	return (dt_print_quantline(dtp, fp, data[bin], normal,
800 	    total, positives, negatives));
801 }
802 
803 /*ARGSUSED*/
804 static int
805 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
806     size_t size, uint64_t normal)
807 {
808 	/* LINTED - alignment */
809 	int64_t *data = (int64_t *)addr;
810 
811 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
812 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
813 }
814 
815 /*ARGSUSED*/
816 static int
817 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
818     size_t size, uint64_t normal)
819 {
820 	/* LINTED - alignment */
821 	uint64_t *data = (uint64_t *)addr;
822 
823 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
824 	    (unsigned long long) dt_stddev(data, normal) : 0));
825 }
826 
827 /*ARGSUSED*/
828 int
829 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
830     size_t nbytes, int width, int quiet, int forceraw)
831 {
832 	/*
833 	 * If the byte stream is a series of printable characters, followed by
834 	 * a terminating byte, we print it out as a string.  Otherwise, we
835 	 * assume that it's something else and just print the bytes.
836 	 */
837 	int i, j, margin = 5;
838 	char *c = (char *)addr;
839 
840 	if (nbytes == 0)
841 		return (0);
842 
843 	if (forceraw)
844 		goto raw;
845 
846 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
847 		goto raw;
848 
849 	for (i = 0; i < nbytes; i++) {
850 		/*
851 		 * We define a "printable character" to be one for which
852 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
853 		 * or a character which is either backspace or the bell.
854 		 * Backspace and the bell are regrettably special because
855 		 * they fail the first two tests -- and yet they are entirely
856 		 * printable.  These are the only two control characters that
857 		 * have meaning for the terminal and for which isprint(3C) and
858 		 * isspace(3C) return 0.
859 		 */
860 		if (isprint(c[i]) || isspace(c[i]) ||
861 		    c[i] == '\b' || c[i] == '\a')
862 			continue;
863 
864 		if (c[i] == '\0' && i > 0) {
865 			/*
866 			 * This looks like it might be a string.  Before we
867 			 * assume that it is indeed a string, check the
868 			 * remainder of the byte range; if it contains
869 			 * additional non-nul characters, we'll assume that
870 			 * it's a binary stream that just happens to look like
871 			 * a string, and we'll print out the individual bytes.
872 			 */
873 			for (j = i + 1; j < nbytes; j++) {
874 				if (c[j] != '\0')
875 					break;
876 			}
877 
878 			if (j != nbytes)
879 				break;
880 
881 			if (quiet)
882 				return (dt_printf(dtp, fp, "%s", c));
883 			else
884 				return (dt_printf(dtp, fp, "  %-*s", width, c));
885 		}
886 
887 		break;
888 	}
889 
890 	if (i == nbytes) {
891 		/*
892 		 * The byte range is all printable characters, but there is
893 		 * no trailing nul byte.  We'll assume that it's a string and
894 		 * print it as such.
895 		 */
896 		char *s = alloca(nbytes + 1);
897 		bcopy(c, s, nbytes);
898 		s[nbytes] = '\0';
899 		return (dt_printf(dtp, fp, "  %-*s", width, s));
900 	}
901 
902 raw:
903 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
904 		return (-1);
905 
906 	for (i = 0; i < 16; i++)
907 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
908 			return (-1);
909 
910 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
911 		return (-1);
912 
913 
914 	for (i = 0; i < nbytes; i += 16) {
915 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
916 			return (-1);
917 
918 		for (j = i; j < i + 16 && j < nbytes; j++) {
919 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
920 				return (-1);
921 		}
922 
923 		while (j++ % 16) {
924 			if (dt_printf(dtp, fp, "   ") < 0)
925 				return (-1);
926 		}
927 
928 		if (dt_printf(dtp, fp, "  ") < 0)
929 			return (-1);
930 
931 		for (j = i; j < i + 16 && j < nbytes; j++) {
932 			if (dt_printf(dtp, fp, "%c",
933 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
934 				return (-1);
935 		}
936 
937 		if (dt_printf(dtp, fp, "\n") < 0)
938 			return (-1);
939 	}
940 
941 	return (0);
942 }
943 
944 int
945 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
946     caddr_t addr, int depth, int size)
947 {
948 	dtrace_syminfo_t dts;
949 	GElf_Sym sym;
950 	int i, indent;
951 	char c[PATH_MAX * 2];
952 	uint64_t pc;
953 
954 	if (dt_printf(dtp, fp, "\n") < 0)
955 		return (-1);
956 
957 	if (format == NULL)
958 		format = "%s";
959 
960 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
961 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
962 	else
963 		indent = _dtrace_stkindent;
964 
965 	for (i = 0; i < depth; i++) {
966 		switch (size) {
967 		case sizeof (uint32_t):
968 			/* LINTED - alignment */
969 			pc = *((uint32_t *)addr);
970 			break;
971 
972 		case sizeof (uint64_t):
973 			/* LINTED - alignment */
974 			pc = *((uint64_t *)addr);
975 			break;
976 
977 		default:
978 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
979 		}
980 
981 		if (pc == NULL)
982 			break;
983 
984 		addr += size;
985 
986 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
987 			return (-1);
988 
989 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
990 			if (pc > sym.st_value) {
991 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
992 				    dts.dts_object, dts.dts_name,
993 				    pc - sym.st_value);
994 			} else {
995 				(void) snprintf(c, sizeof (c), "%s`%s",
996 				    dts.dts_object, dts.dts_name);
997 			}
998 		} else {
999 			/*
1000 			 * We'll repeat the lookup, but this time we'll specify
1001 			 * a NULL GElf_Sym -- indicating that we're only
1002 			 * interested in the containing module.
1003 			 */
1004 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1005 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1006 				    dts.dts_object, pc);
1007 			} else {
1008 				(void) snprintf(c, sizeof (c), "0x%llx", pc);
1009 			}
1010 		}
1011 
1012 		if (dt_printf(dtp, fp, format, c) < 0)
1013 			return (-1);
1014 
1015 		if (dt_printf(dtp, fp, "\n") < 0)
1016 			return (-1);
1017 	}
1018 
1019 	return (0);
1020 }
1021 
1022 int
1023 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1024     caddr_t addr, uint64_t arg)
1025 {
1026 	/* LINTED - alignment */
1027 	uint64_t *pc = (uint64_t *)addr;
1028 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1029 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1030 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1031 	const char *str = strsize ? strbase : NULL;
1032 	int err = 0;
1033 
1034 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1035 	struct ps_prochandle *P;
1036 	GElf_Sym sym;
1037 	int i, indent;
1038 	pid_t pid;
1039 
1040 	if (depth == 0)
1041 		return (0);
1042 
1043 	pid = (pid_t)*pc++;
1044 
1045 	if (dt_printf(dtp, fp, "\n") < 0)
1046 		return (-1);
1047 
1048 	if (format == NULL)
1049 		format = "%s";
1050 
1051 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1052 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1053 	else
1054 		indent = _dtrace_stkindent;
1055 
1056 	/*
1057 	 * Ultimately, we need to add an entry point in the library vector for
1058 	 * determining <symbol, offset> from <pid, address>.  For now, if
1059 	 * this is a vector open, we just print the raw address or string.
1060 	 */
1061 	if (dtp->dt_vector == NULL)
1062 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1063 	else
1064 		P = NULL;
1065 
1066 	if (P != NULL)
1067 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1068 
1069 	for (i = 0; i < depth && pc[i] != NULL; i++) {
1070 		const prmap_t *map;
1071 
1072 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1073 			break;
1074 
1075 		if (P != NULL && Plookup_by_addr(P, pc[i],
1076 		    name, sizeof (name), &sym) == 0) {
1077 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1078 
1079 			if (pc[i] > sym.st_value) {
1080 				(void) snprintf(c, sizeof (c),
1081 				    "%s`%s+0x%llx", dt_basename(objname), name,
1082 				    (u_longlong_t)(pc[i] - sym.st_value));
1083 			} else {
1084 				(void) snprintf(c, sizeof (c),
1085 				    "%s`%s", dt_basename(objname), name);
1086 			}
1087 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1088 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1089 		    (map->pr_mflags & MA_WRITE)))) {
1090 			/*
1091 			 * If the current string pointer in the string table
1092 			 * does not point to an empty string _and_ the program
1093 			 * counter falls in a writable region, we'll use the
1094 			 * string from the string table instead of the raw
1095 			 * address.  This last condition is necessary because
1096 			 * some (broken) ustack helpers will return a string
1097 			 * even for a program counter that they can't
1098 			 * identify.  If we have a string for a program
1099 			 * counter that falls in a segment that isn't
1100 			 * writable, we assume that we have fallen into this
1101 			 * case and we refuse to use the string.
1102 			 */
1103 			(void) snprintf(c, sizeof (c), "%s", str);
1104 		} else {
1105 			if (P != NULL && Pobjname(P, pc[i], objname,
1106 			    sizeof (objname)) != NULL) {
1107 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1108 				    dt_basename(objname), (u_longlong_t)pc[i]);
1109 			} else {
1110 				(void) snprintf(c, sizeof (c), "0x%llx",
1111 				    (u_longlong_t)pc[i]);
1112 			}
1113 		}
1114 
1115 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1116 			break;
1117 
1118 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1119 			break;
1120 
1121 		if (str != NULL && str[0] == '@') {
1122 			/*
1123 			 * If the first character of the string is an "at" sign,
1124 			 * then the string is inferred to be an annotation --
1125 			 * and it is printed out beneath the frame and offset
1126 			 * with brackets.
1127 			 */
1128 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1129 				break;
1130 
1131 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1132 
1133 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1134 				break;
1135 
1136 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1137 				break;
1138 		}
1139 
1140 		if (str != NULL) {
1141 			str += strlen(str) + 1;
1142 			if (str - strbase >= strsize)
1143 				str = NULL;
1144 		}
1145 	}
1146 
1147 	if (P != NULL) {
1148 		dt_proc_unlock(dtp, P);
1149 		dt_proc_release(dtp, P);
1150 	}
1151 
1152 	return (err);
1153 }
1154 
1155 static int
1156 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1157 {
1158 	/* LINTED - alignment */
1159 	uint64_t pid = ((uint64_t *)addr)[0];
1160 	/* LINTED - alignment */
1161 	uint64_t pc = ((uint64_t *)addr)[1];
1162 	const char *format = "  %-50s";
1163 	char *s;
1164 	int n, len = 256;
1165 
1166 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1167 		struct ps_prochandle *P;
1168 
1169 		if ((P = dt_proc_grab(dtp, pid,
1170 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1171 			GElf_Sym sym;
1172 
1173 			dt_proc_lock(dtp, P);
1174 
1175 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1176 				pc = sym.st_value;
1177 
1178 			dt_proc_unlock(dtp, P);
1179 			dt_proc_release(dtp, P);
1180 		}
1181 	}
1182 
1183 	do {
1184 		n = len;
1185 		s = alloca(n);
1186 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1187 
1188 	return (dt_printf(dtp, fp, format, s));
1189 }
1190 
1191 int
1192 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1193 {
1194 	/* LINTED - alignment */
1195 	uint64_t pid = ((uint64_t *)addr)[0];
1196 	/* LINTED - alignment */
1197 	uint64_t pc = ((uint64_t *)addr)[1];
1198 	int err = 0;
1199 
1200 	char objname[PATH_MAX], c[PATH_MAX * 2];
1201 	struct ps_prochandle *P;
1202 
1203 	if (format == NULL)
1204 		format = "  %-50s";
1205 
1206 	/*
1207 	 * See the comment in dt_print_ustack() for the rationale for
1208 	 * printing raw addresses in the vectored case.
1209 	 */
1210 	if (dtp->dt_vector == NULL)
1211 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1212 	else
1213 		P = NULL;
1214 
1215 	if (P != NULL)
1216 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1217 
1218 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) {
1219 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1220 	} else {
1221 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1222 	}
1223 
1224 	err = dt_printf(dtp, fp, format, c);
1225 
1226 	if (P != NULL) {
1227 		dt_proc_unlock(dtp, P);
1228 		dt_proc_release(dtp, P);
1229 	}
1230 
1231 	return (err);
1232 }
1233 
1234 static int
1235 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1236 {
1237 	/* LINTED - alignment */
1238 	uint64_t pc = *((uint64_t *)addr);
1239 	dtrace_syminfo_t dts;
1240 	GElf_Sym sym;
1241 	char c[PATH_MAX * 2];
1242 
1243 	if (format == NULL)
1244 		format = "  %-50s";
1245 
1246 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1247 		(void) snprintf(c, sizeof (c), "%s`%s",
1248 		    dts.dts_object, dts.dts_name);
1249 	} else {
1250 		/*
1251 		 * We'll repeat the lookup, but this time we'll specify a
1252 		 * NULL GElf_Sym -- indicating that we're only interested in
1253 		 * the containing module.
1254 		 */
1255 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1256 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1257 			    dts.dts_object, (u_longlong_t)pc);
1258 		} else {
1259 			(void) snprintf(c, sizeof (c), "0x%llx",
1260 			    (u_longlong_t)pc);
1261 		}
1262 	}
1263 
1264 	if (dt_printf(dtp, fp, format, c) < 0)
1265 		return (-1);
1266 
1267 	return (0);
1268 }
1269 
1270 int
1271 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1272 {
1273 	/* LINTED - alignment */
1274 	uint64_t pc = *((uint64_t *)addr);
1275 	dtrace_syminfo_t dts;
1276 	char c[PATH_MAX * 2];
1277 
1278 	if (format == NULL)
1279 		format = "  %-50s";
1280 
1281 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1282 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1283 	} else {
1284 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1285 	}
1286 
1287 	if (dt_printf(dtp, fp, format, c) < 0)
1288 		return (-1);
1289 
1290 	return (0);
1291 }
1292 
1293 typedef struct dt_normal {
1294 	dtrace_aggvarid_t dtnd_id;
1295 	uint64_t dtnd_normal;
1296 } dt_normal_t;
1297 
1298 static int
1299 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1300 {
1301 	dt_normal_t *normal = arg;
1302 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1303 	dtrace_aggvarid_t id = normal->dtnd_id;
1304 
1305 	if (agg->dtagd_nrecs == 0)
1306 		return (DTRACE_AGGWALK_NEXT);
1307 
1308 	if (agg->dtagd_varid != id)
1309 		return (DTRACE_AGGWALK_NEXT);
1310 
1311 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1312 	return (DTRACE_AGGWALK_NORMALIZE);
1313 }
1314 
1315 static int
1316 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1317 {
1318 	dt_normal_t normal;
1319 	caddr_t addr;
1320 
1321 	/*
1322 	 * We (should) have two records:  the aggregation ID followed by the
1323 	 * normalization value.
1324 	 */
1325 	addr = base + rec->dtrd_offset;
1326 
1327 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1328 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1329 
1330 	/* LINTED - alignment */
1331 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1332 	rec++;
1333 
1334 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1335 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1336 
1337 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1338 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1339 
1340 	addr = base + rec->dtrd_offset;
1341 
1342 	switch (rec->dtrd_size) {
1343 	case sizeof (uint64_t):
1344 		/* LINTED - alignment */
1345 		normal.dtnd_normal = *((uint64_t *)addr);
1346 		break;
1347 	case sizeof (uint32_t):
1348 		/* LINTED - alignment */
1349 		normal.dtnd_normal = *((uint32_t *)addr);
1350 		break;
1351 	case sizeof (uint16_t):
1352 		/* LINTED - alignment */
1353 		normal.dtnd_normal = *((uint16_t *)addr);
1354 		break;
1355 	case sizeof (uint8_t):
1356 		normal.dtnd_normal = *((uint8_t *)addr);
1357 		break;
1358 	default:
1359 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1360 	}
1361 
1362 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1363 
1364 	return (0);
1365 }
1366 
1367 static int
1368 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1369 {
1370 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1371 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1372 
1373 	if (agg->dtagd_nrecs == 0)
1374 		return (DTRACE_AGGWALK_NEXT);
1375 
1376 	if (agg->dtagd_varid != id)
1377 		return (DTRACE_AGGWALK_NEXT);
1378 
1379 	return (DTRACE_AGGWALK_DENORMALIZE);
1380 }
1381 
1382 static int
1383 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1384 {
1385 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1386 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1387 
1388 	if (agg->dtagd_nrecs == 0)
1389 		return (DTRACE_AGGWALK_NEXT);
1390 
1391 	if (agg->dtagd_varid != id)
1392 		return (DTRACE_AGGWALK_NEXT);
1393 
1394 	return (DTRACE_AGGWALK_CLEAR);
1395 }
1396 
1397 typedef struct dt_trunc {
1398 	dtrace_aggvarid_t dttd_id;
1399 	uint64_t dttd_remaining;
1400 } dt_trunc_t;
1401 
1402 static int
1403 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1404 {
1405 	dt_trunc_t *trunc = arg;
1406 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1407 	dtrace_aggvarid_t id = trunc->dttd_id;
1408 
1409 	if (agg->dtagd_nrecs == 0)
1410 		return (DTRACE_AGGWALK_NEXT);
1411 
1412 	if (agg->dtagd_varid != id)
1413 		return (DTRACE_AGGWALK_NEXT);
1414 
1415 	if (trunc->dttd_remaining == 0)
1416 		return (DTRACE_AGGWALK_REMOVE);
1417 
1418 	trunc->dttd_remaining--;
1419 	return (DTRACE_AGGWALK_NEXT);
1420 }
1421 
1422 static int
1423 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1424 {
1425 	dt_trunc_t trunc;
1426 	caddr_t addr;
1427 	int64_t remaining;
1428 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1429 
1430 	/*
1431 	 * We (should) have two records:  the aggregation ID followed by the
1432 	 * number of aggregation entries after which the aggregation is to be
1433 	 * truncated.
1434 	 */
1435 	addr = base + rec->dtrd_offset;
1436 
1437 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1438 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1439 
1440 	/* LINTED - alignment */
1441 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1442 	rec++;
1443 
1444 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1445 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1446 
1447 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1448 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1449 
1450 	addr = base + rec->dtrd_offset;
1451 
1452 	switch (rec->dtrd_size) {
1453 	case sizeof (uint64_t):
1454 		/* LINTED - alignment */
1455 		remaining = *((int64_t *)addr);
1456 		break;
1457 	case sizeof (uint32_t):
1458 		/* LINTED - alignment */
1459 		remaining = *((int32_t *)addr);
1460 		break;
1461 	case sizeof (uint16_t):
1462 		/* LINTED - alignment */
1463 		remaining = *((int16_t *)addr);
1464 		break;
1465 	case sizeof (uint8_t):
1466 		remaining = *((int8_t *)addr);
1467 		break;
1468 	default:
1469 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1470 	}
1471 
1472 	if (remaining < 0) {
1473 		func = dtrace_aggregate_walk_valsorted;
1474 		remaining = -remaining;
1475 	} else {
1476 		func = dtrace_aggregate_walk_valrevsorted;
1477 	}
1478 
1479 	assert(remaining >= 0);
1480 	trunc.dttd_remaining = remaining;
1481 
1482 	(void) func(dtp, dt_trunc_agg, &trunc);
1483 
1484 	return (0);
1485 }
1486 
1487 static int
1488 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1489     caddr_t addr, size_t size, uint64_t normal)
1490 {
1491 	int err;
1492 	dtrace_actkind_t act = rec->dtrd_action;
1493 
1494 	switch (act) {
1495 	case DTRACEACT_STACK:
1496 		return (dt_print_stack(dtp, fp, NULL, addr,
1497 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1498 
1499 	case DTRACEACT_USTACK:
1500 	case DTRACEACT_JSTACK:
1501 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1502 
1503 	case DTRACEACT_USYM:
1504 	case DTRACEACT_UADDR:
1505 		return (dt_print_usym(dtp, fp, addr, act));
1506 
1507 	case DTRACEACT_UMOD:
1508 		return (dt_print_umod(dtp, fp, NULL, addr));
1509 
1510 	case DTRACEACT_SYM:
1511 		return (dt_print_sym(dtp, fp, NULL, addr));
1512 
1513 	case DTRACEACT_MOD:
1514 		return (dt_print_mod(dtp, fp, NULL, addr));
1515 
1516 	case DTRACEAGG_QUANTIZE:
1517 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1518 
1519 	case DTRACEAGG_LQUANTIZE:
1520 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1521 
1522 	case DTRACEAGG_LLQUANTIZE:
1523 		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1524 
1525 	case DTRACEAGG_AVG:
1526 		return (dt_print_average(dtp, fp, addr, size, normal));
1527 
1528 	case DTRACEAGG_STDDEV:
1529 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1530 
1531 	default:
1532 		break;
1533 	}
1534 
1535 	switch (size) {
1536 	case sizeof (uint64_t):
1537 		err = dt_printf(dtp, fp, " %16lld",
1538 		    /* LINTED - alignment */
1539 		    (long long)*((uint64_t *)addr) / normal);
1540 		break;
1541 	case sizeof (uint32_t):
1542 		/* LINTED - alignment */
1543 		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1544 		    (uint32_t)normal);
1545 		break;
1546 	case sizeof (uint16_t):
1547 		/* LINTED - alignment */
1548 		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1549 		    (uint32_t)normal);
1550 		break;
1551 	case sizeof (uint8_t):
1552 		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1553 		    (uint32_t)normal);
1554 		break;
1555 	default:
1556 		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1557 		break;
1558 	}
1559 
1560 	return (err);
1561 }
1562 
1563 int
1564 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1565 {
1566 	int i, aggact = 0;
1567 	dt_print_aggdata_t *pd = arg;
1568 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1569 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1570 	FILE *fp = pd->dtpa_fp;
1571 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1572 	dtrace_recdesc_t *rec;
1573 	dtrace_actkind_t act;
1574 	caddr_t addr;
1575 	size_t size;
1576 
1577 	/*
1578 	 * Iterate over each record description in the key, printing the traced
1579 	 * data, skipping the first datum (the tuple member created by the
1580 	 * compiler).
1581 	 */
1582 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1583 		rec = &agg->dtagd_rec[i];
1584 		act = rec->dtrd_action;
1585 		addr = aggdata->dtada_data + rec->dtrd_offset;
1586 		size = rec->dtrd_size;
1587 
1588 		if (DTRACEACT_ISAGG(act)) {
1589 			aggact = i;
1590 			break;
1591 		}
1592 
1593 		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1594 			return (-1);
1595 
1596 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1597 		    DTRACE_BUFDATA_AGGKEY) < 0)
1598 			return (-1);
1599 	}
1600 
1601 	assert(aggact != 0);
1602 
1603 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1604 		uint64_t normal;
1605 
1606 		aggdata = aggsdata[i];
1607 		agg = aggdata->dtada_desc;
1608 		rec = &agg->dtagd_rec[aggact];
1609 		act = rec->dtrd_action;
1610 		addr = aggdata->dtada_data + rec->dtrd_offset;
1611 		size = rec->dtrd_size;
1612 
1613 		assert(DTRACEACT_ISAGG(act));
1614 		normal = aggdata->dtada_normal;
1615 
1616 		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1617 			return (-1);
1618 
1619 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1620 		    DTRACE_BUFDATA_AGGVAL) < 0)
1621 			return (-1);
1622 
1623 		if (!pd->dtpa_allunprint)
1624 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1625 	}
1626 
1627 	if (dt_printf(dtp, fp, "\n") < 0)
1628 		return (-1);
1629 
1630 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1631 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1632 		return (-1);
1633 
1634 	return (0);
1635 }
1636 
1637 int
1638 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1639 {
1640 	dt_print_aggdata_t *pd = arg;
1641 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1642 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1643 
1644 	if (pd->dtpa_allunprint) {
1645 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1646 			return (0);
1647 	} else {
1648 		/*
1649 		 * If we're not printing all unprinted aggregations, then the
1650 		 * aggregation variable ID denotes a specific aggregation
1651 		 * variable that we should print -- skip any other aggregations
1652 		 * that we encounter.
1653 		 */
1654 		if (agg->dtagd_nrecs == 0)
1655 			return (0);
1656 
1657 		if (aggvarid != agg->dtagd_varid)
1658 			return (0);
1659 	}
1660 
1661 	return (dt_print_aggs(&aggdata, 1, arg));
1662 }
1663 
1664 int
1665 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1666     const char *option, const char *value)
1667 {
1668 	int len, rval;
1669 	char *msg;
1670 	const char *errstr;
1671 	dtrace_setoptdata_t optdata;
1672 
1673 	bzero(&optdata, sizeof (optdata));
1674 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1675 
1676 	if (dtrace_setopt(dtp, option, value) == 0) {
1677 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1678 		optdata.dtsda_probe = data;
1679 		optdata.dtsda_option = option;
1680 		optdata.dtsda_handle = dtp;
1681 
1682 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1683 			return (rval);
1684 
1685 		return (0);
1686 	}
1687 
1688 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1689 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1690 	msg = alloca(len);
1691 
1692 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1693 	    option, value, errstr);
1694 
1695 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1696 		return (0);
1697 
1698 	return (rval);
1699 }
1700 
1701 static int
1702 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1703     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1704 {
1705 	dtrace_epid_t id;
1706 	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1707 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1708 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1709 	int rval, i, n;
1710 	dtrace_epid_t last = DTRACE_EPIDNONE;
1711 	uint64_t tracememsize = 0;
1712 	dtrace_probedata_t data;
1713 	uint64_t drops;
1714 	caddr_t addr;
1715 
1716 	bzero(&data, sizeof (data));
1717 	data.dtpda_handle = dtp;
1718 	data.dtpda_cpu = cpu;
1719 
1720 again:
1721 	for (offs = start; offs < end; ) {
1722 		dtrace_eprobedesc_t *epd;
1723 
1724 		/*
1725 		 * We're guaranteed to have an ID.
1726 		 */
1727 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1728 
1729 		if (id == DTRACE_EPIDNONE) {
1730 			/*
1731 			 * This is filler to assure proper alignment of the
1732 			 * next record; we simply ignore it.
1733 			 */
1734 			offs += sizeof (id);
1735 			continue;
1736 		}
1737 
1738 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1739 		    &data.dtpda_pdesc)) != 0)
1740 			return (rval);
1741 
1742 		epd = data.dtpda_edesc;
1743 		data.dtpda_data = buf->dtbd_data + offs;
1744 
1745 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1746 			rval = dt_handle(dtp, &data);
1747 
1748 			if (rval == DTRACE_CONSUME_NEXT)
1749 				goto nextepid;
1750 
1751 			if (rval == DTRACE_CONSUME_ERROR)
1752 				return (-1);
1753 		}
1754 
1755 		if (flow)
1756 			(void) dt_flowindent(dtp, &data, last, buf, offs);
1757 
1758 		rval = (*efunc)(&data, arg);
1759 
1760 		if (flow) {
1761 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1762 				data.dtpda_indent += 2;
1763 		}
1764 
1765 		if (rval == DTRACE_CONSUME_NEXT)
1766 			goto nextepid;
1767 
1768 		if (rval == DTRACE_CONSUME_ABORT)
1769 			return (dt_set_errno(dtp, EDT_DIRABORT));
1770 
1771 		if (rval != DTRACE_CONSUME_THIS)
1772 			return (dt_set_errno(dtp, EDT_BADRVAL));
1773 
1774 		for (i = 0; i < epd->dtepd_nrecs; i++) {
1775 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1776 			dtrace_actkind_t act = rec->dtrd_action;
1777 
1778 			data.dtpda_data = buf->dtbd_data + offs +
1779 			    rec->dtrd_offset;
1780 			addr = data.dtpda_data;
1781 
1782 			if (act == DTRACEACT_LIBACT) {
1783 				uint64_t arg = rec->dtrd_arg;
1784 				dtrace_aggvarid_t id;
1785 
1786 				switch (arg) {
1787 				case DT_ACT_CLEAR:
1788 					/* LINTED - alignment */
1789 					id = *((dtrace_aggvarid_t *)addr);
1790 					(void) dtrace_aggregate_walk(dtp,
1791 					    dt_clear_agg, &id);
1792 					continue;
1793 
1794 				case DT_ACT_DENORMALIZE:
1795 					/* LINTED - alignment */
1796 					id = *((dtrace_aggvarid_t *)addr);
1797 					(void) dtrace_aggregate_walk(dtp,
1798 					    dt_denormalize_agg, &id);
1799 					continue;
1800 
1801 				case DT_ACT_FTRUNCATE:
1802 					if (fp == NULL)
1803 						continue;
1804 
1805 					(void) fflush(fp);
1806 					(void) ftruncate(fileno(fp), 0);
1807 					(void) fseeko(fp, 0, SEEK_SET);
1808 					continue;
1809 
1810 				case DT_ACT_NORMALIZE:
1811 					if (i == epd->dtepd_nrecs - 1)
1812 						return (dt_set_errno(dtp,
1813 						    EDT_BADNORMAL));
1814 
1815 					if (dt_normalize(dtp,
1816 					    buf->dtbd_data + offs, rec) != 0)
1817 						return (-1);
1818 
1819 					i++;
1820 					continue;
1821 
1822 				case DT_ACT_SETOPT: {
1823 					uint64_t *opts = dtp->dt_options;
1824 					dtrace_recdesc_t *valrec;
1825 					uint32_t valsize;
1826 					caddr_t val;
1827 					int rv;
1828 
1829 					if (i == epd->dtepd_nrecs - 1) {
1830 						return (dt_set_errno(dtp,
1831 						    EDT_BADSETOPT));
1832 					}
1833 
1834 					valrec = &epd->dtepd_rec[++i];
1835 					valsize = valrec->dtrd_size;
1836 
1837 					if (valrec->dtrd_action != act ||
1838 					    valrec->dtrd_arg != arg) {
1839 						return (dt_set_errno(dtp,
1840 						    EDT_BADSETOPT));
1841 					}
1842 
1843 					if (valsize > sizeof (uint64_t)) {
1844 						val = buf->dtbd_data + offs +
1845 						    valrec->dtrd_offset;
1846 					} else {
1847 						val = "1";
1848 					}
1849 
1850 					rv = dt_setopt(dtp, &data, addr, val);
1851 
1852 					if (rv != 0)
1853 						return (-1);
1854 
1855 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
1856 					    DTRACEOPT_UNSET);
1857 					quiet = (opts[DTRACEOPT_QUIET] !=
1858 					    DTRACEOPT_UNSET);
1859 
1860 					continue;
1861 				}
1862 
1863 				case DT_ACT_TRUNC:
1864 					if (i == epd->dtepd_nrecs - 1)
1865 						return (dt_set_errno(dtp,
1866 						    EDT_BADTRUNC));
1867 
1868 					if (dt_trunc(dtp,
1869 					    buf->dtbd_data + offs, rec) != 0)
1870 						return (-1);
1871 
1872 					i++;
1873 					continue;
1874 
1875 				default:
1876 					continue;
1877 				}
1878 			}
1879 
1880 			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
1881 			    rec->dtrd_size == sizeof (uint64_t)) {
1882 				tracememsize = *((unsigned long long *)addr);
1883 				continue;
1884 			}
1885 
1886 			rval = (*rfunc)(&data, rec, arg);
1887 
1888 			if (rval == DTRACE_CONSUME_NEXT)
1889 				continue;
1890 
1891 			if (rval == DTRACE_CONSUME_ABORT)
1892 				return (dt_set_errno(dtp, EDT_DIRABORT));
1893 
1894 			if (rval != DTRACE_CONSUME_THIS)
1895 				return (dt_set_errno(dtp, EDT_BADRVAL));
1896 
1897 			if (act == DTRACEACT_STACK) {
1898 				int depth = rec->dtrd_arg;
1899 
1900 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
1901 				    rec->dtrd_size / depth) < 0)
1902 					return (-1);
1903 				goto nextrec;
1904 			}
1905 
1906 			if (act == DTRACEACT_USTACK ||
1907 			    act == DTRACEACT_JSTACK) {
1908 				if (dt_print_ustack(dtp, fp, NULL,
1909 				    addr, rec->dtrd_arg) < 0)
1910 					return (-1);
1911 				goto nextrec;
1912 			}
1913 
1914 			if (act == DTRACEACT_SYM) {
1915 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
1916 					return (-1);
1917 				goto nextrec;
1918 			}
1919 
1920 			if (act == DTRACEACT_MOD) {
1921 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
1922 					return (-1);
1923 				goto nextrec;
1924 			}
1925 
1926 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
1927 				if (dt_print_usym(dtp, fp, addr, act) < 0)
1928 					return (-1);
1929 				goto nextrec;
1930 			}
1931 
1932 			if (act == DTRACEACT_UMOD) {
1933 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
1934 					return (-1);
1935 				goto nextrec;
1936 			}
1937 
1938 			if (DTRACEACT_ISPRINTFLIKE(act)) {
1939 				void *fmtdata;
1940 				int (*func)(dtrace_hdl_t *, FILE *, void *,
1941 				    const dtrace_probedata_t *,
1942 				    const dtrace_recdesc_t *, uint_t,
1943 				    const void *buf, size_t);
1944 
1945 				if ((fmtdata = dt_format_lookup(dtp,
1946 				    rec->dtrd_format)) == NULL)
1947 					goto nofmt;
1948 
1949 				switch (act) {
1950 				case DTRACEACT_PRINTF:
1951 					func = dtrace_fprintf;
1952 					break;
1953 				case DTRACEACT_PRINTA:
1954 					func = dtrace_fprinta;
1955 					break;
1956 				case DTRACEACT_SYSTEM:
1957 					func = dtrace_system;
1958 					break;
1959 				case DTRACEACT_FREOPEN:
1960 					func = dtrace_freopen;
1961 					break;
1962 				}
1963 
1964 				n = (*func)(dtp, fp, fmtdata, &data,
1965 				    rec, epd->dtepd_nrecs - i,
1966 				    (uchar_t *)buf->dtbd_data + offs,
1967 				    buf->dtbd_size - offs);
1968 
1969 				if (n < 0)
1970 					return (-1); /* errno is set for us */
1971 
1972 				if (n > 0)
1973 					i += n - 1;
1974 				goto nextrec;
1975 			}
1976 
1977 nofmt:
1978 			if (act == DTRACEACT_PRINTA) {
1979 				dt_print_aggdata_t pd;
1980 				dtrace_aggvarid_t *aggvars;
1981 				int j, naggvars = 0;
1982 				size_t size = ((epd->dtepd_nrecs - i) *
1983 				    sizeof (dtrace_aggvarid_t));
1984 
1985 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
1986 					return (-1);
1987 
1988 				/*
1989 				 * This might be a printa() with multiple
1990 				 * aggregation variables.  We need to scan
1991 				 * forward through the records until we find
1992 				 * a record from a different statement.
1993 				 */
1994 				for (j = i; j < epd->dtepd_nrecs; j++) {
1995 					dtrace_recdesc_t *nrec;
1996 					caddr_t naddr;
1997 
1998 					nrec = &epd->dtepd_rec[j];
1999 
2000 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2001 						break;
2002 
2003 					if (nrec->dtrd_action != act) {
2004 						return (dt_set_errno(dtp,
2005 						    EDT_BADAGG));
2006 					}
2007 
2008 					naddr = buf->dtbd_data + offs +
2009 					    nrec->dtrd_offset;
2010 
2011 					aggvars[naggvars++] =
2012 					    /* LINTED - alignment */
2013 					    *((dtrace_aggvarid_t *)naddr);
2014 				}
2015 
2016 				i = j - 1;
2017 				bzero(&pd, sizeof (pd));
2018 				pd.dtpa_dtp = dtp;
2019 				pd.dtpa_fp = fp;
2020 
2021 				assert(naggvars >= 1);
2022 
2023 				if (naggvars == 1) {
2024 					pd.dtpa_id = aggvars[0];
2025 					dt_free(dtp, aggvars);
2026 
2027 					if (dt_printf(dtp, fp, "\n") < 0 ||
2028 					    dtrace_aggregate_walk_sorted(dtp,
2029 					    dt_print_agg, &pd) < 0)
2030 						return (-1);
2031 					goto nextrec;
2032 				}
2033 
2034 				if (dt_printf(dtp, fp, "\n") < 0 ||
2035 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2036 				    naggvars, dt_print_aggs, &pd) < 0) {
2037 					dt_free(dtp, aggvars);
2038 					return (-1);
2039 				}
2040 
2041 				dt_free(dtp, aggvars);
2042 				goto nextrec;
2043 			}
2044 
2045 			if (act == DTRACEACT_TRACEMEM) {
2046 				if (tracememsize == 0 ||
2047 				    tracememsize > rec->dtrd_size) {
2048 					tracememsize = rec->dtrd_size;
2049 				}
2050 
2051 				n = dt_print_bytes(dtp, fp, addr,
2052 				    tracememsize, 33, quiet, 1);
2053 
2054 				tracememsize = 0;
2055 
2056 				if (n < 0)
2057 					return (-1);
2058 
2059 				goto nextrec;
2060 			}
2061 
2062 			switch (rec->dtrd_size) {
2063 			case sizeof (uint64_t):
2064 				n = dt_printf(dtp, fp,
2065 				    quiet ? "%lld" : " %16lld",
2066 				    /* LINTED - alignment */
2067 				    *((unsigned long long *)addr));
2068 				break;
2069 			case sizeof (uint32_t):
2070 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2071 				    /* LINTED - alignment */
2072 				    *((uint32_t *)addr));
2073 				break;
2074 			case sizeof (uint16_t):
2075 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2076 				    /* LINTED - alignment */
2077 				    *((uint16_t *)addr));
2078 				break;
2079 			case sizeof (uint8_t):
2080 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2081 				    *((uint8_t *)addr));
2082 				break;
2083 			default:
2084 				n = dt_print_bytes(dtp, fp, addr,
2085 				    rec->dtrd_size, 33, quiet, 0);
2086 				break;
2087 			}
2088 
2089 			if (n < 0)
2090 				return (-1); /* errno is set for us */
2091 
2092 nextrec:
2093 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2094 				return (-1); /* errno is set for us */
2095 		}
2096 
2097 		/*
2098 		 * Call the record callback with a NULL record to indicate
2099 		 * that we're done processing this EPID.
2100 		 */
2101 		rval = (*rfunc)(&data, NULL, arg);
2102 nextepid:
2103 		offs += epd->dtepd_size;
2104 		last = id;
2105 	}
2106 
2107 	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2108 		end = buf->dtbd_oldest;
2109 		start = 0;
2110 		goto again;
2111 	}
2112 
2113 	if ((drops = buf->dtbd_drops) == 0)
2114 		return (0);
2115 
2116 	/*
2117 	 * Explicitly zero the drops to prevent us from processing them again.
2118 	 */
2119 	buf->dtbd_drops = 0;
2120 
2121 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2122 }
2123 
2124 typedef struct dt_begin {
2125 	dtrace_consume_probe_f *dtbgn_probefunc;
2126 	dtrace_consume_rec_f *dtbgn_recfunc;
2127 	void *dtbgn_arg;
2128 	dtrace_handle_err_f *dtbgn_errhdlr;
2129 	void *dtbgn_errarg;
2130 	int dtbgn_beginonly;
2131 } dt_begin_t;
2132 
2133 static int
2134 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2135 {
2136 	dt_begin_t *begin = (dt_begin_t *)arg;
2137 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2138 
2139 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2140 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2141 
2142 	if (begin->dtbgn_beginonly) {
2143 		if (!(r1 && r2))
2144 			return (DTRACE_CONSUME_NEXT);
2145 	} else {
2146 		if (r1 && r2)
2147 			return (DTRACE_CONSUME_NEXT);
2148 	}
2149 
2150 	/*
2151 	 * We have a record that we're interested in.  Now call the underlying
2152 	 * probe function...
2153 	 */
2154 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2155 }
2156 
2157 static int
2158 dt_consume_begin_record(const dtrace_probedata_t *data,
2159     const dtrace_recdesc_t *rec, void *arg)
2160 {
2161 	dt_begin_t *begin = (dt_begin_t *)arg;
2162 
2163 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2164 }
2165 
2166 static int
2167 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2168 {
2169 	dt_begin_t *begin = (dt_begin_t *)arg;
2170 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2171 
2172 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2173 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2174 
2175 	if (begin->dtbgn_beginonly) {
2176 		if (!(r1 && r2))
2177 			return (DTRACE_HANDLE_OK);
2178 	} else {
2179 		if (r1 && r2)
2180 			return (DTRACE_HANDLE_OK);
2181 	}
2182 
2183 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2184 }
2185 
2186 static int
2187 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2188     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2189 {
2190 	/*
2191 	 * There's this idea that the BEGIN probe should be processed before
2192 	 * everything else, and that the END probe should be processed after
2193 	 * anything else.  In the common case, this is pretty easy to deal
2194 	 * with.  However, a situation may arise where the BEGIN enabling and
2195 	 * END enabling are on the same CPU, and some enabling in the middle
2196 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2197 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2198 	 * then set it aside.  We will then process every other CPU, and then
2199 	 * we'll return to the BEGIN CPU and process the rest of the data
2200 	 * (which will inevitably include the END probe, if any).  Making this
2201 	 * even more complicated (!) is the library's ERROR enabling.  Because
2202 	 * this enabling is processed before we even get into the consume call
2203 	 * back, any ERROR firing would result in the library's ERROR enabling
2204 	 * being processed twice -- once in our first pass (for BEGIN probes),
2205 	 * and again in our second pass (for everything but BEGIN probes).  To
2206 	 * deal with this, we interpose on the ERROR handler to assure that we
2207 	 * only process ERROR enablings induced by BEGIN enablings in the
2208 	 * first pass, and that we only process ERROR enablings _not_ induced
2209 	 * by BEGIN enablings in the second pass.
2210 	 */
2211 	dt_begin_t begin;
2212 	processorid_t cpu = dtp->dt_beganon;
2213 	dtrace_bufdesc_t nbuf;
2214 	int rval, i;
2215 	static int max_ncpus;
2216 	dtrace_optval_t size;
2217 
2218 	dtp->dt_beganon = -1;
2219 
2220 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2221 		/*
2222 		 * We really don't expect this to fail, but it is at least
2223 		 * technically possible for this to fail with ENOENT.  In this
2224 		 * case, we just drive on...
2225 		 */
2226 		if (errno == ENOENT)
2227 			return (0);
2228 
2229 		return (dt_set_errno(dtp, errno));
2230 	}
2231 
2232 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2233 		/*
2234 		 * This is the simple case.  We're either not stopped, or if
2235 		 * we are, we actually processed any END probes on another
2236 		 * CPU.  We can simply consume this buffer and return.
2237 		 */
2238 		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2239 	}
2240 
2241 	begin.dtbgn_probefunc = pf;
2242 	begin.dtbgn_recfunc = rf;
2243 	begin.dtbgn_arg = arg;
2244 	begin.dtbgn_beginonly = 1;
2245 
2246 	/*
2247 	 * We need to interpose on the ERROR handler to be sure that we
2248 	 * only process ERRORs induced by BEGIN.
2249 	 */
2250 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2251 	begin.dtbgn_errarg = dtp->dt_errarg;
2252 	dtp->dt_errhdlr = dt_consume_begin_error;
2253 	dtp->dt_errarg = &begin;
2254 
2255 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2256 	    dt_consume_begin_record, &begin);
2257 
2258 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2259 	dtp->dt_errarg = begin.dtbgn_errarg;
2260 
2261 	if (rval != 0)
2262 		return (rval);
2263 
2264 	/*
2265 	 * Now allocate a new buffer.  We'll use this to deal with every other
2266 	 * CPU.
2267 	 */
2268 	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2269 	(void) dtrace_getopt(dtp, "bufsize", &size);
2270 	if ((nbuf.dtbd_data = malloc(size)) == NULL)
2271 		return (dt_set_errno(dtp, EDT_NOMEM));
2272 
2273 	if (max_ncpus == 0)
2274 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2275 
2276 	for (i = 0; i < max_ncpus; i++) {
2277 		nbuf.dtbd_cpu = i;
2278 
2279 		if (i == cpu)
2280 			continue;
2281 
2282 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2283 			/*
2284 			 * If we failed with ENOENT, it may be because the
2285 			 * CPU was unconfigured -- this is okay.  Any other
2286 			 * error, however, is unexpected.
2287 			 */
2288 			if (errno == ENOENT)
2289 				continue;
2290 
2291 			free(nbuf.dtbd_data);
2292 
2293 			return (dt_set_errno(dtp, errno));
2294 		}
2295 
2296 		if ((rval = dt_consume_cpu(dtp, fp,
2297 		    i, &nbuf, pf, rf, arg)) != 0) {
2298 			free(nbuf.dtbd_data);
2299 			return (rval);
2300 		}
2301 	}
2302 
2303 	free(nbuf.dtbd_data);
2304 
2305 	/*
2306 	 * Okay -- we're done with the other buffers.  Now we want to
2307 	 * reconsume the first buffer -- but this time we're looking for
2308 	 * everything _but_ BEGIN.  And of course, in order to only consume
2309 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2310 	 * ERROR interposition function...
2311 	 */
2312 	begin.dtbgn_beginonly = 0;
2313 
2314 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2315 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2316 	dtp->dt_errhdlr = dt_consume_begin_error;
2317 	dtp->dt_errarg = &begin;
2318 
2319 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2320 	    dt_consume_begin_record, &begin);
2321 
2322 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2323 	dtp->dt_errarg = begin.dtbgn_errarg;
2324 
2325 	return (rval);
2326 }
2327 
2328 int
2329 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2330     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2331 {
2332 	dtrace_bufdesc_t *buf = &dtp->dt_buf;
2333 	dtrace_optval_t size;
2334 	static int max_ncpus;
2335 	int i, rval;
2336 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2337 	hrtime_t now = gethrtime();
2338 
2339 	if (dtp->dt_lastswitch != 0) {
2340 		if (now - dtp->dt_lastswitch < interval)
2341 			return (0);
2342 
2343 		dtp->dt_lastswitch += interval;
2344 	} else {
2345 		dtp->dt_lastswitch = now;
2346 	}
2347 
2348 	if (!dtp->dt_active)
2349 		return (dt_set_errno(dtp, EINVAL));
2350 
2351 	if (max_ncpus == 0)
2352 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2353 
2354 	if (pf == NULL)
2355 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2356 
2357 	if (rf == NULL)
2358 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2359 
2360 	if (buf->dtbd_data == NULL) {
2361 		(void) dtrace_getopt(dtp, "bufsize", &size);
2362 		if ((buf->dtbd_data = malloc(size)) == NULL)
2363 			return (dt_set_errno(dtp, EDT_NOMEM));
2364 
2365 		buf->dtbd_size = size;
2366 	}
2367 
2368 	/*
2369 	 * If we have just begun, we want to first process the CPU that
2370 	 * executed the BEGIN probe (if any).
2371 	 */
2372 	if (dtp->dt_active && dtp->dt_beganon != -1) {
2373 		buf->dtbd_cpu = dtp->dt_beganon;
2374 		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2375 			return (rval);
2376 	}
2377 
2378 	for (i = 0; i < max_ncpus; i++) {
2379 		buf->dtbd_cpu = i;
2380 
2381 		/*
2382 		 * If we have stopped, we want to process the CPU on which the
2383 		 * END probe was processed only _after_ we have processed
2384 		 * everything else.
2385 		 */
2386 		if (dtp->dt_stopped && (i == dtp->dt_endedon))
2387 			continue;
2388 
2389 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2390 			/*
2391 			 * If we failed with ENOENT, it may be because the
2392 			 * CPU was unconfigured -- this is okay.  Any other
2393 			 * error, however, is unexpected.
2394 			 */
2395 			if (errno == ENOENT)
2396 				continue;
2397 
2398 			return (dt_set_errno(dtp, errno));
2399 		}
2400 
2401 		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2402 			return (rval);
2403 	}
2404 
2405 	if (!dtp->dt_stopped)
2406 		return (0);
2407 
2408 	buf->dtbd_cpu = dtp->dt_endedon;
2409 
2410 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2411 		/*
2412 		 * This _really_ shouldn't fail, but it is strictly speaking
2413 		 * possible for this to return ENOENT if the CPU that called
2414 		 * the END enabling somehow managed to become unconfigured.
2415 		 * It's unclear how the user can possibly expect anything
2416 		 * rational to happen in this case -- the state has been thrown
2417 		 * out along with the unconfigured CPU -- so we'll just drive
2418 		 * on...
2419 		 */
2420 		if (errno == ENOENT)
2421 			return (0);
2422 
2423 		return (dt_set_errno(dtp, errno));
2424 	}
2425 
2426 	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2427 }
2428