xref: /titanic_51/usr/src/lib/libc/port/threads/synch.c (revision 381a2a9a387f449fab7d0c7e97c4184c26963abf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/sdt.h>
30 
31 #include "lint.h"
32 #include "thr_uberdata.h"
33 
34 /*
35  * This mutex is initialized to be held by lwp#1.
36  * It is used to block a thread that has returned from a mutex_lock()
37  * of a PTHREAD_PRIO_INHERIT mutex with an unrecoverable error.
38  */
39 mutex_t	stall_mutex = DEFAULTMUTEX;
40 
41 static int shared_mutex_held(mutex_t *);
42 
43 /*
44  * Lock statistics support functions.
45  */
46 void
47 record_begin_hold(tdb_mutex_stats_t *msp)
48 {
49 	tdb_incr(msp->mutex_lock);
50 	msp->mutex_begin_hold = gethrtime();
51 }
52 
53 hrtime_t
54 record_hold_time(tdb_mutex_stats_t *msp)
55 {
56 	hrtime_t now = gethrtime();
57 
58 	if (msp->mutex_begin_hold)
59 		msp->mutex_hold_time += now - msp->mutex_begin_hold;
60 	msp->mutex_begin_hold = 0;
61 	return (now);
62 }
63 
64 /*
65  * Called once at library initialization.
66  */
67 void
68 mutex_setup(void)
69 {
70 	if (set_lock_byte(&stall_mutex.mutex_lockw))
71 		thr_panic("mutex_setup() cannot acquire stall_mutex");
72 	stall_mutex.mutex_owner = (uintptr_t)curthread;
73 }
74 
75 /*
76  * The default spin counts of 1000 and 500 are experimentally determined.
77  * On sun4u machines with any number of processors they could be raised
78  * to 10,000 but that (experimentally) makes almost no difference.
79  * The environment variables:
80  *	_THREAD_ADAPTIVE_SPIN=count
81  *	_THREAD_RELEASE_SPIN=count
82  * can be used to override and set the counts in the range [0 .. 1,000,000].
83  */
84 int	thread_adaptive_spin = 1000;
85 uint_t	thread_max_spinners = 100;
86 int	thread_release_spin = 500;
87 int	thread_queue_verify = 0;
88 static	int	ncpus;
89 
90 /*
91  * Distinguish spinning for queue locks from spinning for regular locks.
92  * The environment variable:
93  *	_THREAD_QUEUE_SPIN=count
94  * can be used to override and set the count in the range [0 .. 1,000,000].
95  * There is no release spin concept for queue locks.
96  */
97 int	thread_queue_spin = 1000;
98 
99 /*
100  * Use the otherwise-unused 'mutex_ownerpid' field of a USYNC_THREAD
101  * mutex to be a count of adaptive spins in progress.
102  */
103 #define	mutex_spinners	mutex_ownerpid
104 
105 void
106 _mutex_set_typeattr(mutex_t *mp, int attr)
107 {
108 	mp->mutex_type |= (uint8_t)attr;
109 }
110 
111 /*
112  * 'type' can be one of USYNC_THREAD or USYNC_PROCESS, possibly
113  * augmented by the flags LOCK_RECURSIVE and/or LOCK_ERRORCHECK,
114  * or it can be USYNC_PROCESS_ROBUST with no extra flags.
115  */
116 #pragma weak _private_mutex_init = __mutex_init
117 #pragma weak mutex_init = __mutex_init
118 #pragma weak _mutex_init = __mutex_init
119 /* ARGSUSED2 */
120 int
121 __mutex_init(mutex_t *mp, int type, void *arg)
122 {
123 	int error;
124 
125 	switch (type & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) {
126 	case USYNC_THREAD:
127 	case USYNC_PROCESS:
128 		(void) _memset(mp, 0, sizeof (*mp));
129 		mp->mutex_type = (uint8_t)type;
130 		mp->mutex_flag = LOCK_INITED;
131 		error = 0;
132 		break;
133 	case USYNC_PROCESS_ROBUST:
134 		if (type & (LOCK_RECURSIVE|LOCK_ERRORCHECK))
135 			error = EINVAL;
136 		else
137 			error = ___lwp_mutex_init(mp, type);
138 		break;
139 	default:
140 		error = EINVAL;
141 		break;
142 	}
143 	if (error == 0)
144 		mp->mutex_magic = MUTEX_MAGIC;
145 	return (error);
146 }
147 
148 /*
149  * Delete mp from list of ceil mutexes owned by curthread.
150  * Return 1 if the head of the chain was updated.
151  */
152 int
153 _ceil_mylist_del(mutex_t *mp)
154 {
155 	ulwp_t *self = curthread;
156 	mxchain_t **mcpp;
157 	mxchain_t *mcp;
158 
159 	mcpp = &self->ul_mxchain;
160 	while ((*mcpp)->mxchain_mx != mp)
161 		mcpp = &(*mcpp)->mxchain_next;
162 	mcp = *mcpp;
163 	*mcpp = mcp->mxchain_next;
164 	lfree(mcp, sizeof (*mcp));
165 	return (mcpp == &self->ul_mxchain);
166 }
167 
168 /*
169  * Add mp to head of list of ceil mutexes owned by curthread.
170  * Return ENOMEM if no memory could be allocated.
171  */
172 int
173 _ceil_mylist_add(mutex_t *mp)
174 {
175 	ulwp_t *self = curthread;
176 	mxchain_t *mcp;
177 
178 	if ((mcp = lmalloc(sizeof (*mcp))) == NULL)
179 		return (ENOMEM);
180 	mcp->mxchain_mx = mp;
181 	mcp->mxchain_next = self->ul_mxchain;
182 	self->ul_mxchain = mcp;
183 	return (0);
184 }
185 
186 /*
187  * Inherit priority from ceiling.  The inheritance impacts the effective
188  * priority, not the assigned priority.  See _thread_setschedparam_main().
189  */
190 void
191 _ceil_prio_inherit(int ceil)
192 {
193 	ulwp_t *self = curthread;
194 	struct sched_param param;
195 
196 	(void) _memset(&param, 0, sizeof (param));
197 	param.sched_priority = ceil;
198 	if (_thread_setschedparam_main(self->ul_lwpid,
199 	    self->ul_policy, &param, PRIO_INHERIT)) {
200 		/*
201 		 * Panic since unclear what error code to return.
202 		 * If we do return the error codes returned by above
203 		 * called routine, update the man page...
204 		 */
205 		thr_panic("_thread_setschedparam_main() fails");
206 	}
207 }
208 
209 /*
210  * Waive inherited ceiling priority.  Inherit from head of owned ceiling locks
211  * if holding at least one ceiling lock.  If no ceiling locks are held at this
212  * point, disinherit completely, reverting back to assigned priority.
213  */
214 void
215 _ceil_prio_waive(void)
216 {
217 	ulwp_t *self = curthread;
218 	struct sched_param param;
219 
220 	(void) _memset(&param, 0, sizeof (param));
221 	if (self->ul_mxchain == NULL) {
222 		/*
223 		 * No ceil locks held.  Zero the epri, revert back to ul_pri.
224 		 * Since thread's hash lock is not held, one cannot just
225 		 * read ul_pri here...do it in the called routine...
226 		 */
227 		param.sched_priority = self->ul_pri;	/* ignored */
228 		if (_thread_setschedparam_main(self->ul_lwpid,
229 		    self->ul_policy, &param, PRIO_DISINHERIT))
230 			thr_panic("_thread_setschedparam_main() fails");
231 	} else {
232 		/*
233 		 * Set priority to that of the mutex at the head
234 		 * of the ceilmutex chain.
235 		 */
236 		param.sched_priority =
237 		    self->ul_mxchain->mxchain_mx->mutex_ceiling;
238 		if (_thread_setschedparam_main(self->ul_lwpid,
239 		    self->ul_policy, &param, PRIO_INHERIT))
240 			thr_panic("_thread_setschedparam_main() fails");
241 	}
242 }
243 
244 /*
245  * Non-preemptive spin locks.  Used by queue_lock().
246  * No lock statistics are gathered for these locks.
247  */
248 void
249 spin_lock_set(mutex_t *mp)
250 {
251 	ulwp_t *self = curthread;
252 
253 	no_preempt(self);
254 	if (set_lock_byte(&mp->mutex_lockw) == 0) {
255 		mp->mutex_owner = (uintptr_t)self;
256 		return;
257 	}
258 	/*
259 	 * Spin for a while, attempting to acquire the lock.
260 	 */
261 	if (self->ul_spin_lock_spin != UINT_MAX)
262 		self->ul_spin_lock_spin++;
263 	if (mutex_queuelock_adaptive(mp) == 0 ||
264 	    set_lock_byte(&mp->mutex_lockw) == 0) {
265 		mp->mutex_owner = (uintptr_t)self;
266 		return;
267 	}
268 	/*
269 	 * Try harder if we were previously at a no premption level.
270 	 */
271 	if (self->ul_preempt > 1) {
272 		if (self->ul_spin_lock_spin2 != UINT_MAX)
273 			self->ul_spin_lock_spin2++;
274 		if (mutex_queuelock_adaptive(mp) == 0 ||
275 		    set_lock_byte(&mp->mutex_lockw) == 0) {
276 			mp->mutex_owner = (uintptr_t)self;
277 			return;
278 		}
279 	}
280 	/*
281 	 * Give up and block in the kernel for the mutex.
282 	 */
283 	if (self->ul_spin_lock_sleep != UINT_MAX)
284 		self->ul_spin_lock_sleep++;
285 	(void) ___lwp_mutex_timedlock(mp, NULL);
286 	mp->mutex_owner = (uintptr_t)self;
287 }
288 
289 void
290 spin_lock_clear(mutex_t *mp)
291 {
292 	ulwp_t *self = curthread;
293 
294 	mp->mutex_owner = 0;
295 	if (swap32(&mp->mutex_lockword, 0) & WAITERMASK) {
296 		(void) ___lwp_mutex_wakeup(mp);
297 		if (self->ul_spin_lock_wakeup != UINT_MAX)
298 			self->ul_spin_lock_wakeup++;
299 	}
300 	preempt(self);
301 }
302 
303 /*
304  * Allocate the sleep queue hash table.
305  */
306 void
307 queue_alloc(void)
308 {
309 	ulwp_t *self = curthread;
310 	uberdata_t *udp = self->ul_uberdata;
311 	void *data;
312 	int i;
313 
314 	/*
315 	 * No locks are needed; we call here only when single-threaded.
316 	 */
317 	ASSERT(self == udp->ulwp_one);
318 	ASSERT(!udp->uberflags.uf_mt);
319 	if ((data = _private_mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t),
320 	    PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0))
321 	    == MAP_FAILED)
322 		thr_panic("cannot allocate thread queue_head table");
323 	udp->queue_head = (queue_head_t *)data;
324 	for (i = 0; i < 2 * QHASHSIZE; i++)
325 		udp->queue_head[i].qh_lock.mutex_magic = MUTEX_MAGIC;
326 }
327 
328 #if defined(THREAD_DEBUG)
329 
330 /*
331  * Debugging: verify correctness of a sleep queue.
332  */
333 void
334 QVERIFY(queue_head_t *qp)
335 {
336 	ulwp_t *self = curthread;
337 	uberdata_t *udp = self->ul_uberdata;
338 	ulwp_t *ulwp;
339 	ulwp_t *prev;
340 	uint_t index;
341 	uint32_t cnt = 0;
342 	char qtype;
343 	void *wchan;
344 
345 	ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE);
346 	ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
347 	ASSERT((qp->qh_head != NULL && qp->qh_tail != NULL) ||
348 		(qp->qh_head == NULL && qp->qh_tail == NULL));
349 	if (!thread_queue_verify)
350 		return;
351 	/* real expensive stuff, only for _THREAD_QUEUE_VERIFY */
352 	qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV;
353 	for (prev = NULL, ulwp = qp->qh_head; ulwp != NULL;
354 	    prev = ulwp, ulwp = ulwp->ul_link, cnt++) {
355 		ASSERT(ulwp->ul_qtype == qtype);
356 		ASSERT(ulwp->ul_wchan != NULL);
357 		ASSERT(ulwp->ul_sleepq == qp);
358 		wchan = ulwp->ul_wchan;
359 		index = QUEUE_HASH(wchan, qtype);
360 		ASSERT(&udp->queue_head[index] == qp);
361 	}
362 	ASSERT(qp->qh_tail == prev);
363 	ASSERT(qp->qh_qlen == cnt);
364 }
365 
366 #else	/* THREAD_DEBUG */
367 
368 #define	QVERIFY(qp)
369 
370 #endif	/* THREAD_DEBUG */
371 
372 /*
373  * Acquire a queue head.
374  */
375 queue_head_t *
376 queue_lock(void *wchan, int qtype)
377 {
378 	uberdata_t *udp = curthread->ul_uberdata;
379 	queue_head_t *qp;
380 
381 	ASSERT(qtype == MX || qtype == CV);
382 
383 	/*
384 	 * It is possible that we could be called while still single-threaded.
385 	 * If so, we call queue_alloc() to allocate the queue_head[] array.
386 	 */
387 	if ((qp = udp->queue_head) == NULL) {
388 		queue_alloc();
389 		qp = udp->queue_head;
390 	}
391 	qp += QUEUE_HASH(wchan, qtype);
392 	spin_lock_set(&qp->qh_lock);
393 	/*
394 	 * At once per nanosecond, qh_lockcount will wrap after 512 years.
395 	 * Were we to care about this, we could peg the value at UINT64_MAX.
396 	 */
397 	qp->qh_lockcount++;
398 	QVERIFY(qp);
399 	return (qp);
400 }
401 
402 /*
403  * Release a queue head.
404  */
405 void
406 queue_unlock(queue_head_t *qp)
407 {
408 	QVERIFY(qp);
409 	spin_lock_clear(&qp->qh_lock);
410 }
411 
412 /*
413  * For rwlock queueing, we must queue writers ahead of readers of the
414  * same priority.  We do this by making writers appear to have a half
415  * point higher priority for purposes of priority comparisons below.
416  */
417 #define	CMP_PRIO(ulwp)	((real_priority(ulwp) << 1) + (ulwp)->ul_writer)
418 
419 void
420 enqueue(queue_head_t *qp, ulwp_t *ulwp, void *wchan, int qtype)
421 {
422 	ulwp_t **ulwpp;
423 	ulwp_t *next;
424 	int pri = CMP_PRIO(ulwp);
425 	int force_fifo = (qtype & FIFOQ);
426 	int do_fifo;
427 
428 	qtype &= ~FIFOQ;
429 	ASSERT(qtype == MX || qtype == CV);
430 	ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
431 	ASSERT(ulwp->ul_sleepq != qp);
432 
433 	/*
434 	 * LIFO queue ordering is unfair and can lead to starvation,
435 	 * but it gives better performance for heavily contended locks.
436 	 * We use thread_queue_fifo (range is 0..8) to determine
437 	 * the frequency of FIFO vs LIFO queuing:
438 	 *	0 : every 256th time	(almost always LIFO)
439 	 *	1 : every 128th time
440 	 *	2 : every 64th  time
441 	 *	3 : every 32nd  time
442 	 *	4 : every 16th  time	(the default value, mostly LIFO)
443 	 *	5 : every 8th   time
444 	 *	6 : every 4th   time
445 	 *	7 : every 2nd   time
446 	 *	8 : every time		(never LIFO, always FIFO)
447 	 * Note that there is always some degree of FIFO ordering.
448 	 * This breaks live lock conditions that occur in applications
449 	 * that are written assuming (incorrectly) that threads acquire
450 	 * locks fairly, that is, in roughly round-robin order.
451 	 * In any event, the queue is maintained in priority order.
452 	 *
453 	 * If we are given the FIFOQ flag in qtype, fifo queueing is forced.
454 	 * SUSV3 requires this for semaphores.
455 	 */
456 	do_fifo = (force_fifo ||
457 		((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0);
458 
459 	if (qp->qh_head == NULL) {
460 		/*
461 		 * The queue is empty.  LIFO/FIFO doesn't matter.
462 		 */
463 		ASSERT(qp->qh_tail == NULL);
464 		ulwpp = &qp->qh_head;
465 	} else if (do_fifo) {
466 		/*
467 		 * Enqueue after the last thread whose priority is greater
468 		 * than or equal to the priority of the thread being queued.
469 		 * Attempt first to go directly onto the tail of the queue.
470 		 */
471 		if (pri <= CMP_PRIO(qp->qh_tail))
472 			ulwpp = &qp->qh_tail->ul_link;
473 		else {
474 			for (ulwpp = &qp->qh_head; (next = *ulwpp) != NULL;
475 			    ulwpp = &next->ul_link)
476 				if (pri > CMP_PRIO(next))
477 					break;
478 		}
479 	} else {
480 		/*
481 		 * Enqueue before the first thread whose priority is less
482 		 * than or equal to the priority of the thread being queued.
483 		 * Hopefully we can go directly onto the head of the queue.
484 		 */
485 		for (ulwpp = &qp->qh_head; (next = *ulwpp) != NULL;
486 		    ulwpp = &next->ul_link)
487 			if (pri >= CMP_PRIO(next))
488 				break;
489 	}
490 	if ((ulwp->ul_link = *ulwpp) == NULL)
491 		qp->qh_tail = ulwp;
492 	*ulwpp = ulwp;
493 
494 	ulwp->ul_sleepq = qp;
495 	ulwp->ul_wchan = wchan;
496 	ulwp->ul_qtype = qtype;
497 	if (qp->qh_qmax < ++qp->qh_qlen)
498 		qp->qh_qmax = qp->qh_qlen;
499 }
500 
501 /*
502  * Return a pointer to the queue slot of the
503  * highest priority thread on the queue.
504  * On return, prevp, if not NULL, will contain a pointer
505  * to the thread's predecessor on the queue
506  */
507 static ulwp_t **
508 queue_slot(queue_head_t *qp, void *wchan, int *more, ulwp_t **prevp)
509 {
510 	ulwp_t **ulwpp;
511 	ulwp_t *ulwp;
512 	ulwp_t *prev = NULL;
513 	ulwp_t **suspp = NULL;
514 	ulwp_t *susprev;
515 
516 	ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
517 
518 	/*
519 	 * Find a waiter on the sleep queue.
520 	 */
521 	for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
522 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
523 		if (ulwp->ul_wchan == wchan) {
524 			if (!ulwp->ul_stop)
525 				break;
526 			/*
527 			 * Try not to return a suspended thread.
528 			 * This mimics the old libthread's behavior.
529 			 */
530 			if (suspp == NULL) {
531 				suspp = ulwpp;
532 				susprev = prev;
533 			}
534 		}
535 	}
536 
537 	if (ulwp == NULL && suspp != NULL) {
538 		ulwp = *(ulwpp = suspp);
539 		prev = susprev;
540 		suspp = NULL;
541 	}
542 	if (ulwp == NULL) {
543 		if (more != NULL)
544 			*more = 0;
545 		return (NULL);
546 	}
547 
548 	if (prevp != NULL)
549 		*prevp = prev;
550 	if (more == NULL)
551 		return (ulwpp);
552 
553 	/*
554 	 * Scan the remainder of the queue for another waiter.
555 	 */
556 	if (suspp != NULL) {
557 		*more = 1;
558 		return (ulwpp);
559 	}
560 	for (ulwp = ulwp->ul_link; ulwp != NULL; ulwp = ulwp->ul_link) {
561 		if (ulwp->ul_wchan == wchan) {
562 			*more = 1;
563 			return (ulwpp);
564 		}
565 	}
566 
567 	*more = 0;
568 	return (ulwpp);
569 }
570 
571 ulwp_t *
572 dequeue(queue_head_t *qp, void *wchan, int *more)
573 {
574 	ulwp_t **ulwpp;
575 	ulwp_t *ulwp;
576 	ulwp_t *prev;
577 
578 	if ((ulwpp = queue_slot(qp, wchan, more, &prev)) == NULL)
579 		return (NULL);
580 
581 	/*
582 	 * Dequeue the waiter.
583 	 */
584 	ulwp = *ulwpp;
585 	*ulwpp = ulwp->ul_link;
586 	ulwp->ul_link = NULL;
587 	if (qp->qh_tail == ulwp)
588 		qp->qh_tail = prev;
589 	qp->qh_qlen--;
590 	ulwp->ul_sleepq = NULL;
591 	ulwp->ul_wchan = NULL;
592 
593 	return (ulwp);
594 }
595 
596 /*
597  * Return a pointer to the highest priority thread sleeping on wchan.
598  */
599 ulwp_t *
600 queue_waiter(queue_head_t *qp, void *wchan)
601 {
602 	ulwp_t **ulwpp;
603 
604 	if ((ulwpp = queue_slot(qp, wchan, NULL, NULL)) == NULL)
605 		return (NULL);
606 	return (*ulwpp);
607 }
608 
609 uint8_t
610 dequeue_self(queue_head_t *qp, void *wchan)
611 {
612 	ulwp_t *self = curthread;
613 	ulwp_t **ulwpp;
614 	ulwp_t *ulwp;
615 	ulwp_t *prev = NULL;
616 	int found = 0;
617 	int more = 0;
618 
619 	ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
620 
621 	/* find self on the sleep queue */
622 	for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
623 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
624 		if (ulwp == self) {
625 			/* dequeue ourself */
626 			*ulwpp = self->ul_link;
627 			if (qp->qh_tail == self)
628 				qp->qh_tail = prev;
629 			qp->qh_qlen--;
630 			ASSERT(self->ul_wchan == wchan);
631 			self->ul_cvmutex = NULL;
632 			self->ul_sleepq = NULL;
633 			self->ul_wchan = NULL;
634 			self->ul_cv_wake = 0;
635 			self->ul_link = NULL;
636 			found = 1;
637 			break;
638 		}
639 		if (ulwp->ul_wchan == wchan)
640 			more = 1;
641 	}
642 
643 	if (!found)
644 		thr_panic("dequeue_self(): curthread not found on queue");
645 
646 	if (more)
647 		return (1);
648 
649 	/* scan the remainder of the queue for another waiter */
650 	for (ulwp = *ulwpp; ulwp != NULL; ulwp = ulwp->ul_link) {
651 		if (ulwp->ul_wchan == wchan)
652 			return (1);
653 	}
654 
655 	return (0);
656 }
657 
658 /*
659  * Called from call_user_handler() and _thrp_suspend() to take
660  * ourself off of our sleep queue so we can grab locks.
661  */
662 void
663 unsleep_self(void)
664 {
665 	ulwp_t *self = curthread;
666 	queue_head_t *qp;
667 
668 	/*
669 	 * Calling enter_critical()/exit_critical() here would lead
670 	 * to recursion.  Just manipulate self->ul_critical directly.
671 	 */
672 	self->ul_critical++;
673 	self->ul_writer = 0;
674 	while (self->ul_sleepq != NULL) {
675 		qp = queue_lock(self->ul_wchan, self->ul_qtype);
676 		/*
677 		 * We may have been moved from a CV queue to a
678 		 * mutex queue while we were attempting queue_lock().
679 		 * If so, just loop around and try again.
680 		 * dequeue_self() clears self->ul_sleepq.
681 		 */
682 		if (qp == self->ul_sleepq)
683 			(void) dequeue_self(qp, self->ul_wchan);
684 		queue_unlock(qp);
685 	}
686 	self->ul_critical--;
687 }
688 
689 /*
690  * Common code for calling the the ___lwp_mutex_timedlock() system call.
691  * Returns with mutex_owner and mutex_ownerpid set correctly.
692  */
693 int
694 mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp)
695 {
696 	ulwp_t *self = curthread;
697 	uberdata_t *udp = self->ul_uberdata;
698 	hrtime_t begin_sleep;
699 	int error;
700 
701 	self->ul_sp = stkptr();
702 	self->ul_wchan = mp;
703 	if (__td_event_report(self, TD_SLEEP, udp)) {
704 		self->ul_td_evbuf.eventnum = TD_SLEEP;
705 		self->ul_td_evbuf.eventdata = mp;
706 		tdb_event(TD_SLEEP, udp);
707 	}
708 	if (msp) {
709 		tdb_incr(msp->mutex_sleep);
710 		begin_sleep = gethrtime();
711 	}
712 
713 	DTRACE_PROBE1(plockstat, mutex__block, mp);
714 
715 	for (;;) {
716 		if ((error = ___lwp_mutex_timedlock(mp, tsp)) != 0) {
717 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
718 			DTRACE_PROBE2(plockstat, mutex__error, mp, error);
719 			break;
720 		}
721 
722 		if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
723 			/*
724 			 * Defend against forkall().  We may be the child,
725 			 * in which case we don't actually own the mutex.
726 			 */
727 			enter_critical(self);
728 			if (mp->mutex_ownerpid == udp->pid) {
729 				mp->mutex_owner = (uintptr_t)self;
730 				exit_critical(self);
731 				DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
732 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
733 				    0, 0);
734 				break;
735 			}
736 			exit_critical(self);
737 		} else {
738 			mp->mutex_owner = (uintptr_t)self;
739 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
740 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
741 			break;
742 		}
743 	}
744 	if (msp)
745 		msp->mutex_sleep_time += gethrtime() - begin_sleep;
746 	self->ul_wchan = NULL;
747 	self->ul_sp = 0;
748 
749 	return (error);
750 }
751 
752 /*
753  * Common code for calling the ___lwp_mutex_trylock() system call.
754  * Returns with mutex_owner and mutex_ownerpid set correctly.
755  */
756 int
757 mutex_trylock_kernel(mutex_t *mp)
758 {
759 	ulwp_t *self = curthread;
760 	uberdata_t *udp = self->ul_uberdata;
761 	int error;
762 
763 	for (;;) {
764 		if ((error = ___lwp_mutex_trylock(mp)) != 0) {
765 			if (error != EBUSY) {
766 				DTRACE_PROBE2(plockstat, mutex__error, mp,
767 				    error);
768 			}
769 			break;
770 		}
771 
772 		if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
773 			/*
774 			 * Defend against forkall().  We may be the child,
775 			 * in which case we don't actually own the mutex.
776 			 */
777 			enter_critical(self);
778 			if (mp->mutex_ownerpid == udp->pid) {
779 				mp->mutex_owner = (uintptr_t)self;
780 				exit_critical(self);
781 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
782 				    0, 0);
783 				break;
784 			}
785 			exit_critical(self);
786 		} else {
787 			mp->mutex_owner = (uintptr_t)self;
788 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
789 			break;
790 		}
791 	}
792 
793 	return (error);
794 }
795 
796 volatile sc_shared_t *
797 setup_schedctl(void)
798 {
799 	ulwp_t *self = curthread;
800 	volatile sc_shared_t *scp;
801 	sc_shared_t *tmp;
802 
803 	if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */
804 	    !self->ul_vfork &&			/* not a child of vfork() */
805 	    !self->ul_schedctl_called) {	/* haven't been called before */
806 		enter_critical(self);
807 		self->ul_schedctl_called = &self->ul_uberdata->uberflags;
808 		if ((tmp = __schedctl()) != (sc_shared_t *)(-1))
809 			self->ul_schedctl = scp = tmp;
810 		exit_critical(self);
811 	}
812 	/*
813 	 * Unless the call to setup_schedctl() is surrounded
814 	 * by enter_critical()/exit_critical(), the address
815 	 * we are returning could be invalid due to a forkall()
816 	 * having occurred in another thread.
817 	 */
818 	return (scp);
819 }
820 
821 /*
822  * Interfaces from libsched, incorporated into libc.
823  * libsched.so.1 is now a filter library onto libc.
824  */
825 #pragma weak schedctl_lookup = _schedctl_init
826 #pragma weak _schedctl_lookup = _schedctl_init
827 #pragma weak schedctl_init = _schedctl_init
828 schedctl_t *
829 _schedctl_init(void)
830 {
831 	volatile sc_shared_t *scp = setup_schedctl();
832 	return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl);
833 }
834 
835 #pragma weak schedctl_exit = _schedctl_exit
836 void
837 _schedctl_exit(void)
838 {
839 }
840 
841 /*
842  * Contract private interface for java.
843  * Set up the schedctl data if it doesn't exist yet.
844  * Return a pointer to the pointer to the schedctl data.
845  */
846 volatile sc_shared_t *volatile *
847 _thr_schedctl(void)
848 {
849 	ulwp_t *self = curthread;
850 	volatile sc_shared_t *volatile *ptr;
851 
852 	if (self->ul_vfork)
853 		return (NULL);
854 	if (*(ptr = &self->ul_schedctl) == NULL)
855 		(void) setup_schedctl();
856 	return (ptr);
857 }
858 
859 /*
860  * Block signals and attempt to block preemption.
861  * no_preempt()/preempt() must be used in pairs but can be nested.
862  */
863 void
864 no_preempt(ulwp_t *self)
865 {
866 	volatile sc_shared_t *scp;
867 
868 	if (self->ul_preempt++ == 0) {
869 		enter_critical(self);
870 		if ((scp = self->ul_schedctl) != NULL ||
871 		    (scp = setup_schedctl()) != NULL) {
872 			/*
873 			 * Save the pre-existing preempt value.
874 			 */
875 			self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt;
876 			scp->sc_preemptctl.sc_nopreempt = 1;
877 		}
878 	}
879 }
880 
881 /*
882  * Undo the effects of no_preempt().
883  */
884 void
885 preempt(ulwp_t *self)
886 {
887 	volatile sc_shared_t *scp;
888 
889 	ASSERT(self->ul_preempt > 0);
890 	if (--self->ul_preempt == 0) {
891 		if ((scp = self->ul_schedctl) != NULL) {
892 			/*
893 			 * Restore the pre-existing preempt value.
894 			 */
895 			scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt;
896 			if (scp->sc_preemptctl.sc_yield &&
897 			    scp->sc_preemptctl.sc_nopreempt == 0) {
898 				lwp_yield();
899 				if (scp->sc_preemptctl.sc_yield) {
900 					/*
901 					 * Shouldn't happen.  This is either
902 					 * a race condition or the thread
903 					 * just entered the real-time class.
904 					 */
905 					lwp_yield();
906 					scp->sc_preemptctl.sc_yield = 0;
907 				}
908 			}
909 		}
910 		exit_critical(self);
911 	}
912 }
913 
914 /*
915  * If a call to preempt() would cause the current thread to yield or to
916  * take deferred actions in exit_critical(), then unpark the specified
917  * lwp so it can run while we delay.  Return the original lwpid if the
918  * unpark was not performed, else return zero.  The tests are a repeat
919  * of some of the tests in preempt(), above.  This is a statistical
920  * optimization solely for cond_sleep_queue(), below.
921  */
922 static lwpid_t
923 preempt_unpark(ulwp_t *self, lwpid_t lwpid)
924 {
925 	volatile sc_shared_t *scp = self->ul_schedctl;
926 
927 	ASSERT(self->ul_preempt == 1 && self->ul_critical > 0);
928 	if ((scp != NULL && scp->sc_preemptctl.sc_yield) ||
929 	    (self->ul_curplease && self->ul_critical == 1)) {
930 		(void) __lwp_unpark(lwpid);
931 		lwpid = 0;
932 	}
933 	return (lwpid);
934 }
935 
936 /*
937  * Spin for a while, trying to grab the lock.  We know that we
938  * failed set_lock_byte(&mp->mutex_lockw) once before coming here.
939  * If this fails, return EBUSY and let the caller deal with it.
940  * If this succeeds, return 0 with mutex_owner set to curthread.
941  */
942 int
943 mutex_trylock_adaptive(mutex_t *mp)
944 {
945 	ulwp_t *self = curthread;
946 	ulwp_t *ulwp;
947 	volatile sc_shared_t *scp;
948 	volatile uint8_t *lockp;
949 	volatile uint64_t *ownerp;
950 	int count, max = self->ul_adaptive_spin;
951 
952 	ASSERT(!(mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)));
953 
954 	if (max == 0 || (mp->mutex_spinners >= self->ul_max_spinners))
955 		return (EBUSY);
956 
957 	lockp = (volatile uint8_t *)&mp->mutex_lockw;
958 	ownerp = (volatile uint64_t *)&mp->mutex_owner;
959 
960 	DTRACE_PROBE1(plockstat, mutex__spin, mp);
961 
962 	/*
963 	 * This spin loop is unfair to lwps that have already dropped into
964 	 * the kernel to sleep.  They will starve on a highly-contended mutex.
965 	 * This is just too bad.  The adaptive spin algorithm is intended
966 	 * to allow programs with highly-contended locks (that is, broken
967 	 * programs) to execute with reasonable speed despite their contention.
968 	 * Being fair would reduce the speed of such programs and well-written
969 	 * programs will not suffer in any case.
970 	 */
971 	enter_critical(self);		/* protects ul_schedctl */
972 	incr32(&mp->mutex_spinners);
973 	for (count = 0; count < max; count++) {
974 		if (*lockp == 0 && set_lock_byte(lockp) == 0) {
975 			*ownerp = (uintptr_t)self;
976 			decr32(&mp->mutex_spinners);
977 			exit_critical(self);
978 			DTRACE_PROBE2(plockstat, mutex__spun, 1, count);
979 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
980 			return (0);
981 		}
982 		SMT_PAUSE();
983 		/*
984 		 * Stop spinning if the mutex owner is not running on
985 		 * a processor; it will not drop the lock any time soon
986 		 * and we would just be wasting time to keep spinning.
987 		 *
988 		 * Note that we are looking at another thread (ulwp_t)
989 		 * without ensuring that the other thread does not exit.
990 		 * The scheme relies on ulwp_t structures never being
991 		 * deallocated by the library (the library employs a free
992 		 * list of ulwp_t structs that are reused when new threads
993 		 * are created) and on schedctl shared memory never being
994 		 * deallocated once created via __schedctl().
995 		 *
996 		 * Thus, the worst that can happen when the spinning thread
997 		 * looks at the owner's schedctl data is that it is looking
998 		 * at some other thread's schedctl data.  This almost never
999 		 * happens and is benign when it does.
1000 		 */
1001 		if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
1002 		    ((scp = ulwp->ul_schedctl) == NULL ||
1003 		    scp->sc_state != SC_ONPROC))
1004 			break;
1005 	}
1006 	decr32(&mp->mutex_spinners);
1007 	exit_critical(self);
1008 
1009 	DTRACE_PROBE2(plockstat, mutex__spun, 0, count);
1010 
1011 	return (EBUSY);
1012 }
1013 
1014 /*
1015  * Same as mutex_trylock_adaptive(), except specifically for queue locks.
1016  * The owner field is not set here; the caller (spin_lock_set()) sets it.
1017  */
1018 int
1019 mutex_queuelock_adaptive(mutex_t *mp)
1020 {
1021 	ulwp_t *ulwp;
1022 	volatile sc_shared_t *scp;
1023 	volatile uint8_t *lockp;
1024 	volatile uint64_t *ownerp;
1025 	int count = curthread->ul_queue_spin;
1026 
1027 	ASSERT(mp->mutex_type == USYNC_THREAD);
1028 
1029 	if (count == 0)
1030 		return (EBUSY);
1031 
1032 	lockp = (volatile uint8_t *)&mp->mutex_lockw;
1033 	ownerp = (volatile uint64_t *)&mp->mutex_owner;
1034 	while (--count >= 0) {
1035 		if (*lockp == 0 && set_lock_byte(lockp) == 0)
1036 			return (0);
1037 		SMT_PAUSE();
1038 		if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
1039 		    ((scp = ulwp->ul_schedctl) == NULL ||
1040 		    scp->sc_state != SC_ONPROC))
1041 			break;
1042 	}
1043 
1044 	return (EBUSY);
1045 }
1046 
1047 /*
1048  * Like mutex_trylock_adaptive(), but for process-shared mutexes.
1049  * Spin for a while, trying to grab the lock.  We know that we
1050  * failed set_lock_byte(&mp->mutex_lockw) once before coming here.
1051  * If this fails, return EBUSY and let the caller deal with it.
1052  * If this succeeds, return 0 with mutex_owner set to curthread
1053  * and mutex_ownerpid set to the current pid.
1054  */
1055 int
1056 mutex_trylock_process(mutex_t *mp)
1057 {
1058 	ulwp_t *self = curthread;
1059 	uberdata_t *udp = self->ul_uberdata;
1060 	int count;
1061 	volatile uint8_t *lockp;
1062 	volatile uint64_t *ownerp;
1063 	volatile int32_t *pidp;
1064 	pid_t pid, newpid;
1065 	uint64_t owner, newowner;
1066 
1067 	if ((count = ncpus) == 0)
1068 		count = ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
1069 	count = (count > 1)? self->ul_adaptive_spin : 0;
1070 
1071 	ASSERT((mp->mutex_type & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) ==
1072 		USYNC_PROCESS);
1073 
1074 	if (count == 0)
1075 		return (EBUSY);
1076 
1077 	lockp = (volatile uint8_t *)&mp->mutex_lockw;
1078 	ownerp = (volatile uint64_t *)&mp->mutex_owner;
1079 	pidp = (volatile int32_t *)&mp->mutex_ownerpid;
1080 	owner = *ownerp;
1081 	pid = *pidp;
1082 	/*
1083 	 * This is a process-shared mutex.
1084 	 * We cannot know if the owner is running on a processor.
1085 	 * We just spin and hope that it is on a processor.
1086 	 */
1087 	while (--count >= 0) {
1088 		if (*lockp == 0) {
1089 			enter_critical(self);
1090 			if (set_lock_byte(lockp) == 0) {
1091 				*ownerp = (uintptr_t)self;
1092 				*pidp = udp->pid;
1093 				exit_critical(self);
1094 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1095 				    0, 0);
1096 				return (0);
1097 			}
1098 			exit_critical(self);
1099 		} else if ((newowner = *ownerp) == owner &&
1100 		    (newpid = *pidp) == pid) {
1101 			SMT_PAUSE();
1102 			continue;
1103 		}
1104 		/*
1105 		 * The owner of the lock changed; start the count over again.
1106 		 * This may be too aggressive; it needs testing.
1107 		 */
1108 		owner = newowner;
1109 		pid = newpid;
1110 		count = self->ul_adaptive_spin;
1111 	}
1112 
1113 	return (EBUSY);
1114 }
1115 
1116 /*
1117  * Mutex wakeup code for releasing a USYNC_THREAD mutex.
1118  * Returns the lwpid of the thread that was dequeued, if any.
1119  * The caller of mutex_wakeup() must call __lwp_unpark(lwpid)
1120  * to wake up the specified lwp.
1121  */
1122 lwpid_t
1123 mutex_wakeup(mutex_t *mp)
1124 {
1125 	lwpid_t lwpid = 0;
1126 	queue_head_t *qp;
1127 	ulwp_t *ulwp;
1128 	int more;
1129 
1130 	/*
1131 	 * Dequeue a waiter from the sleep queue.  Don't touch the mutex
1132 	 * waiters bit if no one was found on the queue because the mutex
1133 	 * might have been deallocated or reallocated for another purpose.
1134 	 */
1135 	qp = queue_lock(mp, MX);
1136 	if ((ulwp = dequeue(qp, mp, &more)) != NULL) {
1137 		lwpid = ulwp->ul_lwpid;
1138 		mp->mutex_waiters = (more? 1 : 0);
1139 	}
1140 	queue_unlock(qp);
1141 	return (lwpid);
1142 }
1143 
1144 /*
1145  * Spin for a while, testing to see if the lock has been grabbed.
1146  * If this fails, call mutex_wakeup() to release a waiter.
1147  */
1148 lwpid_t
1149 mutex_unlock_queue(mutex_t *mp)
1150 {
1151 	ulwp_t *self = curthread;
1152 	uint32_t *lockw = &mp->mutex_lockword;
1153 	lwpid_t lwpid;
1154 	volatile uint8_t *lockp;
1155 	volatile uint32_t *spinp;
1156 	int count;
1157 
1158 	/*
1159 	 * We use the swap primitive to clear the lock, but we must
1160 	 * atomically retain the waiters bit for the remainder of this
1161 	 * code to work.  We first check to see if the waiters bit is
1162 	 * set and if so clear the lock by swapping in a word containing
1163 	 * only the waiters bit.  This could produce a false positive test
1164 	 * for whether there are waiters that need to be waked up, but
1165 	 * this just causes an extra call to mutex_wakeup() to do nothing.
1166 	 * The opposite case is more delicate:  If there are no waiters,
1167 	 * we swap in a zero lock byte and a zero waiters bit.  The result
1168 	 * of the swap could indicate that there really was a waiter so in
1169 	 * this case we go directly to mutex_wakeup() without performing
1170 	 * any of the adaptive code because the waiter bit has been cleared
1171 	 * and the adaptive code is unreliable in this case.
1172 	 */
1173 	if (!(*lockw & WAITERMASK)) {	/* no waiter exists right now */
1174 		mp->mutex_owner = 0;
1175 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1176 		if (!(swap32(lockw, 0) & WAITERMASK))	/* still no waiters */
1177 			return (0);
1178 		no_preempt(self);	/* ensure a prompt wakeup */
1179 		lwpid = mutex_wakeup(mp);
1180 	} else {
1181 		no_preempt(self);	/* ensure a prompt wakeup */
1182 		lockp = (volatile uint8_t *)&mp->mutex_lockw;
1183 		spinp = (volatile uint32_t *)&mp->mutex_spinners;
1184 		mp->mutex_owner = 0;
1185 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1186 		(void) swap32(lockw, WAITER);	/* clear lock, retain waiter */
1187 
1188 		/*
1189 		 * We spin here fewer times than mutex_trylock_adaptive().
1190 		 * We are trying to balance two conflicting goals:
1191 		 * 1. Avoid waking up anyone if a spinning thread
1192 		 *    grabs the lock.
1193 		 * 2. Wake up a sleeping thread promptly to get on
1194 		 *    with useful work.
1195 		 * We don't spin at all if there is no acquiring spinner;
1196 		 * (mp->mutex_spinners is non-zero if there are spinners).
1197 		 */
1198 		for (count = self->ul_release_spin;
1199 		    *spinp && count > 0; count--) {
1200 			/*
1201 			 * There is a waiter that we will have to wake
1202 			 * up unless someone else grabs the lock while
1203 			 * we are busy spinning.  Like the spin loop in
1204 			 * mutex_trylock_adaptive(), this spin loop is
1205 			 * unfair to lwps that have already dropped into
1206 			 * the kernel to sleep.  They will starve on a
1207 			 * highly-contended mutex.  Too bad.
1208 			 */
1209 			if (*lockp != 0) {	/* somebody grabbed the lock */
1210 				preempt(self);
1211 				return (0);
1212 			}
1213 			SMT_PAUSE();
1214 		}
1215 
1216 		/*
1217 		 * No one grabbed the lock.
1218 		 * Wake up some lwp that is waiting for it.
1219 		 */
1220 		mp->mutex_waiters = 0;
1221 		lwpid = mutex_wakeup(mp);
1222 	}
1223 
1224 	if (lwpid == 0)
1225 		preempt(self);
1226 	return (lwpid);
1227 }
1228 
1229 /*
1230  * Like mutex_unlock_queue(), but for process-shared mutexes.
1231  * We tested the waiters field before calling here and it was non-zero.
1232  */
1233 void
1234 mutex_unlock_process(mutex_t *mp)
1235 {
1236 	ulwp_t *self = curthread;
1237 	int count;
1238 	volatile uint8_t *lockp;
1239 
1240 	/*
1241 	 * See the comments in mutex_unlock_queue(), above.
1242 	 */
1243 	if ((count = ncpus) == 0)
1244 		count = ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
1245 	count = (count > 1)? self->ul_release_spin : 0;
1246 	no_preempt(self);
1247 	mp->mutex_owner = 0;
1248 	mp->mutex_ownerpid = 0;
1249 	DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1250 	if (count == 0) {
1251 		/* clear lock, test waiter */
1252 		if (!(swap32(&mp->mutex_lockword, 0) & WAITERMASK)) {
1253 			/* no waiters now */
1254 			preempt(self);
1255 			return;
1256 		}
1257 	} else {
1258 		/* clear lock, retain waiter */
1259 		(void) swap32(&mp->mutex_lockword, WAITER);
1260 		lockp = (volatile uint8_t *)&mp->mutex_lockw;
1261 		while (--count >= 0) {
1262 			if (*lockp != 0) {
1263 				/* somebody grabbed the lock */
1264 				preempt(self);
1265 				return;
1266 			}
1267 			SMT_PAUSE();
1268 		}
1269 		/*
1270 		 * We must clear the waiters field before going
1271 		 * to the kernel, else it could remain set forever.
1272 		 */
1273 		mp->mutex_waiters = 0;
1274 	}
1275 	(void) ___lwp_mutex_wakeup(mp);
1276 	preempt(self);
1277 }
1278 
1279 /*
1280  * Return the real priority of a thread.
1281  */
1282 int
1283 real_priority(ulwp_t *ulwp)
1284 {
1285 	if (ulwp->ul_epri == 0)
1286 		return (ulwp->ul_mappedpri? ulwp->ul_mappedpri : ulwp->ul_pri);
1287 	return (ulwp->ul_emappedpri? ulwp->ul_emappedpri : ulwp->ul_epri);
1288 }
1289 
1290 void
1291 stall(void)
1292 {
1293 	for (;;)
1294 		(void) mutex_lock_kernel(&stall_mutex, NULL, NULL);
1295 }
1296 
1297 /*
1298  * Acquire a USYNC_THREAD mutex via user-level sleep queues.
1299  * We failed set_lock_byte(&mp->mutex_lockw) before coming here.
1300  * Returns with mutex_owner set correctly.
1301  */
1302 int
1303 mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp,
1304 	timespec_t *tsp)
1305 {
1306 	uberdata_t *udp = curthread->ul_uberdata;
1307 	queue_head_t *qp;
1308 	hrtime_t begin_sleep;
1309 	int error = 0;
1310 
1311 	self->ul_sp = stkptr();
1312 	if (__td_event_report(self, TD_SLEEP, udp)) {
1313 		self->ul_wchan = mp;
1314 		self->ul_td_evbuf.eventnum = TD_SLEEP;
1315 		self->ul_td_evbuf.eventdata = mp;
1316 		tdb_event(TD_SLEEP, udp);
1317 	}
1318 	if (msp) {
1319 		tdb_incr(msp->mutex_sleep);
1320 		begin_sleep = gethrtime();
1321 	}
1322 
1323 	DTRACE_PROBE1(plockstat, mutex__block, mp);
1324 
1325 	/*
1326 	 * Put ourself on the sleep queue, and while we are
1327 	 * unable to grab the lock, go park in the kernel.
1328 	 * Take ourself off the sleep queue after we acquire the lock.
1329 	 * The waiter bit can be set/cleared only while holding the queue lock.
1330 	 */
1331 	qp = queue_lock(mp, MX);
1332 	enqueue(qp, self, mp, MX);
1333 	mp->mutex_waiters = 1;
1334 	for (;;) {
1335 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1336 			mp->mutex_owner = (uintptr_t)self;
1337 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
1338 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1339 			mp->mutex_waiters = dequeue_self(qp, mp);
1340 			break;
1341 		}
1342 		set_parking_flag(self, 1);
1343 		queue_unlock(qp);
1344 		/*
1345 		 * __lwp_park() will return the residual time in tsp
1346 		 * if we are unparked before the timeout expires.
1347 		 */
1348 		if ((error = __lwp_park(tsp, 0)) == EINTR)
1349 			error = 0;
1350 		set_parking_flag(self, 0);
1351 		/*
1352 		 * We could have taken a signal or suspended ourself.
1353 		 * If we did, then we removed ourself from the queue.
1354 		 * Someone else may have removed us from the queue
1355 		 * as a consequence of mutex_unlock().  We may have
1356 		 * gotten a timeout from __lwp_park().  Or we may still
1357 		 * be on the queue and this is just a spurious wakeup.
1358 		 */
1359 		qp = queue_lock(mp, MX);
1360 		if (self->ul_sleepq == NULL) {
1361 			if (error) {
1362 				DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
1363 				DTRACE_PROBE2(plockstat, mutex__error, mp,
1364 				    error);
1365 				break;
1366 			}
1367 			if (set_lock_byte(&mp->mutex_lockw) == 0) {
1368 				mp->mutex_owner = (uintptr_t)self;
1369 				DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
1370 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1371 				    0, 0);
1372 				break;
1373 			}
1374 			enqueue(qp, self, mp, MX);
1375 			mp->mutex_waiters = 1;
1376 		}
1377 		ASSERT(self->ul_sleepq == qp &&
1378 		    self->ul_qtype == MX &&
1379 		    self->ul_wchan == mp);
1380 		if (error) {
1381 			mp->mutex_waiters = dequeue_self(qp, mp);
1382 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
1383 			DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1384 			break;
1385 		}
1386 	}
1387 
1388 	ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
1389 	    self->ul_wchan == NULL);
1390 	self->ul_sp = 0;
1391 
1392 	queue_unlock(qp);
1393 	if (msp)
1394 		msp->mutex_sleep_time += gethrtime() - begin_sleep;
1395 
1396 	ASSERT(error == 0 || error == EINVAL || error == ETIME);
1397 	return (error);
1398 }
1399 
1400 /*
1401  * Returns with mutex_owner set correctly.
1402  */
1403 int
1404 mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try)
1405 {
1406 	ulwp_t *self = curthread;
1407 	uberdata_t *udp = self->ul_uberdata;
1408 	int mtype = mp->mutex_type;
1409 	tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
1410 	int error = 0;
1411 
1412 	ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK);
1413 
1414 	if (!self->ul_schedctl_called)
1415 		(void) setup_schedctl();
1416 
1417 	if (msp && try == MUTEX_TRY)
1418 		tdb_incr(msp->mutex_try);
1419 
1420 	if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_is_held(mp)) {
1421 		if (mtype & LOCK_RECURSIVE) {
1422 			if (mp->mutex_rcount == RECURSION_MAX) {
1423 				error = EAGAIN;
1424 			} else {
1425 				mp->mutex_rcount++;
1426 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1427 				    1, 0);
1428 				return (0);
1429 			}
1430 		} else if (try == MUTEX_TRY) {
1431 			return (EBUSY);
1432 		} else {
1433 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1434 			return (EDEADLK);
1435 		}
1436 	}
1437 
1438 	if (self->ul_error_detection && try == MUTEX_LOCK &&
1439 	    tsp == NULL && mutex_is_held(mp))
1440 		lock_error(mp, "mutex_lock", NULL, NULL);
1441 
1442 	if (mtype &
1443 	    (USYNC_PROCESS_ROBUST|PTHREAD_PRIO_INHERIT|PTHREAD_PRIO_PROTECT)) {
1444 		uint8_t ceil;
1445 		int myprio;
1446 
1447 		if (mtype & PTHREAD_PRIO_PROTECT) {
1448 			ceil = mp->mutex_ceiling;
1449 			ASSERT(_validate_rt_prio(SCHED_FIFO, ceil) == 0);
1450 			myprio = real_priority(self);
1451 			if (myprio > ceil) {
1452 				DTRACE_PROBE2(plockstat, mutex__error, mp,
1453 				    EINVAL);
1454 				return (EINVAL);
1455 			}
1456 			if ((error = _ceil_mylist_add(mp)) != 0) {
1457 				DTRACE_PROBE2(plockstat, mutex__error, mp,
1458 				    error);
1459 				return (error);
1460 			}
1461 			if (myprio < ceil)
1462 				_ceil_prio_inherit(ceil);
1463 		}
1464 
1465 		if (mtype & PTHREAD_PRIO_INHERIT) {
1466 			/* go straight to the kernel */
1467 			if (try == MUTEX_TRY)
1468 				error = mutex_trylock_kernel(mp);
1469 			else	/* MUTEX_LOCK */
1470 				error = mutex_lock_kernel(mp, tsp, msp);
1471 			/*
1472 			 * The kernel never sets or clears the lock byte
1473 			 * for PTHREAD_PRIO_INHERIT mutexes.
1474 			 * Set it here for debugging consistency.
1475 			 */
1476 			switch (error) {
1477 			case 0:
1478 			case EOWNERDEAD:
1479 				mp->mutex_lockw = LOCKSET;
1480 				break;
1481 			}
1482 		} else if (mtype & USYNC_PROCESS_ROBUST) {
1483 			/* go straight to the kernel */
1484 			if (try == MUTEX_TRY)
1485 				error = mutex_trylock_kernel(mp);
1486 			else	/* MUTEX_LOCK */
1487 				error = mutex_lock_kernel(mp, tsp, msp);
1488 		} else {	/* PTHREAD_PRIO_PROTECT */
1489 			/*
1490 			 * Try once at user level before going to the kernel.
1491 			 * If this is a process shared mutex then protect
1492 			 * against forkall() while setting mp->mutex_ownerpid.
1493 			 */
1494 			if (mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
1495 				enter_critical(self);
1496 				if (set_lock_byte(&mp->mutex_lockw) == 0) {
1497 					mp->mutex_owner = (uintptr_t)self;
1498 					mp->mutex_ownerpid = udp->pid;
1499 					exit_critical(self);
1500 					DTRACE_PROBE3(plockstat,
1501 					    mutex__acquire, mp, 0, 0);
1502 				} else {
1503 					exit_critical(self);
1504 					error = EBUSY;
1505 				}
1506 			} else {
1507 				if (set_lock_byte(&mp->mutex_lockw) == 0) {
1508 					mp->mutex_owner = (uintptr_t)self;
1509 					DTRACE_PROBE3(plockstat,
1510 					    mutex__acquire, mp, 0, 0);
1511 				} else {
1512 					error = EBUSY;
1513 				}
1514 			}
1515 			if (error && try == MUTEX_LOCK)
1516 				error = mutex_lock_kernel(mp, tsp, msp);
1517 		}
1518 
1519 		if (error) {
1520 			if (mtype & PTHREAD_PRIO_INHERIT) {
1521 				switch (error) {
1522 				case EOWNERDEAD:
1523 				case ENOTRECOVERABLE:
1524 					if (mtype & PTHREAD_MUTEX_ROBUST_NP)
1525 						break;
1526 					if (error == EOWNERDEAD) {
1527 						/*
1528 						 * We own the mutex; unlock it.
1529 						 * It becomes ENOTRECOVERABLE.
1530 						 * All waiters are waked up.
1531 						 */
1532 						mp->mutex_owner = 0;
1533 						mp->mutex_ownerpid = 0;
1534 						DTRACE_PROBE2(plockstat,
1535 						    mutex__release, mp, 0);
1536 						mp->mutex_lockw = LOCKCLEAR;
1537 						(void) ___lwp_mutex_unlock(mp);
1538 					}
1539 					/* FALLTHROUGH */
1540 				case EDEADLK:
1541 					if (try == MUTEX_LOCK)
1542 						stall();
1543 					error = EBUSY;
1544 					break;
1545 				}
1546 			}
1547 			if ((mtype & PTHREAD_PRIO_PROTECT) &&
1548 			    error != EOWNERDEAD) {
1549 				(void) _ceil_mylist_del(mp);
1550 				if (myprio < ceil)
1551 					_ceil_prio_waive();
1552 			}
1553 		}
1554 	} else if (mtype & USYNC_PROCESS) {
1555 		/*
1556 		 * This is a process shared mutex.  Protect against
1557 		 * forkall() while setting mp->mutex_ownerpid.
1558 		 */
1559 		enter_critical(self);
1560 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1561 			mp->mutex_owner = (uintptr_t)self;
1562 			mp->mutex_ownerpid = udp->pid;
1563 			exit_critical(self);
1564 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1565 		} else {
1566 			/* try a little harder */
1567 			exit_critical(self);
1568 			error = mutex_trylock_process(mp);
1569 		}
1570 		if (error && try == MUTEX_LOCK)
1571 			error = mutex_lock_kernel(mp, tsp, msp);
1572 	} else  {	/* USYNC_THREAD */
1573 		/* try once */
1574 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1575 			mp->mutex_owner = (uintptr_t)self;
1576 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1577 		} else {
1578 			/* try a little harder if we don't own the mutex */
1579 			error = EBUSY;
1580 			if (MUTEX_OWNER(mp) != self)
1581 				error = mutex_trylock_adaptive(mp);
1582 			if (error && try == MUTEX_LOCK)		/* go park */
1583 				error = mutex_lock_queue(self, msp, mp, tsp);
1584 		}
1585 	}
1586 
1587 	switch (error) {
1588 	case EOWNERDEAD:
1589 	case ELOCKUNMAPPED:
1590 		mp->mutex_owner = (uintptr_t)self;
1591 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1592 		/* FALLTHROUGH */
1593 	case 0:
1594 		if (msp)
1595 			record_begin_hold(msp);
1596 		break;
1597 	default:
1598 		if (try == MUTEX_TRY) {
1599 			if (msp)
1600 				tdb_incr(msp->mutex_try_fail);
1601 			if (__td_event_report(self, TD_LOCK_TRY, udp)) {
1602 				self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
1603 				tdb_event(TD_LOCK_TRY, udp);
1604 			}
1605 		}
1606 		break;
1607 	}
1608 
1609 	return (error);
1610 }
1611 
1612 int
1613 fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try)
1614 {
1615 	ulwp_t *self = curthread;
1616 	uberdata_t *udp = self->ul_uberdata;
1617 
1618 	/*
1619 	 * We know that USYNC_PROCESS is set in mtype and that
1620 	 * zero, one, or both of the flags LOCK_RECURSIVE and
1621 	 * LOCK_ERRORCHECK are set, and that no other flags are set.
1622 	 */
1623 	enter_critical(self);
1624 	if (set_lock_byte(&mp->mutex_lockw) == 0) {
1625 		mp->mutex_owner = (uintptr_t)self;
1626 		mp->mutex_ownerpid = udp->pid;
1627 		exit_critical(self);
1628 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1629 		return (0);
1630 	}
1631 	exit_critical(self);
1632 
1633 	if ((mtype & ~USYNC_PROCESS) && shared_mutex_held(mp)) {
1634 		if (mtype & LOCK_RECURSIVE) {
1635 			if (mp->mutex_rcount == RECURSION_MAX)
1636 				return (EAGAIN);
1637 			mp->mutex_rcount++;
1638 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0);
1639 			return (0);
1640 		}
1641 		if (try == MUTEX_LOCK) {
1642 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1643 			return (EDEADLK);
1644 		}
1645 		return (EBUSY);
1646 	}
1647 
1648 	/* try a little harder if we don't own the mutex */
1649 	if (!shared_mutex_held(mp) && mutex_trylock_process(mp) == 0)
1650 		return (0);
1651 
1652 	if (try == MUTEX_LOCK)
1653 		return (mutex_lock_kernel(mp, tsp, NULL));
1654 
1655 	if (__td_event_report(self, TD_LOCK_TRY, udp)) {
1656 		self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
1657 		tdb_event(TD_LOCK_TRY, udp);
1658 	}
1659 	return (EBUSY);
1660 }
1661 
1662 static int
1663 slow_lock(ulwp_t *self, mutex_t *mp, timespec_t *tsp)
1664 {
1665 	int error = 0;
1666 
1667 	if (MUTEX_OWNER(mp) == self || mutex_trylock_adaptive(mp) != 0)
1668 		error = mutex_lock_queue(self, NULL, mp, tsp);
1669 	return (error);
1670 }
1671 
1672 int
1673 mutex_lock_impl(mutex_t *mp, timespec_t *tsp)
1674 {
1675 	ulwp_t *self = curthread;
1676 	uberdata_t *udp = self->ul_uberdata;
1677 	uberflags_t *gflags;
1678 	int mtype;
1679 
1680 	/*
1681 	 * Optimize the case of USYNC_THREAD, including
1682 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
1683 	 * no error detection, no lock statistics,
1684 	 * and the process has only a single thread.
1685 	 * (Most likely a traditional single-threaded application.)
1686 	 */
1687 	if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
1688 	    udp->uberflags.uf_all) == 0) {
1689 		/*
1690 		 * Only one thread exists so we don't need an atomic operation.
1691 		 */
1692 		if (mp->mutex_lockw == 0) {
1693 			mp->mutex_lockw = LOCKSET;
1694 			mp->mutex_owner = (uintptr_t)self;
1695 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1696 			return (0);
1697 		}
1698 		if (mtype && MUTEX_OWNER(mp) == self) {
1699 			/*
1700 			 * LOCK_RECURSIVE, LOCK_ERRORCHECK, or both.
1701 			 */
1702 			if (mtype & LOCK_RECURSIVE) {
1703 				if (mp->mutex_rcount == RECURSION_MAX)
1704 					return (EAGAIN);
1705 				mp->mutex_rcount++;
1706 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1707 				    1, 0);
1708 				return (0);
1709 			}
1710 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1711 			return (EDEADLK);	/* LOCK_ERRORCHECK */
1712 		}
1713 		/*
1714 		 * We have reached a deadlock, probably because the
1715 		 * process is executing non-async-signal-safe code in
1716 		 * a signal handler and is attempting to acquire a lock
1717 		 * that it already owns.  This is not surprising, given
1718 		 * bad programming practices over the years that has
1719 		 * resulted in applications calling printf() and such
1720 		 * in their signal handlers.  Unless the user has told
1721 		 * us that the signal handlers are safe by setting:
1722 		 *	export _THREAD_ASYNC_SAFE=1
1723 		 * we return EDEADLK rather than actually deadlocking.
1724 		 */
1725 		if (tsp == NULL &&
1726 		    MUTEX_OWNER(mp) == self && !self->ul_async_safe) {
1727 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1728 			return (EDEADLK);
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
1734 	 * no error detection, and no lock statistics.
1735 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
1736 	 */
1737 	if ((gflags = self->ul_schedctl_called) != NULL &&
1738 	    (gflags->uf_trs_ted |
1739 	    (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
1740 
1741 		if (mtype & USYNC_PROCESS)
1742 			return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK));
1743 
1744 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1745 			mp->mutex_owner = (uintptr_t)self;
1746 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1747 			return (0);
1748 		}
1749 
1750 		if (mtype && MUTEX_OWNER(mp) == self) {
1751 			if (mtype & LOCK_RECURSIVE) {
1752 				if (mp->mutex_rcount == RECURSION_MAX)
1753 					return (EAGAIN);
1754 				mp->mutex_rcount++;
1755 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1756 				    1, 0);
1757 				return (0);
1758 			}
1759 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1760 			return (EDEADLK);	/* LOCK_ERRORCHECK */
1761 		}
1762 
1763 		return (slow_lock(self, mp, tsp));
1764 	}
1765 
1766 	/* else do it the long way */
1767 	return (mutex_lock_internal(mp, tsp, MUTEX_LOCK));
1768 }
1769 
1770 #pragma weak _private_mutex_lock = __mutex_lock
1771 #pragma weak mutex_lock = __mutex_lock
1772 #pragma weak _mutex_lock = __mutex_lock
1773 #pragma weak pthread_mutex_lock = __mutex_lock
1774 #pragma weak _pthread_mutex_lock = __mutex_lock
1775 int
1776 __mutex_lock(mutex_t *mp)
1777 {
1778 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1779 	return (mutex_lock_impl(mp, NULL));
1780 }
1781 
1782 #pragma weak pthread_mutex_timedlock = _pthread_mutex_timedlock
1783 int
1784 _pthread_mutex_timedlock(mutex_t *mp, const timespec_t *abstime)
1785 {
1786 	timespec_t tslocal;
1787 	int error;
1788 
1789 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1790 	abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
1791 	error = mutex_lock_impl(mp, &tslocal);
1792 	if (error == ETIME)
1793 		error = ETIMEDOUT;
1794 	return (error);
1795 }
1796 
1797 #pragma weak pthread_mutex_reltimedlock_np = _pthread_mutex_reltimedlock_np
1798 int
1799 _pthread_mutex_reltimedlock_np(mutex_t *mp, const timespec_t *reltime)
1800 {
1801 	timespec_t tslocal;
1802 	int error;
1803 
1804 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1805 	tslocal = *reltime;
1806 	error = mutex_lock_impl(mp, &tslocal);
1807 	if (error == ETIME)
1808 		error = ETIMEDOUT;
1809 	return (error);
1810 }
1811 
1812 static int
1813 slow_trylock(mutex_t *mp, ulwp_t *self)
1814 {
1815 	if (MUTEX_OWNER(mp) == self ||
1816 	    mutex_trylock_adaptive(mp) != 0) {
1817 		uberdata_t *udp = self->ul_uberdata;
1818 
1819 		if (__td_event_report(self, TD_LOCK_TRY, udp)) {
1820 			self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
1821 			tdb_event(TD_LOCK_TRY, udp);
1822 		}
1823 		return (EBUSY);
1824 	}
1825 	return (0);
1826 }
1827 
1828 #pragma weak _private_mutex_trylock = __mutex_trylock
1829 #pragma weak mutex_trylock = __mutex_trylock
1830 #pragma weak _mutex_trylock = __mutex_trylock
1831 #pragma weak pthread_mutex_trylock = __mutex_trylock
1832 #pragma weak _pthread_mutex_trylock = __mutex_trylock
1833 int
1834 __mutex_trylock(mutex_t *mp)
1835 {
1836 	ulwp_t *self = curthread;
1837 	uberdata_t *udp = self->ul_uberdata;
1838 	uberflags_t *gflags;
1839 	int mtype;
1840 
1841 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1842 	/*
1843 	 * Optimize the case of USYNC_THREAD, including
1844 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
1845 	 * no error detection, no lock statistics,
1846 	 * and the process has only a single thread.
1847 	 * (Most likely a traditional single-threaded application.)
1848 	 */
1849 	if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
1850 	    udp->uberflags.uf_all) == 0) {
1851 		/*
1852 		 * Only one thread exists so we don't need an atomic operation.
1853 		 */
1854 		if (mp->mutex_lockw == 0) {
1855 			mp->mutex_lockw = LOCKSET;
1856 			mp->mutex_owner = (uintptr_t)self;
1857 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1858 			return (0);
1859 		}
1860 		if (mtype && MUTEX_OWNER(mp) == self) {
1861 			if (mtype & LOCK_RECURSIVE) {
1862 				if (mp->mutex_rcount == RECURSION_MAX)
1863 					return (EAGAIN);
1864 				mp->mutex_rcount++;
1865 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1866 				    1, 0);
1867 				return (0);
1868 			}
1869 			return (EDEADLK);	/* LOCK_ERRORCHECK */
1870 		}
1871 		return (EBUSY);
1872 	}
1873 
1874 	/*
1875 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
1876 	 * no error detection, and no lock statistics.
1877 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
1878 	 */
1879 	if ((gflags = self->ul_schedctl_called) != NULL &&
1880 	    (gflags->uf_trs_ted |
1881 	    (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
1882 
1883 		if (mtype & USYNC_PROCESS)
1884 			return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY));
1885 
1886 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1887 			mp->mutex_owner = (uintptr_t)self;
1888 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1889 			return (0);
1890 		}
1891 
1892 		if (mtype && MUTEX_OWNER(mp) == self) {
1893 			if (mtype & LOCK_RECURSIVE) {
1894 				if (mp->mutex_rcount == RECURSION_MAX)
1895 					return (EAGAIN);
1896 				mp->mutex_rcount++;
1897 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1898 				    1, 0);
1899 				return (0);
1900 			}
1901 			return (EBUSY);		/* LOCK_ERRORCHECK */
1902 		}
1903 
1904 		return (slow_trylock(mp, self));
1905 	}
1906 
1907 	/* else do it the long way */
1908 	return (mutex_lock_internal(mp, NULL, MUTEX_TRY));
1909 }
1910 
1911 int
1912 mutex_unlock_internal(mutex_t *mp)
1913 {
1914 	ulwp_t *self = curthread;
1915 	uberdata_t *udp = self->ul_uberdata;
1916 	int mtype = mp->mutex_type;
1917 	tdb_mutex_stats_t *msp;
1918 	int error;
1919 	lwpid_t lwpid;
1920 
1921 	if ((mtype & LOCK_ERRORCHECK) && !mutex_is_held(mp))
1922 		return (EPERM);
1923 
1924 	if (self->ul_error_detection && !mutex_is_held(mp))
1925 		lock_error(mp, "mutex_unlock", NULL, NULL);
1926 
1927 	if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
1928 		mp->mutex_rcount--;
1929 		DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
1930 		return (0);
1931 	}
1932 
1933 	if ((msp = MUTEX_STATS(mp, udp)) != NULL)
1934 		(void) record_hold_time(msp);
1935 
1936 	if (mtype &
1937 	    (USYNC_PROCESS_ROBUST|PTHREAD_PRIO_INHERIT|PTHREAD_PRIO_PROTECT)) {
1938 		no_preempt(self);
1939 		mp->mutex_owner = 0;
1940 		mp->mutex_ownerpid = 0;
1941 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1942 		if (mtype & PTHREAD_PRIO_INHERIT) {
1943 			mp->mutex_lockw = LOCKCLEAR;
1944 			error = ___lwp_mutex_unlock(mp);
1945 		} else if (mtype & USYNC_PROCESS_ROBUST) {
1946 			error = ___lwp_mutex_unlock(mp);
1947 		} else {
1948 			if (swap32(&mp->mutex_lockword, 0) & WAITERMASK)
1949 				(void) ___lwp_mutex_wakeup(mp);
1950 			error = 0;
1951 		}
1952 		if (mtype & PTHREAD_PRIO_PROTECT) {
1953 			if (_ceil_mylist_del(mp))
1954 				_ceil_prio_waive();
1955 		}
1956 		preempt(self);
1957 	} else if (mtype & USYNC_PROCESS) {
1958 		if (mp->mutex_lockword & WAITERMASK)
1959 			mutex_unlock_process(mp);
1960 		else {
1961 			mp->mutex_owner = 0;
1962 			mp->mutex_ownerpid = 0;
1963 			DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1964 			if (swap32(&mp->mutex_lockword, 0) & WAITERMASK) {
1965 				no_preempt(self);
1966 				(void) ___lwp_mutex_wakeup(mp);
1967 				preempt(self);
1968 			}
1969 		}
1970 		error = 0;
1971 	} else {	/* USYNC_THREAD */
1972 		if ((lwpid = mutex_unlock_queue(mp)) != 0) {
1973 			(void) __lwp_unpark(lwpid);
1974 			preempt(self);
1975 		}
1976 		error = 0;
1977 	}
1978 
1979 	return (error);
1980 }
1981 
1982 #pragma weak _private_mutex_unlock = __mutex_unlock
1983 #pragma weak mutex_unlock = __mutex_unlock
1984 #pragma weak _mutex_unlock = __mutex_unlock
1985 #pragma weak pthread_mutex_unlock = __mutex_unlock
1986 #pragma weak _pthread_mutex_unlock = __mutex_unlock
1987 int
1988 __mutex_unlock(mutex_t *mp)
1989 {
1990 	ulwp_t *self = curthread;
1991 	uberdata_t *udp = self->ul_uberdata;
1992 	uberflags_t *gflags;
1993 	lwpid_t lwpid;
1994 	int mtype;
1995 	short el;
1996 
1997 	/*
1998 	 * Optimize the case of USYNC_THREAD, including
1999 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
2000 	 * no error detection, no lock statistics,
2001 	 * and the process has only a single thread.
2002 	 * (Most likely a traditional single-threaded application.)
2003 	 */
2004 	if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
2005 	    udp->uberflags.uf_all) == 0) {
2006 		if (mtype) {
2007 			/*
2008 			 * At this point we know that one or both of the
2009 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
2010 			 */
2011 			if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
2012 				return (EPERM);
2013 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2014 				mp->mutex_rcount--;
2015 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2016 				return (0);
2017 			}
2018 		}
2019 		/*
2020 		 * Only one thread exists so we don't need an atomic operation.
2021 		 * Also, there can be no waiters.
2022 		 */
2023 		mp->mutex_owner = 0;
2024 		mp->mutex_lockword = 0;
2025 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2026 		return (0);
2027 	}
2028 
2029 	/*
2030 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
2031 	 * no error detection, and no lock statistics.
2032 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
2033 	 */
2034 	if ((gflags = self->ul_schedctl_called) != NULL) {
2035 		if (((el = gflags->uf_trs_ted) | mtype) == 0) {
2036 fast_unlock:
2037 			if (!(mp->mutex_lockword & WAITERMASK)) {
2038 				/* no waiter exists right now */
2039 				mp->mutex_owner = 0;
2040 				DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2041 				if (swap32(&mp->mutex_lockword, 0) &
2042 				    WAITERMASK) {
2043 					/* a waiter suddenly appeared */
2044 					no_preempt(self);
2045 					if ((lwpid = mutex_wakeup(mp)) != 0)
2046 						(void) __lwp_unpark(lwpid);
2047 					preempt(self);
2048 				}
2049 			} else if ((lwpid = mutex_unlock_queue(mp)) != 0) {
2050 				(void) __lwp_unpark(lwpid);
2051 				preempt(self);
2052 			}
2053 			return (0);
2054 		}
2055 		if (el)		/* error detection or lock statistics */
2056 			goto slow_unlock;
2057 		if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
2058 			/*
2059 			 * At this point we know that one or both of the
2060 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
2061 			 */
2062 			if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
2063 				return (EPERM);
2064 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2065 				mp->mutex_rcount--;
2066 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2067 				return (0);
2068 			}
2069 			goto fast_unlock;
2070 		}
2071 		if ((mtype &
2072 		    ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
2073 			/*
2074 			 * At this point we know that zero, one, or both of the
2075 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and
2076 			 * that the USYNC_PROCESS flag is set.
2077 			 */
2078 			if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp))
2079 				return (EPERM);
2080 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2081 				mp->mutex_rcount--;
2082 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2083 				return (0);
2084 			}
2085 			if (mp->mutex_lockword & WAITERMASK)
2086 				mutex_unlock_process(mp);
2087 			else {
2088 				mp->mutex_owner = 0;
2089 				mp->mutex_ownerpid = 0;
2090 				DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2091 				if (swap32(&mp->mutex_lockword, 0) &
2092 				    WAITERMASK) {
2093 					no_preempt(self);
2094 					(void) ___lwp_mutex_wakeup(mp);
2095 					preempt(self);
2096 				}
2097 			}
2098 			return (0);
2099 		}
2100 	}
2101 
2102 	/* else do it the long way */
2103 slow_unlock:
2104 	return (mutex_unlock_internal(mp));
2105 }
2106 
2107 /*
2108  * Internally to the library, almost all mutex lock/unlock actions
2109  * go through these lmutex_ functions, to protect critical regions.
2110  * We replicate a bit of code from __mutex_lock() and __mutex_unlock()
2111  * to make these functions faster since we know that the mutex type
2112  * of all internal locks is USYNC_THREAD.  We also know that internal
2113  * locking can never fail, so we panic if it does.
2114  */
2115 void
2116 lmutex_lock(mutex_t *mp)
2117 {
2118 	ulwp_t *self = curthread;
2119 	uberdata_t *udp = self->ul_uberdata;
2120 
2121 	ASSERT(mp->mutex_type == USYNC_THREAD);
2122 
2123 	enter_critical(self);
2124 	/*
2125 	 * Optimize the case of no lock statistics and only a single thread.
2126 	 * (Most likely a traditional single-threaded application.)
2127 	 */
2128 	if (udp->uberflags.uf_all == 0) {
2129 		/*
2130 		 * Only one thread exists; the mutex must be free.
2131 		 */
2132 		ASSERT(mp->mutex_lockw == 0);
2133 		mp->mutex_lockw = LOCKSET;
2134 		mp->mutex_owner = (uintptr_t)self;
2135 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2136 	} else {
2137 		tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2138 
2139 		if (!self->ul_schedctl_called)
2140 			(void) setup_schedctl();
2141 
2142 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
2143 			mp->mutex_owner = (uintptr_t)self;
2144 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2145 		} else if (mutex_trylock_adaptive(mp) != 0) {
2146 			(void) mutex_lock_queue(self, msp, mp, NULL);
2147 		}
2148 
2149 		if (msp)
2150 			record_begin_hold(msp);
2151 	}
2152 }
2153 
2154 void
2155 lmutex_unlock(mutex_t *mp)
2156 {
2157 	ulwp_t *self = curthread;
2158 	uberdata_t *udp = self->ul_uberdata;
2159 
2160 	ASSERT(mp->mutex_type == USYNC_THREAD);
2161 
2162 	/*
2163 	 * Optimize the case of no lock statistics and only a single thread.
2164 	 * (Most likely a traditional single-threaded application.)
2165 	 */
2166 	if (udp->uberflags.uf_all == 0) {
2167 		/*
2168 		 * Only one thread exists so there can be no waiters.
2169 		 */
2170 		mp->mutex_owner = 0;
2171 		mp->mutex_lockword = 0;
2172 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2173 	} else {
2174 		tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2175 		lwpid_t lwpid;
2176 
2177 		if (msp)
2178 			(void) record_hold_time(msp);
2179 		if ((lwpid = mutex_unlock_queue(mp)) != 0) {
2180 			(void) __lwp_unpark(lwpid);
2181 			preempt(self);
2182 		}
2183 	}
2184 	exit_critical(self);
2185 }
2186 
2187 /*
2188  * For specialized code in libc, like the asynchronous i/o code,
2189  * the following sig_*() locking primitives are used in order
2190  * to make the code asynchronous signal safe.  Signals are
2191  * deferred while locks acquired by these functions are held.
2192  */
2193 void
2194 sig_mutex_lock(mutex_t *mp)
2195 {
2196 	sigoff(curthread);
2197 	(void) _private_mutex_lock(mp);
2198 }
2199 
2200 void
2201 sig_mutex_unlock(mutex_t *mp)
2202 {
2203 	(void) _private_mutex_unlock(mp);
2204 	sigon(curthread);
2205 }
2206 
2207 int
2208 sig_mutex_trylock(mutex_t *mp)
2209 {
2210 	int error;
2211 
2212 	sigoff(curthread);
2213 	if ((error = _private_mutex_trylock(mp)) != 0)
2214 		sigon(curthread);
2215 	return (error);
2216 }
2217 
2218 /*
2219  * sig_cond_wait() is a cancellation point.
2220  */
2221 int
2222 sig_cond_wait(cond_t *cv, mutex_t *mp)
2223 {
2224 	int error;
2225 
2226 	ASSERT(curthread->ul_sigdefer != 0);
2227 	_private_testcancel();
2228 	error = _cond_wait(cv, mp);
2229 	if (error == EINTR && curthread->ul_cursig) {
2230 		sig_mutex_unlock(mp);
2231 		/* take the deferred signal here */
2232 		sig_mutex_lock(mp);
2233 	}
2234 	_private_testcancel();
2235 	return (error);
2236 }
2237 
2238 /*
2239  * sig_cond_reltimedwait() is a cancellation point.
2240  */
2241 int
2242 sig_cond_reltimedwait(cond_t *cv, mutex_t *mp, const timespec_t *ts)
2243 {
2244 	int error;
2245 
2246 	ASSERT(curthread->ul_sigdefer != 0);
2247 	_private_testcancel();
2248 	error = _cond_reltimedwait(cv, mp, ts);
2249 	if (error == EINTR && curthread->ul_cursig) {
2250 		sig_mutex_unlock(mp);
2251 		/* take the deferred signal here */
2252 		sig_mutex_lock(mp);
2253 	}
2254 	_private_testcancel();
2255 	return (error);
2256 }
2257 
2258 static int
2259 shared_mutex_held(mutex_t *mparg)
2260 {
2261 	/*
2262 	 * There is an inherent data race in the current ownership design.
2263 	 * The mutex_owner and mutex_ownerpid fields cannot be set or tested
2264 	 * atomically as a pair. The original implementation tested each
2265 	 * field just once. This was exposed to trivial false positives in
2266 	 * the case of multiple multithreaded processes with thread addresses
2267 	 * in common. To close the window to an acceptable level we now use a
2268 	 * sequence of five tests: pid-thr-pid-thr-pid. This ensures that any
2269 	 * single interruption will still leave one uninterrupted sequence of
2270 	 * pid-thr-pid tests intact.
2271 	 *
2272 	 * It is assumed that all updates are always ordered thr-pid and that
2273 	 * we have TSO hardware.
2274 	 */
2275 	volatile mutex_t *mp = (volatile mutex_t *)mparg;
2276 	ulwp_t *self = curthread;
2277 	uberdata_t *udp = self->ul_uberdata;
2278 
2279 	if (mp->mutex_ownerpid != udp->pid)
2280 		return (0);
2281 
2282 	if (!MUTEX_OWNED(mp, self))
2283 		return (0);
2284 
2285 	if (mp->mutex_ownerpid != udp->pid)
2286 		return (0);
2287 
2288 	if (!MUTEX_OWNED(mp, self))
2289 		return (0);
2290 
2291 	if (mp->mutex_ownerpid != udp->pid)
2292 		return (0);
2293 
2294 	return (1);
2295 }
2296 
2297 /*
2298  * Some crufty old programs define their own version of _mutex_held()
2299  * to be simply return(1).  This breaks internal libc logic, so we
2300  * define a private version for exclusive use by libc, mutex_is_held(),
2301  * and also a new public function, __mutex_held(), to be used in new
2302  * code to circumvent these crufty old programs.
2303  */
2304 #pragma weak mutex_held = mutex_is_held
2305 #pragma weak _mutex_held = mutex_is_held
2306 #pragma weak __mutex_held = mutex_is_held
2307 int
2308 mutex_is_held(mutex_t *mp)
2309 {
2310 	if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST))
2311 		return (shared_mutex_held(mp));
2312 	return (MUTEX_OWNED(mp, curthread));
2313 }
2314 
2315 #pragma weak _private_mutex_destroy = __mutex_destroy
2316 #pragma weak mutex_destroy = __mutex_destroy
2317 #pragma weak _mutex_destroy = __mutex_destroy
2318 #pragma weak pthread_mutex_destroy = __mutex_destroy
2319 #pragma weak _pthread_mutex_destroy = __mutex_destroy
2320 int
2321 __mutex_destroy(mutex_t *mp)
2322 {
2323 	mp->mutex_magic = 0;
2324 	mp->mutex_flag &= ~LOCK_INITED;
2325 	tdb_sync_obj_deregister(mp);
2326 	return (0);
2327 }
2328 
2329 /*
2330  * Spin locks are separate from ordinary mutexes,
2331  * but we use the same data structure for them.
2332  */
2333 
2334 #pragma weak pthread_spin_init = _pthread_spin_init
2335 int
2336 _pthread_spin_init(pthread_spinlock_t *lock, int pshared)
2337 {
2338 	mutex_t *mp = (mutex_t *)lock;
2339 
2340 	(void) _memset(mp, 0, sizeof (*mp));
2341 	if (pshared == PTHREAD_PROCESS_SHARED)
2342 		mp->mutex_type = USYNC_PROCESS;
2343 	else
2344 		mp->mutex_type = USYNC_THREAD;
2345 	mp->mutex_flag = LOCK_INITED;
2346 	mp->mutex_magic = MUTEX_MAGIC;
2347 	return (0);
2348 }
2349 
2350 #pragma weak pthread_spin_destroy = _pthread_spin_destroy
2351 int
2352 _pthread_spin_destroy(pthread_spinlock_t *lock)
2353 {
2354 	(void) _memset(lock, 0, sizeof (*lock));
2355 	return (0);
2356 }
2357 
2358 #pragma weak pthread_spin_trylock = _pthread_spin_trylock
2359 int
2360 _pthread_spin_trylock(pthread_spinlock_t *lock)
2361 {
2362 	mutex_t *mp = (mutex_t *)lock;
2363 	ulwp_t *self = curthread;
2364 	int error = 0;
2365 
2366 	no_preempt(self);
2367 	if (set_lock_byte(&mp->mutex_lockw) != 0)
2368 		error = EBUSY;
2369 	else {
2370 		mp->mutex_owner = (uintptr_t)self;
2371 		if (mp->mutex_type == USYNC_PROCESS)
2372 			mp->mutex_ownerpid = self->ul_uberdata->pid;
2373 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2374 	}
2375 	preempt(self);
2376 	return (error);
2377 }
2378 
2379 #pragma weak pthread_spin_lock = _pthread_spin_lock
2380 int
2381 _pthread_spin_lock(pthread_spinlock_t *lock)
2382 {
2383 	volatile uint8_t *lockp =
2384 		(volatile uint8_t *)&((mutex_t *)lock)->mutex_lockw;
2385 
2386 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2387 	/*
2388 	 * We don't care whether the owner is running on a processor.
2389 	 * We just spin because that's what this interface requires.
2390 	 */
2391 	for (;;) {
2392 		if (*lockp == 0) {	/* lock byte appears to be clear */
2393 			if (_pthread_spin_trylock(lock) == 0)
2394 				return (0);
2395 		}
2396 		SMT_PAUSE();
2397 	}
2398 }
2399 
2400 #pragma weak pthread_spin_unlock = _pthread_spin_unlock
2401 int
2402 _pthread_spin_unlock(pthread_spinlock_t *lock)
2403 {
2404 	mutex_t *mp = (mutex_t *)lock;
2405 	ulwp_t *self = curthread;
2406 
2407 	no_preempt(self);
2408 	mp->mutex_owner = 0;
2409 	mp->mutex_ownerpid = 0;
2410 	DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2411 	(void) swap32(&mp->mutex_lockword, 0);
2412 	preempt(self);
2413 	return (0);
2414 }
2415 
2416 #pragma weak cond_init = _cond_init
2417 /* ARGSUSED2 */
2418 int
2419 _cond_init(cond_t *cvp, int type, void *arg)
2420 {
2421 	if (type != USYNC_THREAD && type != USYNC_PROCESS)
2422 		return (EINVAL);
2423 	(void) _memset(cvp, 0, sizeof (*cvp));
2424 	cvp->cond_type = (uint16_t)type;
2425 	cvp->cond_magic = COND_MAGIC;
2426 	return (0);
2427 }
2428 
2429 /*
2430  * cond_sleep_queue(): utility function for cond_wait_queue().
2431  *
2432  * Go to sleep on a condvar sleep queue, expect to be waked up
2433  * by someone calling cond_signal() or cond_broadcast() or due
2434  * to receiving a UNIX signal or being cancelled, or just simply
2435  * due to a spurious wakeup (like someome calling forkall()).
2436  *
2437  * The associated mutex is *not* reacquired before returning.
2438  * That must be done by the caller of cond_sleep_queue().
2439  */
2440 int
2441 cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2442 {
2443 	ulwp_t *self = curthread;
2444 	queue_head_t *qp;
2445 	queue_head_t *mqp;
2446 	lwpid_t lwpid;
2447 	int signalled;
2448 	int error;
2449 
2450 	/*
2451 	 * Put ourself on the CV sleep queue, unlock the mutex, then
2452 	 * park ourself and unpark a candidate lwp to grab the mutex.
2453 	 * We must go onto the CV sleep queue before dropping the
2454 	 * mutex in order to guarantee atomicity of the operation.
2455 	 */
2456 	self->ul_sp = stkptr();
2457 	qp = queue_lock(cvp, CV);
2458 	enqueue(qp, self, cvp, CV);
2459 	cvp->cond_waiters_user = 1;
2460 	self->ul_cvmutex = mp;
2461 	self->ul_cv_wake = (tsp != NULL);
2462 	self->ul_signalled = 0;
2463 	lwpid = mutex_unlock_queue(mp);
2464 	for (;;) {
2465 		set_parking_flag(self, 1);
2466 		queue_unlock(qp);
2467 		if (lwpid != 0) {
2468 			lwpid = preempt_unpark(self, lwpid);
2469 			preempt(self);
2470 		}
2471 		/*
2472 		 * We may have a deferred signal present,
2473 		 * in which case we should return EINTR.
2474 		 * Also, we may have received a SIGCANCEL; if so
2475 		 * and we are cancelable we should return EINTR.
2476 		 * We force an immediate EINTR return from
2477 		 * __lwp_park() by turning our parking flag off.
2478 		 */
2479 		if (self->ul_cursig != 0 ||
2480 		    (self->ul_cancelable && self->ul_cancel_pending))
2481 			set_parking_flag(self, 0);
2482 		/*
2483 		 * __lwp_park() will return the residual time in tsp
2484 		 * if we are unparked before the timeout expires.
2485 		 */
2486 		error = __lwp_park(tsp, lwpid);
2487 		set_parking_flag(self, 0);
2488 		lwpid = 0;	/* unpark the other lwp only once */
2489 		/*
2490 		 * We were waked up by cond_signal(), cond_broadcast(),
2491 		 * by an interrupt or timeout (EINTR or ETIME),
2492 		 * or we may just have gotten a spurious wakeup.
2493 		 */
2494 		qp = queue_lock(cvp, CV);
2495 		mqp = queue_lock(mp, MX);
2496 		if (self->ul_sleepq == NULL)
2497 			break;
2498 		/*
2499 		 * We are on either the condvar sleep queue or the
2500 		 * mutex sleep queue.  Break out of the sleep if we
2501 		 * were interrupted or we timed out (EINTR or ETIME).
2502 		 * Else this is a spurious wakeup; continue the loop.
2503 		 */
2504 		if (self->ul_sleepq == mqp) {		/* mutex queue */
2505 			if (error) {
2506 				mp->mutex_waiters = dequeue_self(mqp, mp);
2507 				break;
2508 			}
2509 			tsp = NULL;	/* no more timeout */
2510 		} else if (self->ul_sleepq == qp) {	/* condvar queue */
2511 			if (error) {
2512 				cvp->cond_waiters_user = dequeue_self(qp, cvp);
2513 				break;
2514 			}
2515 			/*
2516 			 * Else a spurious wakeup on the condvar queue.
2517 			 * __lwp_park() has already adjusted the timeout.
2518 			 */
2519 		} else {
2520 			thr_panic("cond_sleep_queue(): thread not on queue");
2521 		}
2522 		queue_unlock(mqp);
2523 	}
2524 
2525 	self->ul_sp = 0;
2526 	ASSERT(self->ul_cvmutex == NULL && self->ul_cv_wake == 0);
2527 	ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
2528 	    self->ul_wchan == NULL);
2529 
2530 	signalled = self->ul_signalled;
2531 	self->ul_signalled = 0;
2532 	queue_unlock(qp);
2533 	queue_unlock(mqp);
2534 
2535 	/*
2536 	 * If we were concurrently cond_signal()d and any of:
2537 	 * received a UNIX signal, were cancelled, or got a timeout,
2538 	 * then perform another cond_signal() to avoid consuming it.
2539 	 */
2540 	if (error && signalled)
2541 		(void) cond_signal_internal(cvp);
2542 
2543 	return (error);
2544 }
2545 
2546 int
2547 cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp,
2548 	tdb_mutex_stats_t *msp)
2549 {
2550 	ulwp_t *self = curthread;
2551 	int error;
2552 
2553 	/*
2554 	 * The old thread library was programmed to defer signals
2555 	 * while in cond_wait() so that the associated mutex would
2556 	 * be guaranteed to be held when the application signal
2557 	 * handler was invoked.
2558 	 *
2559 	 * We do not behave this way by default; the state of the
2560 	 * associated mutex in the signal handler is undefined.
2561 	 *
2562 	 * To accommodate applications that depend on the old
2563 	 * behavior, the _THREAD_COND_WAIT_DEFER environment
2564 	 * variable can be set to 1 and we will behave in the
2565 	 * old way with respect to cond_wait().
2566 	 */
2567 	if (self->ul_cond_wait_defer)
2568 		sigoff(self);
2569 
2570 	error = cond_sleep_queue(cvp, mp, tsp);
2571 
2572 	/*
2573 	 * Reacquire the mutex.
2574 	 */
2575 	if (set_lock_byte(&mp->mutex_lockw) == 0) {
2576 		mp->mutex_owner = (uintptr_t)self;
2577 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2578 	} else if (mutex_trylock_adaptive(mp) != 0) {
2579 		(void) mutex_lock_queue(self, msp, mp, NULL);
2580 	}
2581 
2582 	if (msp)
2583 		record_begin_hold(msp);
2584 
2585 	/*
2586 	 * Take any deferred signal now, after we have reacquired the mutex.
2587 	 */
2588 	if (self->ul_cond_wait_defer)
2589 		sigon(self);
2590 
2591 	return (error);
2592 }
2593 
2594 /*
2595  * cond_sleep_kernel(): utility function for cond_wait_kernel().
2596  * See the comment ahead of cond_sleep_queue(), above.
2597  */
2598 int
2599 cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2600 {
2601 	int mtype = mp->mutex_type;
2602 	ulwp_t *self = curthread;
2603 	int error;
2604 
2605 	if (mtype & PTHREAD_PRIO_PROTECT) {
2606 		if (_ceil_mylist_del(mp))
2607 			_ceil_prio_waive();
2608 	}
2609 
2610 	self->ul_sp = stkptr();
2611 	self->ul_wchan = cvp;
2612 	mp->mutex_owner = 0;
2613 	mp->mutex_ownerpid = 0;
2614 	if (mtype & PTHREAD_PRIO_INHERIT)
2615 		mp->mutex_lockw = LOCKCLEAR;
2616 	/*
2617 	 * ___lwp_cond_wait() returns immediately with EINTR if
2618 	 * set_parking_flag(self,0) is called on this lwp before it
2619 	 * goes to sleep in the kernel.  sigacthandler() calls this
2620 	 * when a deferred signal is noted.  This assures that we don't
2621 	 * get stuck in ___lwp_cond_wait() with all signals blocked
2622 	 * due to taking a deferred signal before going to sleep.
2623 	 */
2624 	set_parking_flag(self, 1);
2625 	if (self->ul_cursig != 0 ||
2626 	    (self->ul_cancelable && self->ul_cancel_pending))
2627 		set_parking_flag(self, 0);
2628 	error = ___lwp_cond_wait(cvp, mp, tsp, 1);
2629 	set_parking_flag(self, 0);
2630 	self->ul_sp = 0;
2631 	self->ul_wchan = NULL;
2632 	return (error);
2633 }
2634 
2635 int
2636 cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2637 {
2638 	ulwp_t *self = curthread;
2639 	int error;
2640 	int merror;
2641 
2642 	/*
2643 	 * See the large comment in cond_wait_queue(), above.
2644 	 */
2645 	if (self->ul_cond_wait_defer)
2646 		sigoff(self);
2647 
2648 	error = cond_sleep_kernel(cvp, mp, tsp);
2649 
2650 	/*
2651 	 * Override the return code from ___lwp_cond_wait()
2652 	 * with any non-zero return code from mutex_lock().
2653 	 * This addresses robust lock failures in particular;
2654 	 * the caller must see the EOWNERDEAD or ENOTRECOVERABLE
2655 	 * errors in order to take corrective action.
2656 	 */
2657 	if ((merror = _private_mutex_lock(mp)) != 0)
2658 		error = merror;
2659 
2660 	/*
2661 	 * Take any deferred signal now, after we have reacquired the mutex.
2662 	 */
2663 	if (self->ul_cond_wait_defer)
2664 		sigon(self);
2665 
2666 	return (error);
2667 }
2668 
2669 /*
2670  * Common code for _cond_wait() and _cond_timedwait()
2671  */
2672 int
2673 cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2674 {
2675 	int mtype = mp->mutex_type;
2676 	hrtime_t begin_sleep = 0;
2677 	ulwp_t *self = curthread;
2678 	uberdata_t *udp = self->ul_uberdata;
2679 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
2680 	tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2681 	uint8_t rcount;
2682 	int error = 0;
2683 
2684 	/*
2685 	 * The SUSV3 Posix spec for pthread_cond_timedwait() states:
2686 	 *	Except in the case of [ETIMEDOUT], all these error checks
2687 	 *	shall act as if they were performed immediately at the
2688 	 *	beginning of processing for the function and shall cause
2689 	 *	an error return, in effect, prior to modifying the state
2690 	 *	of the mutex specified by mutex or the condition variable
2691 	 *	specified by cond.
2692 	 * Therefore, we must return EINVAL now if the timout is invalid.
2693 	 */
2694 	if (tsp != NULL &&
2695 	    (tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC))
2696 		return (EINVAL);
2697 
2698 	if (__td_event_report(self, TD_SLEEP, udp)) {
2699 		self->ul_sp = stkptr();
2700 		self->ul_wchan = cvp;
2701 		self->ul_td_evbuf.eventnum = TD_SLEEP;
2702 		self->ul_td_evbuf.eventdata = cvp;
2703 		tdb_event(TD_SLEEP, udp);
2704 		self->ul_sp = 0;
2705 	}
2706 	if (csp) {
2707 		if (tsp)
2708 			tdb_incr(csp->cond_timedwait);
2709 		else
2710 			tdb_incr(csp->cond_wait);
2711 	}
2712 	if (msp)
2713 		begin_sleep = record_hold_time(msp);
2714 	else if (csp)
2715 		begin_sleep = gethrtime();
2716 
2717 	if (self->ul_error_detection) {
2718 		if (!mutex_is_held(mp))
2719 			lock_error(mp, "cond_wait", cvp, NULL);
2720 		if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0)
2721 			lock_error(mp, "recursive mutex in cond_wait",
2722 				cvp, NULL);
2723 		if (cvp->cond_type & USYNC_PROCESS) {
2724 			if (!(mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)))
2725 				lock_error(mp, "cond_wait", cvp,
2726 					"condvar process-shared, "
2727 					"mutex process-private");
2728 		} else {
2729 			if (mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST))
2730 				lock_error(mp, "cond_wait", cvp,
2731 					"condvar process-private, "
2732 					"mutex process-shared");
2733 		}
2734 	}
2735 
2736 	/*
2737 	 * We deal with recursive mutexes by completely
2738 	 * dropping the lock and restoring the recursion
2739 	 * count after waking up.  This is arguably wrong,
2740 	 * but it obeys the principle of least astonishment.
2741 	 */
2742 	rcount = mp->mutex_rcount;
2743 	mp->mutex_rcount = 0;
2744 	if ((mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST |
2745 	    PTHREAD_PRIO_INHERIT | PTHREAD_PRIO_PROTECT)) |
2746 	    (cvp->cond_type & USYNC_PROCESS))
2747 		error = cond_wait_kernel(cvp, mp, tsp);
2748 	else
2749 		error = cond_wait_queue(cvp, mp, tsp, msp);
2750 	mp->mutex_rcount = rcount;
2751 
2752 	if (csp) {
2753 		hrtime_t lapse = gethrtime() - begin_sleep;
2754 		if (tsp == NULL)
2755 			csp->cond_wait_sleep_time += lapse;
2756 		else {
2757 			csp->cond_timedwait_sleep_time += lapse;
2758 			if (error == ETIME)
2759 				tdb_incr(csp->cond_timedwait_timeout);
2760 		}
2761 	}
2762 	return (error);
2763 }
2764 
2765 /*
2766  * cond_wait() is a cancellation point but _cond_wait() is not.
2767  * System libraries call the non-cancellation version.
2768  * It is expected that only applications call the cancellation version.
2769  */
2770 int
2771 _cond_wait(cond_t *cvp, mutex_t *mp)
2772 {
2773 	ulwp_t *self = curthread;
2774 	uberdata_t *udp = self->ul_uberdata;
2775 	uberflags_t *gflags;
2776 
2777 	/*
2778 	 * Optimize the common case of USYNC_THREAD plus
2779 	 * no error detection, no lock statistics, and no event tracing.
2780 	 */
2781 	if ((gflags = self->ul_schedctl_called) != NULL &&
2782 	    (cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted |
2783 	    self->ul_td_events_enable |
2784 	    udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0)
2785 		return (cond_wait_queue(cvp, mp, NULL, NULL));
2786 
2787 	/*
2788 	 * Else do it the long way.
2789 	 */
2790 	return (cond_wait_common(cvp, mp, NULL));
2791 }
2792 
2793 int
2794 cond_wait(cond_t *cvp, mutex_t *mp)
2795 {
2796 	int error;
2797 
2798 	_cancelon();
2799 	error = _cond_wait(cvp, mp);
2800 	if (error == EINTR)
2801 		_canceloff();
2802 	else
2803 		_canceloff_nocancel();
2804 	return (error);
2805 }
2806 
2807 #pragma weak pthread_cond_wait = _pthread_cond_wait
2808 int
2809 _pthread_cond_wait(cond_t *cvp, mutex_t *mp)
2810 {
2811 	int error;
2812 
2813 	error = cond_wait(cvp, mp);
2814 	return ((error == EINTR)? 0 : error);
2815 }
2816 
2817 /*
2818  * cond_timedwait() is a cancellation point but _cond_timedwait() is not.
2819  * System libraries call the non-cancellation version.
2820  * It is expected that only applications call the cancellation version.
2821  */
2822 int
2823 _cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
2824 {
2825 	clockid_t clock_id = cvp->cond_clockid;
2826 	timespec_t reltime;
2827 	int error;
2828 
2829 	if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES)
2830 		clock_id = CLOCK_REALTIME;
2831 	abstime_to_reltime(clock_id, abstime, &reltime);
2832 	error = cond_wait_common(cvp, mp, &reltime);
2833 	if (error == ETIME && clock_id == CLOCK_HIGHRES) {
2834 		/*
2835 		 * Don't return ETIME if we didn't really get a timeout.
2836 		 * This can happen if we return because someone resets
2837 		 * the system clock.  Just return zero in this case,
2838 		 * giving a spurious wakeup but not a timeout.
2839 		 */
2840 		if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC +
2841 		    abstime->tv_nsec > gethrtime())
2842 			error = 0;
2843 	}
2844 	return (error);
2845 }
2846 
2847 int
2848 cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
2849 {
2850 	int error;
2851 
2852 	_cancelon();
2853 	error = _cond_timedwait(cvp, mp, abstime);
2854 	if (error == EINTR)
2855 		_canceloff();
2856 	else
2857 		_canceloff_nocancel();
2858 	return (error);
2859 }
2860 
2861 #pragma weak pthread_cond_timedwait = _pthread_cond_timedwait
2862 int
2863 _pthread_cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
2864 {
2865 	int error;
2866 
2867 	error = cond_timedwait(cvp, mp, abstime);
2868 	if (error == ETIME)
2869 		error = ETIMEDOUT;
2870 	else if (error == EINTR)
2871 		error = 0;
2872 	return (error);
2873 }
2874 
2875 /*
2876  * cond_reltimedwait() is a cancellation point but _cond_reltimedwait()
2877  * is not.  System libraries call the non-cancellation version.
2878  * It is expected that only applications call the cancellation version.
2879  */
2880 int
2881 _cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
2882 {
2883 	timespec_t tslocal = *reltime;
2884 
2885 	return (cond_wait_common(cvp, mp, &tslocal));
2886 }
2887 
2888 #pragma weak cond_reltimedwait = _cond_reltimedwait_cancel
2889 int
2890 _cond_reltimedwait_cancel(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
2891 {
2892 	int error;
2893 
2894 	_cancelon();
2895 	error = _cond_reltimedwait(cvp, mp, reltime);
2896 	if (error == EINTR)
2897 		_canceloff();
2898 	else
2899 		_canceloff_nocancel();
2900 	return (error);
2901 }
2902 
2903 #pragma weak pthread_cond_reltimedwait_np = _pthread_cond_reltimedwait_np
2904 int
2905 _pthread_cond_reltimedwait_np(cond_t *cvp, mutex_t *mp,
2906 	const timespec_t *reltime)
2907 {
2908 	int error;
2909 
2910 	error = _cond_reltimedwait_cancel(cvp, mp, reltime);
2911 	if (error == ETIME)
2912 		error = ETIMEDOUT;
2913 	else if (error == EINTR)
2914 		error = 0;
2915 	return (error);
2916 }
2917 
2918 #pragma weak pthread_cond_signal = cond_signal_internal
2919 #pragma weak _pthread_cond_signal = cond_signal_internal
2920 #pragma weak cond_signal = cond_signal_internal
2921 #pragma weak _cond_signal = cond_signal_internal
2922 int
2923 cond_signal_internal(cond_t *cvp)
2924 {
2925 	ulwp_t *self = curthread;
2926 	uberdata_t *udp = self->ul_uberdata;
2927 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
2928 	int error = 0;
2929 	queue_head_t *qp;
2930 	mutex_t *mp;
2931 	queue_head_t *mqp;
2932 	ulwp_t **ulwpp;
2933 	ulwp_t *ulwp;
2934 	ulwp_t *prev = NULL;
2935 	ulwp_t *next;
2936 	ulwp_t **suspp = NULL;
2937 	ulwp_t *susprev;
2938 
2939 	if (csp)
2940 		tdb_incr(csp->cond_signal);
2941 
2942 	if (cvp->cond_waiters_kernel)	/* someone sleeping in the kernel? */
2943 		error = __lwp_cond_signal(cvp);
2944 
2945 	if (!cvp->cond_waiters_user)	/* no one sleeping at user-level */
2946 		return (error);
2947 
2948 	/*
2949 	 * Move someone from the condvar sleep queue to the mutex sleep
2950 	 * queue for the mutex that he will acquire on being waked up.
2951 	 * We can do this only if we own the mutex he will acquire.
2952 	 * If we do not own the mutex, or if his ul_cv_wake flag
2953 	 * is set, just dequeue and unpark him.
2954 	 */
2955 	qp = queue_lock(cvp, CV);
2956 	for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
2957 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
2958 		if (ulwp->ul_wchan == cvp) {
2959 			if (!ulwp->ul_stop)
2960 				break;
2961 			/*
2962 			 * Try not to dequeue a suspended thread.
2963 			 * This mimics the old libthread's behavior.
2964 			 */
2965 			if (suspp == NULL) {
2966 				suspp = ulwpp;
2967 				susprev = prev;
2968 			}
2969 		}
2970 	}
2971 	if (ulwp == NULL && suspp != NULL) {
2972 		ulwp = *(ulwpp = suspp);
2973 		prev = susprev;
2974 		suspp = NULL;
2975 	}
2976 	if (ulwp == NULL) {	/* no one on the sleep queue */
2977 		cvp->cond_waiters_user = 0;
2978 		queue_unlock(qp);
2979 		return (error);
2980 	}
2981 	/*
2982 	 * Scan the remainder of the CV queue for another waiter.
2983 	 */
2984 	if (suspp != NULL) {
2985 		next = *suspp;
2986 	} else {
2987 		for (next = ulwp->ul_link; next != NULL; next = next->ul_link)
2988 			if (next->ul_wchan == cvp)
2989 				break;
2990 	}
2991 	if (next == NULL)
2992 		cvp->cond_waiters_user = 0;
2993 
2994 	/*
2995 	 * Inform the thread that he was the recipient of a cond_signal().
2996 	 * This lets him deal with cond_signal() and, concurrently,
2997 	 * one or more of a cancellation, a UNIX signal, or a timeout.
2998 	 * These latter conditions must not consume a cond_signal().
2999 	 */
3000 	ulwp->ul_signalled = 1;
3001 
3002 	/*
3003 	 * Dequeue the waiter but leave his ul_sleepq non-NULL
3004 	 * while we move him to the mutex queue so that he can
3005 	 * deal properly with spurious wakeups.
3006 	 */
3007 	*ulwpp = ulwp->ul_link;
3008 	if (qp->qh_tail == ulwp)
3009 		qp->qh_tail = prev;
3010 	qp->qh_qlen--;
3011 	ulwp->ul_link = NULL;
3012 
3013 	mp = ulwp->ul_cvmutex;		/* the mutex he will acquire */
3014 	ulwp->ul_cvmutex = NULL;
3015 	ASSERT(mp != NULL);
3016 
3017 	if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
3018 		lwpid_t lwpid = ulwp->ul_lwpid;
3019 
3020 		no_preempt(self);
3021 		ulwp->ul_sleepq = NULL;
3022 		ulwp->ul_wchan = NULL;
3023 		ulwp->ul_cv_wake = 0;
3024 		queue_unlock(qp);
3025 		(void) __lwp_unpark(lwpid);
3026 		preempt(self);
3027 	} else {
3028 		mqp = queue_lock(mp, MX);
3029 		enqueue(mqp, ulwp, mp, MX);
3030 		mp->mutex_waiters = 1;
3031 		queue_unlock(mqp);
3032 		queue_unlock(qp);
3033 	}
3034 
3035 	return (error);
3036 }
3037 
3038 #define	MAXLWPS	128	/* max remembered lwpids before overflow */
3039 #define	NEWLWPS	2048	/* max remembered lwpids at first overflow */
3040 
3041 #pragma weak pthread_cond_broadcast = cond_broadcast_internal
3042 #pragma weak _pthread_cond_broadcast = cond_broadcast_internal
3043 #pragma weak cond_broadcast = cond_broadcast_internal
3044 #pragma weak _cond_broadcast = cond_broadcast_internal
3045 int
3046 cond_broadcast_internal(cond_t *cvp)
3047 {
3048 	ulwp_t *self = curthread;
3049 	uberdata_t *udp = self->ul_uberdata;
3050 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
3051 	int error = 0;
3052 	queue_head_t *qp;
3053 	mutex_t *mp;
3054 	queue_head_t *mqp;
3055 	mutex_t *mp_cache = NULL;
3056 	queue_head_t *mqp_cache = NULL;
3057 	ulwp_t **ulwpp;
3058 	ulwp_t *ulwp;
3059 	ulwp_t *prev = NULL;
3060 	lwpid_t buffer[MAXLWPS];
3061 	lwpid_t *lwpid = buffer;
3062 	int nlwpid = 0;
3063 	int maxlwps = MAXLWPS;
3064 
3065 	if (csp)
3066 		tdb_incr(csp->cond_broadcast);
3067 
3068 	if (cvp->cond_waiters_kernel)	/* someone sleeping in the kernel? */
3069 		error = __lwp_cond_broadcast(cvp);
3070 
3071 	if (!cvp->cond_waiters_user)	/* no one sleeping at user-level */
3072 		return (error);
3073 
3074 	/*
3075 	 * Move everyone from the condvar sleep queue to the mutex sleep
3076 	 * queue for the mutex that they will acquire on being waked up.
3077 	 * We can do this only if we own the mutex they will acquire.
3078 	 * If we do not own the mutex, or if their ul_cv_wake flag
3079 	 * is set, just dequeue and unpark them.
3080 	 *
3081 	 * We keep track of lwpids that are to be unparked in lwpid[].
3082 	 * __lwp_unpark_all() is called to unpark all of them after
3083 	 * they have been removed from the sleep queue and the sleep
3084 	 * queue lock has been dropped.  If we run out of space in our
3085 	 * on-stack buffer, we need to allocate more but we can't call
3086 	 * lmalloc() because we are holding a queue lock when the overflow
3087 	 * occurs and lmalloc() acquires a lock.  We can't use alloca()
3088 	 * either because the application may have allocated a small stack
3089 	 * and we don't want to overrun the stack.  So we use the mmap()
3090 	 * system call directly since that path acquires no locks.
3091 	 */
3092 	qp = queue_lock(cvp, CV);
3093 	cvp->cond_waiters_user = 0;
3094 	ulwpp = &qp->qh_head;
3095 	while ((ulwp = *ulwpp) != NULL) {
3096 
3097 		if (ulwp->ul_wchan != cvp) {
3098 			prev = ulwp;
3099 			ulwpp = &ulwp->ul_link;
3100 			continue;
3101 		}
3102 
3103 		*ulwpp = ulwp->ul_link;
3104 		if (qp->qh_tail == ulwp)
3105 			qp->qh_tail = prev;
3106 		qp->qh_qlen--;
3107 		ulwp->ul_link = NULL;
3108 
3109 		mp = ulwp->ul_cvmutex;		/* his mutex */
3110 		ulwp->ul_cvmutex = NULL;
3111 		ASSERT(mp != NULL);
3112 
3113 		if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
3114 			ulwp->ul_sleepq = NULL;
3115 			ulwp->ul_wchan = NULL;
3116 			ulwp->ul_cv_wake = 0;
3117 			if (nlwpid == maxlwps) {
3118 				/*
3119 				 * Allocate NEWLWPS ids on the first overflow.
3120 				 * Double the allocation each time after that.
3121 				 */
3122 				int newlwps = (lwpid == buffer)? NEWLWPS :
3123 						2 * maxlwps;
3124 				void *vaddr = _private_mmap(NULL,
3125 					newlwps * sizeof (lwpid_t),
3126 					PROT_READ|PROT_WRITE,
3127 					MAP_PRIVATE|MAP_ANON, -1, (off_t)0);
3128 				if (vaddr == MAP_FAILED) {
3129 					/*
3130 					 * Let's hope this never happens.
3131 					 * If it does, then we have a terrible
3132 					 * thundering herd on our hands.
3133 					 */
3134 					(void) __lwp_unpark_all(lwpid, nlwpid);
3135 					nlwpid = 0;
3136 				} else {
3137 					(void) _memcpy(vaddr, lwpid,
3138 						maxlwps * sizeof (lwpid_t));
3139 					if (lwpid != buffer)
3140 						(void) _private_munmap(lwpid,
3141 						    maxlwps * sizeof (lwpid_t));
3142 					lwpid = vaddr;
3143 					maxlwps = newlwps;
3144 				}
3145 			}
3146 			lwpid[nlwpid++] = ulwp->ul_lwpid;
3147 		} else {
3148 			if (mp != mp_cache) {
3149 				if (mqp_cache != NULL)
3150 					queue_unlock(mqp_cache);
3151 				mqp_cache = queue_lock(mp, MX);
3152 				mp_cache = mp;
3153 			}
3154 			mqp = mqp_cache;
3155 			enqueue(mqp, ulwp, mp, MX);
3156 			mp->mutex_waiters = 1;
3157 		}
3158 	}
3159 	if (mqp_cache != NULL)
3160 		queue_unlock(mqp_cache);
3161 	queue_unlock(qp);
3162 	if (nlwpid) {
3163 		if (nlwpid == 1)
3164 			(void) __lwp_unpark(lwpid[0]);
3165 		else
3166 			(void) __lwp_unpark_all(lwpid, nlwpid);
3167 	}
3168 	if (lwpid != buffer)
3169 		(void) _private_munmap(lwpid, maxlwps * sizeof (lwpid_t));
3170 
3171 	return (error);
3172 }
3173 
3174 #pragma weak pthread_cond_destroy = _cond_destroy
3175 #pragma weak _pthread_cond_destroy = _cond_destroy
3176 #pragma weak cond_destroy = _cond_destroy
3177 int
3178 _cond_destroy(cond_t *cvp)
3179 {
3180 	cvp->cond_magic = 0;
3181 	tdb_sync_obj_deregister(cvp);
3182 	return (0);
3183 }
3184 
3185 #if defined(THREAD_DEBUG)
3186 void
3187 assert_no_libc_locks_held(void)
3188 {
3189 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
3190 }
3191 #endif
3192 
3193 /* protected by link_lock */
3194 uint64_t spin_lock_spin;
3195 uint64_t spin_lock_spin2;
3196 uint64_t spin_lock_sleep;
3197 uint64_t spin_lock_wakeup;
3198 
3199 /*
3200  * Record spin lock statistics.
3201  * Called by a thread exiting itself in thrp_exit().
3202  * Also called via atexit() from the thread calling
3203  * exit() to do all the other threads as well.
3204  */
3205 void
3206 record_spin_locks(ulwp_t *ulwp)
3207 {
3208 	spin_lock_spin += ulwp->ul_spin_lock_spin;
3209 	spin_lock_spin2 += ulwp->ul_spin_lock_spin2;
3210 	spin_lock_sleep += ulwp->ul_spin_lock_sleep;
3211 	spin_lock_wakeup += ulwp->ul_spin_lock_wakeup;
3212 	ulwp->ul_spin_lock_spin = 0;
3213 	ulwp->ul_spin_lock_spin2 = 0;
3214 	ulwp->ul_spin_lock_sleep = 0;
3215 	ulwp->ul_spin_lock_wakeup = 0;
3216 }
3217 
3218 /*
3219  * atexit function:  dump the queue statistics to stderr.
3220  */
3221 #if !defined(__lint)
3222 #define	fprintf	_fprintf
3223 #endif
3224 #include <stdio.h>
3225 void
3226 dump_queue_statistics(void)
3227 {
3228 	uberdata_t *udp = curthread->ul_uberdata;
3229 	queue_head_t *qp;
3230 	int qn;
3231 	uint64_t spin_lock_total = 0;
3232 
3233 	if (udp->queue_head == NULL || thread_queue_dump == 0)
3234 		return;
3235 
3236 	if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 ||
3237 	    fprintf(stderr, "queue#   lockcount    max qlen\n") < 0)
3238 		return;
3239 	for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) {
3240 		if (qp->qh_lockcount == 0)
3241 			continue;
3242 		spin_lock_total += qp->qh_lockcount;
3243 		if (fprintf(stderr, "%5d %12llu%12u\n", qn,
3244 			(u_longlong_t)qp->qh_lockcount, qp->qh_qmax) < 0)
3245 				return;
3246 	}
3247 
3248 	if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 ||
3249 	    fprintf(stderr, "queue#   lockcount    max qlen\n") < 0)
3250 		return;
3251 	for (qn = 0; qn < QHASHSIZE; qn++, qp++) {
3252 		if (qp->qh_lockcount == 0)
3253 			continue;
3254 		spin_lock_total += qp->qh_lockcount;
3255 		if (fprintf(stderr, "%5d %12llu%12u\n", qn,
3256 			(u_longlong_t)qp->qh_lockcount, qp->qh_qmax) < 0)
3257 				return;
3258 	}
3259 
3260 	(void) fprintf(stderr, "\n  spin_lock_total  = %10llu\n",
3261 		(u_longlong_t)spin_lock_total);
3262 	(void) fprintf(stderr, "  spin_lock_spin   = %10llu\n",
3263 		(u_longlong_t)spin_lock_spin);
3264 	(void) fprintf(stderr, "  spin_lock_spin2  = %10llu\n",
3265 		(u_longlong_t)spin_lock_spin2);
3266 	(void) fprintf(stderr, "  spin_lock_sleep  = %10llu\n",
3267 		(u_longlong_t)spin_lock_sleep);
3268 	(void) fprintf(stderr, "  spin_lock_wakeup = %10llu\n",
3269 		(u_longlong_t)spin_lock_wakeup);
3270 }
3271