xref: /titanic_51/usr/src/lib/libc/port/threads/scalls.c (revision 24db46411fd54f70c35b94bb952eb7ba040e43b4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "lint.h"
30 #include "thr_uberdata.h"
31 #include <stdarg.h>
32 #include <poll.h>
33 #include <stropts.h>
34 #include <dlfcn.h>
35 #include <sys/uio.h>
36 
37 /*
38  * fork_lock is special -- We can't use lmutex_lock() (and thereby enter
39  * a critical region) because the second thread to reach this point would
40  * become unstoppable and the first thread would hang waiting for the
41  * second thread to stop itself.  Therefore we don't use lmutex_lock() in
42  * fork_lock_enter(), but we do defer signals (the other form of concurrency).
43  *
44  * fork_lock_enter() does triple-duty.  Not only does it serialize
45  * calls to fork() and forkall(), but it also serializes calls to
46  * thr_suspend() (fork() and forkall() also suspend other threads),
47  * and furthermore it serializes I18N calls to functions in other
48  * dlopen()ed L10N objects that might be calling malloc()/free().
49  */
50 
51 static void
52 fork_lock_error(const char *who)
53 {
54 	char msg[200];
55 
56 	(void) strlcpy(msg, "deadlock condition: ", sizeof (msg));
57 	(void) strlcat(msg, who, sizeof (msg));
58 	(void) strlcat(msg, "() called from a fork handler", sizeof (msg));
59 	thread_error(msg);
60 }
61 
62 int
63 fork_lock_enter(const char *who)
64 {
65 	ulwp_t *self = curthread;
66 	uberdata_t *udp = self->ul_uberdata;
67 	int error = 0;
68 
69 	ASSERT(self->ul_critical == 0);
70 	sigoff(self);
71 	(void) _private_mutex_lock(&udp->fork_lock);
72 	if (udp->fork_count) {
73 		ASSERT(udp->fork_owner == self);
74 		/*
75 		 * This is a simple recursive lock except that we
76 		 * inform the caller if we have been called from
77 		 * a fork handler and let it deal with that fact.
78 		 */
79 		if (self->ul_fork) {
80 			/*
81 			 * We have been called from a fork handler.
82 			 */
83 			if (who != NULL &&
84 			    udp->uberflags.uf_thread_error_detection)
85 				fork_lock_error(who);
86 			error = EDEADLK;
87 		}
88 	}
89 	udp->fork_owner = self;
90 	udp->fork_count++;
91 	return (error);
92 }
93 
94 void
95 fork_lock_exit(void)
96 {
97 	ulwp_t *self = curthread;
98 	uberdata_t *udp = self->ul_uberdata;
99 
100 	ASSERT(self->ul_critical == 0);
101 	ASSERT(udp->fork_count != 0 && udp->fork_owner == self);
102 	if (--udp->fork_count == 0)
103 		udp->fork_owner = NULL;
104 	(void) _private_mutex_unlock(&udp->fork_lock);
105 	sigon(self);
106 }
107 
108 #pragma weak forkx = _private_forkx
109 #pragma weak _forkx = _private_forkx
110 static pid_t
111 _private_forkx(int flags)
112 {
113 	ulwp_t *self = curthread;
114 	uberdata_t *udp = self->ul_uberdata;
115 	pid_t pid;
116 	int error;
117 
118 	if (self->ul_vfork) {
119 		/*
120 		 * We are a child of vfork(); omit all of the fork
121 		 * logic and go straight to the system call trap.
122 		 * A vfork() child of a multithreaded parent
123 		 * must never call fork().
124 		 */
125 		if (udp->uberflags.uf_mt) {
126 			errno = ENOTSUP;
127 			return (-1);
128 		}
129 		pid = __forkx(flags);
130 		if (pid == 0) {		/* child */
131 			udp->pid = _private_getpid();
132 			self->ul_vfork = 0;
133 		}
134 		return (pid);
135 	}
136 
137 	if ((error = fork_lock_enter("fork")) != 0) {
138 		/*
139 		 * Cannot call fork() from a fork handler.
140 		 */
141 		fork_lock_exit();
142 		errno = error;
143 		return (-1);
144 	}
145 	self->ul_fork = 1;
146 
147 	/*
148 	 * The functions registered by pthread_atfork() are defined by
149 	 * the application and its libraries and we must not hold any
150 	 * internal libc locks while invoking them.  The fork_lock_enter()
151 	 * function serializes fork(), thr_suspend(), pthread_atfork() and
152 	 * dlclose() (which destroys whatever pthread_atfork() functions
153 	 * the library may have set up).  If one of these pthread_atfork()
154 	 * functions attempts to fork or suspend another thread or call
155 	 * pthread_atfork() or dlclose a library, it will detect a deadlock
156 	 * in fork_lock_enter().  Otherwise, the pthread_atfork() functions
157 	 * are free to do anything they please (except they will not
158 	 * receive any signals).
159 	 */
160 	_prefork_handler();
161 
162 	/*
163 	 * Block all signals.
164 	 * Just deferring them via sigon() is not enough.
165 	 * We have to avoid taking a deferred signal in the child
166 	 * that was actually sent to the parent before __forkx().
167 	 */
168 	block_all_signals(self);
169 
170 	/*
171 	 * This suspends all threads but this one, leaving them
172 	 * suspended outside of any critical regions in the library.
173 	 * Thus, we are assured that no library locks are held
174 	 * while we invoke fork() from the current thread.
175 	 */
176 	suspend_fork();
177 
178 	pid = __forkx(flags);
179 
180 	if (pid == 0) {		/* child */
181 		/*
182 		 * Clear our schedctl pointer.
183 		 * Discard any deferred signal that was sent to the parent.
184 		 * Because we blocked all signals before __forkx(), a
185 		 * deferred signal cannot have been taken by the child.
186 		 */
187 		self->ul_schedctl_called = NULL;
188 		self->ul_schedctl = NULL;
189 		self->ul_cursig = 0;
190 		self->ul_siginfo.si_signo = 0;
191 		udp->pid = _private_getpid();
192 		/* reset the library's data structures to reflect one thread */
193 		postfork1_child();
194 		restore_signals(self);
195 		_postfork_child_handler();
196 	} else {
197 		/* restart all threads that were suspended for fork() */
198 		continue_fork(0);
199 		restore_signals(self);
200 		_postfork_parent_handler();
201 	}
202 
203 	self->ul_fork = 0;
204 	fork_lock_exit();
205 
206 	return (pid);
207 }
208 
209 /*
210  * fork() is fork1() for both Posix threads and Solaris threads.
211  * The forkall() interface exists for applications that require
212  * the semantics of replicating all threads.
213  */
214 #pragma weak fork1 = _fork
215 #pragma weak _fork1 = _fork
216 #pragma weak fork = _fork
217 pid_t
218 _fork(void)
219 {
220 	return (_private_forkx(0));
221 }
222 
223 /*
224  * Much of the logic here is the same as in forkx().
225  * See the comments in forkx(), above.
226  */
227 #pragma weak forkallx = _private_forkallx
228 #pragma weak _forkallx = _private_forkallx
229 static pid_t
230 _private_forkallx(int flags)
231 {
232 	ulwp_t *self = curthread;
233 	uberdata_t *udp = self->ul_uberdata;
234 	pid_t pid;
235 	int error;
236 
237 	if (self->ul_vfork) {
238 		if (udp->uberflags.uf_mt) {
239 			errno = ENOTSUP;
240 			return (-1);
241 		}
242 		pid = __forkallx(flags);
243 		if (pid == 0) {		/* child */
244 			udp->pid = _private_getpid();
245 			self->ul_vfork = 0;
246 		}
247 		return (pid);
248 	}
249 
250 	if ((error = fork_lock_enter("forkall")) != 0) {
251 		fork_lock_exit();
252 		errno = error;
253 		return (-1);
254 	}
255 	self->ul_fork = 1;
256 	block_all_signals(self);
257 	suspend_fork();
258 
259 	pid = __forkallx(flags);
260 
261 	if (pid == 0) {
262 		self->ul_schedctl_called = NULL;
263 		self->ul_schedctl = NULL;
264 		self->ul_cursig = 0;
265 		self->ul_siginfo.si_signo = 0;
266 		udp->pid = _private_getpid();
267 		continue_fork(1);
268 	} else {
269 		continue_fork(0);
270 	}
271 	restore_signals(self);
272 	self->ul_fork = 0;
273 	fork_lock_exit();
274 
275 	return (pid);
276 }
277 
278 #pragma weak forkall = _forkall
279 pid_t
280 _forkall(void)
281 {
282 	return (_private_forkallx(0));
283 }
284 
285 /*
286  * Hacks for system calls to provide cancellation
287  * and improve java garbage collection.
288  */
289 #define	PROLOGUE							\
290 {									\
291 	ulwp_t *self = curthread;					\
292 	int nocancel = (self->ul_vfork | self->ul_nocancel);		\
293 	if (nocancel == 0) {						\
294 		self->ul_save_async = self->ul_cancel_async;		\
295 		if (!self->ul_cancel_disabled) {			\
296 			self->ul_cancel_async = 1;			\
297 			if (self->ul_cancel_pending)			\
298 				_pthread_exit(PTHREAD_CANCELED);	\
299 		}							\
300 		self->ul_sp = stkptr();					\
301 	}
302 
303 #define	EPILOGUE							\
304 	if (nocancel == 0) {						\
305 		self->ul_sp = 0;					\
306 		self->ul_cancel_async = self->ul_save_async;		\
307 	}								\
308 }
309 
310 /*
311  * Perform the body of the action required by most of the cancelable
312  * function calls.  The return(function_call) part is to allow the
313  * compiler to make the call be executed with tail recursion, which
314  * saves a register window on sparc and slightly (not much) improves
315  * the code for x86/x64 compilations.
316  */
317 #define	PERFORM(function_call)						\
318 	PROLOGUE							\
319 	if (nocancel)							\
320 		return (function_call);					\
321 	rv = function_call;						\
322 	EPILOGUE							\
323 	return (rv);
324 
325 /*
326  * Specialized prologue for sigsuspend() and pollsys().
327  * These system calls pass a signal mask to the kernel.
328  * The kernel replaces the thread's signal mask with the
329  * temporary mask before the thread goes to sleep.  If
330  * a signal is received, the signal handler will execute
331  * with the temporary mask, as modified by the sigaction
332  * for the particular signal.
333  *
334  * We block all signals until we reach the kernel with the
335  * temporary mask.  This eliminates race conditions with
336  * setting the signal mask while signals are being posted.
337  */
338 #define	PROLOGUE_MASK(sigmask)						\
339 {									\
340 	ulwp_t *self = curthread;					\
341 	int nocancel = (self->ul_vfork | self->ul_nocancel);		\
342 	if (!self->ul_vfork) {						\
343 		if (sigmask) {						\
344 			block_all_signals(self);			\
345 			self->ul_tmpmask.__sigbits[0] = sigmask->__sigbits[0]; \
346 			self->ul_tmpmask.__sigbits[1] = sigmask->__sigbits[1]; \
347 			delete_reserved_signals(&self->ul_tmpmask);	\
348 			self->ul_sigsuspend = 1;			\
349 		}							\
350 		if (nocancel == 0) {					\
351 			self->ul_save_async = self->ul_cancel_async;	\
352 			if (!self->ul_cancel_disabled) {		\
353 				self->ul_cancel_async = 1;		\
354 				if (self->ul_cancel_pending) {		\
355 					if (self->ul_sigsuspend) {	\
356 						self->ul_sigsuspend = 0;\
357 						restore_signals(self);	\
358 					}				\
359 					_pthread_exit(PTHREAD_CANCELED);\
360 				}					\
361 			}						\
362 			self->ul_sp = stkptr();				\
363 		}							\
364 	}
365 
366 /*
367  * If a signal is taken, we return from the system call wrapper with
368  * our original signal mask restored (see code in call_user_handler()).
369  * If not (self->ul_sigsuspend is still non-zero), we must restore our
370  * original signal mask ourself.
371  */
372 #define	EPILOGUE_MASK							\
373 	if (nocancel == 0) {						\
374 		self->ul_sp = 0;					\
375 		self->ul_cancel_async = self->ul_save_async;		\
376 	}								\
377 	if (self->ul_sigsuspend) {					\
378 		self->ul_sigsuspend = 0;				\
379 		restore_signals(self);					\
380 	}								\
381 }
382 
383 /*
384  * Cancellation prologue and epilogue functions,
385  * for cancellation points too complex to include here.
386  */
387 void
388 _cancel_prologue(void)
389 {
390 	ulwp_t *self = curthread;
391 
392 	self->ul_cancel_prologue = (self->ul_vfork | self->ul_nocancel);
393 	if (self->ul_cancel_prologue == 0) {
394 		self->ul_save_async = self->ul_cancel_async;
395 		if (!self->ul_cancel_disabled) {
396 			self->ul_cancel_async = 1;
397 			if (self->ul_cancel_pending)
398 				_pthread_exit(PTHREAD_CANCELED);
399 		}
400 		self->ul_sp = stkptr();
401 	}
402 }
403 
404 void
405 _cancel_epilogue(void)
406 {
407 	ulwp_t *self = curthread;
408 
409 	if (self->ul_cancel_prologue == 0) {
410 		self->ul_sp = 0;
411 		self->ul_cancel_async = self->ul_save_async;
412 	}
413 }
414 
415 /*
416  * Called from _thrp_join() (thr_join() is a cancellation point)
417  */
418 int
419 lwp_wait(thread_t tid, thread_t *found)
420 {
421 	int error;
422 
423 	PROLOGUE
424 	while ((error = __lwp_wait(tid, found)) == EINTR)
425 		;
426 	EPILOGUE
427 	return (error);
428 }
429 
430 ssize_t
431 read(int fd, void *buf, size_t size)
432 {
433 	extern ssize_t _read(int, void *, size_t);
434 	ssize_t rv;
435 
436 	PERFORM(_read(fd, buf, size))
437 }
438 
439 ssize_t
440 write(int fd, const void *buf, size_t size)
441 {
442 	extern ssize_t _write(int, const void *, size_t);
443 	ssize_t rv;
444 
445 	PERFORM(_write(fd, buf, size))
446 }
447 
448 int
449 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
450 	int *flagsp)
451 {
452 	extern int _getmsg(int, struct strbuf *, struct strbuf *, int *);
453 	int rv;
454 
455 	PERFORM(_getmsg(fd, ctlptr, dataptr, flagsp))
456 }
457 
458 int
459 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
460 	int *bandp, int *flagsp)
461 {
462 	extern int _getpmsg(int, struct strbuf *, struct strbuf *,
463 		int *, int *);
464 	int rv;
465 
466 	PERFORM(_getpmsg(fd, ctlptr, dataptr, bandp, flagsp))
467 }
468 
469 int
470 putmsg(int fd, const struct strbuf *ctlptr,
471 	const struct strbuf *dataptr, int flags)
472 {
473 	extern int _putmsg(int, const struct strbuf *,
474 		const struct strbuf *, int);
475 	int rv;
476 
477 	PERFORM(_putmsg(fd, ctlptr, dataptr, flags))
478 }
479 
480 int
481 __xpg4_putmsg(int fd, const struct strbuf *ctlptr,
482 	const struct strbuf *dataptr, int flags)
483 {
484 	extern int _putmsg(int, const struct strbuf *,
485 		const struct strbuf *, int);
486 	int rv;
487 
488 	PERFORM(_putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4))
489 }
490 
491 int
492 putpmsg(int fd, const struct strbuf *ctlptr,
493 	const struct strbuf *dataptr, int band, int flags)
494 {
495 	extern int _putpmsg(int, const struct strbuf *,
496 		const struct strbuf *, int, int);
497 	int rv;
498 
499 	PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags))
500 }
501 
502 int
503 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr,
504 	const struct strbuf *dataptr, int band, int flags)
505 {
506 	extern int _putpmsg(int, const struct strbuf *,
507 		const struct strbuf *, int, int);
508 	int rv;
509 
510 	PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4))
511 }
512 
513 #pragma weak nanosleep = _nanosleep
514 int
515 _nanosleep(const timespec_t *rqtp, timespec_t *rmtp)
516 {
517 	int error;
518 
519 	PROLOGUE
520 	error = __nanosleep(rqtp, rmtp);
521 	EPILOGUE
522 	if (error) {
523 		errno = error;
524 		return (-1);
525 	}
526 	return (0);
527 }
528 
529 #pragma weak clock_nanosleep = _clock_nanosleep
530 int
531 _clock_nanosleep(clockid_t clock_id, int flags,
532 	const timespec_t *rqtp, timespec_t *rmtp)
533 {
534 	timespec_t reltime;
535 	hrtime_t start;
536 	hrtime_t rqlapse;
537 	hrtime_t lapse;
538 	int error;
539 
540 	switch (clock_id) {
541 	case CLOCK_VIRTUAL:
542 	case CLOCK_PROCESS_CPUTIME_ID:
543 	case CLOCK_THREAD_CPUTIME_ID:
544 		return (ENOTSUP);
545 	case CLOCK_REALTIME:
546 	case CLOCK_HIGHRES:
547 		break;
548 	default:
549 		return (EINVAL);
550 	}
551 	if (flags & TIMER_ABSTIME) {
552 		abstime_to_reltime(clock_id, rqtp, &reltime);
553 		rmtp = NULL;
554 	} else {
555 		reltime = *rqtp;
556 		if (clock_id == CLOCK_HIGHRES)
557 			start = gethrtime();
558 	}
559 restart:
560 	PROLOGUE
561 	error = __nanosleep(&reltime, rmtp);
562 	EPILOGUE
563 	if (error == 0 && clock_id == CLOCK_HIGHRES) {
564 		/*
565 		 * Don't return yet if we didn't really get a timeout.
566 		 * This can happen if we return because someone resets
567 		 * the system clock.
568 		 */
569 		if (flags & TIMER_ABSTIME) {
570 			if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
571 			    rqtp->tv_nsec > gethrtime()) {
572 				abstime_to_reltime(clock_id, rqtp, &reltime);
573 				goto restart;
574 			}
575 		} else {
576 			rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
577 				rqtp->tv_nsec;
578 			lapse = gethrtime() - start;
579 			if (rqlapse > lapse) {
580 				hrt2ts(rqlapse - lapse, &reltime);
581 				goto restart;
582 			}
583 		}
584 	}
585 	if (error == 0 && clock_id == CLOCK_REALTIME &&
586 	    (flags & TIMER_ABSTIME)) {
587 		/*
588 		 * Don't return yet just because someone reset the
589 		 * system clock.  Recompute the new relative time
590 		 * and reissue the nanosleep() call if necessary.
591 		 *
592 		 * Resetting the system clock causes all sorts of
593 		 * problems and the SUSV3 standards body should
594 		 * have made the behavior of clock_nanosleep() be
595 		 * implementation-defined in such a case rather than
596 		 * being specific about honoring the new system time.
597 		 * Standards bodies are filled with fools and idiots.
598 		 */
599 		abstime_to_reltime(clock_id, rqtp, &reltime);
600 		if (reltime.tv_sec != 0 || reltime.tv_nsec != 0)
601 			goto restart;
602 	}
603 	return (error);
604 }
605 
606 #pragma weak sleep = _sleep
607 unsigned int
608 _sleep(unsigned int sec)
609 {
610 	unsigned int rem = 0;
611 	int error;
612 	timespec_t ts;
613 	timespec_t tsr;
614 
615 	ts.tv_sec = (time_t)sec;
616 	ts.tv_nsec = 0;
617 	PROLOGUE
618 	error = __nanosleep(&ts, &tsr);
619 	EPILOGUE
620 	if (error == EINTR) {
621 		rem = (unsigned int)tsr.tv_sec;
622 		if (tsr.tv_nsec >= NANOSEC / 2)
623 			rem++;
624 	}
625 	return (rem);
626 }
627 
628 #pragma weak usleep = _usleep
629 int
630 _usleep(useconds_t usec)
631 {
632 	timespec_t ts;
633 
634 	ts.tv_sec = usec / MICROSEC;
635 	ts.tv_nsec = (long)(usec % MICROSEC) * 1000;
636 	PROLOGUE
637 	(void) __nanosleep(&ts, NULL);
638 	EPILOGUE
639 	return (0);
640 }
641 
642 int
643 close(int fildes)
644 {
645 	extern void _aio_close(int);
646 	extern int _close(int);
647 	int rv;
648 
649 	_aio_close(fildes);
650 	PERFORM(_close(fildes))
651 }
652 
653 int
654 creat(const char *path, mode_t mode)
655 {
656 	extern int _creat(const char *, mode_t);
657 	int rv;
658 
659 	PERFORM(_creat(path, mode))
660 }
661 
662 #if !defined(_LP64)
663 int
664 creat64(const char *path, mode_t mode)
665 {
666 	extern int _creat64(const char *, mode_t);
667 	int rv;
668 
669 	PERFORM(_creat64(path, mode))
670 }
671 #endif	/* !_LP64 */
672 
673 int
674 fcntl(int fildes, int cmd, ...)
675 {
676 	extern int _fcntl(int, int, ...);
677 	intptr_t arg;
678 	int rv;
679 	va_list ap;
680 
681 	va_start(ap, cmd);
682 	arg = va_arg(ap, intptr_t);
683 	va_end(ap);
684 	if (cmd != F_SETLKW)
685 		return (_fcntl(fildes, cmd, arg));
686 	PERFORM(_fcntl(fildes, cmd, arg))
687 }
688 
689 int
690 fsync(int fildes)
691 {
692 	extern int _fsync(int);
693 	int rv;
694 
695 	PERFORM(_fsync(fildes))
696 }
697 
698 int
699 lockf(int fildes, int function, off_t size)
700 {
701 	extern int _lockf(int, int, off_t);
702 	int rv;
703 
704 	PERFORM(_lockf(fildes, function, size))
705 }
706 
707 #if !defined(_LP64)
708 int
709 lockf64(int fildes, int function, off64_t size)
710 {
711 	extern int _lockf64(int, int, off64_t);
712 	int rv;
713 
714 	PERFORM(_lockf64(fildes, function, size))
715 }
716 #endif	/* !_LP64 */
717 
718 ssize_t
719 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg)
720 {
721 	extern ssize_t _msgrcv(int, void *, size_t, long, int);
722 	ssize_t rv;
723 
724 	PERFORM(_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg))
725 }
726 
727 int
728 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
729 {
730 	extern int _msgsnd(int, const void *, size_t, int);
731 	int rv;
732 
733 	PERFORM(_msgsnd(msqid, msgp, msgsz, msgflg))
734 }
735 
736 int
737 msync(caddr_t addr, size_t len, int flags)
738 {
739 	extern int _msync(caddr_t, size_t, int);
740 	int rv;
741 
742 	PERFORM(_msync(addr, len, flags))
743 }
744 
745 int
746 open(const char *path, int oflag, ...)
747 {
748 	extern int _open(const char *, int, ...);
749 	mode_t mode;
750 	int rv;
751 	va_list ap;
752 
753 	va_start(ap, oflag);
754 	mode = va_arg(ap, mode_t);
755 	va_end(ap);
756 	PERFORM(_open(path, oflag, mode))
757 }
758 
759 #if !defined(_LP64)
760 int
761 open64(const char *path, int oflag, ...)
762 {
763 	extern int _open64(const char *, int, ...);
764 	mode_t mode;
765 	int rv;
766 	va_list ap;
767 
768 	va_start(ap, oflag);
769 	mode = va_arg(ap, mode_t);
770 	va_end(ap);
771 	PERFORM(_open64(path, oflag, mode))
772 }
773 #endif	/* !_LP64 */
774 
775 int
776 pause(void)
777 {
778 	extern int _pause(void);
779 	int rv;
780 
781 	PERFORM(_pause())
782 }
783 
784 ssize_t
785 pread(int fildes, void *buf, size_t nbyte, off_t offset)
786 {
787 	extern ssize_t _pread(int, void *, size_t, off_t);
788 	ssize_t rv;
789 
790 	PERFORM(_pread(fildes, buf, nbyte, offset))
791 }
792 
793 #if !defined(_LP64)
794 ssize_t
795 pread64(int fildes, void *buf, size_t nbyte, off64_t offset)
796 {
797 	extern ssize_t _pread64(int, void *, size_t, off64_t);
798 	ssize_t rv;
799 
800 	PERFORM(_pread64(fildes, buf, nbyte, offset))
801 }
802 #endif	/* !_LP64 */
803 
804 ssize_t
805 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset)
806 {
807 	extern ssize_t _pwrite(int, const void *, size_t, off_t);
808 	ssize_t rv;
809 
810 	PERFORM(_pwrite(fildes, buf, nbyte, offset))
811 }
812 
813 #if !defined(_LP64)
814 ssize_t
815 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset)
816 {
817 	extern ssize_t _pwrite64(int, const void *, size_t, off64_t);
818 	ssize_t rv;
819 
820 	PERFORM(_pwrite64(fildes, buf, nbyte, offset))
821 }
822 #endif	/* !_LP64 */
823 
824 ssize_t
825 readv(int fildes, const struct iovec *iov, int iovcnt)
826 {
827 	extern ssize_t _readv(int, const struct iovec *, int);
828 	ssize_t rv;
829 
830 	PERFORM(_readv(fildes, iov, iovcnt))
831 }
832 
833 int
834 sigpause(int sig)
835 {
836 	extern int _sigpause(int);
837 	int rv;
838 
839 	PERFORM(_sigpause(sig))
840 }
841 
842 #pragma weak sigsuspend = _sigsuspend
843 int
844 _sigsuspend(const sigset_t *set)
845 {
846 	extern int __sigsuspend(const sigset_t *);
847 	int rv;
848 
849 	PROLOGUE_MASK(set)
850 	rv = __sigsuspend(set);
851 	EPILOGUE_MASK
852 	return (rv);
853 }
854 
855 int
856 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout,
857 	const sigset_t *sigmask)
858 {
859 	extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *,
860 		const sigset_t *);
861 	int rv;
862 
863 	PROLOGUE_MASK(sigmask)
864 	rv = __pollsys(fds, nfd, timeout, sigmask);
865 	EPILOGUE_MASK
866 	return (rv);
867 }
868 
869 #pragma weak sigtimedwait = _sigtimedwait
870 int
871 _sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout)
872 {
873 	extern int __sigtimedwait(const sigset_t *, siginfo_t *,
874 		const timespec_t *);
875 	siginfo_t info;
876 	int sig;
877 
878 	PROLOGUE
879 	sig = __sigtimedwait(set, &info, timeout);
880 	if (sig == SIGCANCEL &&
881 	    (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) {
882 		do_sigcancel();
883 		errno = EINTR;
884 		sig = -1;
885 	}
886 	EPILOGUE
887 	if (sig != -1 && infop)
888 		(void) _private_memcpy(infop, &info, sizeof (*infop));
889 	return (sig);
890 }
891 
892 #pragma weak sigwait = _sigwait
893 int
894 _sigwait(sigset_t *set)
895 {
896 	return (_sigtimedwait(set, NULL, NULL));
897 }
898 
899 #pragma weak sigwaitinfo = _sigwaitinfo
900 int
901 _sigwaitinfo(const sigset_t *set, siginfo_t *info)
902 {
903 	return (_sigtimedwait(set, info, NULL));
904 }
905 
906 #pragma weak sigqueue = _sigqueue
907 int
908 _sigqueue(pid_t pid, int signo, const union sigval value)
909 {
910 	extern int __sigqueue(pid_t pid, int signo,
911 		/* const union sigval */ void *value, int si_code, int block);
912 	return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0));
913 }
914 
915 int
916 tcdrain(int fildes)
917 {
918 	extern int _tcdrain(int);
919 	int rv;
920 
921 	PERFORM(_tcdrain(fildes))
922 }
923 
924 pid_t
925 wait(int *stat_loc)
926 {
927 	extern pid_t _wait(int *);
928 	pid_t rv;
929 
930 	PERFORM(_wait(stat_loc))
931 }
932 
933 pid_t
934 wait3(int *statusp, int options, struct rusage *rusage)
935 {
936 	extern pid_t _wait3(int *, int, struct rusage *);
937 	pid_t rv;
938 
939 	PERFORM(_wait3(statusp, options, rusage))
940 }
941 
942 int
943 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options)
944 {
945 	extern int _waitid(idtype_t, id_t, siginfo_t *, int);
946 	int rv;
947 
948 	PERFORM(_waitid(idtype, id, infop, options))
949 }
950 
951 /*
952  * waitpid_cancel() is a libc-private symbol for internal use
953  * where cancellation semantics is desired (see system()).
954  */
955 #pragma weak waitpid_cancel = waitpid
956 pid_t
957 waitpid(pid_t pid, int *stat_loc, int options)
958 {
959 	extern pid_t _waitpid(pid_t, int *, int);
960 	pid_t rv;
961 
962 	PERFORM(_waitpid(pid, stat_loc, options))
963 }
964 
965 ssize_t
966 writev(int fildes, const struct iovec *iov, int iovcnt)
967 {
968 	extern ssize_t _writev(int, const struct iovec *, int);
969 	ssize_t rv;
970 
971 	PERFORM(_writev(fildes, iov, iovcnt))
972 }
973