1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "lint.h" 30 #include "thr_uberdata.h" 31 #include <stdarg.h> 32 #include <poll.h> 33 #include <stropts.h> 34 #include <dlfcn.h> 35 #include <sys/uio.h> 36 37 /* 38 * fork_lock does double-duty. Not only does it (and atfork_lock) 39 * serialize calls to fork() and forkall(), but it also serializes calls 40 * to thr_suspend() and thr_continue() (because fork() and forkall() also 41 * suspend and continue other threads and they want no competition). 42 * 43 * atfork_lock also does double-duty. Not only does it protect the 44 * pthread_atfork() data structures, but it also serializes I18N calls 45 * to functions in dlopen()ed L10N objects. These functions can do 46 * anything, including call malloc() and free(). Such calls are not 47 * fork-safe when protected by an ordinary mutex because, with an 48 * interposed malloc library present, there would be a lock ordering 49 * violation due to the pthread_atfork() prefork function in the 50 * interposition library acquiring its malloc lock(s) before the 51 * ordinary mutex in libc being acquired by libc's prefork functions. 52 * 53 * Within libc, calls to malloc() and free() are fork-safe only if the 54 * calls are made while holding no other libc locks. This covers almost 55 * all of libc's malloc() and free() calls. For those libc code paths, 56 * such as the above-mentioned I18N calls, that require serialization and 57 * that may call malloc() or free(), libc uses atfork_lock_enter() to perform 58 * the serialization. This works because atfork_lock is acquired by fork() 59 * before any of the pthread_atfork() prefork functions are called. 60 */ 61 62 void 63 fork_lock_enter(void) 64 { 65 ASSERT(curthread->ul_critical == 0); 66 (void) _private_mutex_lock(&curthread->ul_uberdata->fork_lock); 67 } 68 69 void 70 fork_lock_exit(void) 71 { 72 ASSERT(curthread->ul_critical == 0); 73 (void) _private_mutex_unlock(&curthread->ul_uberdata->fork_lock); 74 } 75 76 void 77 atfork_lock_enter(void) 78 { 79 ASSERT(curthread->ul_critical == 0); 80 (void) _private_mutex_lock(&curthread->ul_uberdata->atfork_lock); 81 } 82 83 void 84 atfork_lock_exit(void) 85 { 86 ASSERT(curthread->ul_critical == 0); 87 (void) _private_mutex_unlock(&curthread->ul_uberdata->atfork_lock); 88 } 89 90 #pragma weak forkx = _private_forkx 91 #pragma weak _forkx = _private_forkx 92 pid_t 93 _private_forkx(int flags) 94 { 95 ulwp_t *self = curthread; 96 uberdata_t *udp = self->ul_uberdata; 97 pid_t pid; 98 99 if (self->ul_vfork) { 100 /* 101 * We are a child of vfork(); omit all of the fork 102 * logic and go straight to the system call trap. 103 * A vfork() child of a multithreaded parent 104 * must never call fork(). 105 */ 106 if (udp->uberflags.uf_mt) { 107 errno = ENOTSUP; 108 return (-1); 109 } 110 pid = __forkx(flags); 111 if (pid == 0) { /* child */ 112 udp->pid = _private_getpid(); 113 self->ul_vfork = 0; 114 } 115 return (pid); 116 } 117 118 sigoff(self); 119 if (self->ul_fork) { 120 /* 121 * Cannot call fork() from a fork handler. 122 */ 123 sigon(self); 124 errno = EDEADLK; 125 return (-1); 126 } 127 self->ul_fork = 1; 128 129 /* 130 * The functions registered by pthread_atfork() are defined by 131 * the application and its libraries and we must not hold any 132 * internal lmutex_lock()-acquired locks while invoking them. 133 * We hold only udp->atfork_lock to protect the atfork linkages. 134 * If one of these pthread_atfork() functions attempts to fork 135 * or to call pthread_atfork(), libc will detect the error and 136 * fail the call with EDEADLK. Otherwise, the pthread_atfork() 137 * functions are free to do anything they please (except they 138 * will not receive any signals). 139 */ 140 (void) _private_mutex_lock(&udp->atfork_lock); 141 _prefork_handler(); 142 143 /* 144 * Block every other thread attempting thr_suspend() or thr_continue(). 145 */ 146 (void) _private_mutex_lock(&udp->fork_lock); 147 148 /* 149 * Block all signals. 150 * Just deferring them via sigoff() is not enough. 151 * We have to avoid taking a deferred signal in the child 152 * that was actually sent to the parent before __forkx(). 153 */ 154 block_all_signals(self); 155 156 /* 157 * This suspends all threads but this one, leaving them 158 * suspended outside of any critical regions in the library. 159 * Thus, we are assured that no lmutex_lock()-acquired library 160 * locks are held while we invoke fork() from the current thread. 161 */ 162 suspend_fork(); 163 164 pid = __forkx(flags); 165 166 if (pid == 0) { /* child */ 167 /* 168 * Clear our schedctl pointer. 169 * Discard any deferred signal that was sent to the parent. 170 * Because we blocked all signals before __forkx(), a 171 * deferred signal cannot have been taken by the child. 172 */ 173 self->ul_schedctl_called = NULL; 174 self->ul_schedctl = NULL; 175 self->ul_cursig = 0; 176 self->ul_siginfo.si_signo = 0; 177 udp->pid = _private_getpid(); 178 /* reset the library's data structures to reflect one thread */ 179 unregister_locks(); 180 postfork1_child(); 181 restore_signals(self); 182 (void) _private_mutex_unlock(&udp->fork_lock); 183 _postfork_child_handler(); 184 } else { 185 /* restart all threads that were suspended for fork() */ 186 continue_fork(0); 187 restore_signals(self); 188 (void) _private_mutex_unlock(&udp->fork_lock); 189 _postfork_parent_handler(); 190 } 191 192 (void) _private_mutex_unlock(&udp->atfork_lock); 193 self->ul_fork = 0; 194 sigon(self); 195 196 return (pid); 197 } 198 199 /* 200 * fork() is fork1() for both Posix threads and Solaris threads. 201 * The forkall() interface exists for applications that require 202 * the semantics of replicating all threads. 203 */ 204 #pragma weak fork1 = _fork 205 #pragma weak _fork1 = _fork 206 #pragma weak fork = _fork 207 pid_t 208 _fork(void) 209 { 210 return (_private_forkx(0)); 211 } 212 213 /* 214 * Much of the logic here is the same as in forkx(). 215 * See the comments in forkx(), above. 216 */ 217 #pragma weak forkallx = _private_forkallx 218 #pragma weak _forkallx = _private_forkallx 219 pid_t 220 _private_forkallx(int flags) 221 { 222 ulwp_t *self = curthread; 223 uberdata_t *udp = self->ul_uberdata; 224 pid_t pid; 225 226 if (self->ul_vfork) { 227 if (udp->uberflags.uf_mt) { 228 errno = ENOTSUP; 229 return (-1); 230 } 231 pid = __forkallx(flags); 232 if (pid == 0) { /* child */ 233 udp->pid = _private_getpid(); 234 self->ul_vfork = 0; 235 } 236 return (pid); 237 } 238 239 sigoff(self); 240 if (self->ul_fork) { 241 sigon(self); 242 errno = EDEADLK; 243 return (-1); 244 } 245 self->ul_fork = 1; 246 (void) _private_mutex_lock(&udp->atfork_lock); 247 (void) _private_mutex_lock(&udp->fork_lock); 248 block_all_signals(self); 249 suspend_fork(); 250 251 pid = __forkallx(flags); 252 253 if (pid == 0) { 254 self->ul_schedctl_called = NULL; 255 self->ul_schedctl = NULL; 256 self->ul_cursig = 0; 257 self->ul_siginfo.si_signo = 0; 258 udp->pid = _private_getpid(); 259 unregister_locks(); 260 continue_fork(1); 261 } else { 262 continue_fork(0); 263 } 264 restore_signals(self); 265 (void) _private_mutex_unlock(&udp->fork_lock); 266 (void) _private_mutex_unlock(&udp->atfork_lock); 267 self->ul_fork = 0; 268 sigon(self); 269 270 return (pid); 271 } 272 273 #pragma weak forkall = _forkall 274 pid_t 275 _forkall(void) 276 { 277 return (_private_forkallx(0)); 278 } 279 280 /* 281 * Hacks for system calls to provide cancellation 282 * and improve java garbage collection. 283 */ 284 #define PROLOGUE \ 285 { \ 286 ulwp_t *self = curthread; \ 287 int nocancel = (self->ul_vfork | self->ul_nocancel); \ 288 if (nocancel == 0) { \ 289 self->ul_save_async = self->ul_cancel_async; \ 290 if (!self->ul_cancel_disabled) { \ 291 self->ul_cancel_async = 1; \ 292 if (self->ul_cancel_pending) \ 293 _pthread_exit(PTHREAD_CANCELED); \ 294 } \ 295 self->ul_sp = stkptr(); \ 296 } 297 298 #define EPILOGUE \ 299 if (nocancel == 0) { \ 300 self->ul_sp = 0; \ 301 self->ul_cancel_async = self->ul_save_async; \ 302 } \ 303 } 304 305 /* 306 * Perform the body of the action required by most of the cancelable 307 * function calls. The return(function_call) part is to allow the 308 * compiler to make the call be executed with tail recursion, which 309 * saves a register window on sparc and slightly (not much) improves 310 * the code for x86/x64 compilations. 311 */ 312 #define PERFORM(function_call) \ 313 PROLOGUE \ 314 if (nocancel) \ 315 return (function_call); \ 316 rv = function_call; \ 317 EPILOGUE \ 318 return (rv); 319 320 /* 321 * Specialized prologue for sigsuspend() and pollsys(). 322 * These system calls pass a signal mask to the kernel. 323 * The kernel replaces the thread's signal mask with the 324 * temporary mask before the thread goes to sleep. If 325 * a signal is received, the signal handler will execute 326 * with the temporary mask, as modified by the sigaction 327 * for the particular signal. 328 * 329 * We block all signals until we reach the kernel with the 330 * temporary mask. This eliminates race conditions with 331 * setting the signal mask while signals are being posted. 332 */ 333 #define PROLOGUE_MASK(sigmask) \ 334 { \ 335 ulwp_t *self = curthread; \ 336 int nocancel = (self->ul_vfork | self->ul_nocancel); \ 337 if (!self->ul_vfork) { \ 338 if (sigmask) { \ 339 block_all_signals(self); \ 340 self->ul_tmpmask.__sigbits[0] = sigmask->__sigbits[0]; \ 341 self->ul_tmpmask.__sigbits[1] = sigmask->__sigbits[1]; \ 342 delete_reserved_signals(&self->ul_tmpmask); \ 343 self->ul_sigsuspend = 1; \ 344 } \ 345 if (nocancel == 0) { \ 346 self->ul_save_async = self->ul_cancel_async; \ 347 if (!self->ul_cancel_disabled) { \ 348 self->ul_cancel_async = 1; \ 349 if (self->ul_cancel_pending) { \ 350 if (self->ul_sigsuspend) { \ 351 self->ul_sigsuspend = 0;\ 352 restore_signals(self); \ 353 } \ 354 _pthread_exit(PTHREAD_CANCELED);\ 355 } \ 356 } \ 357 self->ul_sp = stkptr(); \ 358 } \ 359 } 360 361 /* 362 * If a signal is taken, we return from the system call wrapper with 363 * our original signal mask restored (see code in call_user_handler()). 364 * If not (self->ul_sigsuspend is still non-zero), we must restore our 365 * original signal mask ourself. 366 */ 367 #define EPILOGUE_MASK \ 368 if (nocancel == 0) { \ 369 self->ul_sp = 0; \ 370 self->ul_cancel_async = self->ul_save_async; \ 371 } \ 372 if (self->ul_sigsuspend) { \ 373 self->ul_sigsuspend = 0; \ 374 restore_signals(self); \ 375 } \ 376 } 377 378 /* 379 * Cancellation prologue and epilogue functions, 380 * for cancellation points too complex to include here. 381 */ 382 void 383 _cancel_prologue(void) 384 { 385 ulwp_t *self = curthread; 386 387 self->ul_cancel_prologue = (self->ul_vfork | self->ul_nocancel); 388 if (self->ul_cancel_prologue == 0) { 389 self->ul_save_async = self->ul_cancel_async; 390 if (!self->ul_cancel_disabled) { 391 self->ul_cancel_async = 1; 392 if (self->ul_cancel_pending) 393 _pthread_exit(PTHREAD_CANCELED); 394 } 395 self->ul_sp = stkptr(); 396 } 397 } 398 399 void 400 _cancel_epilogue(void) 401 { 402 ulwp_t *self = curthread; 403 404 if (self->ul_cancel_prologue == 0) { 405 self->ul_sp = 0; 406 self->ul_cancel_async = self->ul_save_async; 407 } 408 } 409 410 /* 411 * Called from _thrp_join() (thr_join() is a cancellation point) 412 */ 413 int 414 lwp_wait(thread_t tid, thread_t *found) 415 { 416 int error; 417 418 PROLOGUE 419 while ((error = __lwp_wait(tid, found)) == EINTR) 420 ; 421 EPILOGUE 422 return (error); 423 } 424 425 ssize_t 426 read(int fd, void *buf, size_t size) 427 { 428 extern ssize_t _read(int, void *, size_t); 429 ssize_t rv; 430 431 PERFORM(_read(fd, buf, size)) 432 } 433 434 ssize_t 435 write(int fd, const void *buf, size_t size) 436 { 437 extern ssize_t _write(int, const void *, size_t); 438 ssize_t rv; 439 440 PERFORM(_write(fd, buf, size)) 441 } 442 443 int 444 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, 445 int *flagsp) 446 { 447 extern int _getmsg(int, struct strbuf *, struct strbuf *, int *); 448 int rv; 449 450 PERFORM(_getmsg(fd, ctlptr, dataptr, flagsp)) 451 } 452 453 int 454 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, 455 int *bandp, int *flagsp) 456 { 457 extern int _getpmsg(int, struct strbuf *, struct strbuf *, 458 int *, int *); 459 int rv; 460 461 PERFORM(_getpmsg(fd, ctlptr, dataptr, bandp, flagsp)) 462 } 463 464 int 465 putmsg(int fd, const struct strbuf *ctlptr, 466 const struct strbuf *dataptr, int flags) 467 { 468 extern int _putmsg(int, const struct strbuf *, 469 const struct strbuf *, int); 470 int rv; 471 472 PERFORM(_putmsg(fd, ctlptr, dataptr, flags)) 473 } 474 475 int 476 __xpg4_putmsg(int fd, const struct strbuf *ctlptr, 477 const struct strbuf *dataptr, int flags) 478 { 479 extern int _putmsg(int, const struct strbuf *, 480 const struct strbuf *, int); 481 int rv; 482 483 PERFORM(_putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4)) 484 } 485 486 int 487 putpmsg(int fd, const struct strbuf *ctlptr, 488 const struct strbuf *dataptr, int band, int flags) 489 { 490 extern int _putpmsg(int, const struct strbuf *, 491 const struct strbuf *, int, int); 492 int rv; 493 494 PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags)) 495 } 496 497 int 498 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr, 499 const struct strbuf *dataptr, int band, int flags) 500 { 501 extern int _putpmsg(int, const struct strbuf *, 502 const struct strbuf *, int, int); 503 int rv; 504 505 PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4)) 506 } 507 508 #pragma weak nanosleep = _nanosleep 509 int 510 _nanosleep(const timespec_t *rqtp, timespec_t *rmtp) 511 { 512 int error; 513 514 PROLOGUE 515 error = __nanosleep(rqtp, rmtp); 516 EPILOGUE 517 if (error) { 518 errno = error; 519 return (-1); 520 } 521 return (0); 522 } 523 524 #pragma weak clock_nanosleep = _clock_nanosleep 525 int 526 _clock_nanosleep(clockid_t clock_id, int flags, 527 const timespec_t *rqtp, timespec_t *rmtp) 528 { 529 timespec_t reltime; 530 hrtime_t start; 531 hrtime_t rqlapse; 532 hrtime_t lapse; 533 int error; 534 535 switch (clock_id) { 536 case CLOCK_VIRTUAL: 537 case CLOCK_PROCESS_CPUTIME_ID: 538 case CLOCK_THREAD_CPUTIME_ID: 539 return (ENOTSUP); 540 case CLOCK_REALTIME: 541 case CLOCK_HIGHRES: 542 break; 543 default: 544 return (EINVAL); 545 } 546 if (flags & TIMER_ABSTIME) { 547 abstime_to_reltime(clock_id, rqtp, &reltime); 548 rmtp = NULL; 549 } else { 550 reltime = *rqtp; 551 if (clock_id == CLOCK_HIGHRES) 552 start = gethrtime(); 553 } 554 restart: 555 PROLOGUE 556 error = __nanosleep(&reltime, rmtp); 557 EPILOGUE 558 if (error == 0 && clock_id == CLOCK_HIGHRES) { 559 /* 560 * Don't return yet if we didn't really get a timeout. 561 * This can happen if we return because someone resets 562 * the system clock. 563 */ 564 if (flags & TIMER_ABSTIME) { 565 if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + 566 rqtp->tv_nsec > gethrtime()) { 567 abstime_to_reltime(clock_id, rqtp, &reltime); 568 goto restart; 569 } 570 } else { 571 rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + 572 rqtp->tv_nsec; 573 lapse = gethrtime() - start; 574 if (rqlapse > lapse) { 575 hrt2ts(rqlapse - lapse, &reltime); 576 goto restart; 577 } 578 } 579 } 580 if (error == 0 && clock_id == CLOCK_REALTIME && 581 (flags & TIMER_ABSTIME)) { 582 /* 583 * Don't return yet just because someone reset the 584 * system clock. Recompute the new relative time 585 * and reissue the nanosleep() call if necessary. 586 * 587 * Resetting the system clock causes all sorts of 588 * problems and the SUSV3 standards body should 589 * have made the behavior of clock_nanosleep() be 590 * implementation-defined in such a case rather than 591 * being specific about honoring the new system time. 592 * Standards bodies are filled with fools and idiots. 593 */ 594 abstime_to_reltime(clock_id, rqtp, &reltime); 595 if (reltime.tv_sec != 0 || reltime.tv_nsec != 0) 596 goto restart; 597 } 598 return (error); 599 } 600 601 #pragma weak sleep = _sleep 602 unsigned int 603 _sleep(unsigned int sec) 604 { 605 unsigned int rem = 0; 606 int error; 607 timespec_t ts; 608 timespec_t tsr; 609 610 ts.tv_sec = (time_t)sec; 611 ts.tv_nsec = 0; 612 PROLOGUE 613 error = __nanosleep(&ts, &tsr); 614 EPILOGUE 615 if (error == EINTR) { 616 rem = (unsigned int)tsr.tv_sec; 617 if (tsr.tv_nsec >= NANOSEC / 2) 618 rem++; 619 } 620 return (rem); 621 } 622 623 #pragma weak usleep = _usleep 624 int 625 _usleep(useconds_t usec) 626 { 627 timespec_t ts; 628 629 ts.tv_sec = usec / MICROSEC; 630 ts.tv_nsec = (long)(usec % MICROSEC) * 1000; 631 PROLOGUE 632 (void) __nanosleep(&ts, NULL); 633 EPILOGUE 634 return (0); 635 } 636 637 int 638 close(int fildes) 639 { 640 extern void _aio_close(int); 641 extern int _close(int); 642 int rv; 643 644 _aio_close(fildes); 645 PERFORM(_close(fildes)) 646 } 647 648 int 649 creat(const char *path, mode_t mode) 650 { 651 extern int _creat(const char *, mode_t); 652 int rv; 653 654 PERFORM(_creat(path, mode)) 655 } 656 657 #if !defined(_LP64) 658 int 659 creat64(const char *path, mode_t mode) 660 { 661 extern int _creat64(const char *, mode_t); 662 int rv; 663 664 PERFORM(_creat64(path, mode)) 665 } 666 #endif /* !_LP64 */ 667 668 int 669 fcntl(int fildes, int cmd, ...) 670 { 671 extern int _fcntl(int, int, ...); 672 intptr_t arg; 673 int rv; 674 va_list ap; 675 676 va_start(ap, cmd); 677 arg = va_arg(ap, intptr_t); 678 va_end(ap); 679 if (cmd != F_SETLKW) 680 return (_fcntl(fildes, cmd, arg)); 681 PERFORM(_fcntl(fildes, cmd, arg)) 682 } 683 684 int 685 fdatasync(int fildes) 686 { 687 extern int _fdatasync(int); 688 int rv; 689 690 PERFORM(_fdatasync(fildes)) 691 } 692 693 int 694 fsync(int fildes) 695 { 696 extern int _fsync(int); 697 int rv; 698 699 PERFORM(_fsync(fildes)) 700 } 701 702 int 703 lockf(int fildes, int function, off_t size) 704 { 705 extern int _lockf(int, int, off_t); 706 int rv; 707 708 PERFORM(_lockf(fildes, function, size)) 709 } 710 711 #if !defined(_LP64) 712 int 713 lockf64(int fildes, int function, off64_t size) 714 { 715 extern int _lockf64(int, int, off64_t); 716 int rv; 717 718 PERFORM(_lockf64(fildes, function, size)) 719 } 720 #endif /* !_LP64 */ 721 722 ssize_t 723 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg) 724 { 725 extern ssize_t _msgrcv(int, void *, size_t, long, int); 726 ssize_t rv; 727 728 PERFORM(_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)) 729 } 730 731 int 732 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg) 733 { 734 extern int _msgsnd(int, const void *, size_t, int); 735 int rv; 736 737 PERFORM(_msgsnd(msqid, msgp, msgsz, msgflg)) 738 } 739 740 int 741 msync(caddr_t addr, size_t len, int flags) 742 { 743 extern int _msync(caddr_t, size_t, int); 744 int rv; 745 746 PERFORM(_msync(addr, len, flags)) 747 } 748 749 int 750 open(const char *path, int oflag, ...) 751 { 752 extern int _open(const char *, int, ...); 753 mode_t mode; 754 int rv; 755 va_list ap; 756 757 va_start(ap, oflag); 758 mode = va_arg(ap, mode_t); 759 va_end(ap); 760 PERFORM(_open(path, oflag, mode)) 761 } 762 763 #if !defined(_LP64) 764 int 765 open64(const char *path, int oflag, ...) 766 { 767 extern int _open64(const char *, int, ...); 768 mode_t mode; 769 int rv; 770 va_list ap; 771 772 va_start(ap, oflag); 773 mode = va_arg(ap, mode_t); 774 va_end(ap); 775 PERFORM(_open64(path, oflag, mode)) 776 } 777 #endif /* !_LP64 */ 778 779 int 780 pause(void) 781 { 782 extern int _pause(void); 783 int rv; 784 785 PERFORM(_pause()) 786 } 787 788 ssize_t 789 pread(int fildes, void *buf, size_t nbyte, off_t offset) 790 { 791 extern ssize_t _pread(int, void *, size_t, off_t); 792 ssize_t rv; 793 794 PERFORM(_pread(fildes, buf, nbyte, offset)) 795 } 796 797 #if !defined(_LP64) 798 ssize_t 799 pread64(int fildes, void *buf, size_t nbyte, off64_t offset) 800 { 801 extern ssize_t _pread64(int, void *, size_t, off64_t); 802 ssize_t rv; 803 804 PERFORM(_pread64(fildes, buf, nbyte, offset)) 805 } 806 #endif /* !_LP64 */ 807 808 ssize_t 809 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset) 810 { 811 extern ssize_t _pwrite(int, const void *, size_t, off_t); 812 ssize_t rv; 813 814 PERFORM(_pwrite(fildes, buf, nbyte, offset)) 815 } 816 817 #if !defined(_LP64) 818 ssize_t 819 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset) 820 { 821 extern ssize_t _pwrite64(int, const void *, size_t, off64_t); 822 ssize_t rv; 823 824 PERFORM(_pwrite64(fildes, buf, nbyte, offset)) 825 } 826 #endif /* !_LP64 */ 827 828 ssize_t 829 readv(int fildes, const struct iovec *iov, int iovcnt) 830 { 831 extern ssize_t _readv(int, const struct iovec *, int); 832 ssize_t rv; 833 834 PERFORM(_readv(fildes, iov, iovcnt)) 835 } 836 837 int 838 sigpause(int sig) 839 { 840 extern int _sigpause(int); 841 int rv; 842 843 PERFORM(_sigpause(sig)) 844 } 845 846 #pragma weak sigsuspend = _sigsuspend 847 int 848 _sigsuspend(const sigset_t *set) 849 { 850 extern int __sigsuspend(const sigset_t *); 851 int rv; 852 853 PROLOGUE_MASK(set) 854 rv = __sigsuspend(set); 855 EPILOGUE_MASK 856 return (rv); 857 } 858 859 int 860 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout, 861 const sigset_t *sigmask) 862 { 863 extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *, 864 const sigset_t *); 865 int rv; 866 867 PROLOGUE_MASK(sigmask) 868 rv = __pollsys(fds, nfd, timeout, sigmask); 869 EPILOGUE_MASK 870 return (rv); 871 } 872 873 #pragma weak sigtimedwait = _sigtimedwait 874 int 875 _sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout) 876 { 877 extern int __sigtimedwait(const sigset_t *, siginfo_t *, 878 const timespec_t *); 879 siginfo_t info; 880 int sig; 881 882 PROLOGUE 883 sig = __sigtimedwait(set, &info, timeout); 884 if (sig == SIGCANCEL && 885 (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) { 886 do_sigcancel(); 887 errno = EINTR; 888 sig = -1; 889 } 890 EPILOGUE 891 if (sig != -1 && infop) 892 (void) _private_memcpy(infop, &info, sizeof (*infop)); 893 return (sig); 894 } 895 896 #pragma weak sigwait = _sigwait 897 int 898 _sigwait(sigset_t *set) 899 { 900 return (_sigtimedwait(set, NULL, NULL)); 901 } 902 903 #pragma weak sigwaitinfo = _sigwaitinfo 904 int 905 _sigwaitinfo(const sigset_t *set, siginfo_t *info) 906 { 907 return (_sigtimedwait(set, info, NULL)); 908 } 909 910 #pragma weak sigqueue = _sigqueue 911 int 912 _sigqueue(pid_t pid, int signo, const union sigval value) 913 { 914 extern int __sigqueue(pid_t pid, int signo, 915 /* const union sigval */ void *value, int si_code, int block); 916 return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0)); 917 } 918 919 int 920 tcdrain(int fildes) 921 { 922 extern int _tcdrain(int); 923 int rv; 924 925 PERFORM(_tcdrain(fildes)) 926 } 927 928 pid_t 929 wait(int *stat_loc) 930 { 931 extern pid_t _wait(int *); 932 pid_t rv; 933 934 PERFORM(_wait(stat_loc)) 935 } 936 937 pid_t 938 wait3(int *statusp, int options, struct rusage *rusage) 939 { 940 extern pid_t _wait3(int *, int, struct rusage *); 941 pid_t rv; 942 943 PERFORM(_wait3(statusp, options, rusage)) 944 } 945 946 int 947 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options) 948 { 949 extern int _waitid(idtype_t, id_t, siginfo_t *, int); 950 int rv; 951 952 PERFORM(_waitid(idtype, id, infop, options)) 953 } 954 955 /* 956 * waitpid_cancel() is a libc-private symbol for internal use 957 * where cancellation semantics is desired (see system()). 958 */ 959 #pragma weak waitpid_cancel = waitpid 960 pid_t 961 waitpid(pid_t pid, int *stat_loc, int options) 962 { 963 extern pid_t _waitpid(pid_t, int *, int); 964 pid_t rv; 965 966 PERFORM(_waitpid(pid, stat_loc, options)) 967 } 968 969 ssize_t 970 writev(int fildes, const struct iovec *iov, int iovcnt) 971 { 972 extern ssize_t _writev(int, const struct iovec *, int); 973 ssize_t rv; 974 975 PERFORM(_writev(fildes, iov, iovcnt)) 976 } 977