xref: /titanic_51/usr/src/lib/libc/port/gen/random.c (revision fa9e4066f08beec538e775443c5be79dd423fcab)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 #include "synonyms.h"
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <sys/types.h>
46 #include <limits.h>
47 
48 /*
49  * random.c:
50  * An improved random number generation package.  In addition to the standard
51  * rand()/srand() like interface, this package also has a special state info
52  * interface.  The initstate() routine is called with a seed, an array of
53  * bytes, and a count of how many bytes are being passed in; this array is then
54  * initialized to contain information for random number generation with that
55  * much state information.  Good sizes for the amount of state information are
56  * 32, 64, 128, and 256 bytes.  The state can be switched by calling the
57  * setstate() routine with the same array as was initiallized with initstate().
58  * By default, the package runs with 128 bytes of state information and
59  * generates far better random numbers than a linear congruential generator.
60  * If the amount of state information is less than 32 bytes, a simple linear
61  * congruential R.N.G. is used.
62  * Internally, the state information is treated as an array of ints; the
63  * zeroeth element of the array is the type of R.N.G. being used (small
64  * integer); the remainder of the array is the state information for the
65  * R.N.G.  Thus, 32 bytes of state information will give 7 ints worth of
66  * state information, which will allow a degree seven polynomial.  (Note: the
67  * zeroeth word of state information also has some other information stored
68  * in it -- see setstate() for details).
69  * The random number generation technique is a linear feedback shift register
70  * approach, employing trinomials (since there are fewer terms to sum up that
71  * way).  In this approach, the least significant bit of all the numbers in
72  * the state table will act as a linear feedback shift register, and will have
73  * period 2^deg - 1 (where deg is the degree of the polynomial being used,
74  * assuming that the polynomial is irreducible and primitive).  The higher
75  * order bits will have longer periods, since their values are also influenced
76  * by pseudo-random carries out of the lower bits.  The total period of the
77  * generator is approximately deg*(2**deg - 1); thus doubling the amount of
78  * state information has a vast influence on the period of the generator.
79  * Note: the deg*(2**deg - 1) is an approximation only good for large deg,
80  * when the period of the shift register is the dominant factor.  With deg
81  * equal to seven, the period is actually much longer than the 7*(2**7 - 1)
82  * predicted by this formula.
83  */
84 
85 
86 
87 /*
88  * For each of the currently supported random number generators, we have a
89  * break value on the amount of state information (you need at least this
90  * many bytes of state info to support this random number generator), a degree
91  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
92  * the separation between the two lower order coefficients of the trinomial.
93  */
94 
95 #define		TYPE_0		0		/* linear congruential */
96 #define		BREAK_0		8
97 #define		DEG_0		0
98 #define		SEP_0		0
99 
100 #define		TYPE_1		1		/* x**7 + x**3 + 1 */
101 #define		BREAK_1		32
102 #define		DEG_1		7
103 #define		SEP_1		3
104 
105 #define		TYPE_2		2		/* x**15 + x + 1 */
106 #define		BREAK_2		64
107 #define		DEG_2		15
108 #define		SEP_2		1
109 
110 #define		TYPE_3		3		/* x**31 + x**3 + 1 */
111 #define		BREAK_3		128
112 #define		DEG_3		31
113 #define		SEP_3		3
114 
115 #define		TYPE_4		4		/* x**63 + x + 1 */
116 #define		BREAK_4		256
117 #define		DEG_4		63
118 #define		SEP_4		1
119 
120 
121 /*
122  * Array versions of the above information to make code run faster -- relies
123  * on fact that TYPE_i == i.
124  */
125 
126 #define		MAX_TYPES	5		/* max number of types above */
127 
128 static struct _randomjunk {
129 	unsigned int	degrees[MAX_TYPES];
130 	unsigned int	seps[MAX_TYPES];
131 	unsigned int	randtbl[ DEG_3 + 1 ];
132 /*
133  * fptr and rptr are two pointers into the state info, a front and a rear
134  * pointer.  These two pointers are always rand_sep places aparts, as they cycle
135  * cyclically through the state information.  (Yes, this does mean we could get
136  * away with just one pointer, but the code for random() is more efficient this
137  * way).  The pointers are left positioned as they would be from the call
138  *			initstate( 1, randtbl, 128 )
139  * (The position of the rear pointer, rptr, is really 0 (as explained above
140  * in the initialization of randtbl) because the state table pointer is set
141  * to point to randtbl[1] (as explained below).
142  */
143 	unsigned int	*fptr, *rptr;
144 /*
145  * The following things are the pointer to the state information table,
146  * the type of the current generator, the degree of the current polynomial
147  * being used, and the separation between the two pointers.
148  * Note that for efficiency of random(), we remember the first location of
149  * the state information, not the zeroeth.  Hence it is valid to access
150  * state[-1], which is used to store the type of the R.N.G.
151  * Also, we remember the last location, since this is more efficient than
152  * indexing every time to find the address of the last element to see if
153  * the front and rear pointers have wrapped.
154  */
155 	unsigned int	*state;
156 	unsigned int	rand_type, rand_deg, rand_sep;
157 	unsigned int	*end_ptr;
158 } *__randomjunk, *_randomjunk(void), _randominit = {
159 	/*
160 	 * Initially, everything is set up as if from :
161 	 *		initstate( 1, &randtbl, 128 );
162 	 * Note that this initialization takes advantage of the fact
163 	 * that srandom() advances the front and rear pointers 10*rand_deg
164 	 * times, and hence the rear pointer which starts at 0 will also
165 	 * end up at zero; thus the zeroeth element of the state
166 	 * information, which contains info about the current
167 	 * position of the rear pointer is just
168 	 *	MAX_TYPES*(rptr - state) + TYPE_3 == TYPE_3.
169 	 */
170 	{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 },
171 	{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 },
172 	{ TYPE_3,
173 	    0x9a319039U, 0x32d9c024U, 0x9b663182U, 0x5da1f342U,
174 	    0xde3b81e0U, 0xdf0a6fb5U, 0xf103bc02U, 0x48f340fbU,
175 	    0x7449e56bU, 0xbeb1dbb0U, 0xab5c5918U, 0x946554fdU,
176 	    0x8c2e680fU, 0xeb3d799fU, 0xb11ee0b7U, 0x2d436b86U,
177 	    0xda672e2aU, 0x1588ca88U, 0xe369735dU, 0x904f35f7U,
178 	    0xd7158fd6U, 0x6fa6f051U, 0x616e6b96U, 0xac94efdcU,
179 	    0x36413f93U, 0xc622c298U, 0xf5a42ab8U, 0x8a88d77bU,
180 			0xf5ad9d0eU, 0x8999220bU, 0x27fb47b9U },
181 	&_randominit.randtbl[ SEP_3 + 1 ],
182 	&_randominit.randtbl[ 1 ],
183 	&_randominit.randtbl[ 1 ],
184 	TYPE_3, DEG_3, SEP_3,
185 	&_randominit.randtbl[ DEG_3 + 1]
186 };
187 
188 static struct _randomjunk *
189 _randomjunk(void)
190 {
191 	struct _randomjunk *rp = __randomjunk;
192 
193 	if (rp == NULL) {
194 		rp = (struct _randomjunk *)malloc(sizeof (*rp));
195 		if (rp == NULL)
196 			return (NULL);
197 		*rp = _randominit;
198 		__randomjunk = rp;
199 	}
200 	return (rp);
201 }
202 
203 
204 /*
205  * initstate:
206  * Initialize the state information in the given array of n bytes for
207  * future random number generation.  Based on the number of bytes we
208  * are given, and the break values for the different R.N.G.'s, we choose
209  * the best (largest) one we can and set things up for it.  srandom() is
210  * then called to initialize the state information.
211  * Note that on return from srandom(), we set state[-1] to be the type
212  * multiplexed with the current value of the rear pointer; this is so
213  * successive calls to initstate() won't lose this information and will
214  * be able to restart with setstate().
215  * Note: the first thing we do is save the current state, if any, just like
216  * setstate() so that it doesn't matter when initstate is called.
217  * Returns a pointer to the old state.
218  */
219 
220 char  *
221 initstate(
222 	unsigned int seed,	/* seed for R. N. G. */
223 	char *arg_state,	/* pointer to state array */
224 	size_t size)		/* # bytes of state info */
225 {
226 	unsigned int n;
227 	struct _randomjunk *rp = _randomjunk();
228 	char		*ostate;
229 
230 	if (size > UINT_MAX)
231 		n = UINT_MAX;
232 	else
233 		n = (unsigned int)size;
234 
235 	if (rp == NULL)
236 		return (NULL);
237 	ostate = (char *)(&rp->state[ -1 ]);
238 
239 	if (rp->rand_type  ==  TYPE_0)  rp->state[ -1 ] = rp->rand_type;
240 	else  rp->state[ -1 ] =
241 	    (unsigned int)(MAX_TYPES*(rp->rptr - rp->state) + rp->rand_type);
242 	if (n  <  BREAK_1)  {
243 	    if (n  <  BREAK_0)  {
244 		return (NULL);
245 	    }
246 	    rp->rand_type = TYPE_0;
247 	    rp->rand_deg = DEG_0;
248 	    rp->rand_sep = SEP_0;
249 	} else  {
250 	    if (n  <  BREAK_2)  {
251 		rp->rand_type = TYPE_1;
252 		rp->rand_deg = DEG_1;
253 		rp->rand_sep = SEP_1;
254 	    } else  {
255 		if (n  <  BREAK_3)  {
256 		    rp->rand_type = TYPE_2;
257 		    rp->rand_deg = DEG_2;
258 		    rp->rand_sep = SEP_2;
259 		} else  {
260 		    if (n  <  BREAK_4)  {
261 			rp->rand_type = TYPE_3;
262 			rp->rand_deg = DEG_3;
263 			rp->rand_sep = SEP_3;
264 		    } else  {
265 			rp->rand_type = TYPE_4;
266 			rp->rand_deg = DEG_4;
267 			rp->rand_sep = SEP_4;
268 		    }
269 		}
270 	    }
271 	}
272 	/* first location */
273 	rp->state = &(((unsigned int *)(uintptr_t)arg_state)[1]);
274 	/* must set end_ptr before srandom */
275 	rp->end_ptr = &rp->state[rp->rand_deg];
276 	srandom(seed);
277 	if (rp->rand_type  ==  TYPE_0)  rp->state[ -1 ] = rp->rand_type;
278 	else
279 		rp->state[-1] = (unsigned int)(MAX_TYPES*
280 		    (rp->rptr - rp->state) + rp->rand_type);
281 	return (ostate);
282 }
283 
284 
285 
286 /*
287  * setstate:
288  * Restore the state from the given state array.
289  * Note: it is important that we also remember the locations of the pointers
290  * in the current state information, and restore the locations of the pointers
291  * from the old state information.  This is done by multiplexing the pointer
292  * location into the zeroeth word of the state information.
293  * Note that due to the order in which things are done, it is OK to call
294  * setstate() with the same state as the current state.
295  * Returns a pointer to the old state information.
296  */
297 
298 char  *
299 setstate(const char *arg_state)
300 {
301 	struct _randomjunk *rp = _randomjunk();
302 	unsigned int	*new_state;
303 	unsigned int	type;
304 	unsigned int	rear;
305 	char		*ostate;
306 
307 	if (rp == NULL)
308 		return (NULL);
309 	new_state = (unsigned int *)(uintptr_t)arg_state;
310 	type = new_state[0]%MAX_TYPES;
311 	rear = new_state[0]/MAX_TYPES;
312 	ostate = (char *)(&rp->state[ -1 ]);
313 
314 	if (rp->rand_type  ==  TYPE_0) rp->state[ -1 ] = rp->rand_type;
315 	else
316 		rp->state[-1] = (unsigned int)(MAX_TYPES*
317 		    (rp->rptr - rp->state) + rp->rand_type);
318 	switch (type)  {
319 	    case  TYPE_0:
320 	    case  TYPE_1:
321 	    case  TYPE_2:
322 	    case  TYPE_3:
323 	    case  TYPE_4:
324 		rp->rand_type = type;
325 		rp->rand_deg = rp->degrees[ type ];
326 		rp->rand_sep = rp->seps[ type ];
327 		break;
328 
329 	    default:
330 		return (NULL);
331 	}
332 	rp->state = &new_state[ 1 ];
333 	if (rp->rand_type  !=  TYPE_0)  {
334 	    rp->rptr = &rp->state[ rear ];
335 	    rp->fptr = &rp->state[ (rear + rp->rand_sep)%rp->rand_deg ];
336 	}
337 	rp->end_ptr = &rp->state[ rp->rand_deg ];	/* set end_ptr too */
338 	return (ostate);
339 }
340 
341 
342 
343 /*
344  * random:
345  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
346  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
347  * same in all ther other cases due to all the global variables that have been
348  * set up.  The basic operation is to add the number at the rear pointer into
349  * the one at the front pointer.  Then both pointers are advanced to the next
350  * location cyclically in the table.  The value returned is the sum generated,
351  * reduced to 31 bits by throwing away the "least random" low bit.
352  * Note: the code takes advantage of the fact that both the front and
353  * rear pointers can't wrap on the same call by not testing the rear
354  * pointer if the front one has wrapped.
355  * Returns a 31-bit random number.
356  */
357 
358 long
359 random(void)
360 {
361 	struct _randomjunk *rp = _randomjunk();
362 	unsigned int	i;
363 
364 	if (rp == NULL)
365 		return (0L);
366 	if (rp->rand_type  ==  TYPE_0)  {
367 	    i = rp->state[0] = (rp->state[0]*1103515245 + 12345)&0x7fffffff;
368 	} else  {
369 	    *rp->fptr += *rp->rptr;
370 	    i = (*rp->fptr >> 1)&0x7fffffff;	/* chucking least random bit */
371 	    if (++rp->fptr  >=  rp->end_ptr)  {
372 		rp->fptr = rp->state;
373 		++rp->rptr;
374 	    } else  {
375 		if (++rp->rptr  >=  rp->end_ptr)  rp->rptr = rp->state;
376 	    }
377 	}
378 	return ((long)i);
379 }
380 
381 /*
382  * srandom:
383  * Initialize the random number generator based on the given seed.  If the
384  * type is the trivial no-state-information type, just remember the seed.
385  * Otherwise, initializes state[] based on the given "seed" via a linear
386  * congruential generator.  Then, the pointers are set to known locations
387  * that are exactly rand_sep places apart.  Lastly, it cycles the state
388  * information a given number of times to get rid of any initial dependencies
389  * introduced by the L.C.R.N.G.
390  * Note that the initialization of randtbl[] for default usage relies on
391  * values produced by this routine.
392  */
393 
394 void
395 srandom(unsigned int x)
396 {
397 	struct _randomjunk *rp = _randomjunk();
398 	unsigned int	i;
399 
400 	if (rp == NULL)
401 		return;
402 	if (rp->rand_type  ==  TYPE_0)  {
403 	    rp->state[ 0 ] = x;
404 	} else  {
405 	    rp->state[ 0 ] = x;
406 	    for (i = 1; i < rp->rand_deg; i++)  {
407 		rp->state[i] = 1103515245*rp->state[i - 1] + 12345;
408 	    }
409 	    rp->fptr = &rp->state[ rp->rand_sep ];
410 	    rp->rptr = &rp->state[ 0 ];
411 	    for (i = 0; i < 10*rp->rand_deg; i++)  (void)random();
412 	}
413 }
414