1*da2e3ebdSchin #include "FEATURE/uwin"
2*da2e3ebdSchin
3*da2e3ebdSchin #if !_UWIN || _lib_log1p
4*da2e3ebdSchin
_STUB_log1p()5*da2e3ebdSchin void _STUB_log1p(){}
6*da2e3ebdSchin
7*da2e3ebdSchin #else
8*da2e3ebdSchin
9*da2e3ebdSchin /*
10*da2e3ebdSchin * Copyright (c) 1985, 1993
11*da2e3ebdSchin * The Regents of the University of California. All rights reserved.
12*da2e3ebdSchin *
13*da2e3ebdSchin * Redistribution and use in source and binary forms, with or without
14*da2e3ebdSchin * modification, are permitted provided that the following conditions
15*da2e3ebdSchin * are met:
16*da2e3ebdSchin * 1. Redistributions of source code must retain the above copyright
17*da2e3ebdSchin * notice, this list of conditions and the following disclaimer.
18*da2e3ebdSchin * 2. Redistributions in binary form must reproduce the above copyright
19*da2e3ebdSchin * notice, this list of conditions and the following disclaimer in the
20*da2e3ebdSchin * documentation and/or other materials provided with the distribution.
21*da2e3ebdSchin * 3. Neither the name of the University nor the names of its contributors
22*da2e3ebdSchin * may be used to endorse or promote products derived from this software
23*da2e3ebdSchin * without specific prior written permission.
24*da2e3ebdSchin *
25*da2e3ebdSchin * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26*da2e3ebdSchin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27*da2e3ebdSchin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28*da2e3ebdSchin * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29*da2e3ebdSchin * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30*da2e3ebdSchin * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31*da2e3ebdSchin * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32*da2e3ebdSchin * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33*da2e3ebdSchin * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34*da2e3ebdSchin * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35*da2e3ebdSchin * SUCH DAMAGE.
36*da2e3ebdSchin */
37*da2e3ebdSchin
38*da2e3ebdSchin #ifndef lint
39*da2e3ebdSchin static char sccsid[] = "@(#)log1p.c 8.1 (Berkeley) 6/4/93";
40*da2e3ebdSchin #endif /* not lint */
41*da2e3ebdSchin
42*da2e3ebdSchin /* LOG1P(x)
43*da2e3ebdSchin * RETURN THE LOGARITHM OF 1+x
44*da2e3ebdSchin * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
45*da2e3ebdSchin * CODED IN C BY K.C. NG, 1/19/85;
46*da2e3ebdSchin * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
47*da2e3ebdSchin *
48*da2e3ebdSchin * Required system supported functions:
49*da2e3ebdSchin * scalb(x,n)
50*da2e3ebdSchin * copysign(x,y)
51*da2e3ebdSchin * logb(x)
52*da2e3ebdSchin * finite(x)
53*da2e3ebdSchin *
54*da2e3ebdSchin * Required kernel function:
55*da2e3ebdSchin * log__L(z)
56*da2e3ebdSchin *
57*da2e3ebdSchin * Method :
58*da2e3ebdSchin * 1. Argument Reduction: find k and f such that
59*da2e3ebdSchin * 1+x = 2^k * (1+f),
60*da2e3ebdSchin * where sqrt(2)/2 < 1+f < sqrt(2) .
61*da2e3ebdSchin *
62*da2e3ebdSchin * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
63*da2e3ebdSchin * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
64*da2e3ebdSchin * log(1+f) is computed by
65*da2e3ebdSchin *
66*da2e3ebdSchin * log(1+f) = 2s + s*log__L(s*s)
67*da2e3ebdSchin * where
68*da2e3ebdSchin * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
69*da2e3ebdSchin *
70*da2e3ebdSchin * See log__L() for the values of the coefficients.
71*da2e3ebdSchin *
72*da2e3ebdSchin * 3. Finally, log(1+x) = k*ln2 + log(1+f).
73*da2e3ebdSchin *
74*da2e3ebdSchin * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
75*da2e3ebdSchin * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
76*da2e3ebdSchin * 20 bits (for VAX D format), or the last 21 bits ( for IEEE
77*da2e3ebdSchin * double) is 0. This ensures n*ln2hi is exactly representable.
78*da2e3ebdSchin * 2. In step 1, f may not be representable. A correction term c
79*da2e3ebdSchin * for f is computed. It follows that the correction term for
80*da2e3ebdSchin * f - t (the leading term of log(1+f) in step 2) is c-c*x. We
81*da2e3ebdSchin * add this correction term to n*ln2lo to attenuate the error.
82*da2e3ebdSchin *
83*da2e3ebdSchin *
84*da2e3ebdSchin * Special cases:
85*da2e3ebdSchin * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
86*da2e3ebdSchin * log1p(INF) is +INF; log1p(-1) is -INF with signal;
87*da2e3ebdSchin * only log1p(0)=0 is exact for finite argument.
88*da2e3ebdSchin *
89*da2e3ebdSchin * Accuracy:
90*da2e3ebdSchin * log1p(x) returns the exact log(1+x) nearly rounded. In a test run
91*da2e3ebdSchin * with 1,536,000 random arguments on a VAX, the maximum observed
92*da2e3ebdSchin * error was .846 ulps (units in the last place).
93*da2e3ebdSchin *
94*da2e3ebdSchin * Constants:
95*da2e3ebdSchin * The hexadecimal values are the intended ones for the following constants.
96*da2e3ebdSchin * The decimal values may be used, provided that the compiler will convert
97*da2e3ebdSchin * from decimal to binary accurately enough to produce the hexadecimal values
98*da2e3ebdSchin * shown.
99*da2e3ebdSchin */
100*da2e3ebdSchin
101*da2e3ebdSchin #include <errno.h>
102*da2e3ebdSchin #include "mathimpl.h"
103*da2e3ebdSchin
104*da2e3ebdSchin vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
105*da2e3ebdSchin vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
106*da2e3ebdSchin vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
107*da2e3ebdSchin
108*da2e3ebdSchin ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
109*da2e3ebdSchin ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
110*da2e3ebdSchin ic(sqrt2, 1.4142135623730951455E0, 0, 1.6A09E667F3BCD)
111*da2e3ebdSchin
112*da2e3ebdSchin #ifdef vccast
113*da2e3ebdSchin #define ln2hi vccast(ln2hi)
114*da2e3ebdSchin #define ln2lo vccast(ln2lo)
115*da2e3ebdSchin #define sqrt2 vccast(sqrt2)
116*da2e3ebdSchin #endif
117*da2e3ebdSchin
118*da2e3ebdSchin extern double log1p(x)
119*da2e3ebdSchin double x;
120*da2e3ebdSchin {
121*da2e3ebdSchin const static double zero=0.0, negone= -1.0, one=1.0,
122*da2e3ebdSchin half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */
123*da2e3ebdSchin double z,s,t,c;
124*da2e3ebdSchin int k;
125*da2e3ebdSchin
126*da2e3ebdSchin #if !defined(vax)&&!defined(tahoe)
127*da2e3ebdSchin if(x!=x) return(x); /* x is NaN */
128*da2e3ebdSchin #endif /* !defined(vax)&&!defined(tahoe) */
129*da2e3ebdSchin
130*da2e3ebdSchin if(finite(x)) {
131*da2e3ebdSchin if( x > negone ) {
132*da2e3ebdSchin
133*da2e3ebdSchin /* argument reduction */
134*da2e3ebdSchin if(copysign(x,one)<small) return(x);
135*da2e3ebdSchin k=(int)logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
136*da2e3ebdSchin if(z+t >= sqrt2 )
137*da2e3ebdSchin { k += 1 ; z *= half; t *= half; }
138*da2e3ebdSchin t += negone; x = z + t;
139*da2e3ebdSchin c = (t-x)+z ; /* correction term for x */
140*da2e3ebdSchin
141*da2e3ebdSchin /* compute log(1+x) */
142*da2e3ebdSchin s = x/(2+x); t = x*x*half;
143*da2e3ebdSchin c += (k*ln2lo-c*x);
144*da2e3ebdSchin z = c+s*(t+__log__L(s*s));
145*da2e3ebdSchin x += (z - t) ;
146*da2e3ebdSchin
147*da2e3ebdSchin return(k*ln2hi+x);
148*da2e3ebdSchin }
149*da2e3ebdSchin /* end of if (x > negone) */
150*da2e3ebdSchin
151*da2e3ebdSchin else {
152*da2e3ebdSchin #if defined(vax)||defined(tahoe)
153*da2e3ebdSchin if ( x == negone )
154*da2e3ebdSchin return (infnan(-ERANGE)); /* -INF */
155*da2e3ebdSchin else
156*da2e3ebdSchin return (infnan(EDOM)); /* NaN */
157*da2e3ebdSchin #else /* defined(vax)||defined(tahoe) */
158*da2e3ebdSchin /* x = -1, return -INF with signal */
159*da2e3ebdSchin if ( x == negone ) return( negone/zero );
160*da2e3ebdSchin
161*da2e3ebdSchin /* negative argument for log, return NaN with signal */
162*da2e3ebdSchin else return ( zero / zero );
163*da2e3ebdSchin #endif /* defined(vax)||defined(tahoe) */
164*da2e3ebdSchin }
165*da2e3ebdSchin }
166*da2e3ebdSchin /* end of if (finite(x)) */
167*da2e3ebdSchin
168*da2e3ebdSchin /* log(-INF) is NaN */
169*da2e3ebdSchin else if(x<0)
170*da2e3ebdSchin return(zero/zero);
171*da2e3ebdSchin
172*da2e3ebdSchin /* log(+INF) is INF */
173*da2e3ebdSchin else return(x);
174*da2e3ebdSchin }
175*da2e3ebdSchin
176*da2e3ebdSchin #endif
177