xref: /titanic_51/usr/src/lib/libast/common/uwin/expm1.c (revision 15d9d0b528387242011cdcc6190c9e598cfe3a07)
1 #include "FEATURE/uwin"
2 
3 #if !_UWIN || _lib_expm1
4 
5 void _STUB_expm1(){}
6 
7 #else
8 
9 /*
10  * Copyright (c) 1985, 1993
11  *	The Regents of the University of California.  All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #ifndef lint
39 static char sccsid[] = "@(#)expm1.c	8.1 (Berkeley) 6/4/93";
40 #endif /* not lint */
41 
42 /* EXPM1(X)
43  * RETURN THE EXPONENTIAL OF X MINUS ONE
44  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
45  * CODED IN C BY K.C. NG, 1/19/85;
46  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
47  *
48  * Required system supported functions:
49  *	scalb(x,n)
50  *	copysign(x,y)
51  *	finite(x)
52  *
53  * Kernel function:
54  *	exp__E(x,c)
55  *
56  * Method:
57  *	1. Argument Reduction: given the input x, find r and integer k such
58  *	   that
59  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
60  *	   r will be represented as r := z+c for better accuracy.
61  *
62  *	2. Compute EXPM1(r)=exp(r)-1 by
63  *
64  *			EXPM1(r=z+c) := z + exp__E(z,c)
65  *
66  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
67  *
68  * 	Remarks:
69  *	   1. When k=1 and z < -0.25, we use the following formula for
70  *	      better accuracy:
71  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
72  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
73  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
74  *	      when k>56.
75  *
76  * Special cases:
77  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
78  *	EXPM1(-INF)= -1;
79  *	for finite argument, only EXPM1(0)=0 is exact.
80  *
81  * Accuracy:
82  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
83  *	1,166,000 random arguments on a VAX, the maximum observed error was
84  *	.872 ulps (units of the last place).
85  *
86  * Constants:
87  * The hexadecimal values are the intended ones for the following constants.
88  * The decimal values may be used, provided that the compiler will convert
89  * from decimal to binary accurately enough to produce the hexadecimal values
90  * shown.
91  */
92 
93 #include "mathimpl.h"
94 
95 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
96 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
97 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
98 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
99 
100 ic(ln2hi,  6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
101 ic(ln2lo,  1.9082149292705877000E-10, -33, 1.A39EF35793C76)
102 ic(lnhuge, 7.1602103751842355450E2,     9, 1.6602B15B7ECF2)
103 ic(invln2, 1.4426950408889633870E0,     0, 1.71547652B82FE)
104 
105 #ifdef vccast
106 #define	ln2hi	vccast(ln2hi)
107 #define	ln2lo	vccast(ln2lo)
108 #define	lnhuge	vccast(lnhuge)
109 #define	invln2	vccast(invln2)
110 #endif
111 
112 extern double expm1(x)
113 double x;
114 {
115 	const static double one=1.0, half=1.0/2.0;
116 	double  z,hi,lo,c;
117 	int k;
118 #if defined(vax)||defined(tahoe)
119 	static prec=56;
120 #else	/* defined(vax)||defined(tahoe) */
121 	static prec=53;
122 #endif	/* defined(vax)||defined(tahoe) */
123 
124 #if !defined(vax)&&!defined(tahoe)
125 	if(x!=x) return(x);	/* x is NaN */
126 #endif	/* !defined(vax)&&!defined(tahoe) */
127 
128 	if( x <= lnhuge ) {
129 		if( x >= -40.0 ) {
130 
131 		    /* argument reduction : x - k*ln2 */
132 			k= (int)(invln2*x)+copysign(0.5,x);	/* k=NINT(x/ln2) */
133 			hi=x-k*ln2hi ;
134 			z=hi-(lo=k*ln2lo);
135 			c=(hi-z)-lo;
136 
137 			if(k==0) return(z+__exp__E(z,c));
138 			if(k==1)
139 			    if(z< -0.25)
140 				{x=z+half;x +=__exp__E(z,c); return(x+x);}
141 			    else
142 				{z+=__exp__E(z,c); x=half+z; return(x+x);}
143 		    /* end of k=1 */
144 
145 			else {
146 			    if(k<=prec)
147 			      { x=one-scalb(one,-k); z += __exp__E(z,c);}
148 			    else if(k<100)
149 			      { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
150 			    else
151 			      { x = __exp__E(z,c)+z; z=one;}
152 
153 			    return (scalb(x+z,k));
154 			}
155 		}
156 		/* end of x > lnunfl */
157 
158 		else
159 		     /* expm1(-big#) rounded to -1 (inexact) */
160 		     if(finite(x))
161 			 { ln2hi+ln2lo; return(-one);}
162 
163 		     /* expm1(-INF) is -1 */
164 		     else return(-one);
165 	}
166 	/* end of x < lnhuge */
167 
168 	else
169 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
170 	    return( finite(x) ?  scalb(one,5000) : x);
171 }
172 
173 #endif
174