1495db6fbSLori Alt /* 2495db6fbSLori Alt * CDDL HEADER START 3495db6fbSLori Alt * 4495db6fbSLori Alt * The contents of this file are subject to the terms of the 5495db6fbSLori Alt * Common Development and Distribution License (the "License"). 6495db6fbSLori Alt * You may not use this file except in compliance with the License. 7495db6fbSLori Alt * 8495db6fbSLori Alt * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9495db6fbSLori Alt * or http://www.opensolaris.org/os/licensing. 10495db6fbSLori Alt * See the License for the specific language governing permissions 11495db6fbSLori Alt * and limitations under the License. 12495db6fbSLori Alt * 13495db6fbSLori Alt * When distributing Covered Code, include this CDDL HEADER in each 14495db6fbSLori Alt * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15495db6fbSLori Alt * If applicable, add the following below this CDDL HEADER, with the 16495db6fbSLori Alt * fields enclosed by brackets "[]" replaced with your own identifying 17495db6fbSLori Alt * information: Portions Copyright [yyyy] [name of copyright owner] 18495db6fbSLori Alt * 19495db6fbSLori Alt * CDDL HEADER END 20495db6fbSLori Alt */ 21495db6fbSLori Alt /* 22495db6fbSLori Alt * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23495db6fbSLori Alt * Use is subject to license terms. 24495db6fbSLori Alt */ 25*45818ee1SMatthew Ahrens /* 26*45818ee1SMatthew Ahrens * Copyright 2013 Saso Kiselkov. All rights reserved. 27*45818ee1SMatthew Ahrens */ 28495db6fbSLori Alt 29495db6fbSLori Alt /* 30495db6fbSLori Alt * Fletcher Checksums 31495db6fbSLori Alt * ------------------ 32495db6fbSLori Alt * 33495db6fbSLori Alt * ZFS's 2nd and 4th order Fletcher checksums are defined by the following 34495db6fbSLori Alt * recurrence relations: 35495db6fbSLori Alt * 36495db6fbSLori Alt * a = a + f 37495db6fbSLori Alt * i i-1 i-1 38495db6fbSLori Alt * 39495db6fbSLori Alt * b = b + a 40495db6fbSLori Alt * i i-1 i 41495db6fbSLori Alt * 42495db6fbSLori Alt * c = c + b (fletcher-4 only) 43495db6fbSLori Alt * i i-1 i 44495db6fbSLori Alt * 45495db6fbSLori Alt * d = d + c (fletcher-4 only) 46495db6fbSLori Alt * i i-1 i 47495db6fbSLori Alt * 48495db6fbSLori Alt * Where 49495db6fbSLori Alt * a_0 = b_0 = c_0 = d_0 = 0 50495db6fbSLori Alt * and 51495db6fbSLori Alt * f_0 .. f_(n-1) are the input data. 52495db6fbSLori Alt * 53495db6fbSLori Alt * Using standard techniques, these translate into the following series: 54495db6fbSLori Alt * 55495db6fbSLori Alt * __n_ __n_ 56495db6fbSLori Alt * \ | \ | 57495db6fbSLori Alt * a = > f b = > i * f 58495db6fbSLori Alt * n /___| n - i n /___| n - i 59495db6fbSLori Alt * i = 1 i = 1 60495db6fbSLori Alt * 61495db6fbSLori Alt * 62495db6fbSLori Alt * __n_ __n_ 63495db6fbSLori Alt * \ | i*(i+1) \ | i*(i+1)*(i+2) 64495db6fbSLori Alt * c = > ------- f d = > ------------- f 65495db6fbSLori Alt * n /___| 2 n - i n /___| 6 n - i 66495db6fbSLori Alt * i = 1 i = 1 67495db6fbSLori Alt * 68495db6fbSLori Alt * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators. 69495db6fbSLori Alt * Since the additions are done mod (2^64), errors in the high bits may not 70495db6fbSLori Alt * be noticed. For this reason, fletcher-2 is deprecated. 71495db6fbSLori Alt * 72495db6fbSLori Alt * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators. 73495db6fbSLori Alt * A conservative estimate of how big the buffer can get before we overflow 74495db6fbSLori Alt * can be estimated using f_i = 0xffffffff for all i: 75495db6fbSLori Alt * 76495db6fbSLori Alt * % bc 77495db6fbSLori Alt * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4 78495db6fbSLori Alt * 2264 79495db6fbSLori Alt * quit 80495db6fbSLori Alt * % 81495db6fbSLori Alt * 82495db6fbSLori Alt * So blocks of up to 2k will not overflow. Our largest block size is 83495db6fbSLori Alt * 128k, which has 32k 4-byte words, so we can compute the largest possible 84495db6fbSLori Alt * accumulators, then divide by 2^64 to figure the max amount of overflow: 85495db6fbSLori Alt * 86495db6fbSLori Alt * % bc 87495db6fbSLori Alt * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c } 88495db6fbSLori Alt * a/2^64;b/2^64;c/2^64;d/2^64 89495db6fbSLori Alt * 0 90495db6fbSLori Alt * 0 91495db6fbSLori Alt * 1365 92495db6fbSLori Alt * 11186858 93495db6fbSLori Alt * quit 94495db6fbSLori Alt * % 95495db6fbSLori Alt * 96495db6fbSLori Alt * So a and b cannot overflow. To make sure each bit of input has some 97495db6fbSLori Alt * effect on the contents of c and d, we can look at what the factors of 98495db6fbSLori Alt * the coefficients in the equations for c_n and d_n are. The number of 2s 99495db6fbSLori Alt * in the factors determines the lowest set bit in the multiplier. Running 100495db6fbSLori Alt * through the cases for n*(n+1)/2 reveals that the highest power of 2 is 101495db6fbSLori Alt * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow 102495db6fbSLori Alt * the 64-bit accumulators, every bit of every f_i effects every accumulator, 103495db6fbSLori Alt * even for 128k blocks. 104495db6fbSLori Alt * 105495db6fbSLori Alt * If we wanted to make a stronger version of fletcher4 (fletcher4c?), 106495db6fbSLori Alt * we could do our calculations mod (2^32 - 1) by adding in the carries 107495db6fbSLori Alt * periodically, and store the number of carries in the top 32-bits. 108495db6fbSLori Alt * 109495db6fbSLori Alt * -------------------- 110495db6fbSLori Alt * Checksum Performance 111495db6fbSLori Alt * -------------------- 112495db6fbSLori Alt * 113495db6fbSLori Alt * There are two interesting components to checksum performance: cached and 114495db6fbSLori Alt * uncached performance. With cached data, fletcher-2 is about four times 115495db6fbSLori Alt * faster than fletcher-4. With uncached data, the performance difference is 116495db6fbSLori Alt * negligible, since the cost of a cache fill dominates the processing time. 117495db6fbSLori Alt * Even though fletcher-4 is slower than fletcher-2, it is still a pretty 118495db6fbSLori Alt * efficient pass over the data. 119495db6fbSLori Alt * 120495db6fbSLori Alt * In normal operation, the data which is being checksummed is in a buffer 121495db6fbSLori Alt * which has been filled either by: 122495db6fbSLori Alt * 123495db6fbSLori Alt * 1. a compression step, which will be mostly cached, or 124495db6fbSLori Alt * 2. a bcopy() or copyin(), which will be uncached (because the 125495db6fbSLori Alt * copy is cache-bypassing). 126495db6fbSLori Alt * 127495db6fbSLori Alt * For both cached and uncached data, both fletcher checksums are much faster 128495db6fbSLori Alt * than sha-256, and slower than 'off', which doesn't touch the data at all. 129495db6fbSLori Alt */ 130495db6fbSLori Alt 131495db6fbSLori Alt #include <sys/types.h> 132495db6fbSLori Alt #include <sys/sysmacros.h> 133495db6fbSLori Alt #include <sys/byteorder.h> 134b24ab676SJeff Bonwick #include <sys/zio.h> 135495db6fbSLori Alt #include <sys/spa.h> 136495db6fbSLori Alt 137*45818ee1SMatthew Ahrens /*ARGSUSED*/ 138495db6fbSLori Alt void 139*45818ee1SMatthew Ahrens fletcher_2_native(const void *buf, uint64_t size, 140*45818ee1SMatthew Ahrens const void *ctx_template, zio_cksum_t *zcp) 141495db6fbSLori Alt { 142495db6fbSLori Alt const uint64_t *ip = buf; 143495db6fbSLori Alt const uint64_t *ipend = ip + (size / sizeof (uint64_t)); 144495db6fbSLori Alt uint64_t a0, b0, a1, b1; 145495db6fbSLori Alt 146495db6fbSLori Alt for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) { 147495db6fbSLori Alt a0 += ip[0]; 148495db6fbSLori Alt a1 += ip[1]; 149495db6fbSLori Alt b0 += a0; 150495db6fbSLori Alt b1 += a1; 151495db6fbSLori Alt } 152495db6fbSLori Alt 153495db6fbSLori Alt ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1); 154495db6fbSLori Alt } 155495db6fbSLori Alt 156*45818ee1SMatthew Ahrens /*ARGSUSED*/ 157495db6fbSLori Alt void 158*45818ee1SMatthew Ahrens fletcher_2_byteswap(const void *buf, uint64_t size, 159*45818ee1SMatthew Ahrens const void *ctx_template, zio_cksum_t *zcp) 160495db6fbSLori Alt { 161495db6fbSLori Alt const uint64_t *ip = buf; 162495db6fbSLori Alt const uint64_t *ipend = ip + (size / sizeof (uint64_t)); 163495db6fbSLori Alt uint64_t a0, b0, a1, b1; 164495db6fbSLori Alt 165495db6fbSLori Alt for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) { 166495db6fbSLori Alt a0 += BSWAP_64(ip[0]); 167495db6fbSLori Alt a1 += BSWAP_64(ip[1]); 168495db6fbSLori Alt b0 += a0; 169495db6fbSLori Alt b1 += a1; 170495db6fbSLori Alt } 171495db6fbSLori Alt 172495db6fbSLori Alt ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1); 173495db6fbSLori Alt } 174495db6fbSLori Alt 175*45818ee1SMatthew Ahrens /*ARGSUSED*/ 176495db6fbSLori Alt void 177*45818ee1SMatthew Ahrens fletcher_4_native(const void *buf, uint64_t size, 178*45818ee1SMatthew Ahrens const void *ctx_template, zio_cksum_t *zcp) 179495db6fbSLori Alt { 180495db6fbSLori Alt const uint32_t *ip = buf; 181495db6fbSLori Alt const uint32_t *ipend = ip + (size / sizeof (uint32_t)); 182495db6fbSLori Alt uint64_t a, b, c, d; 183495db6fbSLori Alt 184495db6fbSLori Alt for (a = b = c = d = 0; ip < ipend; ip++) { 185495db6fbSLori Alt a += ip[0]; 186495db6fbSLori Alt b += a; 187495db6fbSLori Alt c += b; 188495db6fbSLori Alt d += c; 189495db6fbSLori Alt } 190495db6fbSLori Alt 191495db6fbSLori Alt ZIO_SET_CHECKSUM(zcp, a, b, c, d); 192495db6fbSLori Alt } 193495db6fbSLori Alt 194*45818ee1SMatthew Ahrens /*ARGSUSED*/ 195495db6fbSLori Alt void 196*45818ee1SMatthew Ahrens fletcher_4_byteswap(const void *buf, uint64_t size, 197*45818ee1SMatthew Ahrens const void *ctx_template, zio_cksum_t *zcp) 198495db6fbSLori Alt { 199495db6fbSLori Alt const uint32_t *ip = buf; 200495db6fbSLori Alt const uint32_t *ipend = ip + (size / sizeof (uint32_t)); 201495db6fbSLori Alt uint64_t a, b, c, d; 202495db6fbSLori Alt 203495db6fbSLori Alt for (a = b = c = d = 0; ip < ipend; ip++) { 204495db6fbSLori Alt a += BSWAP_32(ip[0]); 205495db6fbSLori Alt b += a; 206495db6fbSLori Alt c += b; 207495db6fbSLori Alt d += c; 208495db6fbSLori Alt } 209495db6fbSLori Alt 210495db6fbSLori Alt ZIO_SET_CHECKSUM(zcp, a, b, c, d); 211495db6fbSLori Alt } 212495db6fbSLori Alt 213495db6fbSLori Alt void 214495db6fbSLori Alt fletcher_4_incremental_native(const void *buf, uint64_t size, 215495db6fbSLori Alt zio_cksum_t *zcp) 216495db6fbSLori Alt { 217495db6fbSLori Alt const uint32_t *ip = buf; 218495db6fbSLori Alt const uint32_t *ipend = ip + (size / sizeof (uint32_t)); 219495db6fbSLori Alt uint64_t a, b, c, d; 220495db6fbSLori Alt 221495db6fbSLori Alt a = zcp->zc_word[0]; 222495db6fbSLori Alt b = zcp->zc_word[1]; 223495db6fbSLori Alt c = zcp->zc_word[2]; 224495db6fbSLori Alt d = zcp->zc_word[3]; 225495db6fbSLori Alt 226495db6fbSLori Alt for (; ip < ipend; ip++) { 227495db6fbSLori Alt a += ip[0]; 228495db6fbSLori Alt b += a; 229495db6fbSLori Alt c += b; 230495db6fbSLori Alt d += c; 231495db6fbSLori Alt } 232495db6fbSLori Alt 233495db6fbSLori Alt ZIO_SET_CHECKSUM(zcp, a, b, c, d); 234495db6fbSLori Alt } 235495db6fbSLori Alt 236495db6fbSLori Alt void 237495db6fbSLori Alt fletcher_4_incremental_byteswap(const void *buf, uint64_t size, 238495db6fbSLori Alt zio_cksum_t *zcp) 239495db6fbSLori Alt { 240495db6fbSLori Alt const uint32_t *ip = buf; 241495db6fbSLori Alt const uint32_t *ipend = ip + (size / sizeof (uint32_t)); 242495db6fbSLori Alt uint64_t a, b, c, d; 243495db6fbSLori Alt 244495db6fbSLori Alt a = zcp->zc_word[0]; 245495db6fbSLori Alt b = zcp->zc_word[1]; 246495db6fbSLori Alt c = zcp->zc_word[2]; 247495db6fbSLori Alt d = zcp->zc_word[3]; 248495db6fbSLori Alt 249495db6fbSLori Alt for (; ip < ipend; ip++) { 250495db6fbSLori Alt a += BSWAP_32(ip[0]); 251495db6fbSLori Alt b += a; 252495db6fbSLori Alt c += b; 253495db6fbSLori Alt d += c; 254495db6fbSLori Alt } 255495db6fbSLori Alt 256495db6fbSLori Alt ZIO_SET_CHECKSUM(zcp, a, b, c, d); 257495db6fbSLori Alt } 258