1*f9fbec18Smcpowers /* 2*f9fbec18Smcpowers * ***** BEGIN LICENSE BLOCK ***** 3*f9fbec18Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4*f9fbec18Smcpowers * 5*f9fbec18Smcpowers * The contents of this file are subject to the Mozilla Public License Version 6*f9fbec18Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with 7*f9fbec18Smcpowers * the License. You may obtain a copy of the License at 8*f9fbec18Smcpowers * http://www.mozilla.org/MPL/ 9*f9fbec18Smcpowers * 10*f9fbec18Smcpowers * Software distributed under the License is distributed on an "AS IS" basis, 11*f9fbec18Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12*f9fbec18Smcpowers * for the specific language governing rights and limitations under the 13*f9fbec18Smcpowers * License. 14*f9fbec18Smcpowers * 15*f9fbec18Smcpowers * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library. 16*f9fbec18Smcpowers * 17*f9fbec18Smcpowers * The Initial Developer of the Original Code is 18*f9fbec18Smcpowers * Sun Microsystems, Inc. 19*f9fbec18Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003 20*f9fbec18Smcpowers * the Initial Developer. All Rights Reserved. 21*f9fbec18Smcpowers * 22*f9fbec18Smcpowers * Contributor(s): 23*f9fbec18Smcpowers * Sheueling Chang Shantz <sheueling.chang@sun.com> and 24*f9fbec18Smcpowers * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. 25*f9fbec18Smcpowers * 26*f9fbec18Smcpowers * Alternatively, the contents of this file may be used under the terms of 27*f9fbec18Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or 28*f9fbec18Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 29*f9fbec18Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead 30*f9fbec18Smcpowers * of those above. If you wish to allow use of your version of this file only 31*f9fbec18Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to 32*f9fbec18Smcpowers * use your version of this file under the terms of the MPL, indicate your 33*f9fbec18Smcpowers * decision by deleting the provisions above and replace them with the notice 34*f9fbec18Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete 35*f9fbec18Smcpowers * the provisions above, a recipient may use your version of this file under 36*f9fbec18Smcpowers * the terms of any one of the MPL, the GPL or the LGPL. 37*f9fbec18Smcpowers * 38*f9fbec18Smcpowers * ***** END LICENSE BLOCK ***** */ 39*f9fbec18Smcpowers /* 40*f9fbec18Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 41*f9fbec18Smcpowers * Use is subject to license terms. 42*f9fbec18Smcpowers * 43*f9fbec18Smcpowers * Sun elects to use this software under the MPL license. 44*f9fbec18Smcpowers */ 45*f9fbec18Smcpowers 46*f9fbec18Smcpowers #pragma ident "%Z%%M% %I% %E% SMI" 47*f9fbec18Smcpowers 48*f9fbec18Smcpowers #include "mp_gf2m.h" 49*f9fbec18Smcpowers #include "mp_gf2m-priv.h" 50*f9fbec18Smcpowers #include "mplogic.h" 51*f9fbec18Smcpowers #include "mpi-priv.h" 52*f9fbec18Smcpowers 53*f9fbec18Smcpowers const mp_digit mp_gf2m_sqr_tb[16] = 54*f9fbec18Smcpowers { 55*f9fbec18Smcpowers 0, 1, 4, 5, 16, 17, 20, 21, 56*f9fbec18Smcpowers 64, 65, 68, 69, 80, 81, 84, 85 57*f9fbec18Smcpowers }; 58*f9fbec18Smcpowers 59*f9fbec18Smcpowers /* Multiply two binary polynomials mp_digits a, b. 60*f9fbec18Smcpowers * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1. 61*f9fbec18Smcpowers * Output in two mp_digits rh, rl. 62*f9fbec18Smcpowers */ 63*f9fbec18Smcpowers #if MP_DIGIT_BITS == 32 64*f9fbec18Smcpowers void 65*f9fbec18Smcpowers s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) 66*f9fbec18Smcpowers { 67*f9fbec18Smcpowers register mp_digit h, l, s; 68*f9fbec18Smcpowers mp_digit tab[8], top2b = a >> 30; 69*f9fbec18Smcpowers register mp_digit a1, a2, a4; 70*f9fbec18Smcpowers 71*f9fbec18Smcpowers a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; 72*f9fbec18Smcpowers 73*f9fbec18Smcpowers tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; 74*f9fbec18Smcpowers tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; 75*f9fbec18Smcpowers 76*f9fbec18Smcpowers s = tab[b & 0x7]; l = s; 77*f9fbec18Smcpowers s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; 78*f9fbec18Smcpowers s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; 79*f9fbec18Smcpowers s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; 80*f9fbec18Smcpowers s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; 81*f9fbec18Smcpowers s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; 82*f9fbec18Smcpowers s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; 83*f9fbec18Smcpowers s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; 84*f9fbec18Smcpowers s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; 85*f9fbec18Smcpowers s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; 86*f9fbec18Smcpowers s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; 87*f9fbec18Smcpowers 88*f9fbec18Smcpowers /* compensate for the top two bits of a */ 89*f9fbec18Smcpowers 90*f9fbec18Smcpowers if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } 91*f9fbec18Smcpowers if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } 92*f9fbec18Smcpowers 93*f9fbec18Smcpowers *rh = h; *rl = l; 94*f9fbec18Smcpowers } 95*f9fbec18Smcpowers #else 96*f9fbec18Smcpowers void 97*f9fbec18Smcpowers s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) 98*f9fbec18Smcpowers { 99*f9fbec18Smcpowers register mp_digit h, l, s; 100*f9fbec18Smcpowers mp_digit tab[16], top3b = a >> 61; 101*f9fbec18Smcpowers register mp_digit a1, a2, a4, a8; 102*f9fbec18Smcpowers 103*f9fbec18Smcpowers a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; 104*f9fbec18Smcpowers a4 = a2 << 1; a8 = a4 << 1; 105*f9fbec18Smcpowers tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; 106*f9fbec18Smcpowers tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; 107*f9fbec18Smcpowers tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; 108*f9fbec18Smcpowers tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; 109*f9fbec18Smcpowers 110*f9fbec18Smcpowers s = tab[b & 0xF]; l = s; 111*f9fbec18Smcpowers s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; 112*f9fbec18Smcpowers s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; 113*f9fbec18Smcpowers s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; 114*f9fbec18Smcpowers s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; 115*f9fbec18Smcpowers s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; 116*f9fbec18Smcpowers s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; 117*f9fbec18Smcpowers s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; 118*f9fbec18Smcpowers s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; 119*f9fbec18Smcpowers s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; 120*f9fbec18Smcpowers s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; 121*f9fbec18Smcpowers s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; 122*f9fbec18Smcpowers s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; 123*f9fbec18Smcpowers s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; 124*f9fbec18Smcpowers s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; 125*f9fbec18Smcpowers s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; 126*f9fbec18Smcpowers 127*f9fbec18Smcpowers /* compensate for the top three bits of a */ 128*f9fbec18Smcpowers 129*f9fbec18Smcpowers if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } 130*f9fbec18Smcpowers if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } 131*f9fbec18Smcpowers if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } 132*f9fbec18Smcpowers 133*f9fbec18Smcpowers *rh = h; *rl = l; 134*f9fbec18Smcpowers } 135*f9fbec18Smcpowers #endif 136*f9fbec18Smcpowers 137*f9fbec18Smcpowers /* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0) 138*f9fbec18Smcpowers * result is a binary polynomial in 4 mp_digits r[4]. 139*f9fbec18Smcpowers * The caller MUST ensure that r has the right amount of space allocated. 140*f9fbec18Smcpowers */ 141*f9fbec18Smcpowers void 142*f9fbec18Smcpowers s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1, 143*f9fbec18Smcpowers const mp_digit b0) 144*f9fbec18Smcpowers { 145*f9fbec18Smcpowers mp_digit m1, m0; 146*f9fbec18Smcpowers /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ 147*f9fbec18Smcpowers s_bmul_1x1(r+3, r+2, a1, b1); 148*f9fbec18Smcpowers s_bmul_1x1(r+1, r, a0, b0); 149*f9fbec18Smcpowers s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); 150*f9fbec18Smcpowers /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ 151*f9fbec18Smcpowers r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ 152*f9fbec18Smcpowers r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ 153*f9fbec18Smcpowers } 154*f9fbec18Smcpowers 155*f9fbec18Smcpowers /* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0) 156*f9fbec18Smcpowers * result is a binary polynomial in 6 mp_digits r[6]. 157*f9fbec18Smcpowers * The caller MUST ensure that r has the right amount of space allocated. 158*f9fbec18Smcpowers */ 159*f9fbec18Smcpowers void 160*f9fbec18Smcpowers s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, 161*f9fbec18Smcpowers const mp_digit b2, const mp_digit b1, const mp_digit b0) 162*f9fbec18Smcpowers { 163*f9fbec18Smcpowers mp_digit zm[4]; 164*f9fbec18Smcpowers 165*f9fbec18Smcpowers s_bmul_1x1(r+5, r+4, a2, b2); /* fill top 2 words */ 166*f9fbec18Smcpowers s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */ 167*f9fbec18Smcpowers s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ 168*f9fbec18Smcpowers 169*f9fbec18Smcpowers zm[3] ^= r[3]; 170*f9fbec18Smcpowers zm[2] ^= r[2]; 171*f9fbec18Smcpowers zm[1] ^= r[1] ^ r[5]; 172*f9fbec18Smcpowers zm[0] ^= r[0] ^ r[4]; 173*f9fbec18Smcpowers 174*f9fbec18Smcpowers r[5] ^= zm[3]; 175*f9fbec18Smcpowers r[4] ^= zm[2]; 176*f9fbec18Smcpowers r[3] ^= zm[1]; 177*f9fbec18Smcpowers r[2] ^= zm[0]; 178*f9fbec18Smcpowers } 179*f9fbec18Smcpowers 180*f9fbec18Smcpowers /* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0) 181*f9fbec18Smcpowers * result is a binary polynomial in 8 mp_digits r[8]. 182*f9fbec18Smcpowers * The caller MUST ensure that r has the right amount of space allocated. 183*f9fbec18Smcpowers */ 184*f9fbec18Smcpowers void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, 185*f9fbec18Smcpowers const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, 186*f9fbec18Smcpowers const mp_digit b0) 187*f9fbec18Smcpowers { 188*f9fbec18Smcpowers mp_digit zm[4]; 189*f9fbec18Smcpowers 190*f9fbec18Smcpowers s_bmul_2x2(r+4, a3, a2, b3, b2); /* fill top 4 words */ 191*f9fbec18Smcpowers s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */ 192*f9fbec18Smcpowers s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ 193*f9fbec18Smcpowers 194*f9fbec18Smcpowers zm[3] ^= r[3] ^ r[7]; 195*f9fbec18Smcpowers zm[2] ^= r[2] ^ r[6]; 196*f9fbec18Smcpowers zm[1] ^= r[1] ^ r[5]; 197*f9fbec18Smcpowers zm[0] ^= r[0] ^ r[4]; 198*f9fbec18Smcpowers 199*f9fbec18Smcpowers r[5] ^= zm[3]; 200*f9fbec18Smcpowers r[4] ^= zm[2]; 201*f9fbec18Smcpowers r[3] ^= zm[1]; 202*f9fbec18Smcpowers r[2] ^= zm[0]; 203*f9fbec18Smcpowers } 204*f9fbec18Smcpowers 205*f9fbec18Smcpowers /* Compute addition of two binary polynomials a and b, 206*f9fbec18Smcpowers * store result in c; c could be a or b, a and b could be equal; 207*f9fbec18Smcpowers * c is the bitwise XOR of a and b. 208*f9fbec18Smcpowers */ 209*f9fbec18Smcpowers mp_err 210*f9fbec18Smcpowers mp_badd(const mp_int *a, const mp_int *b, mp_int *c) 211*f9fbec18Smcpowers { 212*f9fbec18Smcpowers mp_digit *pa, *pb, *pc; 213*f9fbec18Smcpowers mp_size ix; 214*f9fbec18Smcpowers mp_size used_pa, used_pb; 215*f9fbec18Smcpowers mp_err res = MP_OKAY; 216*f9fbec18Smcpowers 217*f9fbec18Smcpowers /* Add all digits up to the precision of b. If b had more 218*f9fbec18Smcpowers * precision than a initially, swap a, b first 219*f9fbec18Smcpowers */ 220*f9fbec18Smcpowers if (MP_USED(a) >= MP_USED(b)) { 221*f9fbec18Smcpowers pa = MP_DIGITS(a); 222*f9fbec18Smcpowers pb = MP_DIGITS(b); 223*f9fbec18Smcpowers used_pa = MP_USED(a); 224*f9fbec18Smcpowers used_pb = MP_USED(b); 225*f9fbec18Smcpowers } else { 226*f9fbec18Smcpowers pa = MP_DIGITS(b); 227*f9fbec18Smcpowers pb = MP_DIGITS(a); 228*f9fbec18Smcpowers used_pa = MP_USED(b); 229*f9fbec18Smcpowers used_pb = MP_USED(a); 230*f9fbec18Smcpowers } 231*f9fbec18Smcpowers 232*f9fbec18Smcpowers /* Make sure c has enough precision for the output value */ 233*f9fbec18Smcpowers MP_CHECKOK( s_mp_pad(c, used_pa) ); 234*f9fbec18Smcpowers 235*f9fbec18Smcpowers /* Do word-by-word xor */ 236*f9fbec18Smcpowers pc = MP_DIGITS(c); 237*f9fbec18Smcpowers for (ix = 0; ix < used_pb; ix++) { 238*f9fbec18Smcpowers (*pc++) = (*pa++) ^ (*pb++); 239*f9fbec18Smcpowers } 240*f9fbec18Smcpowers 241*f9fbec18Smcpowers /* Finish the rest of digits until we're actually done */ 242*f9fbec18Smcpowers for (; ix < used_pa; ++ix) { 243*f9fbec18Smcpowers *pc++ = *pa++; 244*f9fbec18Smcpowers } 245*f9fbec18Smcpowers 246*f9fbec18Smcpowers MP_USED(c) = used_pa; 247*f9fbec18Smcpowers MP_SIGN(c) = ZPOS; 248*f9fbec18Smcpowers s_mp_clamp(c); 249*f9fbec18Smcpowers 250*f9fbec18Smcpowers CLEANUP: 251*f9fbec18Smcpowers return res; 252*f9fbec18Smcpowers } 253*f9fbec18Smcpowers 254*f9fbec18Smcpowers #define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) ); 255*f9fbec18Smcpowers 256*f9fbec18Smcpowers /* Compute binary polynomial multiply d = a * b */ 257*f9fbec18Smcpowers static void 258*f9fbec18Smcpowers s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) 259*f9fbec18Smcpowers { 260*f9fbec18Smcpowers mp_digit a_i, a0b0, a1b1, carry = 0; 261*f9fbec18Smcpowers while (a_len--) { 262*f9fbec18Smcpowers a_i = *a++; 263*f9fbec18Smcpowers s_bmul_1x1(&a1b1, &a0b0, a_i, b); 264*f9fbec18Smcpowers *d++ = a0b0 ^ carry; 265*f9fbec18Smcpowers carry = a1b1; 266*f9fbec18Smcpowers } 267*f9fbec18Smcpowers *d = carry; 268*f9fbec18Smcpowers } 269*f9fbec18Smcpowers 270*f9fbec18Smcpowers /* Compute binary polynomial xor multiply accumulate d ^= a * b */ 271*f9fbec18Smcpowers static void 272*f9fbec18Smcpowers s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) 273*f9fbec18Smcpowers { 274*f9fbec18Smcpowers mp_digit a_i, a0b0, a1b1, carry = 0; 275*f9fbec18Smcpowers while (a_len--) { 276*f9fbec18Smcpowers a_i = *a++; 277*f9fbec18Smcpowers s_bmul_1x1(&a1b1, &a0b0, a_i, b); 278*f9fbec18Smcpowers *d++ ^= a0b0 ^ carry; 279*f9fbec18Smcpowers carry = a1b1; 280*f9fbec18Smcpowers } 281*f9fbec18Smcpowers *d ^= carry; 282*f9fbec18Smcpowers } 283*f9fbec18Smcpowers 284*f9fbec18Smcpowers /* Compute binary polynomial xor multiply c = a * b. 285*f9fbec18Smcpowers * All parameters may be identical. 286*f9fbec18Smcpowers */ 287*f9fbec18Smcpowers mp_err 288*f9fbec18Smcpowers mp_bmul(const mp_int *a, const mp_int *b, mp_int *c) 289*f9fbec18Smcpowers { 290*f9fbec18Smcpowers mp_digit *pb, b_i; 291*f9fbec18Smcpowers mp_int tmp; 292*f9fbec18Smcpowers mp_size ib, a_used, b_used; 293*f9fbec18Smcpowers mp_err res = MP_OKAY; 294*f9fbec18Smcpowers 295*f9fbec18Smcpowers MP_DIGITS(&tmp) = 0; 296*f9fbec18Smcpowers 297*f9fbec18Smcpowers ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); 298*f9fbec18Smcpowers 299*f9fbec18Smcpowers if (a == c) { 300*f9fbec18Smcpowers MP_CHECKOK( mp_init_copy(&tmp, a) ); 301*f9fbec18Smcpowers if (a == b) 302*f9fbec18Smcpowers b = &tmp; 303*f9fbec18Smcpowers a = &tmp; 304*f9fbec18Smcpowers } else if (b == c) { 305*f9fbec18Smcpowers MP_CHECKOK( mp_init_copy(&tmp, b) ); 306*f9fbec18Smcpowers b = &tmp; 307*f9fbec18Smcpowers } 308*f9fbec18Smcpowers 309*f9fbec18Smcpowers if (MP_USED(a) < MP_USED(b)) { 310*f9fbec18Smcpowers const mp_int *xch = b; /* switch a and b if b longer */ 311*f9fbec18Smcpowers b = a; 312*f9fbec18Smcpowers a = xch; 313*f9fbec18Smcpowers } 314*f9fbec18Smcpowers 315*f9fbec18Smcpowers MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; 316*f9fbec18Smcpowers MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) ); 317*f9fbec18Smcpowers 318*f9fbec18Smcpowers pb = MP_DIGITS(b); 319*f9fbec18Smcpowers s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); 320*f9fbec18Smcpowers 321*f9fbec18Smcpowers /* Outer loop: Digits of b */ 322*f9fbec18Smcpowers a_used = MP_USED(a); 323*f9fbec18Smcpowers b_used = MP_USED(b); 324*f9fbec18Smcpowers MP_USED(c) = a_used + b_used; 325*f9fbec18Smcpowers for (ib = 1; ib < b_used; ib++) { 326*f9fbec18Smcpowers b_i = *pb++; 327*f9fbec18Smcpowers 328*f9fbec18Smcpowers /* Inner product: Digits of a */ 329*f9fbec18Smcpowers if (b_i) 330*f9fbec18Smcpowers s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib); 331*f9fbec18Smcpowers else 332*f9fbec18Smcpowers MP_DIGIT(c, ib + a_used) = b_i; 333*f9fbec18Smcpowers } 334*f9fbec18Smcpowers 335*f9fbec18Smcpowers s_mp_clamp(c); 336*f9fbec18Smcpowers 337*f9fbec18Smcpowers SIGN(c) = ZPOS; 338*f9fbec18Smcpowers 339*f9fbec18Smcpowers CLEANUP: 340*f9fbec18Smcpowers mp_clear(&tmp); 341*f9fbec18Smcpowers return res; 342*f9fbec18Smcpowers } 343*f9fbec18Smcpowers 344*f9fbec18Smcpowers 345*f9fbec18Smcpowers /* Compute modular reduction of a and store result in r. 346*f9fbec18Smcpowers * r could be a. 347*f9fbec18Smcpowers * For modular arithmetic, the irreducible polynomial f(t) is represented 348*f9fbec18Smcpowers * as an array of int[], where f(t) is of the form: 349*f9fbec18Smcpowers * f(t) = t^p[0] + t^p[1] + ... + t^p[k] 350*f9fbec18Smcpowers * where m = p[0] > p[1] > ... > p[k] = 0. 351*f9fbec18Smcpowers */ 352*f9fbec18Smcpowers mp_err 353*f9fbec18Smcpowers mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r) 354*f9fbec18Smcpowers { 355*f9fbec18Smcpowers int j, k; 356*f9fbec18Smcpowers int n, dN, d0, d1; 357*f9fbec18Smcpowers mp_digit zz, *z, tmp; 358*f9fbec18Smcpowers mp_size used; 359*f9fbec18Smcpowers mp_err res = MP_OKAY; 360*f9fbec18Smcpowers 361*f9fbec18Smcpowers /* The algorithm does the reduction in place in r, 362*f9fbec18Smcpowers * if a != r, copy a into r first so reduction can be done in r 363*f9fbec18Smcpowers */ 364*f9fbec18Smcpowers if (a != r) { 365*f9fbec18Smcpowers MP_CHECKOK( mp_copy(a, r) ); 366*f9fbec18Smcpowers } 367*f9fbec18Smcpowers z = MP_DIGITS(r); 368*f9fbec18Smcpowers 369*f9fbec18Smcpowers /* start reduction */ 370*f9fbec18Smcpowers dN = p[0] / MP_DIGIT_BITS; 371*f9fbec18Smcpowers used = MP_USED(r); 372*f9fbec18Smcpowers 373*f9fbec18Smcpowers for (j = used - 1; j > dN;) { 374*f9fbec18Smcpowers 375*f9fbec18Smcpowers zz = z[j]; 376*f9fbec18Smcpowers if (zz == 0) { 377*f9fbec18Smcpowers j--; continue; 378*f9fbec18Smcpowers } 379*f9fbec18Smcpowers z[j] = 0; 380*f9fbec18Smcpowers 381*f9fbec18Smcpowers for (k = 1; p[k] > 0; k++) { 382*f9fbec18Smcpowers /* reducing component t^p[k] */ 383*f9fbec18Smcpowers n = p[0] - p[k]; 384*f9fbec18Smcpowers d0 = n % MP_DIGIT_BITS; 385*f9fbec18Smcpowers d1 = MP_DIGIT_BITS - d0; 386*f9fbec18Smcpowers n /= MP_DIGIT_BITS; 387*f9fbec18Smcpowers z[j-n] ^= (zz>>d0); 388*f9fbec18Smcpowers if (d0) 389*f9fbec18Smcpowers z[j-n-1] ^= (zz<<d1); 390*f9fbec18Smcpowers } 391*f9fbec18Smcpowers 392*f9fbec18Smcpowers /* reducing component t^0 */ 393*f9fbec18Smcpowers n = dN; 394*f9fbec18Smcpowers d0 = p[0] % MP_DIGIT_BITS; 395*f9fbec18Smcpowers d1 = MP_DIGIT_BITS - d0; 396*f9fbec18Smcpowers z[j-n] ^= (zz >> d0); 397*f9fbec18Smcpowers if (d0) 398*f9fbec18Smcpowers z[j-n-1] ^= (zz << d1); 399*f9fbec18Smcpowers 400*f9fbec18Smcpowers } 401*f9fbec18Smcpowers 402*f9fbec18Smcpowers /* final round of reduction */ 403*f9fbec18Smcpowers while (j == dN) { 404*f9fbec18Smcpowers 405*f9fbec18Smcpowers d0 = p[0] % MP_DIGIT_BITS; 406*f9fbec18Smcpowers zz = z[dN] >> d0; 407*f9fbec18Smcpowers if (zz == 0) break; 408*f9fbec18Smcpowers d1 = MP_DIGIT_BITS - d0; 409*f9fbec18Smcpowers 410*f9fbec18Smcpowers /* clear up the top d1 bits */ 411*f9fbec18Smcpowers if (d0) z[dN] = (z[dN] << d1) >> d1; 412*f9fbec18Smcpowers *z ^= zz; /* reduction t^0 component */ 413*f9fbec18Smcpowers 414*f9fbec18Smcpowers for (k = 1; p[k] > 0; k++) { 415*f9fbec18Smcpowers /* reducing component t^p[k]*/ 416*f9fbec18Smcpowers n = p[k] / MP_DIGIT_BITS; 417*f9fbec18Smcpowers d0 = p[k] % MP_DIGIT_BITS; 418*f9fbec18Smcpowers d1 = MP_DIGIT_BITS - d0; 419*f9fbec18Smcpowers z[n] ^= (zz << d0); 420*f9fbec18Smcpowers tmp = zz >> d1; 421*f9fbec18Smcpowers if (d0 && tmp) 422*f9fbec18Smcpowers z[n+1] ^= tmp; 423*f9fbec18Smcpowers } 424*f9fbec18Smcpowers } 425*f9fbec18Smcpowers 426*f9fbec18Smcpowers s_mp_clamp(r); 427*f9fbec18Smcpowers CLEANUP: 428*f9fbec18Smcpowers return res; 429*f9fbec18Smcpowers } 430*f9fbec18Smcpowers 431*f9fbec18Smcpowers /* Compute the product of two polynomials a and b, reduce modulo p, 432*f9fbec18Smcpowers * Store the result in r. r could be a or b; a could be b. 433*f9fbec18Smcpowers */ 434*f9fbec18Smcpowers mp_err 435*f9fbec18Smcpowers mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r) 436*f9fbec18Smcpowers { 437*f9fbec18Smcpowers mp_err res; 438*f9fbec18Smcpowers 439*f9fbec18Smcpowers if (a == b) return mp_bsqrmod(a, p, r); 440*f9fbec18Smcpowers if ((res = mp_bmul(a, b, r) ) != MP_OKAY) 441*f9fbec18Smcpowers return res; 442*f9fbec18Smcpowers return mp_bmod(r, p, r); 443*f9fbec18Smcpowers } 444*f9fbec18Smcpowers 445*f9fbec18Smcpowers /* Compute binary polynomial squaring c = a*a mod p . 446*f9fbec18Smcpowers * Parameter r and a can be identical. 447*f9fbec18Smcpowers */ 448*f9fbec18Smcpowers 449*f9fbec18Smcpowers mp_err 450*f9fbec18Smcpowers mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r) 451*f9fbec18Smcpowers { 452*f9fbec18Smcpowers mp_digit *pa, *pr, a_i; 453*f9fbec18Smcpowers mp_int tmp; 454*f9fbec18Smcpowers mp_size ia, a_used; 455*f9fbec18Smcpowers mp_err res; 456*f9fbec18Smcpowers 457*f9fbec18Smcpowers ARGCHK(a != NULL && r != NULL, MP_BADARG); 458*f9fbec18Smcpowers MP_DIGITS(&tmp) = 0; 459*f9fbec18Smcpowers 460*f9fbec18Smcpowers if (a == r) { 461*f9fbec18Smcpowers MP_CHECKOK( mp_init_copy(&tmp, a) ); 462*f9fbec18Smcpowers a = &tmp; 463*f9fbec18Smcpowers } 464*f9fbec18Smcpowers 465*f9fbec18Smcpowers MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; 466*f9fbec18Smcpowers MP_CHECKOK( s_mp_pad(r, 2*USED(a)) ); 467*f9fbec18Smcpowers 468*f9fbec18Smcpowers pa = MP_DIGITS(a); 469*f9fbec18Smcpowers pr = MP_DIGITS(r); 470*f9fbec18Smcpowers a_used = MP_USED(a); 471*f9fbec18Smcpowers MP_USED(r) = 2 * a_used; 472*f9fbec18Smcpowers 473*f9fbec18Smcpowers for (ia = 0; ia < a_used; ia++) { 474*f9fbec18Smcpowers a_i = *pa++; 475*f9fbec18Smcpowers *pr++ = gf2m_SQR0(a_i); 476*f9fbec18Smcpowers *pr++ = gf2m_SQR1(a_i); 477*f9fbec18Smcpowers } 478*f9fbec18Smcpowers 479*f9fbec18Smcpowers MP_CHECKOK( mp_bmod(r, p, r) ); 480*f9fbec18Smcpowers s_mp_clamp(r); 481*f9fbec18Smcpowers SIGN(r) = ZPOS; 482*f9fbec18Smcpowers 483*f9fbec18Smcpowers CLEANUP: 484*f9fbec18Smcpowers mp_clear(&tmp); 485*f9fbec18Smcpowers return res; 486*f9fbec18Smcpowers } 487*f9fbec18Smcpowers 488*f9fbec18Smcpowers /* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p. 489*f9fbec18Smcpowers * Store the result in r. r could be x or y, and x could equal y. 490*f9fbec18Smcpowers * Uses algorithm Modular_Division_GF(2^m) from 491*f9fbec18Smcpowers * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to 492*f9fbec18Smcpowers * the Great Divide". 493*f9fbec18Smcpowers */ 494*f9fbec18Smcpowers int 495*f9fbec18Smcpowers mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp, 496*f9fbec18Smcpowers const unsigned int p[], mp_int *r) 497*f9fbec18Smcpowers { 498*f9fbec18Smcpowers mp_int aa, bb, uu; 499*f9fbec18Smcpowers mp_int *a, *b, *u, *v; 500*f9fbec18Smcpowers mp_err res = MP_OKAY; 501*f9fbec18Smcpowers 502*f9fbec18Smcpowers MP_DIGITS(&aa) = 0; 503*f9fbec18Smcpowers MP_DIGITS(&bb) = 0; 504*f9fbec18Smcpowers MP_DIGITS(&uu) = 0; 505*f9fbec18Smcpowers 506*f9fbec18Smcpowers MP_CHECKOK( mp_init_copy(&aa, x) ); 507*f9fbec18Smcpowers MP_CHECKOK( mp_init_copy(&uu, y) ); 508*f9fbec18Smcpowers MP_CHECKOK( mp_init_copy(&bb, pp) ); 509*f9fbec18Smcpowers MP_CHECKOK( s_mp_pad(r, USED(pp)) ); 510*f9fbec18Smcpowers MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; 511*f9fbec18Smcpowers 512*f9fbec18Smcpowers a = &aa; b= &bb; u=&uu; v=r; 513*f9fbec18Smcpowers /* reduce x and y mod p */ 514*f9fbec18Smcpowers MP_CHECKOK( mp_bmod(a, p, a) ); 515*f9fbec18Smcpowers MP_CHECKOK( mp_bmod(u, p, u) ); 516*f9fbec18Smcpowers 517*f9fbec18Smcpowers while (!mp_isodd(a)) { 518*f9fbec18Smcpowers s_mp_div2(a); 519*f9fbec18Smcpowers if (mp_isodd(u)) { 520*f9fbec18Smcpowers MP_CHECKOK( mp_badd(u, pp, u) ); 521*f9fbec18Smcpowers } 522*f9fbec18Smcpowers s_mp_div2(u); 523*f9fbec18Smcpowers } 524*f9fbec18Smcpowers 525*f9fbec18Smcpowers do { 526*f9fbec18Smcpowers if (mp_cmp_mag(b, a) > 0) { 527*f9fbec18Smcpowers MP_CHECKOK( mp_badd(b, a, b) ); 528*f9fbec18Smcpowers MP_CHECKOK( mp_badd(v, u, v) ); 529*f9fbec18Smcpowers do { 530*f9fbec18Smcpowers s_mp_div2(b); 531*f9fbec18Smcpowers if (mp_isodd(v)) { 532*f9fbec18Smcpowers MP_CHECKOK( mp_badd(v, pp, v) ); 533*f9fbec18Smcpowers } 534*f9fbec18Smcpowers s_mp_div2(v); 535*f9fbec18Smcpowers } while (!mp_isodd(b)); 536*f9fbec18Smcpowers } 537*f9fbec18Smcpowers else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1)) 538*f9fbec18Smcpowers break; 539*f9fbec18Smcpowers else { 540*f9fbec18Smcpowers MP_CHECKOK( mp_badd(a, b, a) ); 541*f9fbec18Smcpowers MP_CHECKOK( mp_badd(u, v, u) ); 542*f9fbec18Smcpowers do { 543*f9fbec18Smcpowers s_mp_div2(a); 544*f9fbec18Smcpowers if (mp_isodd(u)) { 545*f9fbec18Smcpowers MP_CHECKOK( mp_badd(u, pp, u) ); 546*f9fbec18Smcpowers } 547*f9fbec18Smcpowers s_mp_div2(u); 548*f9fbec18Smcpowers } while (!mp_isodd(a)); 549*f9fbec18Smcpowers } 550*f9fbec18Smcpowers } while (1); 551*f9fbec18Smcpowers 552*f9fbec18Smcpowers MP_CHECKOK( mp_copy(u, r) ); 553*f9fbec18Smcpowers 554*f9fbec18Smcpowers CLEANUP: 555*f9fbec18Smcpowers /* XXX this appears to be a memory leak in the NSS code */ 556*f9fbec18Smcpowers mp_clear(&aa); 557*f9fbec18Smcpowers mp_clear(&bb); 558*f9fbec18Smcpowers mp_clear(&uu); 559*f9fbec18Smcpowers return res; 560*f9fbec18Smcpowers 561*f9fbec18Smcpowers } 562*f9fbec18Smcpowers 563*f9fbec18Smcpowers /* Convert the bit-string representation of a polynomial a into an array 564*f9fbec18Smcpowers * of integers corresponding to the bits with non-zero coefficient. 565*f9fbec18Smcpowers * Up to max elements of the array will be filled. Return value is total 566*f9fbec18Smcpowers * number of coefficients that would be extracted if array was large enough. 567*f9fbec18Smcpowers */ 568*f9fbec18Smcpowers int 569*f9fbec18Smcpowers mp_bpoly2arr(const mp_int *a, unsigned int p[], int max) 570*f9fbec18Smcpowers { 571*f9fbec18Smcpowers int i, j, k; 572*f9fbec18Smcpowers mp_digit top_bit, mask; 573*f9fbec18Smcpowers 574*f9fbec18Smcpowers top_bit = 1; 575*f9fbec18Smcpowers top_bit <<= MP_DIGIT_BIT - 1; 576*f9fbec18Smcpowers 577*f9fbec18Smcpowers for (k = 0; k < max; k++) p[k] = 0; 578*f9fbec18Smcpowers k = 0; 579*f9fbec18Smcpowers 580*f9fbec18Smcpowers for (i = MP_USED(a) - 1; i >= 0; i--) { 581*f9fbec18Smcpowers mask = top_bit; 582*f9fbec18Smcpowers for (j = MP_DIGIT_BIT - 1; j >= 0; j--) { 583*f9fbec18Smcpowers if (MP_DIGITS(a)[i] & mask) { 584*f9fbec18Smcpowers if (k < max) p[k] = MP_DIGIT_BIT * i + j; 585*f9fbec18Smcpowers k++; 586*f9fbec18Smcpowers } 587*f9fbec18Smcpowers mask >>= 1; 588*f9fbec18Smcpowers } 589*f9fbec18Smcpowers } 590*f9fbec18Smcpowers 591*f9fbec18Smcpowers return k; 592*f9fbec18Smcpowers } 593*f9fbec18Smcpowers 594*f9fbec18Smcpowers /* Convert the coefficient array representation of a polynomial to a 595*f9fbec18Smcpowers * bit-string. The array must be terminated by 0. 596*f9fbec18Smcpowers */ 597*f9fbec18Smcpowers mp_err 598*f9fbec18Smcpowers mp_barr2poly(const unsigned int p[], mp_int *a) 599*f9fbec18Smcpowers { 600*f9fbec18Smcpowers 601*f9fbec18Smcpowers mp_err res = MP_OKAY; 602*f9fbec18Smcpowers int i; 603*f9fbec18Smcpowers 604*f9fbec18Smcpowers mp_zero(a); 605*f9fbec18Smcpowers for (i = 0; p[i] > 0; i++) { 606*f9fbec18Smcpowers MP_CHECKOK( mpl_set_bit(a, p[i], 1) ); 607*f9fbec18Smcpowers } 608*f9fbec18Smcpowers MP_CHECKOK( mpl_set_bit(a, 0, 1) ); 609*f9fbec18Smcpowers 610*f9fbec18Smcpowers CLEANUP: 611*f9fbec18Smcpowers return res; 612*f9fbec18Smcpowers } 613