xref: /titanic_51/usr/src/common/lzma/LzmaEnc.c (revision bbaa8b60dd95d714741fc474adad3cf710ef4efd)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /* LzmaEnc.c -- LZMA Encoder
7 2008-10-04 : Igor Pavlov : Public domain */
8 
9 #include <string.h>
10 
11 /* #define SHOW_STAT */
12 /* #define SHOW_STAT2 */
13 
14 #if defined(SHOW_STAT) || defined(SHOW_STAT2)
15 #include <stdio.h>
16 #endif
17 
18 #include "LzmaEnc.h"
19 
20 #include "LzFind.h"
21 #ifdef COMPRESS_MF_MT
22 #include "LzFindMt.h"
23 #endif
24 
25 #ifdef SHOW_STAT
26 static int ttt = 0;
27 #endif
28 
29 #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
30 
31 #define kBlockSize (9 << 10)
32 #define kUnpackBlockSize (1 << 18)
33 #define kMatchArraySize (1 << 21)
34 #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
35 
36 #define kNumMaxDirectBits (31)
37 
38 #define kNumTopBits 24
39 #define kTopValue ((UInt32)1 << kNumTopBits)
40 
41 #define kNumBitModelTotalBits 11
42 #define kBitModelTotal (1 << kNumBitModelTotalBits)
43 #define kNumMoveBits 5
44 #define kProbInitValue (kBitModelTotal >> 1)
45 
46 #define kNumMoveReducingBits 4
47 #define kNumBitPriceShiftBits 4
48 #define kBitPrice (1 << kNumBitPriceShiftBits)
49 
50 void LzmaEncProps_Init(CLzmaEncProps *p)
51 {
52   p->level = 5;
53   p->dictSize = p->mc = 0;
54   p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
55   p->writeEndMark = 0;
56 }
57 
58 void LzmaEncProps_Normalize(CLzmaEncProps *p)
59 {
60   int level = p->level;
61   if (level < 0) level = 5;
62   p->level = level;
63   if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
64   if (p->lc < 0) p->lc = 3;
65   if (p->lp < 0) p->lp = 0;
66   if (p->pb < 0) p->pb = 2;
67   if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
68   if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
69   if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
70   if (p->numHashBytes < 0) p->numHashBytes = 4;
71   if (p->mc == 0)  p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
72   if (p->numThreads < 0) p->numThreads = ((p->btMode && p->algo) ? 2 : 1);
73 }
74 
75 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
76 {
77   CLzmaEncProps props = *props2;
78   LzmaEncProps_Normalize(&props);
79   return props.dictSize;
80 }
81 
82 /* #define LZMA_LOG_BSR */
83 /* Define it for Intel's CPU */
84 
85 
86 #ifdef LZMA_LOG_BSR
87 
88 #define kDicLogSizeMaxCompress 30
89 
90 #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
91 
92 UInt32 GetPosSlot1(UInt32 pos)
93 {
94   UInt32 res;
95   BSR2_RET(pos, res);
96   return res;
97 }
98 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
99 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
100 
101 #else
102 
103 #define kNumLogBits (9 + (int)sizeof(size_t) / 2)
104 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
105 
106 void LzmaEnc_FastPosInit(Byte *g_FastPos)
107 {
108   int c = 2, slotFast;
109   g_FastPos[0] = 0;
110   g_FastPos[1] = 1;
111 
112   for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
113   {
114     UInt32 k = (1 << ((slotFast >> 1) - 1));
115     UInt32 j;
116     for (j = 0; j < k; j++, c++)
117       g_FastPos[c] = (Byte)slotFast;
118   }
119 }
120 
121 #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
122   (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
123   res = p->g_FastPos[pos >> i] + (i * 2); }
124 /*
125 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
126   p->g_FastPos[pos >> 6] + 12 : \
127   p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
128 */
129 
130 #define GetPosSlot1(pos) p->g_FastPos[pos]
131 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
132 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
133 
134 #endif
135 
136 
137 #define LZMA_NUM_REPS 4
138 
139 typedef unsigned CState;
140 
141 typedef struct _COptimal
142 {
143   UInt32 price;
144 
145   CState state;
146   int prev1IsChar;
147   int prev2;
148 
149   UInt32 posPrev2;
150   UInt32 backPrev2;
151 
152   UInt32 posPrev;
153   UInt32 backPrev;
154   UInt32 backs[LZMA_NUM_REPS];
155 } COptimal;
156 
157 #define kNumOpts (1 << 12)
158 
159 #define kNumLenToPosStates 4
160 #define kNumPosSlotBits 6
161 #define kDicLogSizeMin 0
162 #define kDicLogSizeMax 32
163 #define kDistTableSizeMax (kDicLogSizeMax * 2)
164 
165 
166 #define kNumAlignBits 4
167 #define kAlignTableSize (1 << kNumAlignBits)
168 #define kAlignMask (kAlignTableSize - 1)
169 
170 #define kStartPosModelIndex 4
171 #define kEndPosModelIndex 14
172 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
173 
174 #define kNumFullDistances (1 << (kEndPosModelIndex / 2))
175 
176 #ifdef _LZMA_PROB32
177 #define CLzmaProb UInt32
178 #else
179 #define CLzmaProb UInt16
180 #endif
181 
182 #define LZMA_PB_MAX 4
183 #define LZMA_LC_MAX 8
184 #define LZMA_LP_MAX 4
185 
186 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
187 
188 
189 #define kLenNumLowBits 3
190 #define kLenNumLowSymbols (1 << kLenNumLowBits)
191 #define kLenNumMidBits 3
192 #define kLenNumMidSymbols (1 << kLenNumMidBits)
193 #define kLenNumHighBits 8
194 #define kLenNumHighSymbols (1 << kLenNumHighBits)
195 
196 #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
197 
198 #define LZMA_MATCH_LEN_MIN 2
199 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
200 
201 #define kNumStates 12
202 
203 typedef struct
204 {
205   CLzmaProb choice;
206   CLzmaProb choice2;
207   CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
208   CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
209   CLzmaProb high[kLenNumHighSymbols];
210 } CLenEnc;
211 
212 typedef struct
213 {
214   CLenEnc p;
215   UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
216   UInt32 tableSize;
217   UInt32 counters[LZMA_NUM_PB_STATES_MAX];
218 } CLenPriceEnc;
219 
220 typedef struct _CRangeEnc
221 {
222   UInt32 range;
223   Byte cache;
224   UInt64 low;
225   UInt64 cacheSize;
226   Byte *buf;
227   Byte *bufLim;
228   Byte *bufBase;
229   ISeqOutStream *outStream;
230   UInt64 processed;
231   SRes res;
232 } CRangeEnc;
233 
234 typedef struct _CSeqInStreamBuf
235 {
236   ISeqInStream funcTable;
237   const Byte *data;
238   SizeT rem;
239 } CSeqInStreamBuf;
240 
241 static SRes MyRead(void *pp, void *data, size_t *size)
242 {
243   size_t curSize = *size;
244   CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp;
245   if (p->rem < curSize)
246     curSize = p->rem;
247   memcpy(data, p->data, curSize);
248   p->rem -= curSize;
249   p->data += curSize;
250   *size = curSize;
251   return SZ_OK;
252 }
253 
254 typedef struct
255 {
256   CLzmaProb *litProbs;
257 
258   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
259   CLzmaProb isRep[kNumStates];
260   CLzmaProb isRepG0[kNumStates];
261   CLzmaProb isRepG1[kNumStates];
262   CLzmaProb isRepG2[kNumStates];
263   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
264 
265   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
266   CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
267   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
268 
269   CLenPriceEnc lenEnc;
270   CLenPriceEnc repLenEnc;
271 
272   UInt32 reps[LZMA_NUM_REPS];
273   UInt32 state;
274 } CSaveState;
275 
276 typedef struct _CLzmaEnc
277 {
278   IMatchFinder matchFinder;
279   void *matchFinderObj;
280 
281   #ifdef COMPRESS_MF_MT
282   Bool mtMode;
283   CMatchFinderMt matchFinderMt;
284   #endif
285 
286   CMatchFinder matchFinderBase;
287 
288   #ifdef COMPRESS_MF_MT
289   Byte pad[128];
290   #endif
291 
292   UInt32 optimumEndIndex;
293   UInt32 optimumCurrentIndex;
294 
295   UInt32 longestMatchLength;
296   UInt32 numPairs;
297   UInt32 numAvail;
298   COptimal opt[kNumOpts];
299 
300   #ifndef LZMA_LOG_BSR
301   Byte g_FastPos[1 << kNumLogBits];
302   #endif
303 
304   UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
305   UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
306   UInt32 numFastBytes;
307   UInt32 additionalOffset;
308   UInt32 reps[LZMA_NUM_REPS];
309   UInt32 state;
310 
311   UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
312   UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
313   UInt32 alignPrices[kAlignTableSize];
314   UInt32 alignPriceCount;
315 
316   UInt32 distTableSize;
317 
318   unsigned lc, lp, pb;
319   unsigned lpMask, pbMask;
320 
321   CLzmaProb *litProbs;
322 
323   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
324   CLzmaProb isRep[kNumStates];
325   CLzmaProb isRepG0[kNumStates];
326   CLzmaProb isRepG1[kNumStates];
327   CLzmaProb isRepG2[kNumStates];
328   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
329 
330   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
331   CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
332   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
333 
334   CLenPriceEnc lenEnc;
335   CLenPriceEnc repLenEnc;
336 
337   unsigned lclp;
338 
339   Bool fastMode;
340 
341   CRangeEnc rc;
342 
343   Bool writeEndMark;
344   UInt64 nowPos64;
345   UInt32 matchPriceCount;
346   Bool finished;
347   Bool multiThread;
348 
349   SRes result;
350   UInt32 dictSize;
351   UInt32 matchFinderCycles;
352 
353   ISeqInStream *inStream;
354   CSeqInStreamBuf seqBufInStream;
355 
356   CSaveState saveState;
357 } CLzmaEnc;
358 
359 void LzmaEnc_SaveState(CLzmaEncHandle pp)
360 {
361   CLzmaEnc *p = (CLzmaEnc *)pp;
362   CSaveState *dest = &p->saveState;
363   int i;
364   dest->lenEnc = p->lenEnc;
365   dest->repLenEnc = p->repLenEnc;
366   dest->state = p->state;
367 
368   for (i = 0; i < kNumStates; i++)
369   {
370     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
371     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
372   }
373   for (i = 0; i < kNumLenToPosStates; i++)
374     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
375   memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
376   memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
377   memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
378   memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
379   memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
380   memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
381   memcpy(dest->reps, p->reps, sizeof(p->reps));
382   memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
383 }
384 
385 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
386 {
387   CLzmaEnc *dest = (CLzmaEnc *)pp;
388   const CSaveState *p = &dest->saveState;
389   int i;
390   dest->lenEnc = p->lenEnc;
391   dest->repLenEnc = p->repLenEnc;
392   dest->state = p->state;
393 
394   for (i = 0; i < kNumStates; i++)
395   {
396     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
397     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
398   }
399   for (i = 0; i < kNumLenToPosStates; i++)
400     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
401   memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
402   memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
403   memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
404   memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
405   memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
406   memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
407   memcpy(dest->reps, p->reps, sizeof(p->reps));
408   memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
409 }
410 
411 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
412 {
413   CLzmaEnc *p = (CLzmaEnc *)pp;
414   CLzmaEncProps props = *props2;
415   LzmaEncProps_Normalize(&props);
416 
417   if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
418       props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
419     return SZ_ERROR_PARAM;
420   p->dictSize = props.dictSize;
421   p->matchFinderCycles = props.mc;
422   {
423     unsigned fb = props.fb;
424     if (fb < 5)
425       fb = 5;
426     if (fb > LZMA_MATCH_LEN_MAX)
427       fb = LZMA_MATCH_LEN_MAX;
428     p->numFastBytes = fb;
429   }
430   p->lc = props.lc;
431   p->lp = props.lp;
432   p->pb = props.pb;
433   p->fastMode = (props.algo == 0);
434   p->matchFinderBase.btMode = props.btMode;
435   {
436     UInt32 numHashBytes = 4;
437     if (props.btMode)
438     {
439       if (props.numHashBytes < 2)
440         numHashBytes = 2;
441       else if (props.numHashBytes < 4)
442         numHashBytes = props.numHashBytes;
443     }
444     p->matchFinderBase.numHashBytes = numHashBytes;
445   }
446 
447   p->matchFinderBase.cutValue = props.mc;
448 
449   p->writeEndMark = props.writeEndMark;
450 
451   #ifdef COMPRESS_MF_MT
452   /*
453   if (newMultiThread != _multiThread)
454   {
455     ReleaseMatchFinder();
456     _multiThread = newMultiThread;
457   }
458   */
459   p->multiThread = (props.numThreads > 1);
460   #endif
461 
462   return SZ_OK;
463 }
464 
465 static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4,  5,  6,   4, 5};
466 static const int kMatchNextStates[kNumStates]   = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
467 static const int kRepNextStates[kNumStates]     = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
468 static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
469 
470 #define IsCharState(s) ((s) < 7)
471 
472 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
473 
474 #define kInfinityPrice (1 << 30)
475 
476 static void RangeEnc_Construct(CRangeEnc *p)
477 {
478   p->outStream = 0;
479   p->bufBase = 0;
480 }
481 
482 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
483 
484 #define RC_BUF_SIZE (1 << 16)
485 static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
486 {
487   if (p->bufBase == 0)
488   {
489     p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
490     if (p->bufBase == 0)
491       return 0;
492     p->bufLim = p->bufBase + RC_BUF_SIZE;
493   }
494   return 1;
495 }
496 
497 static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
498 {
499   alloc->Free(alloc, p->bufBase, 0);
500   p->bufBase = 0;
501 }
502 
503 static void RangeEnc_Init(CRangeEnc *p)
504 {
505   /* Stream.Init(); */
506   p->low = 0;
507   p->range = 0xFFFFFFFF;
508   p->cacheSize = 1;
509   p->cache = 0;
510 
511   p->buf = p->bufBase;
512 
513   p->processed = 0;
514   p->res = SZ_OK;
515 }
516 
517 static void RangeEnc_FlushStream(CRangeEnc *p)
518 {
519   size_t num;
520   if (p->res != SZ_OK)
521     return;
522   num = p->buf - p->bufBase;
523   if (num != p->outStream->Write(p->outStream, p->bufBase, num))
524     p->res = SZ_ERROR_WRITE;
525   p->processed += num;
526   p->buf = p->bufBase;
527 }
528 
529 static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
530 {
531   if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
532   {
533     Byte temp = p->cache;
534     do
535     {
536       Byte *buf = p->buf;
537       *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
538       p->buf = buf;
539       if (buf == p->bufLim)
540         RangeEnc_FlushStream(p);
541       temp = 0xFF;
542     }
543     while (--p->cacheSize != 0);
544     p->cache = (Byte)((UInt32)p->low >> 24);
545   }
546   p->cacheSize++;
547   p->low = (UInt32)p->low << 8;
548 }
549 
550 static void RangeEnc_FlushData(CRangeEnc *p)
551 {
552   int i;
553   for (i = 0; i < 5; i++)
554     RangeEnc_ShiftLow(p);
555 }
556 
557 static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
558 {
559   do
560   {
561     p->range >>= 1;
562     p->low += p->range & (0 - ((value >> --numBits) & 1));
563     if (p->range < kTopValue)
564     {
565       p->range <<= 8;
566       RangeEnc_ShiftLow(p);
567     }
568   }
569   while (numBits != 0);
570 }
571 
572 static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
573 {
574   UInt32 ttt = *prob;
575   UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
576   if (symbol == 0)
577   {
578     p->range = newBound;
579     ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
580   }
581   else
582   {
583     p->low += newBound;
584     p->range -= newBound;
585     ttt -= ttt >> kNumMoveBits;
586   }
587   *prob = (CLzmaProb)ttt;
588   if (p->range < kTopValue)
589   {
590     p->range <<= 8;
591     RangeEnc_ShiftLow(p);
592   }
593 }
594 
595 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
596 {
597   symbol |= 0x100;
598   do
599   {
600     RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
601     symbol <<= 1;
602   }
603   while (symbol < 0x10000);
604 }
605 
606 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
607 {
608   UInt32 offs = 0x100;
609   symbol |= 0x100;
610   do
611   {
612     matchByte <<= 1;
613     RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
614     symbol <<= 1;
615     offs &= ~(matchByte ^ symbol);
616   }
617   while (symbol < 0x10000);
618 }
619 
620 void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
621 {
622   UInt32 i;
623   for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
624   {
625     const int kCyclesBits = kNumBitPriceShiftBits;
626     UInt32 w = i;
627     UInt32 bitCount = 0;
628     int j;
629     for (j = 0; j < kCyclesBits; j++)
630     {
631       w = w * w;
632       bitCount <<= 1;
633       while (w >= ((UInt32)1 << 16))
634       {
635         w >>= 1;
636         bitCount++;
637       }
638     }
639     ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
640   }
641 }
642 
643 
644 #define GET_PRICE(prob, symbol) \
645   p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
646 
647 #define GET_PRICEa(prob, symbol) \
648   ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
649 
650 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
651 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
652 
653 #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
654 #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
655 
656 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
657 {
658   UInt32 price = 0;
659   symbol |= 0x100;
660   do
661   {
662     price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
663     symbol <<= 1;
664   }
665   while (symbol < 0x10000);
666   return price;
667 }
668 
669 static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
670 {
671   UInt32 price = 0;
672   UInt32 offs = 0x100;
673   symbol |= 0x100;
674   do
675   {
676     matchByte <<= 1;
677     price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
678     symbol <<= 1;
679     offs &= ~(matchByte ^ symbol);
680   }
681   while (symbol < 0x10000);
682   return price;
683 }
684 
685 
686 static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
687 {
688   UInt32 m = 1;
689   int i;
690   for (i = numBitLevels; i != 0;)
691   {
692     UInt32 bit;
693     i--;
694     bit = (symbol >> i) & 1;
695     RangeEnc_EncodeBit(rc, probs + m, bit);
696     m = (m << 1) | bit;
697   }
698 }
699 
700 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
701 {
702   UInt32 m = 1;
703   int i;
704   for (i = 0; i < numBitLevels; i++)
705   {
706     UInt32 bit = symbol & 1;
707     RangeEnc_EncodeBit(rc, probs + m, bit);
708     m = (m << 1) | bit;
709     symbol >>= 1;
710   }
711 }
712 
713 static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
714 {
715   UInt32 price = 0;
716   symbol |= (1 << numBitLevels);
717   while (symbol != 1)
718   {
719     price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
720     symbol >>= 1;
721   }
722   return price;
723 }
724 
725 static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
726 {
727   UInt32 price = 0;
728   UInt32 m = 1;
729   int i;
730   for (i = numBitLevels; i != 0; i--)
731   {
732     UInt32 bit = symbol & 1;
733     symbol >>= 1;
734     price += GET_PRICEa(probs[m], bit);
735     m = (m << 1) | bit;
736   }
737   return price;
738 }
739 
740 
741 static void LenEnc_Init(CLenEnc *p)
742 {
743   unsigned i;
744   p->choice = p->choice2 = kProbInitValue;
745   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
746     p->low[i] = kProbInitValue;
747   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
748     p->mid[i] = kProbInitValue;
749   for (i = 0; i < kLenNumHighSymbols; i++)
750     p->high[i] = kProbInitValue;
751 }
752 
753 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
754 {
755   if (symbol < kLenNumLowSymbols)
756   {
757     RangeEnc_EncodeBit(rc, &p->choice, 0);
758     RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
759   }
760   else
761   {
762     RangeEnc_EncodeBit(rc, &p->choice, 1);
763     if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
764     {
765       RangeEnc_EncodeBit(rc, &p->choice2, 0);
766       RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
767     }
768     else
769     {
770       RangeEnc_EncodeBit(rc, &p->choice2, 1);
771       RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
772     }
773   }
774 }
775 
776 static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
777 {
778   UInt32 a0 = GET_PRICE_0a(p->choice);
779   UInt32 a1 = GET_PRICE_1a(p->choice);
780   UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
781   UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
782   UInt32 i = 0;
783   for (i = 0; i < kLenNumLowSymbols; i++)
784   {
785     if (i >= numSymbols)
786       return;
787     prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
788   }
789   for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
790   {
791     if (i >= numSymbols)
792       return;
793     prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
794   }
795   for (; i < numSymbols; i++)
796     prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
797 }
798 
799 static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
800 {
801   LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
802   p->counters[posState] = p->tableSize;
803 }
804 
805 static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
806 {
807   UInt32 posState;
808   for (posState = 0; posState < numPosStates; posState++)
809     LenPriceEnc_UpdateTable(p, posState, ProbPrices);
810 }
811 
812 static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
813 {
814   LenEnc_Encode(&p->p, rc, symbol, posState);
815   if (updatePrice)
816     if (--p->counters[posState] == 0)
817       LenPriceEnc_UpdateTable(p, posState, ProbPrices);
818 }
819 
820 
821 
822 
823 static void MovePos(CLzmaEnc *p, UInt32 num)
824 {
825   #ifdef SHOW_STAT
826   ttt += num;
827   printf("\n MovePos %d", num);
828   #endif
829   if (num != 0)
830   {
831     p->additionalOffset += num;
832     p->matchFinder.Skip(p->matchFinderObj, num);
833   }
834 }
835 
836 static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
837 {
838   UInt32 lenRes = 0, numPairs;
839   p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
840   numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
841   #ifdef SHOW_STAT
842   printf("\n i = %d numPairs = %d    ", ttt, numPairs / 2);
843   ttt++;
844   {
845     UInt32 i;
846     for (i = 0; i < numPairs; i += 2)
847       printf("%2d %6d   | ", p->matches[i], p->matches[i + 1]);
848   }
849   #endif
850   if (numPairs > 0)
851   {
852     lenRes = p->matches[numPairs - 2];
853     if (lenRes == p->numFastBytes)
854     {
855       const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
856       UInt32 distance = p->matches[numPairs - 1] + 1;
857       UInt32 numAvail = p->numAvail;
858       if (numAvail > LZMA_MATCH_LEN_MAX)
859         numAvail = LZMA_MATCH_LEN_MAX;
860       {
861         const Byte *pby2 = pby - distance;
862         for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
863       }
864     }
865   }
866   p->additionalOffset++;
867   *numDistancePairsRes = numPairs;
868   return lenRes;
869 }
870 
871 
872 #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
873 #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
874 #define IsShortRep(p) ((p)->backPrev == 0)
875 
876 static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
877 {
878   return
879     GET_PRICE_0(p->isRepG0[state]) +
880     GET_PRICE_0(p->isRep0Long[state][posState]);
881 }
882 
883 static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
884 {
885   UInt32 price;
886   if (repIndex == 0)
887   {
888     price = GET_PRICE_0(p->isRepG0[state]);
889     price += GET_PRICE_1(p->isRep0Long[state][posState]);
890   }
891   else
892   {
893     price = GET_PRICE_1(p->isRepG0[state]);
894     if (repIndex == 1)
895       price += GET_PRICE_0(p->isRepG1[state]);
896     else
897     {
898       price += GET_PRICE_1(p->isRepG1[state]);
899       price += GET_PRICE(p->isRepG2[state], repIndex - 2);
900     }
901   }
902   return price;
903 }
904 
905 static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
906 {
907   return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
908     GetPureRepPrice(p, repIndex, state, posState);
909 }
910 
911 static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
912 {
913   UInt32 posMem = p->opt[cur].posPrev;
914   UInt32 backMem = p->opt[cur].backPrev;
915   p->optimumEndIndex = cur;
916   do
917   {
918     if (p->opt[cur].prev1IsChar)
919     {
920       MakeAsChar(&p->opt[posMem])
921       p->opt[posMem].posPrev = posMem - 1;
922       if (p->opt[cur].prev2)
923       {
924         p->opt[posMem - 1].prev1IsChar = False;
925         p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
926         p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
927       }
928     }
929     {
930       UInt32 posPrev = posMem;
931       UInt32 backCur = backMem;
932 
933       backMem = p->opt[posPrev].backPrev;
934       posMem = p->opt[posPrev].posPrev;
935 
936       p->opt[posPrev].backPrev = backCur;
937       p->opt[posPrev].posPrev = cur;
938       cur = posPrev;
939     }
940   }
941   while (cur != 0);
942   *backRes = p->opt[0].backPrev;
943   p->optimumCurrentIndex  = p->opt[0].posPrev;
944   return p->optimumCurrentIndex;
945 }
946 
947 #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
948 
949 static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
950 {
951   UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
952   UInt32 matchPrice, repMatchPrice, normalMatchPrice;
953   UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
954   UInt32 *matches;
955   const Byte *data;
956   Byte curByte, matchByte;
957   if (p->optimumEndIndex != p->optimumCurrentIndex)
958   {
959     const COptimal *opt = &p->opt[p->optimumCurrentIndex];
960     UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
961     *backRes = opt->backPrev;
962     p->optimumCurrentIndex = opt->posPrev;
963     return lenRes;
964   }
965   p->optimumCurrentIndex = p->optimumEndIndex = 0;
966 
967   if (p->additionalOffset == 0)
968     mainLen = ReadMatchDistances(p, &numPairs);
969   else
970   {
971     mainLen = p->longestMatchLength;
972     numPairs = p->numPairs;
973   }
974 
975   numAvail = p->numAvail;
976   if (numAvail < 2)
977   {
978     *backRes = (UInt32)(-1);
979     return 1;
980   }
981   if (numAvail > LZMA_MATCH_LEN_MAX)
982     numAvail = LZMA_MATCH_LEN_MAX;
983 
984   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
985   repMaxIndex = 0;
986   for (i = 0; i < LZMA_NUM_REPS; i++)
987   {
988     UInt32 lenTest;
989     const Byte *data2;
990     reps[i] = p->reps[i];
991     data2 = data - (reps[i] + 1);
992     if (data[0] != data2[0] || data[1] != data2[1])
993     {
994       repLens[i] = 0;
995       continue;
996     }
997     for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
998     repLens[i] = lenTest;
999     if (lenTest > repLens[repMaxIndex])
1000       repMaxIndex = i;
1001   }
1002   if (repLens[repMaxIndex] >= p->numFastBytes)
1003   {
1004     UInt32 lenRes;
1005     *backRes = repMaxIndex;
1006     lenRes = repLens[repMaxIndex];
1007     MovePos(p, lenRes - 1);
1008     return lenRes;
1009   }
1010 
1011   matches = p->matches;
1012   if (mainLen >= p->numFastBytes)
1013   {
1014     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1015     MovePos(p, mainLen - 1);
1016     return mainLen;
1017   }
1018   curByte = *data;
1019   matchByte = *(data - (reps[0] + 1));
1020 
1021   if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
1022   {
1023     *backRes = (UInt32)-1;
1024     return 1;
1025   }
1026 
1027   p->opt[0].state = (CState)p->state;
1028 
1029   posState = (position & p->pbMask);
1030 
1031   {
1032     const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1033     p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1034         (!IsCharState(p->state) ?
1035           LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1036           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1037   }
1038 
1039   MakeAsChar(&p->opt[1]);
1040 
1041   matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1042   repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1043 
1044   if (matchByte == curByte)
1045   {
1046     UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
1047     if (shortRepPrice < p->opt[1].price)
1048     {
1049       p->opt[1].price = shortRepPrice;
1050       MakeAsShortRep(&p->opt[1]);
1051     }
1052   }
1053   lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
1054 
1055   if (lenEnd < 2)
1056   {
1057     *backRes = p->opt[1].backPrev;
1058     return 1;
1059   }
1060 
1061   p->opt[1].posPrev = 0;
1062   for (i = 0; i < LZMA_NUM_REPS; i++)
1063     p->opt[0].backs[i] = reps[i];
1064 
1065   len = lenEnd;
1066   do
1067     p->opt[len--].price = kInfinityPrice;
1068   while (len >= 2);
1069 
1070   for (i = 0; i < LZMA_NUM_REPS; i++)
1071   {
1072     UInt32 repLen = repLens[i];
1073     UInt32 price;
1074     if (repLen < 2)
1075       continue;
1076     price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
1077     do
1078     {
1079       UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
1080       COptimal *opt = &p->opt[repLen];
1081       if (curAndLenPrice < opt->price)
1082       {
1083         opt->price = curAndLenPrice;
1084         opt->posPrev = 0;
1085         opt->backPrev = i;
1086         opt->prev1IsChar = False;
1087       }
1088     }
1089     while (--repLen >= 2);
1090   }
1091 
1092   normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1093 
1094   len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
1095   if (len <= mainLen)
1096   {
1097     UInt32 offs = 0;
1098     while (len > matches[offs])
1099       offs += 2;
1100     for (; ; len++)
1101     {
1102       COptimal *opt;
1103       UInt32 distance = matches[offs + 1];
1104 
1105       UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
1106       UInt32 lenToPosState = GetLenToPosState(len);
1107       if (distance < kNumFullDistances)
1108         curAndLenPrice += p->distancesPrices[lenToPosState][distance];
1109       else
1110       {
1111         UInt32 slot;
1112         GetPosSlot2(distance, slot);
1113         curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
1114       }
1115       opt = &p->opt[len];
1116       if (curAndLenPrice < opt->price)
1117       {
1118         opt->price = curAndLenPrice;
1119         opt->posPrev = 0;
1120         opt->backPrev = distance + LZMA_NUM_REPS;
1121         opt->prev1IsChar = False;
1122       }
1123       if (len == matches[offs])
1124       {
1125         offs += 2;
1126         if (offs == numPairs)
1127           break;
1128       }
1129     }
1130   }
1131 
1132   cur = 0;
1133 
1134     #ifdef SHOW_STAT2
1135     if (position >= 0)
1136     {
1137       unsigned i;
1138       printf("\n pos = %4X", position);
1139       for (i = cur; i <= lenEnd; i++)
1140       printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
1141     }
1142     #endif
1143 
1144   for (;;)
1145   {
1146     UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
1147     UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
1148     Bool nextIsChar;
1149     Byte curByte, matchByte;
1150     const Byte *data;
1151     COptimal *curOpt;
1152     COptimal *nextOpt;
1153 
1154     cur++;
1155     if (cur == lenEnd)
1156       return Backward(p, backRes, cur);
1157 
1158     newLen = ReadMatchDistances(p, &numPairs);
1159     if (newLen >= p->numFastBytes)
1160     {
1161       p->numPairs = numPairs;
1162       p->longestMatchLength = newLen;
1163       return Backward(p, backRes, cur);
1164     }
1165     position++;
1166     curOpt = &p->opt[cur];
1167     posPrev = curOpt->posPrev;
1168     if (curOpt->prev1IsChar)
1169     {
1170       posPrev--;
1171       if (curOpt->prev2)
1172       {
1173         state = p->opt[curOpt->posPrev2].state;
1174         if (curOpt->backPrev2 < LZMA_NUM_REPS)
1175           state = kRepNextStates[state];
1176         else
1177           state = kMatchNextStates[state];
1178       }
1179       else
1180         state = p->opt[posPrev].state;
1181       state = kLiteralNextStates[state];
1182     }
1183     else
1184       state = p->opt[posPrev].state;
1185     if (posPrev == cur - 1)
1186     {
1187       if (IsShortRep(curOpt))
1188         state = kShortRepNextStates[state];
1189       else
1190         state = kLiteralNextStates[state];
1191     }
1192     else
1193     {
1194       UInt32 pos;
1195       const COptimal *prevOpt;
1196       if (curOpt->prev1IsChar && curOpt->prev2)
1197       {
1198         posPrev = curOpt->posPrev2;
1199         pos = curOpt->backPrev2;
1200         state = kRepNextStates[state];
1201       }
1202       else
1203       {
1204         pos = curOpt->backPrev;
1205         if (pos < LZMA_NUM_REPS)
1206           state = kRepNextStates[state];
1207         else
1208           state = kMatchNextStates[state];
1209       }
1210       prevOpt = &p->opt[posPrev];
1211       if (pos < LZMA_NUM_REPS)
1212       {
1213         UInt32 i;
1214         reps[0] = prevOpt->backs[pos];
1215         for (i = 1; i <= pos; i++)
1216           reps[i] = prevOpt->backs[i - 1];
1217         for (; i < LZMA_NUM_REPS; i++)
1218           reps[i] = prevOpt->backs[i];
1219       }
1220       else
1221       {
1222         UInt32 i;
1223         reps[0] = (pos - LZMA_NUM_REPS);
1224         for (i = 1; i < LZMA_NUM_REPS; i++)
1225           reps[i] = prevOpt->backs[i - 1];
1226       }
1227     }
1228     curOpt->state = (CState)state;
1229 
1230     curOpt->backs[0] = reps[0];
1231     curOpt->backs[1] = reps[1];
1232     curOpt->backs[2] = reps[2];
1233     curOpt->backs[3] = reps[3];
1234 
1235     curPrice = curOpt->price;
1236     nextIsChar = False;
1237     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1238     curByte = *data;
1239     matchByte = *(data - (reps[0] + 1));
1240 
1241     posState = (position & p->pbMask);
1242 
1243     curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
1244     {
1245       const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1246       curAnd1Price +=
1247         (!IsCharState(state) ?
1248           LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1249           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1250     }
1251 
1252     nextOpt = &p->opt[cur + 1];
1253 
1254     if (curAnd1Price < nextOpt->price)
1255     {
1256       nextOpt->price = curAnd1Price;
1257       nextOpt->posPrev = cur;
1258       MakeAsChar(nextOpt);
1259       nextIsChar = True;
1260     }
1261 
1262     matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
1263     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1264 
1265     if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
1266     {
1267       UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
1268       if (shortRepPrice <= nextOpt->price)
1269       {
1270         nextOpt->price = shortRepPrice;
1271         nextOpt->posPrev = cur;
1272         MakeAsShortRep(nextOpt);
1273         nextIsChar = True;
1274       }
1275     }
1276     numAvailFull = p->numAvail;
1277     {
1278       UInt32 temp = kNumOpts - 1 - cur;
1279       if (temp < numAvailFull)
1280         numAvailFull = temp;
1281     }
1282 
1283     if (numAvailFull < 2)
1284       continue;
1285     numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
1286 
1287     if (!nextIsChar && matchByte != curByte) /* speed optimization */
1288     {
1289       /* try Literal + rep0 */
1290       UInt32 temp;
1291       UInt32 lenTest2;
1292       const Byte *data2 = data - (reps[0] + 1);
1293       UInt32 limit = p->numFastBytes + 1;
1294       if (limit > numAvailFull)
1295         limit = numAvailFull;
1296 
1297       for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
1298       lenTest2 = temp - 1;
1299       if (lenTest2 >= 2)
1300       {
1301         UInt32 state2 = kLiteralNextStates[state];
1302         UInt32 posStateNext = (position + 1) & p->pbMask;
1303         UInt32 nextRepMatchPrice = curAnd1Price +
1304             GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1305             GET_PRICE_1(p->isRep[state2]);
1306         /* for (; lenTest2 >= 2; lenTest2--) */
1307         {
1308           UInt32 curAndLenPrice;
1309           COptimal *opt;
1310           UInt32 offset = cur + 1 + lenTest2;
1311           while (lenEnd < offset)
1312             p->opt[++lenEnd].price = kInfinityPrice;
1313           curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1314           opt = &p->opt[offset];
1315           if (curAndLenPrice < opt->price)
1316           {
1317             opt->price = curAndLenPrice;
1318             opt->posPrev = cur + 1;
1319             opt->backPrev = 0;
1320             opt->prev1IsChar = True;
1321             opt->prev2 = False;
1322           }
1323         }
1324       }
1325     }
1326 
1327     startLen = 2; /* speed optimization */
1328     {
1329     UInt32 repIndex;
1330     for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
1331     {
1332       UInt32 lenTest;
1333       UInt32 lenTestTemp;
1334       UInt32 price;
1335       const Byte *data2 = data - (reps[repIndex] + 1);
1336       if (data[0] != data2[0] || data[1] != data2[1])
1337         continue;
1338       for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
1339       while (lenEnd < cur + lenTest)
1340         p->opt[++lenEnd].price = kInfinityPrice;
1341       lenTestTemp = lenTest;
1342       price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
1343       do
1344       {
1345         UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
1346         COptimal *opt = &p->opt[cur + lenTest];
1347         if (curAndLenPrice < opt->price)
1348         {
1349           opt->price = curAndLenPrice;
1350           opt->posPrev = cur;
1351           opt->backPrev = repIndex;
1352           opt->prev1IsChar = False;
1353         }
1354       }
1355       while (--lenTest >= 2);
1356       lenTest = lenTestTemp;
1357 
1358       if (repIndex == 0)
1359         startLen = lenTest + 1;
1360 
1361       /* if (_maxMode) */
1362         {
1363           UInt32 lenTest2 = lenTest + 1;
1364           UInt32 limit = lenTest2 + p->numFastBytes;
1365           UInt32 nextRepMatchPrice;
1366           if (limit > numAvailFull)
1367             limit = numAvailFull;
1368           for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1369           lenTest2 -= lenTest + 1;
1370           if (lenTest2 >= 2)
1371           {
1372             UInt32 state2 = kRepNextStates[state];
1373             UInt32 posStateNext = (position + lenTest) & p->pbMask;
1374             UInt32 curAndLenCharPrice =
1375                 price + p->repLenEnc.prices[posState][lenTest - 2] +
1376                 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1377                 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1378                     data[lenTest], data2[lenTest], p->ProbPrices);
1379             state2 = kLiteralNextStates[state2];
1380             posStateNext = (position + lenTest + 1) & p->pbMask;
1381             nextRepMatchPrice = curAndLenCharPrice +
1382                 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1383                 GET_PRICE_1(p->isRep[state2]);
1384 
1385             /* for (; lenTest2 >= 2; lenTest2--) */
1386             {
1387               UInt32 curAndLenPrice;
1388               COptimal *opt;
1389               UInt32 offset = cur + lenTest + 1 + lenTest2;
1390               while (lenEnd < offset)
1391                 p->opt[++lenEnd].price = kInfinityPrice;
1392               curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1393               opt = &p->opt[offset];
1394               if (curAndLenPrice < opt->price)
1395               {
1396                 opt->price = curAndLenPrice;
1397                 opt->posPrev = cur + lenTest + 1;
1398                 opt->backPrev = 0;
1399                 opt->prev1IsChar = True;
1400                 opt->prev2 = True;
1401                 opt->posPrev2 = cur;
1402                 opt->backPrev2 = repIndex;
1403               }
1404             }
1405           }
1406         }
1407     }
1408     }
1409     /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
1410     if (newLen > numAvail)
1411     {
1412       newLen = numAvail;
1413       for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1414       matches[numPairs] = newLen;
1415       numPairs += 2;
1416     }
1417     if (newLen >= startLen)
1418     {
1419       UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1420       UInt32 offs, curBack, posSlot;
1421       UInt32 lenTest;
1422       while (lenEnd < cur + newLen)
1423         p->opt[++lenEnd].price = kInfinityPrice;
1424 
1425       offs = 0;
1426       while (startLen > matches[offs])
1427         offs += 2;
1428       curBack = matches[offs + 1];
1429       GetPosSlot2(curBack, posSlot);
1430       for (lenTest = /*2*/ startLen; ; lenTest++)
1431       {
1432         UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
1433         UInt32 lenToPosState = GetLenToPosState(lenTest);
1434         COptimal *opt;
1435         if (curBack < kNumFullDistances)
1436           curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
1437         else
1438           curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
1439 
1440         opt = &p->opt[cur + lenTest];
1441         if (curAndLenPrice < opt->price)
1442         {
1443           opt->price = curAndLenPrice;
1444           opt->posPrev = cur;
1445           opt->backPrev = curBack + LZMA_NUM_REPS;
1446           opt->prev1IsChar = False;
1447         }
1448 
1449         if (/*_maxMode && */lenTest == matches[offs])
1450         {
1451           /* Try Match + Literal + Rep0 */
1452           const Byte *data2 = data - (curBack + 1);
1453           UInt32 lenTest2 = lenTest + 1;
1454           UInt32 limit = lenTest2 + p->numFastBytes;
1455           UInt32 nextRepMatchPrice;
1456           if (limit > numAvailFull)
1457             limit = numAvailFull;
1458           for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1459           lenTest2 -= lenTest + 1;
1460           if (lenTest2 >= 2)
1461           {
1462             UInt32 state2 = kMatchNextStates[state];
1463             UInt32 posStateNext = (position + lenTest) & p->pbMask;
1464             UInt32 curAndLenCharPrice = curAndLenPrice +
1465                 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1466                 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1467                     data[lenTest], data2[lenTest], p->ProbPrices);
1468             state2 = kLiteralNextStates[state2];
1469             posStateNext = (posStateNext + 1) & p->pbMask;
1470             nextRepMatchPrice = curAndLenCharPrice +
1471                 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1472                 GET_PRICE_1(p->isRep[state2]);
1473 
1474             /* for (; lenTest2 >= 2; lenTest2--) */
1475             {
1476               UInt32 offset = cur + lenTest + 1 + lenTest2;
1477               UInt32 curAndLenPrice;
1478               COptimal *opt;
1479               while (lenEnd < offset)
1480                 p->opt[++lenEnd].price = kInfinityPrice;
1481               curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1482               opt = &p->opt[offset];
1483               if (curAndLenPrice < opt->price)
1484               {
1485                 opt->price = curAndLenPrice;
1486                 opt->posPrev = cur + lenTest + 1;
1487                 opt->backPrev = 0;
1488                 opt->prev1IsChar = True;
1489                 opt->prev2 = True;
1490                 opt->posPrev2 = cur;
1491                 opt->backPrev2 = curBack + LZMA_NUM_REPS;
1492               }
1493             }
1494           }
1495           offs += 2;
1496           if (offs == numPairs)
1497             break;
1498           curBack = matches[offs + 1];
1499           if (curBack >= kNumFullDistances)
1500             GetPosSlot2(curBack, posSlot);
1501         }
1502       }
1503     }
1504   }
1505 }
1506 
1507 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1508 
1509 static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
1510 {
1511   UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
1512   const Byte *data;
1513   const UInt32 *matches;
1514 
1515   if (p->additionalOffset == 0)
1516     mainLen = ReadMatchDistances(p, &numPairs);
1517   else
1518   {
1519     mainLen = p->longestMatchLength;
1520     numPairs = p->numPairs;
1521   }
1522 
1523   numAvail = p->numAvail;
1524   *backRes = (UInt32)-1;
1525   if (numAvail < 2)
1526     return 1;
1527   if (numAvail > LZMA_MATCH_LEN_MAX)
1528     numAvail = LZMA_MATCH_LEN_MAX;
1529   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1530 
1531   repLen = repIndex = 0;
1532   for (i = 0; i < LZMA_NUM_REPS; i++)
1533   {
1534     UInt32 len;
1535     const Byte *data2 = data - (p->reps[i] + 1);
1536     if (data[0] != data2[0] || data[1] != data2[1])
1537       continue;
1538     for (len = 2; len < numAvail && data[len] == data2[len]; len++);
1539     if (len >= p->numFastBytes)
1540     {
1541       *backRes = i;
1542       MovePos(p, len - 1);
1543       return len;
1544     }
1545     if (len > repLen)
1546     {
1547       repIndex = i;
1548       repLen = len;
1549     }
1550   }
1551 
1552   matches = p->matches;
1553   if (mainLen >= p->numFastBytes)
1554   {
1555     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1556     MovePos(p, mainLen - 1);
1557     return mainLen;
1558   }
1559 
1560   mainDist = 0; /* for GCC */
1561   if (mainLen >= 2)
1562   {
1563     mainDist = matches[numPairs - 1];
1564     while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
1565     {
1566       if (!ChangePair(matches[numPairs - 3], mainDist))
1567         break;
1568       numPairs -= 2;
1569       mainLen = matches[numPairs - 2];
1570       mainDist = matches[numPairs - 1];
1571     }
1572     if (mainLen == 2 && mainDist >= 0x80)
1573       mainLen = 1;
1574   }
1575 
1576   if (repLen >= 2 && (
1577         (repLen + 1 >= mainLen) ||
1578         (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
1579         (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
1580   {
1581     *backRes = repIndex;
1582     MovePos(p, repLen - 1);
1583     return repLen;
1584   }
1585 
1586   if (mainLen < 2 || numAvail <= 2)
1587     return 1;
1588 
1589   p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
1590   if (p->longestMatchLength >= 2)
1591   {
1592     UInt32 newDistance = matches[p->numPairs - 1];
1593     if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
1594         (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
1595         (p->longestMatchLength > mainLen + 1) ||
1596         (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
1597       return 1;
1598   }
1599 
1600   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1601   for (i = 0; i < LZMA_NUM_REPS; i++)
1602   {
1603     UInt32 len, limit;
1604     const Byte *data2 = data - (p->reps[i] + 1);
1605     if (data[0] != data2[0] || data[1] != data2[1])
1606       continue;
1607     limit = mainLen - 1;
1608     for (len = 2; len < limit && data[len] == data2[len]; len++);
1609     if (len >= limit)
1610       return 1;
1611   }
1612   *backRes = mainDist + LZMA_NUM_REPS;
1613   MovePos(p, mainLen - 2);
1614   return mainLen;
1615 }
1616 
1617 static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
1618 {
1619   UInt32 len;
1620   RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1621   RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1622   p->state = kMatchNextStates[p->state];
1623   len = LZMA_MATCH_LEN_MIN;
1624   LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1625   RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
1626   RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
1627   RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
1628 }
1629 
1630 static SRes CheckErrors(CLzmaEnc *p)
1631 {
1632   if (p->result != SZ_OK)
1633     return p->result;
1634   if (p->rc.res != SZ_OK)
1635     p->result = SZ_ERROR_WRITE;
1636   if (p->matchFinderBase.result != SZ_OK)
1637     p->result = SZ_ERROR_READ;
1638   if (p->result != SZ_OK)
1639     p->finished = True;
1640   return p->result;
1641 }
1642 
1643 static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
1644 {
1645   /* ReleaseMFStream(); */
1646   p->finished = True;
1647   if (p->writeEndMark)
1648     WriteEndMarker(p, nowPos & p->pbMask);
1649   RangeEnc_FlushData(&p->rc);
1650   RangeEnc_FlushStream(&p->rc);
1651   return CheckErrors(p);
1652 }
1653 
1654 static void FillAlignPrices(CLzmaEnc *p)
1655 {
1656   UInt32 i;
1657   for (i = 0; i < kAlignTableSize; i++)
1658     p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
1659   p->alignPriceCount = 0;
1660 }
1661 
1662 static void FillDistancesPrices(CLzmaEnc *p)
1663 {
1664   UInt32 tempPrices[kNumFullDistances];
1665   UInt32 i, lenToPosState;
1666   for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
1667   {
1668     UInt32 posSlot = GetPosSlot1(i);
1669     UInt32 footerBits = ((posSlot >> 1) - 1);
1670     UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1671     tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
1672   }
1673 
1674   for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
1675   {
1676     UInt32 posSlot;
1677     const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
1678     UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
1679     for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
1680       posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
1681     for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
1682       posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
1683 
1684     {
1685       UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
1686       UInt32 i;
1687       for (i = 0; i < kStartPosModelIndex; i++)
1688         distancesPrices[i] = posSlotPrices[i];
1689       for (; i < kNumFullDistances; i++)
1690         distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
1691     }
1692   }
1693   p->matchPriceCount = 0;
1694 }
1695 
1696 void LzmaEnc_Construct(CLzmaEnc *p)
1697 {
1698   RangeEnc_Construct(&p->rc);
1699   MatchFinder_Construct(&p->matchFinderBase);
1700   #ifdef COMPRESS_MF_MT
1701   MatchFinderMt_Construct(&p->matchFinderMt);
1702   p->matchFinderMt.MatchFinder = &p->matchFinderBase;
1703   #endif
1704 
1705   {
1706     CLzmaEncProps props;
1707     LzmaEncProps_Init(&props);
1708     LzmaEnc_SetProps(p, &props);
1709   }
1710 
1711   #ifndef LZMA_LOG_BSR
1712   LzmaEnc_FastPosInit(p->g_FastPos);
1713   #endif
1714 
1715   LzmaEnc_InitPriceTables(p->ProbPrices);
1716   p->litProbs = 0;
1717   p->saveState.litProbs = 0;
1718 }
1719 
1720 CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
1721 {
1722   void *p;
1723   p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
1724   if (p != 0)
1725     LzmaEnc_Construct((CLzmaEnc *)p);
1726   return p;
1727 }
1728 
1729 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
1730 {
1731   alloc->Free(alloc, p->litProbs, 0);
1732   alloc->Free(alloc, p->saveState.litProbs, 0);
1733   p->litProbs = 0;
1734   p->saveState.litProbs = 0;
1735 }
1736 
1737 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
1738 {
1739   #ifdef COMPRESS_MF_MT
1740   MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
1741   #endif
1742   MatchFinder_Free(&p->matchFinderBase, allocBig);
1743   LzmaEnc_FreeLits(p, alloc);
1744   RangeEnc_Free(&p->rc, alloc);
1745 }
1746 
1747 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
1748 {
1749   LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
1750   alloc->Free(alloc, p, 0);
1751 }
1752 
1753 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
1754 {
1755   UInt32 nowPos32, startPos32;
1756   if (p->inStream != 0)
1757   {
1758     p->matchFinderBase.stream = p->inStream;
1759     p->matchFinder.Init(p->matchFinderObj);
1760     p->inStream = 0;
1761   }
1762 
1763   if (p->finished)
1764     return p->result;
1765   RINOK(CheckErrors(p));
1766 
1767   nowPos32 = (UInt32)p->nowPos64;
1768   startPos32 = nowPos32;
1769 
1770   if (p->nowPos64 == 0)
1771   {
1772     UInt32 numPairs;
1773     Byte curByte;
1774     if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1775       return Flush(p, nowPos32);
1776     ReadMatchDistances(p, &numPairs);
1777     RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
1778     p->state = kLiteralNextStates[p->state];
1779     curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
1780     LitEnc_Encode(&p->rc, p->litProbs, curByte);
1781     p->additionalOffset--;
1782     nowPos32++;
1783   }
1784 
1785   if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
1786   for (;;)
1787   {
1788     UInt32 pos, len, posState;
1789 
1790     if (p->fastMode)
1791       len = GetOptimumFast(p, &pos);
1792     else
1793       len = GetOptimum(p, nowPos32, &pos);
1794 
1795     #ifdef SHOW_STAT2
1796     printf("\n pos = %4X,   len = %d   pos = %d", nowPos32, len, pos);
1797     #endif
1798 
1799     posState = nowPos32 & p->pbMask;
1800     if (len == 1 && pos == (UInt32)-1)
1801     {
1802       Byte curByte;
1803       CLzmaProb *probs;
1804       const Byte *data;
1805 
1806       RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
1807       data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
1808       curByte = *data;
1809       probs = LIT_PROBS(nowPos32, *(data - 1));
1810       if (IsCharState(p->state))
1811         LitEnc_Encode(&p->rc, probs, curByte);
1812       else
1813         LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
1814       p->state = kLiteralNextStates[p->state];
1815     }
1816     else
1817     {
1818       RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1819       if (pos < LZMA_NUM_REPS)
1820       {
1821         RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
1822         if (pos == 0)
1823         {
1824           RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
1825           RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
1826         }
1827         else
1828         {
1829           UInt32 distance = p->reps[pos];
1830           RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
1831           if (pos == 1)
1832             RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
1833           else
1834           {
1835             RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
1836             RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
1837             if (pos == 3)
1838               p->reps[3] = p->reps[2];
1839             p->reps[2] = p->reps[1];
1840           }
1841           p->reps[1] = p->reps[0];
1842           p->reps[0] = distance;
1843         }
1844         if (len == 1)
1845           p->state = kShortRepNextStates[p->state];
1846         else
1847         {
1848           LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1849           p->state = kRepNextStates[p->state];
1850         }
1851       }
1852       else
1853       {
1854         UInt32 posSlot;
1855         RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1856         p->state = kMatchNextStates[p->state];
1857         LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1858         pos -= LZMA_NUM_REPS;
1859         GetPosSlot(pos, posSlot);
1860         RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
1861 
1862         if (posSlot >= kStartPosModelIndex)
1863         {
1864           UInt32 footerBits = ((posSlot >> 1) - 1);
1865           UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1866           UInt32 posReduced = pos - base;
1867 
1868           if (posSlot < kEndPosModelIndex)
1869             RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
1870           else
1871           {
1872             RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
1873             RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
1874             p->alignPriceCount++;
1875           }
1876         }
1877         p->reps[3] = p->reps[2];
1878         p->reps[2] = p->reps[1];
1879         p->reps[1] = p->reps[0];
1880         p->reps[0] = pos;
1881         p->matchPriceCount++;
1882       }
1883     }
1884     p->additionalOffset -= len;
1885     nowPos32 += len;
1886     if (p->additionalOffset == 0)
1887     {
1888       UInt32 processed;
1889       if (!p->fastMode)
1890       {
1891         if (p->matchPriceCount >= (1 << 7))
1892           FillDistancesPrices(p);
1893         if (p->alignPriceCount >= kAlignTableSize)
1894           FillAlignPrices(p);
1895       }
1896       if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1897         break;
1898       processed = nowPos32 - startPos32;
1899       if (useLimits)
1900       {
1901         if (processed + kNumOpts + 300 >= maxUnpackSize ||
1902             RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
1903           break;
1904       }
1905       else if (processed >= (1 << 15))
1906       {
1907         p->nowPos64 += nowPos32 - startPos32;
1908         return CheckErrors(p);
1909       }
1910     }
1911   }
1912   p->nowPos64 += nowPos32 - startPos32;
1913   return Flush(p, nowPos32);
1914 }
1915 
1916 #define kBigHashDicLimit ((UInt32)1 << 24)
1917 
1918 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
1919 {
1920   UInt32 beforeSize = kNumOpts;
1921   Bool btMode;
1922   if (!RangeEnc_Alloc(&p->rc, alloc))
1923     return SZ_ERROR_MEM;
1924   btMode = (p->matchFinderBase.btMode != 0);
1925   #ifdef COMPRESS_MF_MT
1926   p->mtMode = (p->multiThread && !p->fastMode && btMode);
1927   #endif
1928 
1929   {
1930     unsigned lclp = p->lc + p->lp;
1931     if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
1932     {
1933       LzmaEnc_FreeLits(p, alloc);
1934       p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1935       p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1936       if (p->litProbs == 0 || p->saveState.litProbs == 0)
1937       {
1938         LzmaEnc_FreeLits(p, alloc);
1939         return SZ_ERROR_MEM;
1940       }
1941       p->lclp = lclp;
1942     }
1943   }
1944 
1945   p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
1946 
1947   if (beforeSize + p->dictSize < keepWindowSize)
1948     beforeSize = keepWindowSize - p->dictSize;
1949 
1950   #ifdef COMPRESS_MF_MT
1951   if (p->mtMode)
1952   {
1953     RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
1954     p->matchFinderObj = &p->matchFinderMt;
1955     MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
1956   }
1957   else
1958   #endif
1959   {
1960     if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
1961       return SZ_ERROR_MEM;
1962     p->matchFinderObj = &p->matchFinderBase;
1963     MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
1964   }
1965   return SZ_OK;
1966 }
1967 
1968 void LzmaEnc_Init(CLzmaEnc *p)
1969 {
1970   UInt32 i;
1971   p->state = 0;
1972   for (i = 0 ; i < LZMA_NUM_REPS; i++)
1973     p->reps[i] = 0;
1974 
1975   RangeEnc_Init(&p->rc);
1976 
1977 
1978   for (i = 0; i < kNumStates; i++)
1979   {
1980     UInt32 j;
1981     for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
1982     {
1983       p->isMatch[i][j] = kProbInitValue;
1984       p->isRep0Long[i][j] = kProbInitValue;
1985     }
1986     p->isRep[i] = kProbInitValue;
1987     p->isRepG0[i] = kProbInitValue;
1988     p->isRepG1[i] = kProbInitValue;
1989     p->isRepG2[i] = kProbInitValue;
1990   }
1991 
1992   {
1993     UInt32 num = 0x300 << (p->lp + p->lc);
1994     for (i = 0; i < num; i++)
1995       p->litProbs[i] = kProbInitValue;
1996   }
1997 
1998   {
1999     for (i = 0; i < kNumLenToPosStates; i++)
2000     {
2001       CLzmaProb *probs = p->posSlotEncoder[i];
2002       UInt32 j;
2003       for (j = 0; j < (1 << kNumPosSlotBits); j++)
2004         probs[j] = kProbInitValue;
2005     }
2006   }
2007   {
2008     for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
2009       p->posEncoders[i] = kProbInitValue;
2010   }
2011 
2012   LenEnc_Init(&p->lenEnc.p);
2013   LenEnc_Init(&p->repLenEnc.p);
2014 
2015   for (i = 0; i < (1 << kNumAlignBits); i++)
2016     p->posAlignEncoder[i] = kProbInitValue;
2017 
2018   p->optimumEndIndex = 0;
2019   p->optimumCurrentIndex = 0;
2020   p->additionalOffset = 0;
2021 
2022   p->pbMask = (1 << p->pb) - 1;
2023   p->lpMask = (1 << p->lp) - 1;
2024 }
2025 
2026 void LzmaEnc_InitPrices(CLzmaEnc *p)
2027 {
2028   if (!p->fastMode)
2029   {
2030     FillDistancesPrices(p);
2031     FillAlignPrices(p);
2032   }
2033 
2034   p->lenEnc.tableSize =
2035   p->repLenEnc.tableSize =
2036       p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2037   LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
2038   LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
2039 }
2040 
2041 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2042 {
2043   UInt32 i;
2044   for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
2045     if (p->dictSize <= ((UInt32)1 << i))
2046       break;
2047   p->distTableSize = i * 2;
2048 
2049   p->finished = False;
2050   p->result = SZ_OK;
2051   RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2052   LzmaEnc_Init(p);
2053   LzmaEnc_InitPrices(p);
2054   p->nowPos64 = 0;
2055   return SZ_OK;
2056 }
2057 
2058 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream,
2059     ISzAlloc *alloc, ISzAlloc *allocBig)
2060 {
2061   CLzmaEnc *p = (CLzmaEnc *)pp;
2062   p->inStream = inStream;
2063   p->rc.outStream = outStream;
2064   return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2065 }
2066 
2067 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2068     ISeqInStream *inStream, UInt32 keepWindowSize,
2069     ISzAlloc *alloc, ISzAlloc *allocBig)
2070 {
2071   CLzmaEnc *p = (CLzmaEnc *)pp;
2072   p->inStream = inStream;
2073   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2074 }
2075 
2076 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2077 {
2078   p->seqBufInStream.funcTable.Read = MyRead;
2079   p->seqBufInStream.data = src;
2080   p->seqBufInStream.rem = srcLen;
2081 }
2082 
2083 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2084     UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2085 {
2086   CLzmaEnc *p = (CLzmaEnc *)pp;
2087   LzmaEnc_SetInputBuf(p, src, srcLen);
2088   p->inStream = &p->seqBufInStream.funcTable;
2089   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2090 }
2091 
2092 void LzmaEnc_Finish(CLzmaEncHandle pp)
2093 {
2094   #ifdef COMPRESS_MF_MT
2095   CLzmaEnc *p = (CLzmaEnc *)pp;
2096   if (p->mtMode)
2097     MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2098   #else
2099   pp = pp;
2100   #endif
2101 }
2102 
2103 typedef struct _CSeqOutStreamBuf
2104 {
2105   ISeqOutStream funcTable;
2106   Byte *data;
2107   SizeT rem;
2108   Bool overflow;
2109 } CSeqOutStreamBuf;
2110 
2111 static size_t MyWrite(void *pp, const void *data, size_t size)
2112 {
2113   CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
2114   if (p->rem < size)
2115   {
2116     size = p->rem;
2117     p->overflow = True;
2118   }
2119   memcpy(p->data, data, size);
2120   p->rem -= size;
2121   p->data += size;
2122   return size;
2123 }
2124 
2125 
2126 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2127 {
2128   const CLzmaEnc *p = (CLzmaEnc *)pp;
2129   return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2130 }
2131 
2132 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2133 {
2134   const CLzmaEnc *p = (CLzmaEnc *)pp;
2135   return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2136 }
2137 
2138 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
2139     Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2140 {
2141   CLzmaEnc *p = (CLzmaEnc *)pp;
2142   UInt64 nowPos64;
2143   SRes res;
2144   CSeqOutStreamBuf outStream;
2145 
2146   outStream.funcTable.Write = MyWrite;
2147   outStream.data = dest;
2148   outStream.rem = *destLen;
2149   outStream.overflow = False;
2150 
2151   p->writeEndMark = False;
2152   p->finished = False;
2153   p->result = SZ_OK;
2154 
2155   if (reInit)
2156     LzmaEnc_Init(p);
2157   LzmaEnc_InitPrices(p);
2158   nowPos64 = p->nowPos64;
2159   RangeEnc_Init(&p->rc);
2160   p->rc.outStream = &outStream.funcTable;
2161 
2162   res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
2163 
2164   *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2165   *destLen -= outStream.rem;
2166   if (outStream.overflow)
2167     return SZ_ERROR_OUTPUT_EOF;
2168 
2169   return res;
2170 }
2171 
2172 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2173     ISzAlloc *alloc, ISzAlloc *allocBig)
2174 {
2175   CLzmaEnc *p = (CLzmaEnc *)pp;
2176   SRes res = SZ_OK;
2177 
2178   #ifdef COMPRESS_MF_MT
2179   Byte allocaDummy[0x300];
2180   int i = 0;
2181   for (i = 0; i < 16; i++)
2182     allocaDummy[i] = (Byte)i;
2183   #endif
2184 
2185   RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig));
2186 
2187   for (;;)
2188   {
2189     res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
2190     if (res != SZ_OK || p->finished != 0)
2191       break;
2192     if (progress != 0)
2193     {
2194       res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2195       if (res != SZ_OK)
2196       {
2197         res = SZ_ERROR_PROGRESS;
2198         break;
2199       }
2200     }
2201   }
2202   LzmaEnc_Finish(pp);
2203   return res;
2204 }
2205 
2206 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2207 {
2208   CLzmaEnc *p = (CLzmaEnc *)pp;
2209   int i;
2210   UInt32 dictSize = p->dictSize;
2211   if (*size < LZMA_PROPS_SIZE)
2212     return SZ_ERROR_PARAM;
2213   *size = LZMA_PROPS_SIZE;
2214   props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2215 
2216   for (i = 11; i <= 30; i++)
2217   {
2218     if (dictSize <= ((UInt32)2 << i))
2219     {
2220       dictSize = (2 << i);
2221       break;
2222     }
2223     if (dictSize <= ((UInt32)3 << i))
2224     {
2225       dictSize = (3 << i);
2226       break;
2227     }
2228   }
2229 
2230   for (i = 0; i < 4; i++)
2231     props[1 + i] = (Byte)(dictSize >> (8 * i));
2232   return SZ_OK;
2233 }
2234 
2235 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2236     int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2237 {
2238   SRes res;
2239   CLzmaEnc *p = (CLzmaEnc *)pp;
2240 
2241   CSeqOutStreamBuf outStream;
2242 
2243   LzmaEnc_SetInputBuf(p, src, srcLen);
2244 
2245   outStream.funcTable.Write = MyWrite;
2246   outStream.data = dest;
2247   outStream.rem = *destLen;
2248   outStream.overflow = False;
2249 
2250   p->writeEndMark = writeEndMark;
2251   res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable,
2252       progress, alloc, allocBig);
2253 
2254   *destLen -= outStream.rem;
2255   if (outStream.overflow)
2256     return SZ_ERROR_OUTPUT_EOF;
2257   return res;
2258 }
2259 
2260 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2261     const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2262     ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2263 {
2264   CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2265   SRes res;
2266   if (p == 0)
2267     return SZ_ERROR_MEM;
2268 
2269   res = LzmaEnc_SetProps(p, props);
2270   if (res == SZ_OK)
2271   {
2272     res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2273     if (res == SZ_OK)
2274       res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2275           writeEndMark, progress, alloc, allocBig);
2276   }
2277 
2278   LzmaEnc_Destroy(p, alloc, allocBig);
2279   return res;
2280 }
2281