xref: /titanic_51/usr/src/common/crypto/sha1/sha1.c (revision dcda19f50b2b80bfc622fff718ac04fb0e1cb670)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * The basic framework for this code came from the reference
8  * implementation for MD5.  That implementation is Copyright (C)
9  * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
10  *
11  * License to copy and use this software is granted provided that it
12  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
13  * Algorithm" in all material mentioning or referencing this software
14  * or this function.
15  *
16  * License is also granted to make and use derivative works provided
17  * that such works are identified as "derived from the RSA Data
18  * Security, Inc. MD5 Message-Digest Algorithm" in all material
19  * mentioning or referencing the derived work.
20  *
21  * RSA Data Security, Inc. makes no representations concerning either
22  * the merchantability of this software or the suitability of this
23  * software for any particular purpose. It is provided "as is"
24  * without express or implied warranty of any kind.
25  *
26  * These notices must be retained in any copies of any part of this
27  * documentation and/or software.
28  *
29  * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
30  * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
31  * Not as fast as one would like -- further optimizations are encouraged
32  * and appreciated.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sysmacros.h>
39 #include <sys/sha1.h>
40 #include <sys/sha1_consts.h>
41 
42 #ifndef	_KERNEL
43 #include <strings.h>
44 #include <stdlib.h>
45 #include <errno.h>
46 #include <sys/systeminfo.h>
47 #endif  /* !_KERNEL */
48 
49 #ifdef _LITTLE_ENDIAN
50 #include <sys/byteorder.h>
51 #define	HAVE_HTONL
52 #endif
53 
54 static void Encode(uint8_t *, const uint32_t *, size_t);
55 
56 #if	defined(__sparc)
57 
58 #define	SHA1_TRANSFORM(ctx, in) \
59 	SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
60 		(ctx)->state[3], (ctx)->state[4], (ctx), (in))
61 
62 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
63     SHA1_CTX *, const uint8_t *);
64 
65 #elif	defined(__amd64)
66 
67 #define	SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
68 #define	SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
69 		(in), (num))
70 
71 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
72 
73 #else
74 
75 #define	SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
76 
77 static void SHA1Transform(SHA1_CTX *, const uint8_t *);
78 
79 #endif
80 
81 
82 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
83 
84 /*
85  * F, G, and H are the basic SHA1 functions.
86  */
87 #define	F(b, c, d)	(((b) & (c)) | ((~b) & (d)))
88 #define	G(b, c, d)	((b) ^ (c) ^ (d))
89 #define	H(b, c, d)	(((b) & (c)) | (((b)|(c)) & (d)))
90 
91 /*
92  * ROTATE_LEFT rotates x left n bits.
93  */
94 
95 #if	defined(__GNUC__) && defined(_LP64)
96 static __inline__ uint64_t
97 ROTATE_LEFT(uint64_t value, uint32_t n)
98 {
99 	uint32_t t32;
100 
101 	t32 = (uint32_t)value;
102 	return ((t32 << n) | (t32 >> (32 - n)));
103 }
104 
105 #else
106 
107 #define	ROTATE_LEFT(x, n)	\
108 	(((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
109 
110 #endif
111 
112 
113 /*
114  * SHA1Init()
115  *
116  * purpose: initializes the sha1 context and begins and sha1 digest operation
117  *   input: SHA1_CTX *	: the context to initializes.
118  *  output: void
119  */
120 
121 void
122 SHA1Init(SHA1_CTX *ctx)
123 {
124 	ctx->count[0] = ctx->count[1] = 0;
125 
126 	/*
127 	 * load magic initialization constants. Tell lint
128 	 * that these constants are unsigned by using U.
129 	 */
130 
131 	ctx->state[0] = 0x67452301U;
132 	ctx->state[1] = 0xefcdab89U;
133 	ctx->state[2] = 0x98badcfeU;
134 	ctx->state[3] = 0x10325476U;
135 	ctx->state[4] = 0xc3d2e1f0U;
136 }
137 
138 #ifdef VIS_SHA1
139 #ifdef _KERNEL
140 
141 #include <sys/regset.h>
142 #include <sys/vis.h>
143 #include <sys/fpu/fpusystm.h>
144 
145 /* the alignment for block stores to save fp registers */
146 #define	VIS_ALIGN	(64)
147 
148 extern int sha1_savefp(kfpu_t *, int);
149 extern void sha1_restorefp(kfpu_t *);
150 
151 uint32_t	vis_sha1_svfp_threshold = 128;
152 
153 #endif /* _KERNEL */
154 
155 /*
156  * VIS SHA-1 consts.
157  */
158 static uint64_t VIS[] = {
159 	0x8000000080000000ULL,
160 	0x0002000200020002ULL,
161 	0x5a8279996ed9eba1ULL,
162 	0x8f1bbcdcca62c1d6ULL,
163 	0x012389ab456789abULL};
164 
165 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *);
166 
167 
168 /*
169  * SHA1Update()
170  *
171  * purpose: continues an sha1 digest operation, using the message block
172  *          to update the context.
173  *   input: SHA1_CTX *	: the context to update
174  *          void *	: the message block
175  *          size_t    : the length of the message block in bytes
176  *  output: void
177  */
178 
179 void
180 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
181 {
182 	uint32_t i, buf_index, buf_len;
183 	uint64_t X0[40], input64[8];
184 	const uint8_t *input = inptr;
185 #ifdef _KERNEL
186 	int usevis = 0;
187 #else
188 	int usevis = 1;
189 #endif /* _KERNEL */
190 
191 	/* check for noop */
192 	if (input_len == 0)
193 		return;
194 
195 	/* compute number of bytes mod 64 */
196 	buf_index = (ctx->count[1] >> 3) & 0x3F;
197 
198 	/* update number of bits */
199 	if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
200 		ctx->count[0]++;
201 
202 	ctx->count[0] += (input_len >> 29);
203 
204 	buf_len = 64 - buf_index;
205 
206 	/* transform as many times as possible */
207 	i = 0;
208 	if (input_len >= buf_len) {
209 #ifdef _KERNEL
210 		kfpu_t *fpu;
211 		if (fpu_exists) {
212 			uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN];
213 			uint32_t len = (input_len + buf_index) & ~0x3f;
214 			int svfp_ok;
215 
216 			fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64);
217 			svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0);
218 			usevis = fpu_exists && sha1_savefp(fpu, svfp_ok);
219 		} else {
220 			usevis = 0;
221 		}
222 #endif /* _KERNEL */
223 
224 		/*
225 		 * general optimization:
226 		 *
227 		 * only do initial bcopy() and SHA1Transform() if
228 		 * buf_index != 0.  if buf_index == 0, we're just
229 		 * wasting our time doing the bcopy() since there
230 		 * wasn't any data left over from a previous call to
231 		 * SHA1Update().
232 		 */
233 
234 		if (buf_index) {
235 			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
236 			if (usevis) {
237 				SHA1TransformVIS(X0,
238 				    ctx->buf_un.buf32,
239 				    &ctx->state[0], VIS);
240 			} else {
241 				SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
242 			}
243 			i = buf_len;
244 		}
245 
246 		/*
247 		 * VIS SHA-1: uses the VIS 1.0 instructions to accelerate
248 		 * SHA-1 processing. This is achieved by "offloading" the
249 		 * computation of the message schedule (MS) to the VIS units.
250 		 * This allows the VIS computation of the message schedule
251 		 * to be performed in parallel with the standard integer
252 		 * processing of the remainder of the SHA-1 computation.
253 		 * performance by up to around 1.37X, compared to an optimized
254 		 * integer-only implementation.
255 		 *
256 		 * The VIS implementation of SHA1Transform has a different API
257 		 * to the standard integer version:
258 		 *
259 		 * void SHA1TransformVIS(
260 		 *	 uint64_t *, // Pointer to MS for ith block
261 		 *	 uint32_t *, // Pointer to ith block of message data
262 		 *	 uint32_t *, // Pointer to SHA state i.e ctx->state
263 		 *	 uint64_t *, // Pointer to various VIS constants
264 		 * )
265 		 *
266 		 * Note: the message data must by 4-byte aligned.
267 		 *
268 		 * Function requires VIS 1.0 support.
269 		 *
270 		 * Handling is provided to deal with arbitrary byte alingment
271 		 * of the input data but the performance gains are reduced
272 		 * for alignments other than 4-bytes.
273 		 */
274 		if (usevis) {
275 			if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) {
276 				/*
277 				 * Main processing loop - input misaligned
278 				 */
279 				for (; i + 63 < input_len; i += 64) {
280 					bcopy(&input[i], input64, 64);
281 					SHA1TransformVIS(X0,
282 					    (uint32_t *)input64,
283 					    &ctx->state[0], VIS);
284 				}
285 			} else {
286 				/*
287 				 * Main processing loop - input 8-byte aligned
288 				 */
289 				for (; i + 63 < input_len; i += 64) {
290 					SHA1TransformVIS(X0,
291 					    /* LINTED E_BAD_PTR_CAST_ALIGN */
292 					    (uint32_t *)&input[i], /* CSTYLED */
293 					    &ctx->state[0], VIS);
294 				}
295 
296 			}
297 #ifdef _KERNEL
298 			sha1_restorefp(fpu);
299 #endif /* _KERNEL */
300 		} else {
301 			for (; i + 63 < input_len; i += 64) {
302 				SHA1_TRANSFORM(ctx, &input[i]);
303 			}
304 		}
305 
306 		/*
307 		 * general optimization:
308 		 *
309 		 * if i and input_len are the same, return now instead
310 		 * of calling bcopy(), since the bcopy() in this case
311 		 * will be an expensive nop.
312 		 */
313 
314 		if (input_len == i)
315 			return;
316 
317 		buf_index = 0;
318 	}
319 
320 	/* buffer remaining input */
321 	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
322 }
323 
324 #else /* VIS_SHA1 */
325 
326 void
327 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
328 {
329 	uint32_t i, buf_index, buf_len;
330 	const uint8_t *input = inptr;
331 #if defined(__amd64)
332 	uint32_t	block_count;
333 #endif	/* __amd64 */
334 
335 	/* check for noop */
336 	if (input_len == 0)
337 		return;
338 
339 	/* compute number of bytes mod 64 */
340 	buf_index = (ctx->count[1] >> 3) & 0x3F;
341 
342 	/* update number of bits */
343 	if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
344 		ctx->count[0]++;
345 
346 	ctx->count[0] += (input_len >> 29);
347 
348 	buf_len = 64 - buf_index;
349 
350 	/* transform as many times as possible */
351 	i = 0;
352 	if (input_len >= buf_len) {
353 
354 		/*
355 		 * general optimization:
356 		 *
357 		 * only do initial bcopy() and SHA1Transform() if
358 		 * buf_index != 0.  if buf_index == 0, we're just
359 		 * wasting our time doing the bcopy() since there
360 		 * wasn't any data left over from a previous call to
361 		 * SHA1Update().
362 		 */
363 
364 		if (buf_index) {
365 			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
366 			SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
367 			i = buf_len;
368 		}
369 
370 #if !defined(__amd64)
371 		for (; i + 63 < input_len; i += 64)
372 			SHA1_TRANSFORM(ctx, &input[i]);
373 #else
374 		block_count = (input_len - i) >> 6;
375 		if (block_count > 0) {
376 			SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
377 			i += block_count << 6;
378 		}
379 #endif	/* !__amd64 */
380 
381 		/*
382 		 * general optimization:
383 		 *
384 		 * if i and input_len are the same, return now instead
385 		 * of calling bcopy(), since the bcopy() in this case
386 		 * will be an expensive nop.
387 		 */
388 
389 		if (input_len == i)
390 			return;
391 
392 		buf_index = 0;
393 	}
394 
395 	/* buffer remaining input */
396 	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
397 }
398 
399 #endif /* VIS_SHA1 */
400 
401 /*
402  * SHA1Final()
403  *
404  * purpose: ends an sha1 digest operation, finalizing the message digest and
405  *          zeroing the context.
406  *   input: uchar_t *	: A buffer to store the digest.
407  *			: The function actually uses void* because many
408  *			: callers pass things other than uchar_t here.
409  *          SHA1_CTX *  : the context to finalize, save, and zero
410  *  output: void
411  */
412 
413 void
414 SHA1Final(void *digest, SHA1_CTX *ctx)
415 {
416 	uint8_t		bitcount_be[sizeof (ctx->count)];
417 	uint32_t	index = (ctx->count[1] >> 3) & 0x3f;
418 
419 	/* store bit count, big endian */
420 	Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
421 
422 	/* pad out to 56 mod 64 */
423 	SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
424 
425 	/* append length (before padding) */
426 	SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
427 
428 	/* store state in digest */
429 	Encode(digest, ctx->state, sizeof (ctx->state));
430 
431 	/* zeroize sensitive information */
432 	bzero(ctx, sizeof (*ctx));
433 }
434 
435 
436 #if !defined(__amd64)
437 
438 typedef uint32_t sha1word;
439 
440 /*
441  * sparc optimization:
442  *
443  * on the sparc, we can load big endian 32-bit data easily.  note that
444  * special care must be taken to ensure the address is 32-bit aligned.
445  * in the interest of speed, we don't check to make sure, since
446  * careful programming can guarantee this for us.
447  */
448 
449 #if	defined(_BIG_ENDIAN)
450 #define	LOAD_BIG_32(addr)	(*(uint32_t *)(addr))
451 
452 #elif	defined(HAVE_HTONL)
453 #define	LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
454 
455 #else
456 /* little endian -- will work on big endian, but slowly */
457 #define	LOAD_BIG_32(addr)	\
458 	(((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
459 #endif	/* _BIG_ENDIAN */
460 
461 /*
462  * SHA1Transform()
463  */
464 #if	defined(W_ARRAY)
465 #define	W(n) w[n]
466 #else	/* !defined(W_ARRAY) */
467 #define	W(n) w_ ## n
468 #endif	/* !defined(W_ARRAY) */
469 
470 
471 #if	defined(__sparc)
472 
473 /*
474  * sparc register window optimization:
475  *
476  * `a', `b', `c', `d', and `e' are passed into SHA1Transform
477  * explicitly since it increases the number of registers available to
478  * the compiler.  under this scheme, these variables can be held in
479  * %i0 - %i4, which leaves more local and out registers available.
480  *
481  * purpose: sha1 transformation -- updates the digest based on `block'
482  *   input: uint32_t	: bytes  1 -  4 of the digest
483  *          uint32_t	: bytes  5 -  8 of the digest
484  *          uint32_t	: bytes  9 - 12 of the digest
485  *          uint32_t	: bytes 12 - 16 of the digest
486  *          uint32_t	: bytes 16 - 20 of the digest
487  *          SHA1_CTX *	: the context to update
488  *          uint8_t [64]: the block to use to update the digest
489  *  output: void
490  */
491 
492 void
493 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
494     SHA1_CTX *ctx, const uint8_t blk[64])
495 {
496 	/*
497 	 * sparc optimization:
498 	 *
499 	 * while it is somewhat counter-intuitive, on sparc, it is
500 	 * more efficient to place all the constants used in this
501 	 * function in an array and load the values out of the array
502 	 * than to manually load the constants.  this is because
503 	 * setting a register to a 32-bit value takes two ops in most
504 	 * cases: a `sethi' and an `or', but loading a 32-bit value
505 	 * from memory only takes one `ld' (or `lduw' on v9).  while
506 	 * this increases memory usage, the compiler can find enough
507 	 * other things to do while waiting to keep the pipeline does
508 	 * not stall.  additionally, it is likely that many of these
509 	 * constants are cached so that later accesses do not even go
510 	 * out to the bus.
511 	 *
512 	 * this array is declared `static' to keep the compiler from
513 	 * having to bcopy() this array onto the stack frame of
514 	 * SHA1Transform() each time it is called -- which is
515 	 * unacceptably expensive.
516 	 *
517 	 * the `const' is to ensure that callers are good citizens and
518 	 * do not try to munge the array.  since these routines are
519 	 * going to be called from inside multithreaded kernelland,
520 	 * this is a good safety check. -- `sha1_consts' will end up in
521 	 * .rodata.
522 	 *
523 	 * unfortunately, loading from an array in this manner hurts
524 	 * performance under Intel.  So, there is a macro,
525 	 * SHA1_CONST(), used in SHA1Transform(), that either expands to
526 	 * a reference to this array, or to the actual constant,
527 	 * depending on what platform this code is compiled for.
528 	 */
529 
530 	static const uint32_t sha1_consts[] = {
531 		SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
532 	};
533 
534 	/*
535 	 * general optimization:
536 	 *
537 	 * use individual integers instead of using an array.  this is a
538 	 * win, although the amount it wins by seems to vary quite a bit.
539 	 */
540 
541 	uint32_t	w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
542 	uint32_t	w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
543 
544 	/*
545 	 * sparc optimization:
546 	 *
547 	 * if `block' is already aligned on a 4-byte boundary, use
548 	 * LOAD_BIG_32() directly.  otherwise, bcopy() into a
549 	 * buffer that *is* aligned on a 4-byte boundary and then do
550 	 * the LOAD_BIG_32() on that buffer.  benchmarks have shown
551 	 * that using the bcopy() is better than loading the bytes
552 	 * individually and doing the endian-swap by hand.
553 	 *
554 	 * even though it's quite tempting to assign to do:
555 	 *
556 	 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
557 	 *
558 	 * and only have one set of LOAD_BIG_32()'s, the compiler
559 	 * *does not* like that, so please resist the urge.
560 	 */
561 
562 	if ((uintptr_t)blk & 0x3) {		/* not 4-byte aligned? */
563 		bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
564 		w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
565 		w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
566 		w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
567 		w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
568 		w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
569 		w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
570 		w_9  = LOAD_BIG_32(ctx->buf_un.buf32 +  9);
571 		w_8  = LOAD_BIG_32(ctx->buf_un.buf32 +  8);
572 		w_7  = LOAD_BIG_32(ctx->buf_un.buf32 +  7);
573 		w_6  = LOAD_BIG_32(ctx->buf_un.buf32 +  6);
574 		w_5  = LOAD_BIG_32(ctx->buf_un.buf32 +  5);
575 		w_4  = LOAD_BIG_32(ctx->buf_un.buf32 +  4);
576 		w_3  = LOAD_BIG_32(ctx->buf_un.buf32 +  3);
577 		w_2  = LOAD_BIG_32(ctx->buf_un.buf32 +  2);
578 		w_1  = LOAD_BIG_32(ctx->buf_un.buf32 +  1);
579 		w_0  = LOAD_BIG_32(ctx->buf_un.buf32 +  0);
580 	} else {
581 		/*LINTED*/
582 		w_15 = LOAD_BIG_32(blk + 60);
583 		/*LINTED*/
584 		w_14 = LOAD_BIG_32(blk + 56);
585 		/*LINTED*/
586 		w_13 = LOAD_BIG_32(blk + 52);
587 		/*LINTED*/
588 		w_12 = LOAD_BIG_32(blk + 48);
589 		/*LINTED*/
590 		w_11 = LOAD_BIG_32(blk + 44);
591 		/*LINTED*/
592 		w_10 = LOAD_BIG_32(blk + 40);
593 		/*LINTED*/
594 		w_9  = LOAD_BIG_32(blk + 36);
595 		/*LINTED*/
596 		w_8  = LOAD_BIG_32(blk + 32);
597 		/*LINTED*/
598 		w_7  = LOAD_BIG_32(blk + 28);
599 		/*LINTED*/
600 		w_6  = LOAD_BIG_32(blk + 24);
601 		/*LINTED*/
602 		w_5  = LOAD_BIG_32(blk + 20);
603 		/*LINTED*/
604 		w_4  = LOAD_BIG_32(blk + 16);
605 		/*LINTED*/
606 		w_3  = LOAD_BIG_32(blk + 12);
607 		/*LINTED*/
608 		w_2  = LOAD_BIG_32(blk +  8);
609 		/*LINTED*/
610 		w_1  = LOAD_BIG_32(blk +  4);
611 		/*LINTED*/
612 		w_0  = LOAD_BIG_32(blk +  0);
613 	}
614 #else	/* !defined(__sparc) */
615 
616 void /* CSTYLED */
617 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
618 {
619 	/* CSTYLED */
620 	sha1word a = ctx->state[0];
621 	sha1word b = ctx->state[1];
622 	sha1word c = ctx->state[2];
623 	sha1word d = ctx->state[3];
624 	sha1word e = ctx->state[4];
625 
626 #if	defined(W_ARRAY)
627 	sha1word	w[16];
628 #else	/* !defined(W_ARRAY) */
629 	sha1word	w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
630 	sha1word	w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
631 #endif	/* !defined(W_ARRAY) */
632 
633 	W(0)  = LOAD_BIG_32((void *)(blk +  0));
634 	W(1)  = LOAD_BIG_32((void *)(blk +  4));
635 	W(2)  = LOAD_BIG_32((void *)(blk +  8));
636 	W(3)  = LOAD_BIG_32((void *)(blk + 12));
637 	W(4)  = LOAD_BIG_32((void *)(blk + 16));
638 	W(5)  = LOAD_BIG_32((void *)(blk + 20));
639 	W(6)  = LOAD_BIG_32((void *)(blk + 24));
640 	W(7)  = LOAD_BIG_32((void *)(blk + 28));
641 	W(8)  = LOAD_BIG_32((void *)(blk + 32));
642 	W(9)  = LOAD_BIG_32((void *)(blk + 36));
643 	W(10) = LOAD_BIG_32((void *)(blk + 40));
644 	W(11) = LOAD_BIG_32((void *)(blk + 44));
645 	W(12) = LOAD_BIG_32((void *)(blk + 48));
646 	W(13) = LOAD_BIG_32((void *)(blk + 52));
647 	W(14) = LOAD_BIG_32((void *)(blk + 56));
648 	W(15) = LOAD_BIG_32((void *)(blk + 60));
649 
650 #endif	/* !defined(__sparc) */
651 
652 	/*
653 	 * general optimization:
654 	 *
655 	 * even though this approach is described in the standard as
656 	 * being slower algorithmically, it is 30-40% faster than the
657 	 * "faster" version under SPARC, because this version has more
658 	 * of the constraints specified at compile-time and uses fewer
659 	 * variables (and therefore has better register utilization)
660 	 * than its "speedier" brother.  (i've tried both, trust me)
661 	 *
662 	 * for either method given in the spec, there is an "assignment"
663 	 * phase where the following takes place:
664 	 *
665 	 *	tmp = (main_computation);
666 	 *	e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
667 	 *
668 	 * we can make the algorithm go faster by not doing this work,
669 	 * but just pretending that `d' is now `e', etc. this works
670 	 * really well and obviates the need for a temporary variable.
671 	 * however, we still explicitly perform the rotate action,
672 	 * since it is cheaper on SPARC to do it once than to have to
673 	 * do it over and over again.
674 	 */
675 
676 	/* round 1 */
677 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
678 	b = ROTATE_LEFT(b, 30);
679 
680 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
681 	a = ROTATE_LEFT(a, 30);
682 
683 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
684 	e = ROTATE_LEFT(e, 30);
685 
686 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
687 	d = ROTATE_LEFT(d, 30);
688 
689 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
690 	c = ROTATE_LEFT(c, 30);
691 
692 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
693 	b = ROTATE_LEFT(b, 30);
694 
695 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
696 	a = ROTATE_LEFT(a, 30);
697 
698 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
699 	e = ROTATE_LEFT(e, 30);
700 
701 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
702 	d = ROTATE_LEFT(d, 30);
703 
704 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
705 	c = ROTATE_LEFT(c, 30);
706 
707 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
708 	b = ROTATE_LEFT(b, 30);
709 
710 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
711 	a = ROTATE_LEFT(a, 30);
712 
713 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
714 	e = ROTATE_LEFT(e, 30);
715 
716 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
717 	d = ROTATE_LEFT(d, 30);
718 
719 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
720 	c = ROTATE_LEFT(c, 30);
721 
722 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
723 	b = ROTATE_LEFT(b, 30);
724 
725 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 16 */
726 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
727 	a = ROTATE_LEFT(a, 30);
728 
729 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 17 */
730 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
731 	e = ROTATE_LEFT(e, 30);
732 
733 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 18 */
734 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
735 	d = ROTATE_LEFT(d, 30);
736 
737 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 19 */
738 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
739 	c = ROTATE_LEFT(c, 30);
740 
741 	/* round 2 */
742 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 20 */
743 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
744 	b = ROTATE_LEFT(b, 30);
745 
746 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 21 */
747 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
748 	a = ROTATE_LEFT(a, 30);
749 
750 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 22 */
751 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
752 	e = ROTATE_LEFT(e, 30);
753 
754 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 23 */
755 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
756 	d = ROTATE_LEFT(d, 30);
757 
758 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 24 */
759 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
760 	c = ROTATE_LEFT(c, 30);
761 
762 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 25 */
763 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
764 	b = ROTATE_LEFT(b, 30);
765 
766 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 26 */
767 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
768 	a = ROTATE_LEFT(a, 30);
769 
770 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 27 */
771 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
772 	e = ROTATE_LEFT(e, 30);
773 
774 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 28 */
775 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
776 	d = ROTATE_LEFT(d, 30);
777 
778 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 29 */
779 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
780 	c = ROTATE_LEFT(c, 30);
781 
782 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 30 */
783 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
784 	b = ROTATE_LEFT(b, 30);
785 
786 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 31 */
787 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
788 	a = ROTATE_LEFT(a, 30);
789 
790 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 32 */
791 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
792 	e = ROTATE_LEFT(e, 30);
793 
794 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 33 */
795 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
796 	d = ROTATE_LEFT(d, 30);
797 
798 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 34 */
799 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
800 	c = ROTATE_LEFT(c, 30);
801 
802 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 35 */
803 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
804 	b = ROTATE_LEFT(b, 30);
805 
806 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 36 */
807 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
808 	a = ROTATE_LEFT(a, 30);
809 
810 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 37 */
811 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
812 	e = ROTATE_LEFT(e, 30);
813 
814 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 38 */
815 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
816 	d = ROTATE_LEFT(d, 30);
817 
818 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 39 */
819 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
820 	c = ROTATE_LEFT(c, 30);
821 
822 	/* round 3 */
823 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 40 */
824 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
825 	b = ROTATE_LEFT(b, 30);
826 
827 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 41 */
828 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
829 	a = ROTATE_LEFT(a, 30);
830 
831 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 42 */
832 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
833 	e = ROTATE_LEFT(e, 30);
834 
835 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 43 */
836 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
837 	d = ROTATE_LEFT(d, 30);
838 
839 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 44 */
840 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
841 	c = ROTATE_LEFT(c, 30);
842 
843 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 45 */
844 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
845 	b = ROTATE_LEFT(b, 30);
846 
847 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 46 */
848 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
849 	a = ROTATE_LEFT(a, 30);
850 
851 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 47 */
852 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
853 	e = ROTATE_LEFT(e, 30);
854 
855 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 48 */
856 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
857 	d = ROTATE_LEFT(d, 30);
858 
859 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 49 */
860 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
861 	c = ROTATE_LEFT(c, 30);
862 
863 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 50 */
864 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
865 	b = ROTATE_LEFT(b, 30);
866 
867 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 51 */
868 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
869 	a = ROTATE_LEFT(a, 30);
870 
871 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 52 */
872 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
873 	e = ROTATE_LEFT(e, 30);
874 
875 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 53 */
876 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
877 	d = ROTATE_LEFT(d, 30);
878 
879 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 54 */
880 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
881 	c = ROTATE_LEFT(c, 30);
882 
883 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 55 */
884 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
885 	b = ROTATE_LEFT(b, 30);
886 
887 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 56 */
888 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
889 	a = ROTATE_LEFT(a, 30);
890 
891 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 57 */
892 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
893 	e = ROTATE_LEFT(e, 30);
894 
895 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 58 */
896 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
897 	d = ROTATE_LEFT(d, 30);
898 
899 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 59 */
900 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
901 	c = ROTATE_LEFT(c, 30);
902 
903 	/* round 4 */
904 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 60 */
905 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
906 	b = ROTATE_LEFT(b, 30);
907 
908 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 61 */
909 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
910 	a = ROTATE_LEFT(a, 30);
911 
912 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 62 */
913 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
914 	e = ROTATE_LEFT(e, 30);
915 
916 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 63 */
917 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
918 	d = ROTATE_LEFT(d, 30);
919 
920 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 64 */
921 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
922 	c = ROTATE_LEFT(c, 30);
923 
924 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 65 */
925 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
926 	b = ROTATE_LEFT(b, 30);
927 
928 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 66 */
929 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
930 	a = ROTATE_LEFT(a, 30);
931 
932 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 67 */
933 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
934 	e = ROTATE_LEFT(e, 30);
935 
936 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 68 */
937 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
938 	d = ROTATE_LEFT(d, 30);
939 
940 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 69 */
941 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
942 	c = ROTATE_LEFT(c, 30);
943 
944 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 70 */
945 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
946 	b = ROTATE_LEFT(b, 30);
947 
948 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 71 */
949 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
950 	a = ROTATE_LEFT(a, 30);
951 
952 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 72 */
953 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
954 	e = ROTATE_LEFT(e, 30);
955 
956 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 73 */
957 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
958 	d = ROTATE_LEFT(d, 30);
959 
960 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 74 */
961 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
962 	c = ROTATE_LEFT(c, 30);
963 
964 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 75 */
965 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
966 	b = ROTATE_LEFT(b, 30);
967 
968 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 76 */
969 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
970 	a = ROTATE_LEFT(a, 30);
971 
972 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 77 */
973 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
974 	e = ROTATE_LEFT(e, 30);
975 
976 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 78 */
977 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
978 	d = ROTATE_LEFT(d, 30);
979 
980 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 79 */
981 
982 	ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
983 	    SHA1_CONST(3);
984 	ctx->state[1] += b;
985 	ctx->state[2] += ROTATE_LEFT(c, 30);
986 	ctx->state[3] += d;
987 	ctx->state[4] += e;
988 
989 	/* zeroize sensitive information */
990 	W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
991 	W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
992 }
993 #endif	/* !__amd64 */
994 
995 
996 /*
997  * Encode()
998  *
999  * purpose: to convert a list of numbers from little endian to big endian
1000  *   input: uint8_t *	: place to store the converted big endian numbers
1001  *	    uint32_t *	: place to get numbers to convert from
1002  *          size_t	: the length of the input in bytes
1003  *  output: void
1004  */
1005 
1006 static void
1007 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
1008     size_t len)
1009 {
1010 	size_t		i, j;
1011 
1012 #if	defined(__sparc)
1013 	if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
1014 		for (i = 0, j = 0; j < len; i++, j += 4) {
1015 			/* LINTED: pointer alignment */
1016 			*((uint32_t *)(output + j)) = input[i];
1017 		}
1018 	} else {
1019 #endif	/* little endian -- will work on big endian, but slowly */
1020 		for (i = 0, j = 0; j < len; i++, j += 4) {
1021 			output[j]	= (input[i] >> 24) & 0xff;
1022 			output[j + 1]	= (input[i] >> 16) & 0xff;
1023 			output[j + 2]	= (input[i] >>  8) & 0xff;
1024 			output[j + 3]	= input[i] & 0xff;
1025 		}
1026 #if	defined(__sparc)
1027 	}
1028 #endif
1029 }
1030