xref: /titanic_51/usr/src/common/crypto/sha1/sha1.c (revision 9dd77bc84fd62eb844d67cc7311833ea3ea6c889)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * The basic framework for this code came from the reference
8  * implementation for MD5.  That implementation is Copyright (C)
9  * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
10  *
11  * License to copy and use this software is granted provided that it
12  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
13  * Algorithm" in all material mentioning or referencing this software
14  * or this function.
15  *
16  * License is also granted to make and use derivative works provided
17  * that such works are identified as "derived from the RSA Data
18  * Security, Inc. MD5 Message-Digest Algorithm" in all material
19  * mentioning or referencing the derived work.
20  *
21  * RSA Data Security, Inc. makes no representations concerning either
22  * the merchantability of this software or the suitability of this
23  * software for any particular purpose. It is provided "as is"
24  * without express or implied warranty of any kind.
25  *
26  * These notices must be retained in any copies of any part of this
27  * documentation and/or software.
28  *
29  * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
30  * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
31  * Not as fast as one would like -- further optimizations are encouraged
32  * and appreciated.
33  */
34 
35 #ifndef _KERNEL
36 #include <stdint.h>
37 #include <strings.h>
38 #include <stdlib.h>
39 #include <errno.h>
40 #include <sys/systeminfo.h>
41 #endif  /* !_KERNEL */
42 
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysmacros.h>
47 #include <sys/sha1.h>
48 #include <sys/sha1_consts.h>
49 
50 #ifdef _LITTLE_ENDIAN
51 #include <sys/byteorder.h>
52 #define	HAVE_HTONL
53 #endif
54 
55 static void Encode(uint8_t *, const uint32_t *, size_t);
56 
57 #if	defined(__sparc)
58 
59 #define	SHA1_TRANSFORM(ctx, in) \
60 	SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
61 		(ctx)->state[3], (ctx)->state[4], (ctx), (in))
62 
63 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
64     SHA1_CTX *, const uint8_t *);
65 
66 #elif	defined(__amd64)
67 
68 #define	SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
69 #define	SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
70 		(in), (num))
71 
72 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
73 
74 #else
75 
76 #define	SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
77 
78 static void SHA1Transform(SHA1_CTX *, const uint8_t *);
79 
80 #endif
81 
82 
83 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
84 
85 /*
86  * F, G, and H are the basic SHA1 functions.
87  */
88 #define	F(b, c, d)	(((b) & (c)) | ((~b) & (d)))
89 #define	G(b, c, d)	((b) ^ (c) ^ (d))
90 #define	H(b, c, d)	(((b) & (c)) | (((b)|(c)) & (d)))
91 
92 /*
93  * ROTATE_LEFT rotates x left n bits.
94  */
95 
96 #if	defined(__GNUC__) && defined(_LP64)
97 static __inline__ uint64_t
98 ROTATE_LEFT(uint64_t value, uint32_t n)
99 {
100 	uint32_t t32;
101 
102 	t32 = (uint32_t)value;
103 	return ((t32 << n) | (t32 >> (32 - n)));
104 }
105 
106 #else
107 
108 #define	ROTATE_LEFT(x, n)	\
109 	(((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
110 
111 #endif
112 
113 
114 /*
115  * SHA1Init()
116  *
117  * purpose: initializes the sha1 context and begins and sha1 digest operation
118  *   input: SHA1_CTX *	: the context to initializes.
119  *  output: void
120  */
121 
122 void
123 SHA1Init(SHA1_CTX *ctx)
124 {
125 	ctx->count[0] = ctx->count[1] = 0;
126 
127 	/*
128 	 * load magic initialization constants. Tell lint
129 	 * that these constants are unsigned by using U.
130 	 */
131 
132 	ctx->state[0] = 0x67452301U;
133 	ctx->state[1] = 0xefcdab89U;
134 	ctx->state[2] = 0x98badcfeU;
135 	ctx->state[3] = 0x10325476U;
136 	ctx->state[4] = 0xc3d2e1f0U;
137 }
138 
139 #ifdef VIS_SHA1
140 #ifdef _KERNEL
141 
142 #include <sys/regset.h>
143 #include <sys/vis.h>
144 #include <sys/fpu/fpusystm.h>
145 
146 /* the alignment for block stores to save fp registers */
147 #define	VIS_ALIGN	(64)
148 
149 extern int sha1_savefp(kfpu_t *, int);
150 extern void sha1_restorefp(kfpu_t *);
151 
152 uint32_t	vis_sha1_svfp_threshold = 128;
153 
154 #endif /* _KERNEL */
155 
156 /*
157  * VIS SHA-1 consts.
158  */
159 static uint64_t VIS[] = {
160 	0x8000000080000000ULL,
161 	0x0002000200020002ULL,
162 	0x5a8279996ed9eba1ULL,
163 	0x8f1bbcdcca62c1d6ULL,
164 	0x012389ab456789abULL};
165 
166 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *);
167 
168 
169 /*
170  * SHA1Update()
171  *
172  * purpose: continues an sha1 digest operation, using the message block
173  *          to update the context.
174  *   input: SHA1_CTX *	: the context to update
175  *          void *	: the message block
176  *          size_t    : the length of the message block in bytes
177  *  output: void
178  */
179 
180 void
181 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
182 {
183 	uint32_t i, buf_index, buf_len;
184 	uint64_t X0[40], input64[8];
185 	const uint8_t *input = inptr;
186 #ifdef _KERNEL
187 	int usevis = 0;
188 #else
189 	int usevis = 1;
190 #endif /* _KERNEL */
191 
192 	/* check for noop */
193 	if (input_len == 0)
194 		return;
195 
196 	/* compute number of bytes mod 64 */
197 	buf_index = (ctx->count[1] >> 3) & 0x3F;
198 
199 	/* update number of bits */
200 	if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
201 		ctx->count[0]++;
202 
203 	ctx->count[0] += (input_len >> 29);
204 
205 	buf_len = 64 - buf_index;
206 
207 	/* transform as many times as possible */
208 	i = 0;
209 	if (input_len >= buf_len) {
210 #ifdef _KERNEL
211 		kfpu_t *fpu;
212 		if (fpu_exists) {
213 			uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN];
214 			uint32_t len = (input_len + buf_index) & ~0x3f;
215 			int svfp_ok;
216 
217 			fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64);
218 			svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0);
219 			usevis = fpu_exists && sha1_savefp(fpu, svfp_ok);
220 		} else {
221 			usevis = 0;
222 		}
223 #endif /* _KERNEL */
224 
225 		/*
226 		 * general optimization:
227 		 *
228 		 * only do initial bcopy() and SHA1Transform() if
229 		 * buf_index != 0.  if buf_index == 0, we're just
230 		 * wasting our time doing the bcopy() since there
231 		 * wasn't any data left over from a previous call to
232 		 * SHA1Update().
233 		 */
234 
235 		if (buf_index) {
236 			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
237 			if (usevis) {
238 				SHA1TransformVIS(X0,
239 				    ctx->buf_un.buf32,
240 				    &ctx->state[0], VIS);
241 			} else {
242 				SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
243 			}
244 			i = buf_len;
245 		}
246 
247 		/*
248 		 * VIS SHA-1: uses the VIS 1.0 instructions to accelerate
249 		 * SHA-1 processing. This is achieved by "offloading" the
250 		 * computation of the message schedule (MS) to the VIS units.
251 		 * This allows the VIS computation of the message schedule
252 		 * to be performed in parallel with the standard integer
253 		 * processing of the remainder of the SHA-1 computation.
254 		 * performance by up to around 1.37X, compared to an optimized
255 		 * integer-only implementation.
256 		 *
257 		 * The VIS implementation of SHA1Transform has a different API
258 		 * to the standard integer version:
259 		 *
260 		 * void SHA1TransformVIS(
261 		 *	 uint64_t *, // Pointer to MS for ith block
262 		 *	 uint32_t *, // Pointer to ith block of message data
263 		 *	 uint32_t *, // Pointer to SHA state i.e ctx->state
264 		 *	 uint64_t *, // Pointer to various VIS constants
265 		 * )
266 		 *
267 		 * Note: the message data must by 4-byte aligned.
268 		 *
269 		 * Function requires VIS 1.0 support.
270 		 *
271 		 * Handling is provided to deal with arbitrary byte alingment
272 		 * of the input data but the performance gains are reduced
273 		 * for alignments other than 4-bytes.
274 		 */
275 		if (usevis) {
276 			if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) {
277 				/*
278 				 * Main processing loop - input misaligned
279 				 */
280 				for (; i + 63 < input_len; i += 64) {
281 					bcopy(&input[i], input64, 64);
282 					SHA1TransformVIS(X0,
283 					    (uint32_t *)input64,
284 					    &ctx->state[0], VIS);
285 				}
286 			} else {
287 				/*
288 				 * Main processing loop - input 8-byte aligned
289 				 */
290 				for (; i + 63 < input_len; i += 64) {
291 					SHA1TransformVIS(X0,
292 					    /* LINTED E_BAD_PTR_CAST_ALIGN */
293 					    (uint32_t *)&input[i], /* CSTYLED */
294 					    &ctx->state[0], VIS);
295 				}
296 
297 			}
298 #ifdef _KERNEL
299 			sha1_restorefp(fpu);
300 #endif /* _KERNEL */
301 		} else {
302 			for (; i + 63 < input_len; i += 64) {
303 				SHA1_TRANSFORM(ctx, &input[i]);
304 			}
305 		}
306 
307 		/*
308 		 * general optimization:
309 		 *
310 		 * if i and input_len are the same, return now instead
311 		 * of calling bcopy(), since the bcopy() in this case
312 		 * will be an expensive nop.
313 		 */
314 
315 		if (input_len == i)
316 			return;
317 
318 		buf_index = 0;
319 	}
320 
321 	/* buffer remaining input */
322 	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
323 }
324 
325 #else /* VIS_SHA1 */
326 
327 void
328 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
329 {
330 	uint32_t i, buf_index, buf_len;
331 	const uint8_t *input = inptr;
332 #if defined(__amd64)
333 	uint32_t	block_count;
334 #endif	/* __amd64 */
335 
336 	/* check for noop */
337 	if (input_len == 0)
338 		return;
339 
340 	/* compute number of bytes mod 64 */
341 	buf_index = (ctx->count[1] >> 3) & 0x3F;
342 
343 	/* update number of bits */
344 	if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
345 		ctx->count[0]++;
346 
347 	ctx->count[0] += (input_len >> 29);
348 
349 	buf_len = 64 - buf_index;
350 
351 	/* transform as many times as possible */
352 	i = 0;
353 	if (input_len >= buf_len) {
354 
355 		/*
356 		 * general optimization:
357 		 *
358 		 * only do initial bcopy() and SHA1Transform() if
359 		 * buf_index != 0.  if buf_index == 0, we're just
360 		 * wasting our time doing the bcopy() since there
361 		 * wasn't any data left over from a previous call to
362 		 * SHA1Update().
363 		 */
364 
365 		if (buf_index) {
366 			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
367 			SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
368 			i = buf_len;
369 		}
370 
371 #if !defined(__amd64)
372 		for (; i + 63 < input_len; i += 64)
373 			SHA1_TRANSFORM(ctx, &input[i]);
374 #else
375 		block_count = (input_len - i) >> 6;
376 		if (block_count > 0) {
377 			SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
378 			i += block_count << 6;
379 		}
380 #endif	/* !__amd64 */
381 
382 		/*
383 		 * general optimization:
384 		 *
385 		 * if i and input_len are the same, return now instead
386 		 * of calling bcopy(), since the bcopy() in this case
387 		 * will be an expensive nop.
388 		 */
389 
390 		if (input_len == i)
391 			return;
392 
393 		buf_index = 0;
394 	}
395 
396 	/* buffer remaining input */
397 	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
398 }
399 
400 #endif /* VIS_SHA1 */
401 
402 /*
403  * SHA1Final()
404  *
405  * purpose: ends an sha1 digest operation, finalizing the message digest and
406  *          zeroing the context.
407  *   input: uchar_t *	: A buffer to store the digest.
408  *			: The function actually uses void* because many
409  *			: callers pass things other than uchar_t here.
410  *          SHA1_CTX *  : the context to finalize, save, and zero
411  *  output: void
412  */
413 
414 void
415 SHA1Final(void *digest, SHA1_CTX *ctx)
416 {
417 	uint8_t		bitcount_be[sizeof (ctx->count)];
418 	uint32_t	index = (ctx->count[1] >> 3) & 0x3f;
419 
420 	/* store bit count, big endian */
421 	Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
422 
423 	/* pad out to 56 mod 64 */
424 	SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
425 
426 	/* append length (before padding) */
427 	SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
428 
429 	/* store state in digest */
430 	Encode(digest, ctx->state, sizeof (ctx->state));
431 
432 	/* zeroize sensitive information */
433 	bzero(ctx, sizeof (*ctx));
434 }
435 
436 
437 #if !defined(__amd64)
438 
439 typedef uint32_t sha1word;
440 
441 /*
442  * sparc optimization:
443  *
444  * on the sparc, we can load big endian 32-bit data easily.  note that
445  * special care must be taken to ensure the address is 32-bit aligned.
446  * in the interest of speed, we don't check to make sure, since
447  * careful programming can guarantee this for us.
448  */
449 
450 #if	defined(_BIG_ENDIAN)
451 #define	LOAD_BIG_32(addr)	(*(uint32_t *)(addr))
452 
453 #elif	defined(HAVE_HTONL)
454 #define	LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
455 
456 #else
457 /* little endian -- will work on big endian, but slowly */
458 #define	LOAD_BIG_32(addr)	\
459 	(((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
460 #endif	/* _BIG_ENDIAN */
461 
462 /*
463  * SHA1Transform()
464  */
465 #if	defined(W_ARRAY)
466 #define	W(n) w[n]
467 #else	/* !defined(W_ARRAY) */
468 #define	W(n) w_ ## n
469 #endif	/* !defined(W_ARRAY) */
470 
471 
472 #if	defined(__sparc)
473 
474 /*
475  * sparc register window optimization:
476  *
477  * `a', `b', `c', `d', and `e' are passed into SHA1Transform
478  * explicitly since it increases the number of registers available to
479  * the compiler.  under this scheme, these variables can be held in
480  * %i0 - %i4, which leaves more local and out registers available.
481  *
482  * purpose: sha1 transformation -- updates the digest based on `block'
483  *   input: uint32_t	: bytes  1 -  4 of the digest
484  *          uint32_t	: bytes  5 -  8 of the digest
485  *          uint32_t	: bytes  9 - 12 of the digest
486  *          uint32_t	: bytes 12 - 16 of the digest
487  *          uint32_t	: bytes 16 - 20 of the digest
488  *          SHA1_CTX *	: the context to update
489  *          uint8_t [64]: the block to use to update the digest
490  *  output: void
491  */
492 
493 void
494 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
495     SHA1_CTX *ctx, const uint8_t blk[64])
496 {
497 	/*
498 	 * sparc optimization:
499 	 *
500 	 * while it is somewhat counter-intuitive, on sparc, it is
501 	 * more efficient to place all the constants used in this
502 	 * function in an array and load the values out of the array
503 	 * than to manually load the constants.  this is because
504 	 * setting a register to a 32-bit value takes two ops in most
505 	 * cases: a `sethi' and an `or', but loading a 32-bit value
506 	 * from memory only takes one `ld' (or `lduw' on v9).  while
507 	 * this increases memory usage, the compiler can find enough
508 	 * other things to do while waiting to keep the pipeline does
509 	 * not stall.  additionally, it is likely that many of these
510 	 * constants are cached so that later accesses do not even go
511 	 * out to the bus.
512 	 *
513 	 * this array is declared `static' to keep the compiler from
514 	 * having to bcopy() this array onto the stack frame of
515 	 * SHA1Transform() each time it is called -- which is
516 	 * unacceptably expensive.
517 	 *
518 	 * the `const' is to ensure that callers are good citizens and
519 	 * do not try to munge the array.  since these routines are
520 	 * going to be called from inside multithreaded kernelland,
521 	 * this is a good safety check. -- `sha1_consts' will end up in
522 	 * .rodata.
523 	 *
524 	 * unfortunately, loading from an array in this manner hurts
525 	 * performance under Intel.  So, there is a macro,
526 	 * SHA1_CONST(), used in SHA1Transform(), that either expands to
527 	 * a reference to this array, or to the actual constant,
528 	 * depending on what platform this code is compiled for.
529 	 */
530 
531 	static const uint32_t sha1_consts[] = {
532 		SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
533 	};
534 
535 	/*
536 	 * general optimization:
537 	 *
538 	 * use individual integers instead of using an array.  this is a
539 	 * win, although the amount it wins by seems to vary quite a bit.
540 	 */
541 
542 	uint32_t	w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
543 	uint32_t	w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
544 
545 	/*
546 	 * sparc optimization:
547 	 *
548 	 * if `block' is already aligned on a 4-byte boundary, use
549 	 * LOAD_BIG_32() directly.  otherwise, bcopy() into a
550 	 * buffer that *is* aligned on a 4-byte boundary and then do
551 	 * the LOAD_BIG_32() on that buffer.  benchmarks have shown
552 	 * that using the bcopy() is better than loading the bytes
553 	 * individually and doing the endian-swap by hand.
554 	 *
555 	 * even though it's quite tempting to assign to do:
556 	 *
557 	 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
558 	 *
559 	 * and only have one set of LOAD_BIG_32()'s, the compiler
560 	 * *does not* like that, so please resist the urge.
561 	 */
562 
563 	if ((uintptr_t)blk & 0x3) {		/* not 4-byte aligned? */
564 		bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
565 		w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
566 		w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
567 		w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
568 		w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
569 		w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
570 		w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
571 		w_9  = LOAD_BIG_32(ctx->buf_un.buf32 +  9);
572 		w_8  = LOAD_BIG_32(ctx->buf_un.buf32 +  8);
573 		w_7  = LOAD_BIG_32(ctx->buf_un.buf32 +  7);
574 		w_6  = LOAD_BIG_32(ctx->buf_un.buf32 +  6);
575 		w_5  = LOAD_BIG_32(ctx->buf_un.buf32 +  5);
576 		w_4  = LOAD_BIG_32(ctx->buf_un.buf32 +  4);
577 		w_3  = LOAD_BIG_32(ctx->buf_un.buf32 +  3);
578 		w_2  = LOAD_BIG_32(ctx->buf_un.buf32 +  2);
579 		w_1  = LOAD_BIG_32(ctx->buf_un.buf32 +  1);
580 		w_0  = LOAD_BIG_32(ctx->buf_un.buf32 +  0);
581 	} else {
582 		/* LINTED E_BAD_PTR_CAST_ALIGN */
583 		w_15 = LOAD_BIG_32(blk + 60);
584 		/* LINTED E_BAD_PTR_CAST_ALIGN */
585 		w_14 = LOAD_BIG_32(blk + 56);
586 		/* LINTED E_BAD_PTR_CAST_ALIGN */
587 		w_13 = LOAD_BIG_32(blk + 52);
588 		/* LINTED E_BAD_PTR_CAST_ALIGN */
589 		w_12 = LOAD_BIG_32(blk + 48);
590 		/* LINTED E_BAD_PTR_CAST_ALIGN */
591 		w_11 = LOAD_BIG_32(blk + 44);
592 		/* LINTED E_BAD_PTR_CAST_ALIGN */
593 		w_10 = LOAD_BIG_32(blk + 40);
594 		/* LINTED E_BAD_PTR_CAST_ALIGN */
595 		w_9  = LOAD_BIG_32(blk + 36);
596 		/* LINTED E_BAD_PTR_CAST_ALIGN */
597 		w_8  = LOAD_BIG_32(blk + 32);
598 		/* LINTED E_BAD_PTR_CAST_ALIGN */
599 		w_7  = LOAD_BIG_32(blk + 28);
600 		/* LINTED E_BAD_PTR_CAST_ALIGN */
601 		w_6  = LOAD_BIG_32(blk + 24);
602 		/* LINTED E_BAD_PTR_CAST_ALIGN */
603 		w_5  = LOAD_BIG_32(blk + 20);
604 		/* LINTED E_BAD_PTR_CAST_ALIGN */
605 		w_4  = LOAD_BIG_32(blk + 16);
606 		/* LINTED E_BAD_PTR_CAST_ALIGN */
607 		w_3  = LOAD_BIG_32(blk + 12);
608 		/* LINTED E_BAD_PTR_CAST_ALIGN */
609 		w_2  = LOAD_BIG_32(blk +  8);
610 		/* LINTED E_BAD_PTR_CAST_ALIGN */
611 		w_1  = LOAD_BIG_32(blk +  4);
612 		/* LINTED E_BAD_PTR_CAST_ALIGN */
613 		w_0  = LOAD_BIG_32(blk +  0);
614 	}
615 #else	/* !defined(__sparc) */
616 
617 void /* CSTYLED */
618 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
619 {
620 	/* CSTYLED */
621 	sha1word a = ctx->state[0];
622 	sha1word b = ctx->state[1];
623 	sha1word c = ctx->state[2];
624 	sha1word d = ctx->state[3];
625 	sha1word e = ctx->state[4];
626 
627 #if	defined(W_ARRAY)
628 	sha1word	w[16];
629 #else	/* !defined(W_ARRAY) */
630 	sha1word	w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
631 	sha1word	w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
632 #endif	/* !defined(W_ARRAY) */
633 
634 	W(0)  = LOAD_BIG_32((void *)(blk +  0));
635 	W(1)  = LOAD_BIG_32((void *)(blk +  4));
636 	W(2)  = LOAD_BIG_32((void *)(blk +  8));
637 	W(3)  = LOAD_BIG_32((void *)(blk + 12));
638 	W(4)  = LOAD_BIG_32((void *)(blk + 16));
639 	W(5)  = LOAD_BIG_32((void *)(blk + 20));
640 	W(6)  = LOAD_BIG_32((void *)(blk + 24));
641 	W(7)  = LOAD_BIG_32((void *)(blk + 28));
642 	W(8)  = LOAD_BIG_32((void *)(blk + 32));
643 	W(9)  = LOAD_BIG_32((void *)(blk + 36));
644 	W(10) = LOAD_BIG_32((void *)(blk + 40));
645 	W(11) = LOAD_BIG_32((void *)(blk + 44));
646 	W(12) = LOAD_BIG_32((void *)(blk + 48));
647 	W(13) = LOAD_BIG_32((void *)(blk + 52));
648 	W(14) = LOAD_BIG_32((void *)(blk + 56));
649 	W(15) = LOAD_BIG_32((void *)(blk + 60));
650 
651 #endif	/* !defined(__sparc) */
652 
653 	/*
654 	 * general optimization:
655 	 *
656 	 * even though this approach is described in the standard as
657 	 * being slower algorithmically, it is 30-40% faster than the
658 	 * "faster" version under SPARC, because this version has more
659 	 * of the constraints specified at compile-time and uses fewer
660 	 * variables (and therefore has better register utilization)
661 	 * than its "speedier" brother.  (i've tried both, trust me)
662 	 *
663 	 * for either method given in the spec, there is an "assignment"
664 	 * phase where the following takes place:
665 	 *
666 	 *	tmp = (main_computation);
667 	 *	e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
668 	 *
669 	 * we can make the algorithm go faster by not doing this work,
670 	 * but just pretending that `d' is now `e', etc. this works
671 	 * really well and obviates the need for a temporary variable.
672 	 * however, we still explicitly perform the rotate action,
673 	 * since it is cheaper on SPARC to do it once than to have to
674 	 * do it over and over again.
675 	 */
676 
677 	/* round 1 */
678 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
679 	b = ROTATE_LEFT(b, 30);
680 
681 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
682 	a = ROTATE_LEFT(a, 30);
683 
684 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
685 	e = ROTATE_LEFT(e, 30);
686 
687 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
688 	d = ROTATE_LEFT(d, 30);
689 
690 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
691 	c = ROTATE_LEFT(c, 30);
692 
693 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
694 	b = ROTATE_LEFT(b, 30);
695 
696 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
697 	a = ROTATE_LEFT(a, 30);
698 
699 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
700 	e = ROTATE_LEFT(e, 30);
701 
702 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
703 	d = ROTATE_LEFT(d, 30);
704 
705 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
706 	c = ROTATE_LEFT(c, 30);
707 
708 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
709 	b = ROTATE_LEFT(b, 30);
710 
711 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
712 	a = ROTATE_LEFT(a, 30);
713 
714 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
715 	e = ROTATE_LEFT(e, 30);
716 
717 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
718 	d = ROTATE_LEFT(d, 30);
719 
720 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
721 	c = ROTATE_LEFT(c, 30);
722 
723 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
724 	b = ROTATE_LEFT(b, 30);
725 
726 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 16 */
727 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
728 	a = ROTATE_LEFT(a, 30);
729 
730 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 17 */
731 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
732 	e = ROTATE_LEFT(e, 30);
733 
734 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 18 */
735 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
736 	d = ROTATE_LEFT(d, 30);
737 
738 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 19 */
739 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
740 	c = ROTATE_LEFT(c, 30);
741 
742 	/* round 2 */
743 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 20 */
744 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
745 	b = ROTATE_LEFT(b, 30);
746 
747 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 21 */
748 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
749 	a = ROTATE_LEFT(a, 30);
750 
751 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 22 */
752 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
753 	e = ROTATE_LEFT(e, 30);
754 
755 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 23 */
756 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
757 	d = ROTATE_LEFT(d, 30);
758 
759 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 24 */
760 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
761 	c = ROTATE_LEFT(c, 30);
762 
763 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 25 */
764 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
765 	b = ROTATE_LEFT(b, 30);
766 
767 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 26 */
768 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
769 	a = ROTATE_LEFT(a, 30);
770 
771 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 27 */
772 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
773 	e = ROTATE_LEFT(e, 30);
774 
775 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 28 */
776 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
777 	d = ROTATE_LEFT(d, 30);
778 
779 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 29 */
780 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
781 	c = ROTATE_LEFT(c, 30);
782 
783 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 30 */
784 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
785 	b = ROTATE_LEFT(b, 30);
786 
787 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 31 */
788 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
789 	a = ROTATE_LEFT(a, 30);
790 
791 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 32 */
792 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
793 	e = ROTATE_LEFT(e, 30);
794 
795 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 33 */
796 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
797 	d = ROTATE_LEFT(d, 30);
798 
799 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 34 */
800 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
801 	c = ROTATE_LEFT(c, 30);
802 
803 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 35 */
804 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
805 	b = ROTATE_LEFT(b, 30);
806 
807 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 36 */
808 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
809 	a = ROTATE_LEFT(a, 30);
810 
811 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 37 */
812 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
813 	e = ROTATE_LEFT(e, 30);
814 
815 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 38 */
816 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
817 	d = ROTATE_LEFT(d, 30);
818 
819 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 39 */
820 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
821 	c = ROTATE_LEFT(c, 30);
822 
823 	/* round 3 */
824 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 40 */
825 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
826 	b = ROTATE_LEFT(b, 30);
827 
828 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 41 */
829 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
830 	a = ROTATE_LEFT(a, 30);
831 
832 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 42 */
833 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
834 	e = ROTATE_LEFT(e, 30);
835 
836 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 43 */
837 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
838 	d = ROTATE_LEFT(d, 30);
839 
840 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 44 */
841 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
842 	c = ROTATE_LEFT(c, 30);
843 
844 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 45 */
845 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
846 	b = ROTATE_LEFT(b, 30);
847 
848 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 46 */
849 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
850 	a = ROTATE_LEFT(a, 30);
851 
852 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 47 */
853 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
854 	e = ROTATE_LEFT(e, 30);
855 
856 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 48 */
857 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
858 	d = ROTATE_LEFT(d, 30);
859 
860 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 49 */
861 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
862 	c = ROTATE_LEFT(c, 30);
863 
864 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 50 */
865 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
866 	b = ROTATE_LEFT(b, 30);
867 
868 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 51 */
869 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
870 	a = ROTATE_LEFT(a, 30);
871 
872 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 52 */
873 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
874 	e = ROTATE_LEFT(e, 30);
875 
876 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 53 */
877 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
878 	d = ROTATE_LEFT(d, 30);
879 
880 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 54 */
881 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
882 	c = ROTATE_LEFT(c, 30);
883 
884 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 55 */
885 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
886 	b = ROTATE_LEFT(b, 30);
887 
888 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 56 */
889 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
890 	a = ROTATE_LEFT(a, 30);
891 
892 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 57 */
893 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
894 	e = ROTATE_LEFT(e, 30);
895 
896 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 58 */
897 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
898 	d = ROTATE_LEFT(d, 30);
899 
900 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 59 */
901 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
902 	c = ROTATE_LEFT(c, 30);
903 
904 	/* round 4 */
905 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 60 */
906 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
907 	b = ROTATE_LEFT(b, 30);
908 
909 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 61 */
910 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
911 	a = ROTATE_LEFT(a, 30);
912 
913 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 62 */
914 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
915 	e = ROTATE_LEFT(e, 30);
916 
917 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 63 */
918 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
919 	d = ROTATE_LEFT(d, 30);
920 
921 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 64 */
922 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
923 	c = ROTATE_LEFT(c, 30);
924 
925 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 65 */
926 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
927 	b = ROTATE_LEFT(b, 30);
928 
929 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 66 */
930 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
931 	a = ROTATE_LEFT(a, 30);
932 
933 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 67 */
934 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
935 	e = ROTATE_LEFT(e, 30);
936 
937 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 68 */
938 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
939 	d = ROTATE_LEFT(d, 30);
940 
941 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 69 */
942 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
943 	c = ROTATE_LEFT(c, 30);
944 
945 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 70 */
946 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
947 	b = ROTATE_LEFT(b, 30);
948 
949 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 71 */
950 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
951 	a = ROTATE_LEFT(a, 30);
952 
953 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 72 */
954 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
955 	e = ROTATE_LEFT(e, 30);
956 
957 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 73 */
958 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
959 	d = ROTATE_LEFT(d, 30);
960 
961 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 74 */
962 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
963 	c = ROTATE_LEFT(c, 30);
964 
965 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 75 */
966 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
967 	b = ROTATE_LEFT(b, 30);
968 
969 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 76 */
970 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
971 	a = ROTATE_LEFT(a, 30);
972 
973 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 77 */
974 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
975 	e = ROTATE_LEFT(e, 30);
976 
977 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 78 */
978 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
979 	d = ROTATE_LEFT(d, 30);
980 
981 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 79 */
982 
983 	ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
984 	    SHA1_CONST(3);
985 	ctx->state[1] += b;
986 	ctx->state[2] += ROTATE_LEFT(c, 30);
987 	ctx->state[3] += d;
988 	ctx->state[4] += e;
989 
990 	/* zeroize sensitive information */
991 	W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
992 	W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
993 }
994 #endif	/* !__amd64 */
995 
996 
997 /*
998  * Encode()
999  *
1000  * purpose: to convert a list of numbers from little endian to big endian
1001  *   input: uint8_t *	: place to store the converted big endian numbers
1002  *	    uint32_t *	: place to get numbers to convert from
1003  *          size_t	: the length of the input in bytes
1004  *  output: void
1005  */
1006 
1007 static void
1008 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
1009     size_t len)
1010 {
1011 	size_t		i, j;
1012 
1013 #if	defined(__sparc)
1014 	if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
1015 		for (i = 0, j = 0; j < len; i++, j += 4) {
1016 			/* LINTED E_BAD_PTR_CAST_ALIGN */
1017 			*((uint32_t *)(output + j)) = input[i];
1018 		}
1019 	} else {
1020 #endif	/* little endian -- will work on big endian, but slowly */
1021 		for (i = 0, j = 0; j < len; i++, j += 4) {
1022 			output[j]	= (input[i] >> 24) & 0xff;
1023 			output[j + 1]	= (input[i] >> 16) & 0xff;
1024 			output[j + 2]	= (input[i] >>  8) & 0xff;
1025 			output[j + 3]	= input[i] & 0xff;
1026 		}
1027 #if	defined(__sparc)
1028 	}
1029 #endif
1030 }
1031