1*f9fbec18Smcpowers /* 2*f9fbec18Smcpowers * ***** BEGIN LICENSE BLOCK ***** 3*f9fbec18Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4*f9fbec18Smcpowers * 5*f9fbec18Smcpowers * The contents of this file are subject to the Mozilla Public License Version 6*f9fbec18Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with 7*f9fbec18Smcpowers * the License. You may obtain a copy of the License at 8*f9fbec18Smcpowers * http://www.mozilla.org/MPL/ 9*f9fbec18Smcpowers * 10*f9fbec18Smcpowers * Software distributed under the License is distributed on an "AS IS" basis, 11*f9fbec18Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12*f9fbec18Smcpowers * for the specific language governing rights and limitations under the 13*f9fbec18Smcpowers * License. 14*f9fbec18Smcpowers * 15*f9fbec18Smcpowers * The Original Code is the elliptic curve math library for prime field curves. 16*f9fbec18Smcpowers * 17*f9fbec18Smcpowers * The Initial Developer of the Original Code is 18*f9fbec18Smcpowers * Sun Microsystems, Inc. 19*f9fbec18Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003 20*f9fbec18Smcpowers * the Initial Developer. All Rights Reserved. 21*f9fbec18Smcpowers * 22*f9fbec18Smcpowers * Contributor(s): 23*f9fbec18Smcpowers * Sheueling Chang-Shantz <sheueling.chang@sun.com>, 24*f9fbec18Smcpowers * Stephen Fung <fungstep@hotmail.com>, and 25*f9fbec18Smcpowers * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories. 26*f9fbec18Smcpowers * Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>, 27*f9fbec18Smcpowers * Nils Larsch <nla@trustcenter.de>, and 28*f9fbec18Smcpowers * Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project 29*f9fbec18Smcpowers * 30*f9fbec18Smcpowers * Alternatively, the contents of this file may be used under the terms of 31*f9fbec18Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or 32*f9fbec18Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 33*f9fbec18Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead 34*f9fbec18Smcpowers * of those above. If you wish to allow use of your version of this file only 35*f9fbec18Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to 36*f9fbec18Smcpowers * use your version of this file under the terms of the MPL, indicate your 37*f9fbec18Smcpowers * decision by deleting the provisions above and replace them with the notice 38*f9fbec18Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete 39*f9fbec18Smcpowers * the provisions above, a recipient may use your version of this file under 40*f9fbec18Smcpowers * the terms of any one of the MPL, the GPL or the LGPL. 41*f9fbec18Smcpowers * 42*f9fbec18Smcpowers * ***** END LICENSE BLOCK ***** */ 43*f9fbec18Smcpowers /* 44*f9fbec18Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 45*f9fbec18Smcpowers * Use is subject to license terms. 46*f9fbec18Smcpowers * 47*f9fbec18Smcpowers * Sun elects to use this software under the MPL license. 48*f9fbec18Smcpowers */ 49*f9fbec18Smcpowers 50*f9fbec18Smcpowers #pragma ident "%Z%%M% %I% %E% SMI" 51*f9fbec18Smcpowers 52*f9fbec18Smcpowers #include "ecp.h" 53*f9fbec18Smcpowers #include "mplogic.h" 54*f9fbec18Smcpowers #ifndef _KERNEL 55*f9fbec18Smcpowers #include <stdlib.h> 56*f9fbec18Smcpowers #endif 57*f9fbec18Smcpowers #ifdef ECL_DEBUG 58*f9fbec18Smcpowers #include <assert.h> 59*f9fbec18Smcpowers #endif 60*f9fbec18Smcpowers 61*f9fbec18Smcpowers /* Converts a point P(px, py) from affine coordinates to Jacobian 62*f9fbec18Smcpowers * projective coordinates R(rx, ry, rz). Assumes input is already 63*f9fbec18Smcpowers * field-encoded using field_enc, and returns output that is still 64*f9fbec18Smcpowers * field-encoded. */ 65*f9fbec18Smcpowers mp_err 66*f9fbec18Smcpowers ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, 67*f9fbec18Smcpowers mp_int *ry, mp_int *rz, const ECGroup *group) 68*f9fbec18Smcpowers { 69*f9fbec18Smcpowers mp_err res = MP_OKAY; 70*f9fbec18Smcpowers 71*f9fbec18Smcpowers if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) { 72*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz)); 73*f9fbec18Smcpowers } else { 74*f9fbec18Smcpowers MP_CHECKOK(mp_copy(px, rx)); 75*f9fbec18Smcpowers MP_CHECKOK(mp_copy(py, ry)); 76*f9fbec18Smcpowers MP_CHECKOK(mp_set_int(rz, 1)); 77*f9fbec18Smcpowers if (group->meth->field_enc) { 78*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth)); 79*f9fbec18Smcpowers } 80*f9fbec18Smcpowers } 81*f9fbec18Smcpowers CLEANUP: 82*f9fbec18Smcpowers return res; 83*f9fbec18Smcpowers } 84*f9fbec18Smcpowers 85*f9fbec18Smcpowers /* Converts a point P(px, py, pz) from Jacobian projective coordinates to 86*f9fbec18Smcpowers * affine coordinates R(rx, ry). P and R can share x and y coordinates. 87*f9fbec18Smcpowers * Assumes input is already field-encoded using field_enc, and returns 88*f9fbec18Smcpowers * output that is still field-encoded. */ 89*f9fbec18Smcpowers mp_err 90*f9fbec18Smcpowers ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz, 91*f9fbec18Smcpowers mp_int *rx, mp_int *ry, const ECGroup *group) 92*f9fbec18Smcpowers { 93*f9fbec18Smcpowers mp_err res = MP_OKAY; 94*f9fbec18Smcpowers mp_int z1, z2, z3; 95*f9fbec18Smcpowers 96*f9fbec18Smcpowers MP_DIGITS(&z1) = 0; 97*f9fbec18Smcpowers MP_DIGITS(&z2) = 0; 98*f9fbec18Smcpowers MP_DIGITS(&z3) = 0; 99*f9fbec18Smcpowers MP_CHECKOK(mp_init(&z1, FLAG(px))); 100*f9fbec18Smcpowers MP_CHECKOK(mp_init(&z2, FLAG(px))); 101*f9fbec18Smcpowers MP_CHECKOK(mp_init(&z3, FLAG(px))); 102*f9fbec18Smcpowers 103*f9fbec18Smcpowers /* if point at infinity, then set point at infinity and exit */ 104*f9fbec18Smcpowers if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { 105*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry)); 106*f9fbec18Smcpowers goto CLEANUP; 107*f9fbec18Smcpowers } 108*f9fbec18Smcpowers 109*f9fbec18Smcpowers /* transform (px, py, pz) into (px / pz^2, py / pz^3) */ 110*f9fbec18Smcpowers if (mp_cmp_d(pz, 1) == 0) { 111*f9fbec18Smcpowers MP_CHECKOK(mp_copy(px, rx)); 112*f9fbec18Smcpowers MP_CHECKOK(mp_copy(py, ry)); 113*f9fbec18Smcpowers } else { 114*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth)); 115*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth)); 116*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth)); 117*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth)); 118*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth)); 119*f9fbec18Smcpowers } 120*f9fbec18Smcpowers 121*f9fbec18Smcpowers CLEANUP: 122*f9fbec18Smcpowers mp_clear(&z1); 123*f9fbec18Smcpowers mp_clear(&z2); 124*f9fbec18Smcpowers mp_clear(&z3); 125*f9fbec18Smcpowers return res; 126*f9fbec18Smcpowers } 127*f9fbec18Smcpowers 128*f9fbec18Smcpowers /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian 129*f9fbec18Smcpowers * coordinates. */ 130*f9fbec18Smcpowers mp_err 131*f9fbec18Smcpowers ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz) 132*f9fbec18Smcpowers { 133*f9fbec18Smcpowers return mp_cmp_z(pz); 134*f9fbec18Smcpowers } 135*f9fbec18Smcpowers 136*f9fbec18Smcpowers /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian 137*f9fbec18Smcpowers * coordinates. */ 138*f9fbec18Smcpowers mp_err 139*f9fbec18Smcpowers ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz) 140*f9fbec18Smcpowers { 141*f9fbec18Smcpowers mp_zero(pz); 142*f9fbec18Smcpowers return MP_OKAY; 143*f9fbec18Smcpowers } 144*f9fbec18Smcpowers 145*f9fbec18Smcpowers /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is 146*f9fbec18Smcpowers * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical. 147*f9fbec18Smcpowers * Uses mixed Jacobian-affine coordinates. Assumes input is already 148*f9fbec18Smcpowers * field-encoded using field_enc, and returns output that is still 149*f9fbec18Smcpowers * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and 150*f9fbec18Smcpowers * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime 151*f9fbec18Smcpowers * Fields. */ 152*f9fbec18Smcpowers mp_err 153*f9fbec18Smcpowers ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz, 154*f9fbec18Smcpowers const mp_int *qx, const mp_int *qy, mp_int *rx, 155*f9fbec18Smcpowers mp_int *ry, mp_int *rz, const ECGroup *group) 156*f9fbec18Smcpowers { 157*f9fbec18Smcpowers mp_err res = MP_OKAY; 158*f9fbec18Smcpowers mp_int A, B, C, D, C2, C3; 159*f9fbec18Smcpowers 160*f9fbec18Smcpowers MP_DIGITS(&A) = 0; 161*f9fbec18Smcpowers MP_DIGITS(&B) = 0; 162*f9fbec18Smcpowers MP_DIGITS(&C) = 0; 163*f9fbec18Smcpowers MP_DIGITS(&D) = 0; 164*f9fbec18Smcpowers MP_DIGITS(&C2) = 0; 165*f9fbec18Smcpowers MP_DIGITS(&C3) = 0; 166*f9fbec18Smcpowers MP_CHECKOK(mp_init(&A, FLAG(px))); 167*f9fbec18Smcpowers MP_CHECKOK(mp_init(&B, FLAG(px))); 168*f9fbec18Smcpowers MP_CHECKOK(mp_init(&C, FLAG(px))); 169*f9fbec18Smcpowers MP_CHECKOK(mp_init(&D, FLAG(px))); 170*f9fbec18Smcpowers MP_CHECKOK(mp_init(&C2, FLAG(px))); 171*f9fbec18Smcpowers MP_CHECKOK(mp_init(&C3, FLAG(px))); 172*f9fbec18Smcpowers 173*f9fbec18Smcpowers /* If either P or Q is the point at infinity, then return the other 174*f9fbec18Smcpowers * point */ 175*f9fbec18Smcpowers if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { 176*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); 177*f9fbec18Smcpowers goto CLEANUP; 178*f9fbec18Smcpowers } 179*f9fbec18Smcpowers if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { 180*f9fbec18Smcpowers MP_CHECKOK(mp_copy(px, rx)); 181*f9fbec18Smcpowers MP_CHECKOK(mp_copy(py, ry)); 182*f9fbec18Smcpowers MP_CHECKOK(mp_copy(pz, rz)); 183*f9fbec18Smcpowers goto CLEANUP; 184*f9fbec18Smcpowers } 185*f9fbec18Smcpowers 186*f9fbec18Smcpowers /* A = qx * pz^2, B = qy * pz^3 */ 187*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth)); 188*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth)); 189*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth)); 190*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth)); 191*f9fbec18Smcpowers 192*f9fbec18Smcpowers /* C = A - px, D = B - py */ 193*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth)); 194*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth)); 195*f9fbec18Smcpowers 196*f9fbec18Smcpowers /* C2 = C^2, C3 = C^3 */ 197*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth)); 198*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth)); 199*f9fbec18Smcpowers 200*f9fbec18Smcpowers /* rz = pz * C */ 201*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth)); 202*f9fbec18Smcpowers 203*f9fbec18Smcpowers /* C = px * C^2 */ 204*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth)); 205*f9fbec18Smcpowers /* A = D^2 */ 206*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth)); 207*f9fbec18Smcpowers 208*f9fbec18Smcpowers /* rx = D^2 - (C^3 + 2 * (px * C^2)) */ 209*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth)); 210*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth)); 211*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth)); 212*f9fbec18Smcpowers 213*f9fbec18Smcpowers /* C3 = py * C^3 */ 214*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth)); 215*f9fbec18Smcpowers 216*f9fbec18Smcpowers /* ry = D * (px * C^2 - rx) - py * C^3 */ 217*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth)); 218*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth)); 219*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth)); 220*f9fbec18Smcpowers 221*f9fbec18Smcpowers CLEANUP: 222*f9fbec18Smcpowers mp_clear(&A); 223*f9fbec18Smcpowers mp_clear(&B); 224*f9fbec18Smcpowers mp_clear(&C); 225*f9fbec18Smcpowers mp_clear(&D); 226*f9fbec18Smcpowers mp_clear(&C2); 227*f9fbec18Smcpowers mp_clear(&C3); 228*f9fbec18Smcpowers return res; 229*f9fbec18Smcpowers } 230*f9fbec18Smcpowers 231*f9fbec18Smcpowers /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses 232*f9fbec18Smcpowers * Jacobian coordinates. 233*f9fbec18Smcpowers * 234*f9fbec18Smcpowers * Assumes input is already field-encoded using field_enc, and returns 235*f9fbec18Smcpowers * output that is still field-encoded. 236*f9fbec18Smcpowers * 237*f9fbec18Smcpowers * This routine implements Point Doubling in the Jacobian Projective 238*f9fbec18Smcpowers * space as described in the paper "Efficient elliptic curve exponentiation 239*f9fbec18Smcpowers * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono. 240*f9fbec18Smcpowers */ 241*f9fbec18Smcpowers mp_err 242*f9fbec18Smcpowers ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz, 243*f9fbec18Smcpowers mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group) 244*f9fbec18Smcpowers { 245*f9fbec18Smcpowers mp_err res = MP_OKAY; 246*f9fbec18Smcpowers mp_int t0, t1, M, S; 247*f9fbec18Smcpowers 248*f9fbec18Smcpowers MP_DIGITS(&t0) = 0; 249*f9fbec18Smcpowers MP_DIGITS(&t1) = 0; 250*f9fbec18Smcpowers MP_DIGITS(&M) = 0; 251*f9fbec18Smcpowers MP_DIGITS(&S) = 0; 252*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t0, FLAG(px))); 253*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t1, FLAG(px))); 254*f9fbec18Smcpowers MP_CHECKOK(mp_init(&M, FLAG(px))); 255*f9fbec18Smcpowers MP_CHECKOK(mp_init(&S, FLAG(px))); 256*f9fbec18Smcpowers 257*f9fbec18Smcpowers if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { 258*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz)); 259*f9fbec18Smcpowers goto CLEANUP; 260*f9fbec18Smcpowers } 261*f9fbec18Smcpowers 262*f9fbec18Smcpowers if (mp_cmp_d(pz, 1) == 0) { 263*f9fbec18Smcpowers /* M = 3 * px^2 + a */ 264*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth)); 265*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth)); 266*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth)); 267*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 268*f9fbec18Smcpowers field_add(&t0, &group->curvea, &M, group->meth)); 269*f9fbec18Smcpowers } else if (mp_cmp_int(&group->curvea, -3, FLAG(px)) == 0) { 270*f9fbec18Smcpowers /* M = 3 * (px + pz^2) * (px - pz^2) */ 271*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth)); 272*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth)); 273*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth)); 274*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth)); 275*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth)); 276*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth)); 277*f9fbec18Smcpowers } else { 278*f9fbec18Smcpowers /* M = 3 * (px^2) + a * (pz^4) */ 279*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth)); 280*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth)); 281*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth)); 282*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth)); 283*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth)); 284*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 285*f9fbec18Smcpowers field_mul(&M, &group->curvea, &M, group->meth)); 286*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth)); 287*f9fbec18Smcpowers } 288*f9fbec18Smcpowers 289*f9fbec18Smcpowers /* rz = 2 * py * pz */ 290*f9fbec18Smcpowers /* t0 = 4 * py^2 */ 291*f9fbec18Smcpowers if (mp_cmp_d(pz, 1) == 0) { 292*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth)); 293*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth)); 294*f9fbec18Smcpowers } else { 295*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth)); 296*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth)); 297*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth)); 298*f9fbec18Smcpowers } 299*f9fbec18Smcpowers 300*f9fbec18Smcpowers /* S = 4 * px * py^2 = px * (2 * py)^2 */ 301*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth)); 302*f9fbec18Smcpowers 303*f9fbec18Smcpowers /* rx = M^2 - 2 * S */ 304*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth)); 305*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth)); 306*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth)); 307*f9fbec18Smcpowers 308*f9fbec18Smcpowers /* ry = M * (S - rx) - 8 * py^4 */ 309*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth)); 310*f9fbec18Smcpowers if (mp_isodd(&t1)) { 311*f9fbec18Smcpowers MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1)); 312*f9fbec18Smcpowers } 313*f9fbec18Smcpowers MP_CHECKOK(mp_div_2(&t1, &t1)); 314*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth)); 315*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth)); 316*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth)); 317*f9fbec18Smcpowers 318*f9fbec18Smcpowers CLEANUP: 319*f9fbec18Smcpowers mp_clear(&t0); 320*f9fbec18Smcpowers mp_clear(&t1); 321*f9fbec18Smcpowers mp_clear(&M); 322*f9fbec18Smcpowers mp_clear(&S); 323*f9fbec18Smcpowers return res; 324*f9fbec18Smcpowers } 325*f9fbec18Smcpowers 326*f9fbec18Smcpowers /* by default, this routine is unused and thus doesn't need to be compiled */ 327*f9fbec18Smcpowers #ifdef ECL_ENABLE_GFP_PT_MUL_JAC 328*f9fbec18Smcpowers /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters 329*f9fbec18Smcpowers * a, b and p are the elliptic curve coefficients and the prime that 330*f9fbec18Smcpowers * determines the field GFp. Elliptic curve points P and R can be 331*f9fbec18Smcpowers * identical. Uses mixed Jacobian-affine coordinates. Assumes input is 332*f9fbec18Smcpowers * already field-encoded using field_enc, and returns output that is still 333*f9fbec18Smcpowers * field-encoded. Uses 4-bit window method. */ 334*f9fbec18Smcpowers mp_err 335*f9fbec18Smcpowers ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py, 336*f9fbec18Smcpowers mp_int *rx, mp_int *ry, const ECGroup *group) 337*f9fbec18Smcpowers { 338*f9fbec18Smcpowers mp_err res = MP_OKAY; 339*f9fbec18Smcpowers mp_int precomp[16][2], rz; 340*f9fbec18Smcpowers int i, ni, d; 341*f9fbec18Smcpowers 342*f9fbec18Smcpowers MP_DIGITS(&rz) = 0; 343*f9fbec18Smcpowers for (i = 0; i < 16; i++) { 344*f9fbec18Smcpowers MP_DIGITS(&precomp[i][0]) = 0; 345*f9fbec18Smcpowers MP_DIGITS(&precomp[i][1]) = 0; 346*f9fbec18Smcpowers } 347*f9fbec18Smcpowers 348*f9fbec18Smcpowers ARGCHK(group != NULL, MP_BADARG); 349*f9fbec18Smcpowers ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG); 350*f9fbec18Smcpowers 351*f9fbec18Smcpowers /* initialize precomputation table */ 352*f9fbec18Smcpowers for (i = 0; i < 16; i++) { 353*f9fbec18Smcpowers MP_CHECKOK(mp_init(&precomp[i][0])); 354*f9fbec18Smcpowers MP_CHECKOK(mp_init(&precomp[i][1])); 355*f9fbec18Smcpowers } 356*f9fbec18Smcpowers 357*f9fbec18Smcpowers /* fill precomputation table */ 358*f9fbec18Smcpowers mp_zero(&precomp[0][0]); 359*f9fbec18Smcpowers mp_zero(&precomp[0][1]); 360*f9fbec18Smcpowers MP_CHECKOK(mp_copy(px, &precomp[1][0])); 361*f9fbec18Smcpowers MP_CHECKOK(mp_copy(py, &precomp[1][1])); 362*f9fbec18Smcpowers for (i = 2; i < 16; i++) { 363*f9fbec18Smcpowers MP_CHECKOK(group-> 364*f9fbec18Smcpowers point_add(&precomp[1][0], &precomp[1][1], 365*f9fbec18Smcpowers &precomp[i - 1][0], &precomp[i - 1][1], 366*f9fbec18Smcpowers &precomp[i][0], &precomp[i][1], group)); 367*f9fbec18Smcpowers } 368*f9fbec18Smcpowers 369*f9fbec18Smcpowers d = (mpl_significant_bits(n) + 3) / 4; 370*f9fbec18Smcpowers 371*f9fbec18Smcpowers /* R = inf */ 372*f9fbec18Smcpowers MP_CHECKOK(mp_init(&rz)); 373*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); 374*f9fbec18Smcpowers 375*f9fbec18Smcpowers for (i = d - 1; i >= 0; i--) { 376*f9fbec18Smcpowers /* compute window ni */ 377*f9fbec18Smcpowers ni = MP_GET_BIT(n, 4 * i + 3); 378*f9fbec18Smcpowers ni <<= 1; 379*f9fbec18Smcpowers ni |= MP_GET_BIT(n, 4 * i + 2); 380*f9fbec18Smcpowers ni <<= 1; 381*f9fbec18Smcpowers ni |= MP_GET_BIT(n, 4 * i + 1); 382*f9fbec18Smcpowers ni <<= 1; 383*f9fbec18Smcpowers ni |= MP_GET_BIT(n, 4 * i); 384*f9fbec18Smcpowers /* R = 2^4 * R */ 385*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); 386*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); 387*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); 388*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); 389*f9fbec18Smcpowers /* R = R + (ni * P) */ 390*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_add_jac_aff 391*f9fbec18Smcpowers (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry, 392*f9fbec18Smcpowers &rz, group)); 393*f9fbec18Smcpowers } 394*f9fbec18Smcpowers 395*f9fbec18Smcpowers /* convert result S to affine coordinates */ 396*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); 397*f9fbec18Smcpowers 398*f9fbec18Smcpowers CLEANUP: 399*f9fbec18Smcpowers mp_clear(&rz); 400*f9fbec18Smcpowers for (i = 0; i < 16; i++) { 401*f9fbec18Smcpowers mp_clear(&precomp[i][0]); 402*f9fbec18Smcpowers mp_clear(&precomp[i][1]); 403*f9fbec18Smcpowers } 404*f9fbec18Smcpowers return res; 405*f9fbec18Smcpowers } 406*f9fbec18Smcpowers #endif 407*f9fbec18Smcpowers 408*f9fbec18Smcpowers /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 409*f9fbec18Smcpowers * k2 * P(x, y), where G is the generator (base point) of the group of 410*f9fbec18Smcpowers * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. 411*f9fbec18Smcpowers * Uses mixed Jacobian-affine coordinates. Input and output values are 412*f9fbec18Smcpowers * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous 413*f9fbec18Smcpowers * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes. 414*f9fbec18Smcpowers * Software Implementation of the NIST Elliptic Curves over Prime Fields. */ 415*f9fbec18Smcpowers mp_err 416*f9fbec18Smcpowers ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, 417*f9fbec18Smcpowers const mp_int *py, mp_int *rx, mp_int *ry, 418*f9fbec18Smcpowers const ECGroup *group) 419*f9fbec18Smcpowers { 420*f9fbec18Smcpowers mp_err res = MP_OKAY; 421*f9fbec18Smcpowers mp_int precomp[4][4][2]; 422*f9fbec18Smcpowers mp_int rz; 423*f9fbec18Smcpowers const mp_int *a, *b; 424*f9fbec18Smcpowers int i, j; 425*f9fbec18Smcpowers int ai, bi, d; 426*f9fbec18Smcpowers 427*f9fbec18Smcpowers for (i = 0; i < 4; i++) { 428*f9fbec18Smcpowers for (j = 0; j < 4; j++) { 429*f9fbec18Smcpowers MP_DIGITS(&precomp[i][j][0]) = 0; 430*f9fbec18Smcpowers MP_DIGITS(&precomp[i][j][1]) = 0; 431*f9fbec18Smcpowers } 432*f9fbec18Smcpowers } 433*f9fbec18Smcpowers MP_DIGITS(&rz) = 0; 434*f9fbec18Smcpowers 435*f9fbec18Smcpowers ARGCHK(group != NULL, MP_BADARG); 436*f9fbec18Smcpowers ARGCHK(!((k1 == NULL) 437*f9fbec18Smcpowers && ((k2 == NULL) || (px == NULL) 438*f9fbec18Smcpowers || (py == NULL))), MP_BADARG); 439*f9fbec18Smcpowers 440*f9fbec18Smcpowers /* if some arguments are not defined used ECPoint_mul */ 441*f9fbec18Smcpowers if (k1 == NULL) { 442*f9fbec18Smcpowers return ECPoint_mul(group, k2, px, py, rx, ry); 443*f9fbec18Smcpowers } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) { 444*f9fbec18Smcpowers return ECPoint_mul(group, k1, NULL, NULL, rx, ry); 445*f9fbec18Smcpowers } 446*f9fbec18Smcpowers 447*f9fbec18Smcpowers /* initialize precomputation table */ 448*f9fbec18Smcpowers for (i = 0; i < 4; i++) { 449*f9fbec18Smcpowers for (j = 0; j < 4; j++) { 450*f9fbec18Smcpowers MP_CHECKOK(mp_init(&precomp[i][j][0], FLAG(k1))); 451*f9fbec18Smcpowers MP_CHECKOK(mp_init(&precomp[i][j][1], FLAG(k1))); 452*f9fbec18Smcpowers } 453*f9fbec18Smcpowers } 454*f9fbec18Smcpowers 455*f9fbec18Smcpowers /* fill precomputation table */ 456*f9fbec18Smcpowers /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */ 457*f9fbec18Smcpowers if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) { 458*f9fbec18Smcpowers a = k2; 459*f9fbec18Smcpowers b = k1; 460*f9fbec18Smcpowers if (group->meth->field_enc) { 461*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 462*f9fbec18Smcpowers field_enc(px, &precomp[1][0][0], group->meth)); 463*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 464*f9fbec18Smcpowers field_enc(py, &precomp[1][0][1], group->meth)); 465*f9fbec18Smcpowers } else { 466*f9fbec18Smcpowers MP_CHECKOK(mp_copy(px, &precomp[1][0][0])); 467*f9fbec18Smcpowers MP_CHECKOK(mp_copy(py, &precomp[1][0][1])); 468*f9fbec18Smcpowers } 469*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0])); 470*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1])); 471*f9fbec18Smcpowers } else { 472*f9fbec18Smcpowers a = k1; 473*f9fbec18Smcpowers b = k2; 474*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0])); 475*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1])); 476*f9fbec18Smcpowers if (group->meth->field_enc) { 477*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 478*f9fbec18Smcpowers field_enc(px, &precomp[0][1][0], group->meth)); 479*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 480*f9fbec18Smcpowers field_enc(py, &precomp[0][1][1], group->meth)); 481*f9fbec18Smcpowers } else { 482*f9fbec18Smcpowers MP_CHECKOK(mp_copy(px, &precomp[0][1][0])); 483*f9fbec18Smcpowers MP_CHECKOK(mp_copy(py, &precomp[0][1][1])); 484*f9fbec18Smcpowers } 485*f9fbec18Smcpowers } 486*f9fbec18Smcpowers /* precompute [*][0][*] */ 487*f9fbec18Smcpowers mp_zero(&precomp[0][0][0]); 488*f9fbec18Smcpowers mp_zero(&precomp[0][0][1]); 489*f9fbec18Smcpowers MP_CHECKOK(group-> 490*f9fbec18Smcpowers point_dbl(&precomp[1][0][0], &precomp[1][0][1], 491*f9fbec18Smcpowers &precomp[2][0][0], &precomp[2][0][1], group)); 492*f9fbec18Smcpowers MP_CHECKOK(group-> 493*f9fbec18Smcpowers point_add(&precomp[1][0][0], &precomp[1][0][1], 494*f9fbec18Smcpowers &precomp[2][0][0], &precomp[2][0][1], 495*f9fbec18Smcpowers &precomp[3][0][0], &precomp[3][0][1], group)); 496*f9fbec18Smcpowers /* precompute [*][1][*] */ 497*f9fbec18Smcpowers for (i = 1; i < 4; i++) { 498*f9fbec18Smcpowers MP_CHECKOK(group-> 499*f9fbec18Smcpowers point_add(&precomp[0][1][0], &precomp[0][1][1], 500*f9fbec18Smcpowers &precomp[i][0][0], &precomp[i][0][1], 501*f9fbec18Smcpowers &precomp[i][1][0], &precomp[i][1][1], group)); 502*f9fbec18Smcpowers } 503*f9fbec18Smcpowers /* precompute [*][2][*] */ 504*f9fbec18Smcpowers MP_CHECKOK(group-> 505*f9fbec18Smcpowers point_dbl(&precomp[0][1][0], &precomp[0][1][1], 506*f9fbec18Smcpowers &precomp[0][2][0], &precomp[0][2][1], group)); 507*f9fbec18Smcpowers for (i = 1; i < 4; i++) { 508*f9fbec18Smcpowers MP_CHECKOK(group-> 509*f9fbec18Smcpowers point_add(&precomp[0][2][0], &precomp[0][2][1], 510*f9fbec18Smcpowers &precomp[i][0][0], &precomp[i][0][1], 511*f9fbec18Smcpowers &precomp[i][2][0], &precomp[i][2][1], group)); 512*f9fbec18Smcpowers } 513*f9fbec18Smcpowers /* precompute [*][3][*] */ 514*f9fbec18Smcpowers MP_CHECKOK(group-> 515*f9fbec18Smcpowers point_add(&precomp[0][1][0], &precomp[0][1][1], 516*f9fbec18Smcpowers &precomp[0][2][0], &precomp[0][2][1], 517*f9fbec18Smcpowers &precomp[0][3][0], &precomp[0][3][1], group)); 518*f9fbec18Smcpowers for (i = 1; i < 4; i++) { 519*f9fbec18Smcpowers MP_CHECKOK(group-> 520*f9fbec18Smcpowers point_add(&precomp[0][3][0], &precomp[0][3][1], 521*f9fbec18Smcpowers &precomp[i][0][0], &precomp[i][0][1], 522*f9fbec18Smcpowers &precomp[i][3][0], &precomp[i][3][1], group)); 523*f9fbec18Smcpowers } 524*f9fbec18Smcpowers 525*f9fbec18Smcpowers d = (mpl_significant_bits(a) + 1) / 2; 526*f9fbec18Smcpowers 527*f9fbec18Smcpowers /* R = inf */ 528*f9fbec18Smcpowers MP_CHECKOK(mp_init(&rz, FLAG(k1))); 529*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); 530*f9fbec18Smcpowers 531*f9fbec18Smcpowers for (i = d - 1; i >= 0; i--) { 532*f9fbec18Smcpowers ai = MP_GET_BIT(a, 2 * i + 1); 533*f9fbec18Smcpowers ai <<= 1; 534*f9fbec18Smcpowers ai |= MP_GET_BIT(a, 2 * i); 535*f9fbec18Smcpowers bi = MP_GET_BIT(b, 2 * i + 1); 536*f9fbec18Smcpowers bi <<= 1; 537*f9fbec18Smcpowers bi |= MP_GET_BIT(b, 2 * i); 538*f9fbec18Smcpowers /* R = 2^2 * R */ 539*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); 540*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); 541*f9fbec18Smcpowers /* R = R + (ai * A + bi * B) */ 542*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_add_jac_aff 543*f9fbec18Smcpowers (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1], 544*f9fbec18Smcpowers rx, ry, &rz, group)); 545*f9fbec18Smcpowers } 546*f9fbec18Smcpowers 547*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); 548*f9fbec18Smcpowers 549*f9fbec18Smcpowers if (group->meth->field_dec) { 550*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); 551*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); 552*f9fbec18Smcpowers } 553*f9fbec18Smcpowers 554*f9fbec18Smcpowers CLEANUP: 555*f9fbec18Smcpowers mp_clear(&rz); 556*f9fbec18Smcpowers for (i = 0; i < 4; i++) { 557*f9fbec18Smcpowers for (j = 0; j < 4; j++) { 558*f9fbec18Smcpowers mp_clear(&precomp[i][j][0]); 559*f9fbec18Smcpowers mp_clear(&precomp[i][j][1]); 560*f9fbec18Smcpowers } 561*f9fbec18Smcpowers } 562*f9fbec18Smcpowers return res; 563*f9fbec18Smcpowers } 564