1*f9fbec18Smcpowers /* 2*f9fbec18Smcpowers * ***** BEGIN LICENSE BLOCK ***** 3*f9fbec18Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4*f9fbec18Smcpowers * 5*f9fbec18Smcpowers * The contents of this file are subject to the Mozilla Public License Version 6*f9fbec18Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with 7*f9fbec18Smcpowers * the License. You may obtain a copy of the License at 8*f9fbec18Smcpowers * http://www.mozilla.org/MPL/ 9*f9fbec18Smcpowers * 10*f9fbec18Smcpowers * Software distributed under the License is distributed on an "AS IS" basis, 11*f9fbec18Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12*f9fbec18Smcpowers * for the specific language governing rights and limitations under the 13*f9fbec18Smcpowers * License. 14*f9fbec18Smcpowers * 15*f9fbec18Smcpowers * The Original Code is the elliptic curve math library for prime field curves. 16*f9fbec18Smcpowers * 17*f9fbec18Smcpowers * The Initial Developer of the Original Code is 18*f9fbec18Smcpowers * Sun Microsystems, Inc. 19*f9fbec18Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003 20*f9fbec18Smcpowers * the Initial Developer. All Rights Reserved. 21*f9fbec18Smcpowers * 22*f9fbec18Smcpowers * Contributor(s): 23*f9fbec18Smcpowers * Douglas Stebila <douglas@stebila.ca> 24*f9fbec18Smcpowers * 25*f9fbec18Smcpowers * Alternatively, the contents of this file may be used under the terms of 26*f9fbec18Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or 27*f9fbec18Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 28*f9fbec18Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead 29*f9fbec18Smcpowers * of those above. If you wish to allow use of your version of this file only 30*f9fbec18Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to 31*f9fbec18Smcpowers * use your version of this file under the terms of the MPL, indicate your 32*f9fbec18Smcpowers * decision by deleting the provisions above and replace them with the notice 33*f9fbec18Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete 34*f9fbec18Smcpowers * the provisions above, a recipient may use your version of this file under 35*f9fbec18Smcpowers * the terms of any one of the MPL, the GPL or the LGPL. 36*f9fbec18Smcpowers * 37*f9fbec18Smcpowers * ***** END LICENSE BLOCK ***** */ 38*f9fbec18Smcpowers /* 39*f9fbec18Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 40*f9fbec18Smcpowers * Use is subject to license terms. 41*f9fbec18Smcpowers * 42*f9fbec18Smcpowers * Sun elects to use this software under the MPL license. 43*f9fbec18Smcpowers */ 44*f9fbec18Smcpowers 45*f9fbec18Smcpowers #pragma ident "%Z%%M% %I% %E% SMI" 46*f9fbec18Smcpowers 47*f9fbec18Smcpowers #include "ecp.h" 48*f9fbec18Smcpowers #include "mpi.h" 49*f9fbec18Smcpowers #include "mplogic.h" 50*f9fbec18Smcpowers #include "mpi-priv.h" 51*f9fbec18Smcpowers #ifndef _KERNEL 52*f9fbec18Smcpowers #include <stdlib.h> 53*f9fbec18Smcpowers #endif 54*f9fbec18Smcpowers 55*f9fbec18Smcpowers #define ECP521_DIGITS ECL_CURVE_DIGITS(521) 56*f9fbec18Smcpowers 57*f9fbec18Smcpowers /* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses 58*f9fbec18Smcpowers * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to 59*f9fbec18Smcpowers * Elliptic Curve Cryptography. */ 60*f9fbec18Smcpowers mp_err 61*f9fbec18Smcpowers ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth) 62*f9fbec18Smcpowers { 63*f9fbec18Smcpowers mp_err res = MP_OKAY; 64*f9fbec18Smcpowers int a_bits = mpl_significant_bits(a); 65*f9fbec18Smcpowers int i; 66*f9fbec18Smcpowers 67*f9fbec18Smcpowers /* m1, m2 are statically-allocated mp_int of exactly the size we need */ 68*f9fbec18Smcpowers mp_int m1; 69*f9fbec18Smcpowers 70*f9fbec18Smcpowers mp_digit s1[ECP521_DIGITS] = { 0 }; 71*f9fbec18Smcpowers 72*f9fbec18Smcpowers MP_SIGN(&m1) = MP_ZPOS; 73*f9fbec18Smcpowers MP_ALLOC(&m1) = ECP521_DIGITS; 74*f9fbec18Smcpowers MP_USED(&m1) = ECP521_DIGITS; 75*f9fbec18Smcpowers MP_DIGITS(&m1) = s1; 76*f9fbec18Smcpowers 77*f9fbec18Smcpowers if (a_bits < 521) { 78*f9fbec18Smcpowers if (a==r) return MP_OKAY; 79*f9fbec18Smcpowers return mp_copy(a, r); 80*f9fbec18Smcpowers } 81*f9fbec18Smcpowers /* for polynomials larger than twice the field size or polynomials 82*f9fbec18Smcpowers * not using all words, use regular reduction */ 83*f9fbec18Smcpowers if (a_bits > (521*2)) { 84*f9fbec18Smcpowers MP_CHECKOK(mp_mod(a, &meth->irr, r)); 85*f9fbec18Smcpowers } else { 86*f9fbec18Smcpowers #define FIRST_DIGIT (ECP521_DIGITS-1) 87*f9fbec18Smcpowers for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) { 88*f9fbec18Smcpowers s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9) 89*f9fbec18Smcpowers | (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9)); 90*f9fbec18Smcpowers } 91*f9fbec18Smcpowers s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9; 92*f9fbec18Smcpowers 93*f9fbec18Smcpowers if ( a != r ) { 94*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS)); 95*f9fbec18Smcpowers for (i = 0; i < ECP521_DIGITS; i++) { 96*f9fbec18Smcpowers MP_DIGIT(r,i) = MP_DIGIT(a, i); 97*f9fbec18Smcpowers } 98*f9fbec18Smcpowers } 99*f9fbec18Smcpowers MP_USED(r) = ECP521_DIGITS; 100*f9fbec18Smcpowers MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF; 101*f9fbec18Smcpowers 102*f9fbec18Smcpowers MP_CHECKOK(s_mp_add(r, &m1)); 103*f9fbec18Smcpowers if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) { 104*f9fbec18Smcpowers MP_CHECKOK(s_mp_add_d(r,1)); 105*f9fbec18Smcpowers MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF; 106*f9fbec18Smcpowers } 107*f9fbec18Smcpowers s_mp_clamp(r); 108*f9fbec18Smcpowers } 109*f9fbec18Smcpowers 110*f9fbec18Smcpowers CLEANUP: 111*f9fbec18Smcpowers return res; 112*f9fbec18Smcpowers } 113*f9fbec18Smcpowers 114*f9fbec18Smcpowers /* Compute the square of polynomial a, reduce modulo p521. Store the 115*f9fbec18Smcpowers * result in r. r could be a. Uses optimized modular reduction for p521. 116*f9fbec18Smcpowers */ 117*f9fbec18Smcpowers mp_err 118*f9fbec18Smcpowers ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) 119*f9fbec18Smcpowers { 120*f9fbec18Smcpowers mp_err res = MP_OKAY; 121*f9fbec18Smcpowers 122*f9fbec18Smcpowers MP_CHECKOK(mp_sqr(a, r)); 123*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); 124*f9fbec18Smcpowers CLEANUP: 125*f9fbec18Smcpowers return res; 126*f9fbec18Smcpowers } 127*f9fbec18Smcpowers 128*f9fbec18Smcpowers /* Compute the product of two polynomials a and b, reduce modulo p521. 129*f9fbec18Smcpowers * Store the result in r. r could be a or b; a could be b. Uses 130*f9fbec18Smcpowers * optimized modular reduction for p521. */ 131*f9fbec18Smcpowers mp_err 132*f9fbec18Smcpowers ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r, 133*f9fbec18Smcpowers const GFMethod *meth) 134*f9fbec18Smcpowers { 135*f9fbec18Smcpowers mp_err res = MP_OKAY; 136*f9fbec18Smcpowers 137*f9fbec18Smcpowers MP_CHECKOK(mp_mul(a, b, r)); 138*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); 139*f9fbec18Smcpowers CLEANUP: 140*f9fbec18Smcpowers return res; 141*f9fbec18Smcpowers } 142*f9fbec18Smcpowers 143*f9fbec18Smcpowers /* Divides two field elements. If a is NULL, then returns the inverse of 144*f9fbec18Smcpowers * b. */ 145*f9fbec18Smcpowers mp_err 146*f9fbec18Smcpowers ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r, 147*f9fbec18Smcpowers const GFMethod *meth) 148*f9fbec18Smcpowers { 149*f9fbec18Smcpowers mp_err res = MP_OKAY; 150*f9fbec18Smcpowers mp_int t; 151*f9fbec18Smcpowers 152*f9fbec18Smcpowers /* If a is NULL, then return the inverse of b, otherwise return a/b. */ 153*f9fbec18Smcpowers if (a == NULL) { 154*f9fbec18Smcpowers return mp_invmod(b, &meth->irr, r); 155*f9fbec18Smcpowers } else { 156*f9fbec18Smcpowers /* MPI doesn't support divmod, so we implement it using invmod and 157*f9fbec18Smcpowers * mulmod. */ 158*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t, FLAG(b))); 159*f9fbec18Smcpowers MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); 160*f9fbec18Smcpowers MP_CHECKOK(mp_mul(a, &t, r)); 161*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); 162*f9fbec18Smcpowers CLEANUP: 163*f9fbec18Smcpowers mp_clear(&t); 164*f9fbec18Smcpowers return res; 165*f9fbec18Smcpowers } 166*f9fbec18Smcpowers } 167*f9fbec18Smcpowers 168*f9fbec18Smcpowers /* Wire in fast field arithmetic and precomputation of base point for 169*f9fbec18Smcpowers * named curves. */ 170*f9fbec18Smcpowers mp_err 171*f9fbec18Smcpowers ec_group_set_gfp521(ECGroup *group, ECCurveName name) 172*f9fbec18Smcpowers { 173*f9fbec18Smcpowers if (name == ECCurve_NIST_P521) { 174*f9fbec18Smcpowers group->meth->field_mod = &ec_GFp_nistp521_mod; 175*f9fbec18Smcpowers group->meth->field_mul = &ec_GFp_nistp521_mul; 176*f9fbec18Smcpowers group->meth->field_sqr = &ec_GFp_nistp521_sqr; 177*f9fbec18Smcpowers group->meth->field_div = &ec_GFp_nistp521_div; 178*f9fbec18Smcpowers } 179*f9fbec18Smcpowers return MP_OKAY; 180*f9fbec18Smcpowers } 181