1*f9fbec18Smcpowers /* 2*f9fbec18Smcpowers * ***** BEGIN LICENSE BLOCK ***** 3*f9fbec18Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4*f9fbec18Smcpowers * 5*f9fbec18Smcpowers * The contents of this file are subject to the Mozilla Public License Version 6*f9fbec18Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with 7*f9fbec18Smcpowers * the License. You may obtain a copy of the License at 8*f9fbec18Smcpowers * http://www.mozilla.org/MPL/ 9*f9fbec18Smcpowers * 10*f9fbec18Smcpowers * Software distributed under the License is distributed on an "AS IS" basis, 11*f9fbec18Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12*f9fbec18Smcpowers * for the specific language governing rights and limitations under the 13*f9fbec18Smcpowers * License. 14*f9fbec18Smcpowers * 15*f9fbec18Smcpowers * The Original Code is the elliptic curve math library. 16*f9fbec18Smcpowers * 17*f9fbec18Smcpowers * The Initial Developer of the Original Code is 18*f9fbec18Smcpowers * Sun Microsystems, Inc. 19*f9fbec18Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003 20*f9fbec18Smcpowers * the Initial Developer. All Rights Reserved. 21*f9fbec18Smcpowers * 22*f9fbec18Smcpowers * Contributor(s): 23*f9fbec18Smcpowers * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories 24*f9fbec18Smcpowers * 25*f9fbec18Smcpowers * Alternatively, the contents of this file may be used under the terms of 26*f9fbec18Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or 27*f9fbec18Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 28*f9fbec18Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead 29*f9fbec18Smcpowers * of those above. If you wish to allow use of your version of this file only 30*f9fbec18Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to 31*f9fbec18Smcpowers * use your version of this file under the terms of the MPL, indicate your 32*f9fbec18Smcpowers * decision by deleting the provisions above and replace them with the notice 33*f9fbec18Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete 34*f9fbec18Smcpowers * the provisions above, a recipient may use your version of this file under 35*f9fbec18Smcpowers * the terms of any one of the MPL, the GPL or the LGPL. 36*f9fbec18Smcpowers * 37*f9fbec18Smcpowers * ***** END LICENSE BLOCK ***** */ 38*f9fbec18Smcpowers /* 39*f9fbec18Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 40*f9fbec18Smcpowers * Use is subject to license terms. 41*f9fbec18Smcpowers * 42*f9fbec18Smcpowers * Sun elects to use this software under the MPL license. 43*f9fbec18Smcpowers */ 44*f9fbec18Smcpowers 45*f9fbec18Smcpowers #pragma ident "%Z%%M% %I% %E% SMI" 46*f9fbec18Smcpowers 47*f9fbec18Smcpowers #include "mpi.h" 48*f9fbec18Smcpowers #include "mplogic.h" 49*f9fbec18Smcpowers #include "ecl.h" 50*f9fbec18Smcpowers #include "ecl-priv.h" 51*f9fbec18Smcpowers #ifndef _KERNEL 52*f9fbec18Smcpowers #include <stdlib.h> 53*f9fbec18Smcpowers #endif 54*f9fbec18Smcpowers 55*f9fbec18Smcpowers /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x, 56*f9fbec18Smcpowers * y). If x, y = NULL, then P is assumed to be the generator (base point) 57*f9fbec18Smcpowers * of the group of points on the elliptic curve. Input and output values 58*f9fbec18Smcpowers * are assumed to be NOT field-encoded. */ 59*f9fbec18Smcpowers mp_err 60*f9fbec18Smcpowers ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px, 61*f9fbec18Smcpowers const mp_int *py, mp_int *rx, mp_int *ry) 62*f9fbec18Smcpowers { 63*f9fbec18Smcpowers mp_err res = MP_OKAY; 64*f9fbec18Smcpowers mp_int kt; 65*f9fbec18Smcpowers 66*f9fbec18Smcpowers ARGCHK((k != NULL) && (group != NULL), MP_BADARG); 67*f9fbec18Smcpowers MP_DIGITS(&kt) = 0; 68*f9fbec18Smcpowers 69*f9fbec18Smcpowers /* want scalar to be less than or equal to group order */ 70*f9fbec18Smcpowers if (mp_cmp(k, &group->order) > 0) { 71*f9fbec18Smcpowers MP_CHECKOK(mp_init(&kt, FLAG(k))); 72*f9fbec18Smcpowers MP_CHECKOK(mp_mod(k, &group->order, &kt)); 73*f9fbec18Smcpowers } else { 74*f9fbec18Smcpowers MP_SIGN(&kt) = MP_ZPOS; 75*f9fbec18Smcpowers MP_USED(&kt) = MP_USED(k); 76*f9fbec18Smcpowers MP_ALLOC(&kt) = MP_ALLOC(k); 77*f9fbec18Smcpowers MP_DIGITS(&kt) = MP_DIGITS(k); 78*f9fbec18Smcpowers } 79*f9fbec18Smcpowers 80*f9fbec18Smcpowers if ((px == NULL) || (py == NULL)) { 81*f9fbec18Smcpowers if (group->base_point_mul) { 82*f9fbec18Smcpowers MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group)); 83*f9fbec18Smcpowers } else { 84*f9fbec18Smcpowers MP_CHECKOK(group-> 85*f9fbec18Smcpowers point_mul(&kt, &group->genx, &group->geny, rx, ry, 86*f9fbec18Smcpowers group)); 87*f9fbec18Smcpowers } 88*f9fbec18Smcpowers } else { 89*f9fbec18Smcpowers if (group->meth->field_enc) { 90*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_enc(px, rx, group->meth)); 91*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_enc(py, ry, group->meth)); 92*f9fbec18Smcpowers MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group)); 93*f9fbec18Smcpowers } else { 94*f9fbec18Smcpowers MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group)); 95*f9fbec18Smcpowers } 96*f9fbec18Smcpowers } 97*f9fbec18Smcpowers if (group->meth->field_dec) { 98*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); 99*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); 100*f9fbec18Smcpowers } 101*f9fbec18Smcpowers 102*f9fbec18Smcpowers CLEANUP: 103*f9fbec18Smcpowers if (MP_DIGITS(&kt) != MP_DIGITS(k)) { 104*f9fbec18Smcpowers mp_clear(&kt); 105*f9fbec18Smcpowers } 106*f9fbec18Smcpowers return res; 107*f9fbec18Smcpowers } 108*f9fbec18Smcpowers 109*f9fbec18Smcpowers /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 110*f9fbec18Smcpowers * k2 * P(x, y), where G is the generator (base point) of the group of 111*f9fbec18Smcpowers * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. 112*f9fbec18Smcpowers * Input and output values are assumed to be NOT field-encoded. */ 113*f9fbec18Smcpowers mp_err 114*f9fbec18Smcpowers ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px, 115*f9fbec18Smcpowers const mp_int *py, mp_int *rx, mp_int *ry, 116*f9fbec18Smcpowers const ECGroup *group) 117*f9fbec18Smcpowers { 118*f9fbec18Smcpowers mp_err res = MP_OKAY; 119*f9fbec18Smcpowers mp_int sx, sy; 120*f9fbec18Smcpowers 121*f9fbec18Smcpowers ARGCHK(group != NULL, MP_BADARG); 122*f9fbec18Smcpowers ARGCHK(!((k1 == NULL) 123*f9fbec18Smcpowers && ((k2 == NULL) || (px == NULL) 124*f9fbec18Smcpowers || (py == NULL))), MP_BADARG); 125*f9fbec18Smcpowers 126*f9fbec18Smcpowers /* if some arguments are not defined used ECPoint_mul */ 127*f9fbec18Smcpowers if (k1 == NULL) { 128*f9fbec18Smcpowers return ECPoint_mul(group, k2, px, py, rx, ry); 129*f9fbec18Smcpowers } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) { 130*f9fbec18Smcpowers return ECPoint_mul(group, k1, NULL, NULL, rx, ry); 131*f9fbec18Smcpowers } 132*f9fbec18Smcpowers 133*f9fbec18Smcpowers MP_DIGITS(&sx) = 0; 134*f9fbec18Smcpowers MP_DIGITS(&sy) = 0; 135*f9fbec18Smcpowers MP_CHECKOK(mp_init(&sx, FLAG(k1))); 136*f9fbec18Smcpowers MP_CHECKOK(mp_init(&sy, FLAG(k1))); 137*f9fbec18Smcpowers 138*f9fbec18Smcpowers MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy)); 139*f9fbec18Smcpowers MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry)); 140*f9fbec18Smcpowers 141*f9fbec18Smcpowers if (group->meth->field_enc) { 142*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth)); 143*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth)); 144*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth)); 145*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth)); 146*f9fbec18Smcpowers } 147*f9fbec18Smcpowers 148*f9fbec18Smcpowers MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group)); 149*f9fbec18Smcpowers 150*f9fbec18Smcpowers if (group->meth->field_dec) { 151*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); 152*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); 153*f9fbec18Smcpowers } 154*f9fbec18Smcpowers 155*f9fbec18Smcpowers CLEANUP: 156*f9fbec18Smcpowers mp_clear(&sx); 157*f9fbec18Smcpowers mp_clear(&sy); 158*f9fbec18Smcpowers return res; 159*f9fbec18Smcpowers } 160*f9fbec18Smcpowers 161*f9fbec18Smcpowers /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 162*f9fbec18Smcpowers * k2 * P(x, y), where G is the generator (base point) of the group of 163*f9fbec18Smcpowers * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. 164*f9fbec18Smcpowers * Input and output values are assumed to be NOT field-encoded. Uses 165*f9fbec18Smcpowers * algorithm 15 (simultaneous multiple point multiplication) from Brown, 166*f9fbec18Smcpowers * Hankerson, Lopez, Menezes. Software Implementation of the NIST 167*f9fbec18Smcpowers * Elliptic Curves over Prime Fields. */ 168*f9fbec18Smcpowers mp_err 169*f9fbec18Smcpowers ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px, 170*f9fbec18Smcpowers const mp_int *py, mp_int *rx, mp_int *ry, 171*f9fbec18Smcpowers const ECGroup *group) 172*f9fbec18Smcpowers { 173*f9fbec18Smcpowers mp_err res = MP_OKAY; 174*f9fbec18Smcpowers mp_int precomp[4][4][2]; 175*f9fbec18Smcpowers const mp_int *a, *b; 176*f9fbec18Smcpowers int i, j; 177*f9fbec18Smcpowers int ai, bi, d; 178*f9fbec18Smcpowers 179*f9fbec18Smcpowers ARGCHK(group != NULL, MP_BADARG); 180*f9fbec18Smcpowers ARGCHK(!((k1 == NULL) 181*f9fbec18Smcpowers && ((k2 == NULL) || (px == NULL) 182*f9fbec18Smcpowers || (py == NULL))), MP_BADARG); 183*f9fbec18Smcpowers 184*f9fbec18Smcpowers /* if some arguments are not defined used ECPoint_mul */ 185*f9fbec18Smcpowers if (k1 == NULL) { 186*f9fbec18Smcpowers return ECPoint_mul(group, k2, px, py, rx, ry); 187*f9fbec18Smcpowers } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) { 188*f9fbec18Smcpowers return ECPoint_mul(group, k1, NULL, NULL, rx, ry); 189*f9fbec18Smcpowers } 190*f9fbec18Smcpowers 191*f9fbec18Smcpowers /* initialize precomputation table */ 192*f9fbec18Smcpowers for (i = 0; i < 4; i++) { 193*f9fbec18Smcpowers for (j = 0; j < 4; j++) { 194*f9fbec18Smcpowers MP_DIGITS(&precomp[i][j][0]) = 0; 195*f9fbec18Smcpowers MP_DIGITS(&precomp[i][j][1]) = 0; 196*f9fbec18Smcpowers } 197*f9fbec18Smcpowers } 198*f9fbec18Smcpowers for (i = 0; i < 4; i++) { 199*f9fbec18Smcpowers for (j = 0; j < 4; j++) { 200*f9fbec18Smcpowers MP_CHECKOK( mp_init_size(&precomp[i][j][0], 201*f9fbec18Smcpowers ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) ); 202*f9fbec18Smcpowers MP_CHECKOK( mp_init_size(&precomp[i][j][1], 203*f9fbec18Smcpowers ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) ); 204*f9fbec18Smcpowers } 205*f9fbec18Smcpowers } 206*f9fbec18Smcpowers 207*f9fbec18Smcpowers /* fill precomputation table */ 208*f9fbec18Smcpowers /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */ 209*f9fbec18Smcpowers if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) { 210*f9fbec18Smcpowers a = k2; 211*f9fbec18Smcpowers b = k1; 212*f9fbec18Smcpowers if (group->meth->field_enc) { 213*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 214*f9fbec18Smcpowers field_enc(px, &precomp[1][0][0], group->meth)); 215*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 216*f9fbec18Smcpowers field_enc(py, &precomp[1][0][1], group->meth)); 217*f9fbec18Smcpowers } else { 218*f9fbec18Smcpowers MP_CHECKOK(mp_copy(px, &precomp[1][0][0])); 219*f9fbec18Smcpowers MP_CHECKOK(mp_copy(py, &precomp[1][0][1])); 220*f9fbec18Smcpowers } 221*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0])); 222*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1])); 223*f9fbec18Smcpowers } else { 224*f9fbec18Smcpowers a = k1; 225*f9fbec18Smcpowers b = k2; 226*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0])); 227*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1])); 228*f9fbec18Smcpowers if (group->meth->field_enc) { 229*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 230*f9fbec18Smcpowers field_enc(px, &precomp[0][1][0], group->meth)); 231*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 232*f9fbec18Smcpowers field_enc(py, &precomp[0][1][1], group->meth)); 233*f9fbec18Smcpowers } else { 234*f9fbec18Smcpowers MP_CHECKOK(mp_copy(px, &precomp[0][1][0])); 235*f9fbec18Smcpowers MP_CHECKOK(mp_copy(py, &precomp[0][1][1])); 236*f9fbec18Smcpowers } 237*f9fbec18Smcpowers } 238*f9fbec18Smcpowers /* precompute [*][0][*] */ 239*f9fbec18Smcpowers mp_zero(&precomp[0][0][0]); 240*f9fbec18Smcpowers mp_zero(&precomp[0][0][1]); 241*f9fbec18Smcpowers MP_CHECKOK(group-> 242*f9fbec18Smcpowers point_dbl(&precomp[1][0][0], &precomp[1][0][1], 243*f9fbec18Smcpowers &precomp[2][0][0], &precomp[2][0][1], group)); 244*f9fbec18Smcpowers MP_CHECKOK(group-> 245*f9fbec18Smcpowers point_add(&precomp[1][0][0], &precomp[1][0][1], 246*f9fbec18Smcpowers &precomp[2][0][0], &precomp[2][0][1], 247*f9fbec18Smcpowers &precomp[3][0][0], &precomp[3][0][1], group)); 248*f9fbec18Smcpowers /* precompute [*][1][*] */ 249*f9fbec18Smcpowers for (i = 1; i < 4; i++) { 250*f9fbec18Smcpowers MP_CHECKOK(group-> 251*f9fbec18Smcpowers point_add(&precomp[0][1][0], &precomp[0][1][1], 252*f9fbec18Smcpowers &precomp[i][0][0], &precomp[i][0][1], 253*f9fbec18Smcpowers &precomp[i][1][0], &precomp[i][1][1], group)); 254*f9fbec18Smcpowers } 255*f9fbec18Smcpowers /* precompute [*][2][*] */ 256*f9fbec18Smcpowers MP_CHECKOK(group-> 257*f9fbec18Smcpowers point_dbl(&precomp[0][1][0], &precomp[0][1][1], 258*f9fbec18Smcpowers &precomp[0][2][0], &precomp[0][2][1], group)); 259*f9fbec18Smcpowers for (i = 1; i < 4; i++) { 260*f9fbec18Smcpowers MP_CHECKOK(group-> 261*f9fbec18Smcpowers point_add(&precomp[0][2][0], &precomp[0][2][1], 262*f9fbec18Smcpowers &precomp[i][0][0], &precomp[i][0][1], 263*f9fbec18Smcpowers &precomp[i][2][0], &precomp[i][2][1], group)); 264*f9fbec18Smcpowers } 265*f9fbec18Smcpowers /* precompute [*][3][*] */ 266*f9fbec18Smcpowers MP_CHECKOK(group-> 267*f9fbec18Smcpowers point_add(&precomp[0][1][0], &precomp[0][1][1], 268*f9fbec18Smcpowers &precomp[0][2][0], &precomp[0][2][1], 269*f9fbec18Smcpowers &precomp[0][3][0], &precomp[0][3][1], group)); 270*f9fbec18Smcpowers for (i = 1; i < 4; i++) { 271*f9fbec18Smcpowers MP_CHECKOK(group-> 272*f9fbec18Smcpowers point_add(&precomp[0][3][0], &precomp[0][3][1], 273*f9fbec18Smcpowers &precomp[i][0][0], &precomp[i][0][1], 274*f9fbec18Smcpowers &precomp[i][3][0], &precomp[i][3][1], group)); 275*f9fbec18Smcpowers } 276*f9fbec18Smcpowers 277*f9fbec18Smcpowers d = (mpl_significant_bits(a) + 1) / 2; 278*f9fbec18Smcpowers 279*f9fbec18Smcpowers /* R = inf */ 280*f9fbec18Smcpowers mp_zero(rx); 281*f9fbec18Smcpowers mp_zero(ry); 282*f9fbec18Smcpowers 283*f9fbec18Smcpowers for (i = d - 1; i >= 0; i--) { 284*f9fbec18Smcpowers ai = MP_GET_BIT(a, 2 * i + 1); 285*f9fbec18Smcpowers ai <<= 1; 286*f9fbec18Smcpowers ai |= MP_GET_BIT(a, 2 * i); 287*f9fbec18Smcpowers bi = MP_GET_BIT(b, 2 * i + 1); 288*f9fbec18Smcpowers bi <<= 1; 289*f9fbec18Smcpowers bi |= MP_GET_BIT(b, 2 * i); 290*f9fbec18Smcpowers /* R = 2^2 * R */ 291*f9fbec18Smcpowers MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group)); 292*f9fbec18Smcpowers MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group)); 293*f9fbec18Smcpowers /* R = R + (ai * A + bi * B) */ 294*f9fbec18Smcpowers MP_CHECKOK(group-> 295*f9fbec18Smcpowers point_add(rx, ry, &precomp[ai][bi][0], 296*f9fbec18Smcpowers &precomp[ai][bi][1], rx, ry, group)); 297*f9fbec18Smcpowers } 298*f9fbec18Smcpowers 299*f9fbec18Smcpowers if (group->meth->field_dec) { 300*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); 301*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); 302*f9fbec18Smcpowers } 303*f9fbec18Smcpowers 304*f9fbec18Smcpowers CLEANUP: 305*f9fbec18Smcpowers for (i = 0; i < 4; i++) { 306*f9fbec18Smcpowers for (j = 0; j < 4; j++) { 307*f9fbec18Smcpowers mp_clear(&precomp[i][j][0]); 308*f9fbec18Smcpowers mp_clear(&precomp[i][j][1]); 309*f9fbec18Smcpowers } 310*f9fbec18Smcpowers } 311*f9fbec18Smcpowers return res; 312*f9fbec18Smcpowers } 313*f9fbec18Smcpowers 314*f9fbec18Smcpowers /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 315*f9fbec18Smcpowers * k2 * P(x, y), where G is the generator (base point) of the group of 316*f9fbec18Smcpowers * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. 317*f9fbec18Smcpowers * Input and output values are assumed to be NOT field-encoded. */ 318*f9fbec18Smcpowers mp_err 319*f9fbec18Smcpowers ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2, 320*f9fbec18Smcpowers const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry) 321*f9fbec18Smcpowers { 322*f9fbec18Smcpowers mp_err res = MP_OKAY; 323*f9fbec18Smcpowers mp_int k1t, k2t; 324*f9fbec18Smcpowers const mp_int *k1p, *k2p; 325*f9fbec18Smcpowers 326*f9fbec18Smcpowers MP_DIGITS(&k1t) = 0; 327*f9fbec18Smcpowers MP_DIGITS(&k2t) = 0; 328*f9fbec18Smcpowers 329*f9fbec18Smcpowers ARGCHK(group != NULL, MP_BADARG); 330*f9fbec18Smcpowers 331*f9fbec18Smcpowers /* want scalar to be less than or equal to group order */ 332*f9fbec18Smcpowers if (k1 != NULL) { 333*f9fbec18Smcpowers if (mp_cmp(k1, &group->order) >= 0) { 334*f9fbec18Smcpowers MP_CHECKOK(mp_init(&k1t, FLAG(k1))); 335*f9fbec18Smcpowers MP_CHECKOK(mp_mod(k1, &group->order, &k1t)); 336*f9fbec18Smcpowers k1p = &k1t; 337*f9fbec18Smcpowers } else { 338*f9fbec18Smcpowers k1p = k1; 339*f9fbec18Smcpowers } 340*f9fbec18Smcpowers } else { 341*f9fbec18Smcpowers k1p = k1; 342*f9fbec18Smcpowers } 343*f9fbec18Smcpowers if (k2 != NULL) { 344*f9fbec18Smcpowers if (mp_cmp(k2, &group->order) >= 0) { 345*f9fbec18Smcpowers MP_CHECKOK(mp_init(&k2t, FLAG(k2))); 346*f9fbec18Smcpowers MP_CHECKOK(mp_mod(k2, &group->order, &k2t)); 347*f9fbec18Smcpowers k2p = &k2t; 348*f9fbec18Smcpowers } else { 349*f9fbec18Smcpowers k2p = k2; 350*f9fbec18Smcpowers } 351*f9fbec18Smcpowers } else { 352*f9fbec18Smcpowers k2p = k2; 353*f9fbec18Smcpowers } 354*f9fbec18Smcpowers 355*f9fbec18Smcpowers /* if points_mul is defined, then use it */ 356*f9fbec18Smcpowers if (group->points_mul) { 357*f9fbec18Smcpowers res = group->points_mul(k1p, k2p, px, py, rx, ry, group); 358*f9fbec18Smcpowers } else { 359*f9fbec18Smcpowers res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group); 360*f9fbec18Smcpowers } 361*f9fbec18Smcpowers 362*f9fbec18Smcpowers CLEANUP: 363*f9fbec18Smcpowers mp_clear(&k1t); 364*f9fbec18Smcpowers mp_clear(&k2t); 365*f9fbec18Smcpowers return res; 366*f9fbec18Smcpowers } 367