xref: /titanic_51/usr/src/common/crypto/ecc/ecl_mult.c (revision f9fbec18f5b458b560ecf45d3db8e8bd56bf6942)
1*f9fbec18Smcpowers /*
2*f9fbec18Smcpowers  * ***** BEGIN LICENSE BLOCK *****
3*f9fbec18Smcpowers  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4*f9fbec18Smcpowers  *
5*f9fbec18Smcpowers  * The contents of this file are subject to the Mozilla Public License Version
6*f9fbec18Smcpowers  * 1.1 (the "License"); you may not use this file except in compliance with
7*f9fbec18Smcpowers  * the License. You may obtain a copy of the License at
8*f9fbec18Smcpowers  * http://www.mozilla.org/MPL/
9*f9fbec18Smcpowers  *
10*f9fbec18Smcpowers  * Software distributed under the License is distributed on an "AS IS" basis,
11*f9fbec18Smcpowers  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12*f9fbec18Smcpowers  * for the specific language governing rights and limitations under the
13*f9fbec18Smcpowers  * License.
14*f9fbec18Smcpowers  *
15*f9fbec18Smcpowers  * The Original Code is the elliptic curve math library.
16*f9fbec18Smcpowers  *
17*f9fbec18Smcpowers  * The Initial Developer of the Original Code is
18*f9fbec18Smcpowers  * Sun Microsystems, Inc.
19*f9fbec18Smcpowers  * Portions created by the Initial Developer are Copyright (C) 2003
20*f9fbec18Smcpowers  * the Initial Developer. All Rights Reserved.
21*f9fbec18Smcpowers  *
22*f9fbec18Smcpowers  * Contributor(s):
23*f9fbec18Smcpowers  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
24*f9fbec18Smcpowers  *
25*f9fbec18Smcpowers  * Alternatively, the contents of this file may be used under the terms of
26*f9fbec18Smcpowers  * either the GNU General Public License Version 2 or later (the "GPL"), or
27*f9fbec18Smcpowers  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
28*f9fbec18Smcpowers  * in which case the provisions of the GPL or the LGPL are applicable instead
29*f9fbec18Smcpowers  * of those above. If you wish to allow use of your version of this file only
30*f9fbec18Smcpowers  * under the terms of either the GPL or the LGPL, and not to allow others to
31*f9fbec18Smcpowers  * use your version of this file under the terms of the MPL, indicate your
32*f9fbec18Smcpowers  * decision by deleting the provisions above and replace them with the notice
33*f9fbec18Smcpowers  * and other provisions required by the GPL or the LGPL. If you do not delete
34*f9fbec18Smcpowers  * the provisions above, a recipient may use your version of this file under
35*f9fbec18Smcpowers  * the terms of any one of the MPL, the GPL or the LGPL.
36*f9fbec18Smcpowers  *
37*f9fbec18Smcpowers  * ***** END LICENSE BLOCK ***** */
38*f9fbec18Smcpowers /*
39*f9fbec18Smcpowers  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
40*f9fbec18Smcpowers  * Use is subject to license terms.
41*f9fbec18Smcpowers  *
42*f9fbec18Smcpowers  * Sun elects to use this software under the MPL license.
43*f9fbec18Smcpowers  */
44*f9fbec18Smcpowers 
45*f9fbec18Smcpowers #pragma ident	"%Z%%M%	%I%	%E% SMI"
46*f9fbec18Smcpowers 
47*f9fbec18Smcpowers #include "mpi.h"
48*f9fbec18Smcpowers #include "mplogic.h"
49*f9fbec18Smcpowers #include "ecl.h"
50*f9fbec18Smcpowers #include "ecl-priv.h"
51*f9fbec18Smcpowers #ifndef _KERNEL
52*f9fbec18Smcpowers #include <stdlib.h>
53*f9fbec18Smcpowers #endif
54*f9fbec18Smcpowers 
55*f9fbec18Smcpowers /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
56*f9fbec18Smcpowers  * y).  If x, y = NULL, then P is assumed to be the generator (base point)
57*f9fbec18Smcpowers  * of the group of points on the elliptic curve. Input and output values
58*f9fbec18Smcpowers  * are assumed to be NOT field-encoded. */
59*f9fbec18Smcpowers mp_err
60*f9fbec18Smcpowers ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
61*f9fbec18Smcpowers 			const mp_int *py, mp_int *rx, mp_int *ry)
62*f9fbec18Smcpowers {
63*f9fbec18Smcpowers 	mp_err res = MP_OKAY;
64*f9fbec18Smcpowers 	mp_int kt;
65*f9fbec18Smcpowers 
66*f9fbec18Smcpowers 	ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
67*f9fbec18Smcpowers 	MP_DIGITS(&kt) = 0;
68*f9fbec18Smcpowers 
69*f9fbec18Smcpowers 	/* want scalar to be less than or equal to group order */
70*f9fbec18Smcpowers 	if (mp_cmp(k, &group->order) > 0) {
71*f9fbec18Smcpowers 		MP_CHECKOK(mp_init(&kt, FLAG(k)));
72*f9fbec18Smcpowers 		MP_CHECKOK(mp_mod(k, &group->order, &kt));
73*f9fbec18Smcpowers 	} else {
74*f9fbec18Smcpowers 		MP_SIGN(&kt) = MP_ZPOS;
75*f9fbec18Smcpowers 		MP_USED(&kt) = MP_USED(k);
76*f9fbec18Smcpowers 		MP_ALLOC(&kt) = MP_ALLOC(k);
77*f9fbec18Smcpowers 		MP_DIGITS(&kt) = MP_DIGITS(k);
78*f9fbec18Smcpowers 	}
79*f9fbec18Smcpowers 
80*f9fbec18Smcpowers 	if ((px == NULL) || (py == NULL)) {
81*f9fbec18Smcpowers 		if (group->base_point_mul) {
82*f9fbec18Smcpowers 			MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
83*f9fbec18Smcpowers 		} else {
84*f9fbec18Smcpowers 			MP_CHECKOK(group->
85*f9fbec18Smcpowers 					   point_mul(&kt, &group->genx, &group->geny, rx, ry,
86*f9fbec18Smcpowers 								 group));
87*f9fbec18Smcpowers 		}
88*f9fbec18Smcpowers 	} else {
89*f9fbec18Smcpowers 		if (group->meth->field_enc) {
90*f9fbec18Smcpowers 			MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
91*f9fbec18Smcpowers 			MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
92*f9fbec18Smcpowers 			MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
93*f9fbec18Smcpowers 		} else {
94*f9fbec18Smcpowers 			MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
95*f9fbec18Smcpowers 		}
96*f9fbec18Smcpowers 	}
97*f9fbec18Smcpowers 	if (group->meth->field_dec) {
98*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
99*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
100*f9fbec18Smcpowers 	}
101*f9fbec18Smcpowers 
102*f9fbec18Smcpowers   CLEANUP:
103*f9fbec18Smcpowers 	if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
104*f9fbec18Smcpowers 		mp_clear(&kt);
105*f9fbec18Smcpowers 	}
106*f9fbec18Smcpowers 	return res;
107*f9fbec18Smcpowers }
108*f9fbec18Smcpowers 
109*f9fbec18Smcpowers /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
110*f9fbec18Smcpowers  * k2 * P(x, y), where G is the generator (base point) of the group of
111*f9fbec18Smcpowers  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
112*f9fbec18Smcpowers  * Input and output values are assumed to be NOT field-encoded. */
113*f9fbec18Smcpowers mp_err
114*f9fbec18Smcpowers ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
115*f9fbec18Smcpowers 				 const mp_int *py, mp_int *rx, mp_int *ry,
116*f9fbec18Smcpowers 				 const ECGroup *group)
117*f9fbec18Smcpowers {
118*f9fbec18Smcpowers 	mp_err res = MP_OKAY;
119*f9fbec18Smcpowers 	mp_int sx, sy;
120*f9fbec18Smcpowers 
121*f9fbec18Smcpowers 	ARGCHK(group != NULL, MP_BADARG);
122*f9fbec18Smcpowers 	ARGCHK(!((k1 == NULL)
123*f9fbec18Smcpowers 			 && ((k2 == NULL) || (px == NULL)
124*f9fbec18Smcpowers 				 || (py == NULL))), MP_BADARG);
125*f9fbec18Smcpowers 
126*f9fbec18Smcpowers 	/* if some arguments are not defined used ECPoint_mul */
127*f9fbec18Smcpowers 	if (k1 == NULL) {
128*f9fbec18Smcpowers 		return ECPoint_mul(group, k2, px, py, rx, ry);
129*f9fbec18Smcpowers 	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
130*f9fbec18Smcpowers 		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
131*f9fbec18Smcpowers 	}
132*f9fbec18Smcpowers 
133*f9fbec18Smcpowers 	MP_DIGITS(&sx) = 0;
134*f9fbec18Smcpowers 	MP_DIGITS(&sy) = 0;
135*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&sx, FLAG(k1)));
136*f9fbec18Smcpowers 	MP_CHECKOK(mp_init(&sy, FLAG(k1)));
137*f9fbec18Smcpowers 
138*f9fbec18Smcpowers 	MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
139*f9fbec18Smcpowers 	MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
140*f9fbec18Smcpowers 
141*f9fbec18Smcpowers 	if (group->meth->field_enc) {
142*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
143*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
144*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
145*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
146*f9fbec18Smcpowers 	}
147*f9fbec18Smcpowers 
148*f9fbec18Smcpowers 	MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
149*f9fbec18Smcpowers 
150*f9fbec18Smcpowers 	if (group->meth->field_dec) {
151*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
152*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
153*f9fbec18Smcpowers 	}
154*f9fbec18Smcpowers 
155*f9fbec18Smcpowers   CLEANUP:
156*f9fbec18Smcpowers 	mp_clear(&sx);
157*f9fbec18Smcpowers 	mp_clear(&sy);
158*f9fbec18Smcpowers 	return res;
159*f9fbec18Smcpowers }
160*f9fbec18Smcpowers 
161*f9fbec18Smcpowers /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
162*f9fbec18Smcpowers  * k2 * P(x, y), where G is the generator (base point) of the group of
163*f9fbec18Smcpowers  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
164*f9fbec18Smcpowers  * Input and output values are assumed to be NOT field-encoded. Uses
165*f9fbec18Smcpowers  * algorithm 15 (simultaneous multiple point multiplication) from Brown,
166*f9fbec18Smcpowers  * Hankerson, Lopez, Menezes. Software Implementation of the NIST
167*f9fbec18Smcpowers  * Elliptic Curves over Prime Fields. */
168*f9fbec18Smcpowers mp_err
169*f9fbec18Smcpowers ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
170*f9fbec18Smcpowers 					const mp_int *py, mp_int *rx, mp_int *ry,
171*f9fbec18Smcpowers 					const ECGroup *group)
172*f9fbec18Smcpowers {
173*f9fbec18Smcpowers 	mp_err res = MP_OKAY;
174*f9fbec18Smcpowers 	mp_int precomp[4][4][2];
175*f9fbec18Smcpowers 	const mp_int *a, *b;
176*f9fbec18Smcpowers 	int i, j;
177*f9fbec18Smcpowers 	int ai, bi, d;
178*f9fbec18Smcpowers 
179*f9fbec18Smcpowers 	ARGCHK(group != NULL, MP_BADARG);
180*f9fbec18Smcpowers 	ARGCHK(!((k1 == NULL)
181*f9fbec18Smcpowers 			 && ((k2 == NULL) || (px == NULL)
182*f9fbec18Smcpowers 				 || (py == NULL))), MP_BADARG);
183*f9fbec18Smcpowers 
184*f9fbec18Smcpowers 	/* if some arguments are not defined used ECPoint_mul */
185*f9fbec18Smcpowers 	if (k1 == NULL) {
186*f9fbec18Smcpowers 		return ECPoint_mul(group, k2, px, py, rx, ry);
187*f9fbec18Smcpowers 	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
188*f9fbec18Smcpowers 		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
189*f9fbec18Smcpowers 	}
190*f9fbec18Smcpowers 
191*f9fbec18Smcpowers 	/* initialize precomputation table */
192*f9fbec18Smcpowers 	for (i = 0; i < 4; i++) {
193*f9fbec18Smcpowers 		for (j = 0; j < 4; j++) {
194*f9fbec18Smcpowers 			MP_DIGITS(&precomp[i][j][0]) = 0;
195*f9fbec18Smcpowers 			MP_DIGITS(&precomp[i][j][1]) = 0;
196*f9fbec18Smcpowers 		}
197*f9fbec18Smcpowers 	}
198*f9fbec18Smcpowers 	for (i = 0; i < 4; i++) {
199*f9fbec18Smcpowers 		for (j = 0; j < 4; j++) {
200*f9fbec18Smcpowers 			 MP_CHECKOK( mp_init_size(&precomp[i][j][0],
201*f9fbec18Smcpowers 					 ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
202*f9fbec18Smcpowers 			 MP_CHECKOK( mp_init_size(&precomp[i][j][1],
203*f9fbec18Smcpowers 					 ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
204*f9fbec18Smcpowers 		}
205*f9fbec18Smcpowers 	}
206*f9fbec18Smcpowers 
207*f9fbec18Smcpowers 	/* fill precomputation table */
208*f9fbec18Smcpowers 	/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
209*f9fbec18Smcpowers 	if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
210*f9fbec18Smcpowers 		a = k2;
211*f9fbec18Smcpowers 		b = k1;
212*f9fbec18Smcpowers 		if (group->meth->field_enc) {
213*f9fbec18Smcpowers 			MP_CHECKOK(group->meth->
214*f9fbec18Smcpowers 					   field_enc(px, &precomp[1][0][0], group->meth));
215*f9fbec18Smcpowers 			MP_CHECKOK(group->meth->
216*f9fbec18Smcpowers 					   field_enc(py, &precomp[1][0][1], group->meth));
217*f9fbec18Smcpowers 		} else {
218*f9fbec18Smcpowers 			MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
219*f9fbec18Smcpowers 			MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
220*f9fbec18Smcpowers 		}
221*f9fbec18Smcpowers 		MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
222*f9fbec18Smcpowers 		MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
223*f9fbec18Smcpowers 	} else {
224*f9fbec18Smcpowers 		a = k1;
225*f9fbec18Smcpowers 		b = k2;
226*f9fbec18Smcpowers 		MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
227*f9fbec18Smcpowers 		MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
228*f9fbec18Smcpowers 		if (group->meth->field_enc) {
229*f9fbec18Smcpowers 			MP_CHECKOK(group->meth->
230*f9fbec18Smcpowers 					   field_enc(px, &precomp[0][1][0], group->meth));
231*f9fbec18Smcpowers 			MP_CHECKOK(group->meth->
232*f9fbec18Smcpowers 					   field_enc(py, &precomp[0][1][1], group->meth));
233*f9fbec18Smcpowers 		} else {
234*f9fbec18Smcpowers 			MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
235*f9fbec18Smcpowers 			MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
236*f9fbec18Smcpowers 		}
237*f9fbec18Smcpowers 	}
238*f9fbec18Smcpowers 	/* precompute [*][0][*] */
239*f9fbec18Smcpowers 	mp_zero(&precomp[0][0][0]);
240*f9fbec18Smcpowers 	mp_zero(&precomp[0][0][1]);
241*f9fbec18Smcpowers 	MP_CHECKOK(group->
242*f9fbec18Smcpowers 			   point_dbl(&precomp[1][0][0], &precomp[1][0][1],
243*f9fbec18Smcpowers 						 &precomp[2][0][0], &precomp[2][0][1], group));
244*f9fbec18Smcpowers 	MP_CHECKOK(group->
245*f9fbec18Smcpowers 			   point_add(&precomp[1][0][0], &precomp[1][0][1],
246*f9fbec18Smcpowers 						 &precomp[2][0][0], &precomp[2][0][1],
247*f9fbec18Smcpowers 						 &precomp[3][0][0], &precomp[3][0][1], group));
248*f9fbec18Smcpowers 	/* precompute [*][1][*] */
249*f9fbec18Smcpowers 	for (i = 1; i < 4; i++) {
250*f9fbec18Smcpowers 		MP_CHECKOK(group->
251*f9fbec18Smcpowers 				   point_add(&precomp[0][1][0], &precomp[0][1][1],
252*f9fbec18Smcpowers 							 &precomp[i][0][0], &precomp[i][0][1],
253*f9fbec18Smcpowers 							 &precomp[i][1][0], &precomp[i][1][1], group));
254*f9fbec18Smcpowers 	}
255*f9fbec18Smcpowers 	/* precompute [*][2][*] */
256*f9fbec18Smcpowers 	MP_CHECKOK(group->
257*f9fbec18Smcpowers 			   point_dbl(&precomp[0][1][0], &precomp[0][1][1],
258*f9fbec18Smcpowers 						 &precomp[0][2][0], &precomp[0][2][1], group));
259*f9fbec18Smcpowers 	for (i = 1; i < 4; i++) {
260*f9fbec18Smcpowers 		MP_CHECKOK(group->
261*f9fbec18Smcpowers 				   point_add(&precomp[0][2][0], &precomp[0][2][1],
262*f9fbec18Smcpowers 							 &precomp[i][0][0], &precomp[i][0][1],
263*f9fbec18Smcpowers 							 &precomp[i][2][0], &precomp[i][2][1], group));
264*f9fbec18Smcpowers 	}
265*f9fbec18Smcpowers 	/* precompute [*][3][*] */
266*f9fbec18Smcpowers 	MP_CHECKOK(group->
267*f9fbec18Smcpowers 			   point_add(&precomp[0][1][0], &precomp[0][1][1],
268*f9fbec18Smcpowers 						 &precomp[0][2][0], &precomp[0][2][1],
269*f9fbec18Smcpowers 						 &precomp[0][3][0], &precomp[0][3][1], group));
270*f9fbec18Smcpowers 	for (i = 1; i < 4; i++) {
271*f9fbec18Smcpowers 		MP_CHECKOK(group->
272*f9fbec18Smcpowers 				   point_add(&precomp[0][3][0], &precomp[0][3][1],
273*f9fbec18Smcpowers 							 &precomp[i][0][0], &precomp[i][0][1],
274*f9fbec18Smcpowers 							 &precomp[i][3][0], &precomp[i][3][1], group));
275*f9fbec18Smcpowers 	}
276*f9fbec18Smcpowers 
277*f9fbec18Smcpowers 	d = (mpl_significant_bits(a) + 1) / 2;
278*f9fbec18Smcpowers 
279*f9fbec18Smcpowers 	/* R = inf */
280*f9fbec18Smcpowers 	mp_zero(rx);
281*f9fbec18Smcpowers 	mp_zero(ry);
282*f9fbec18Smcpowers 
283*f9fbec18Smcpowers 	for (i = d - 1; i >= 0; i--) {
284*f9fbec18Smcpowers 		ai = MP_GET_BIT(a, 2 * i + 1);
285*f9fbec18Smcpowers 		ai <<= 1;
286*f9fbec18Smcpowers 		ai |= MP_GET_BIT(a, 2 * i);
287*f9fbec18Smcpowers 		bi = MP_GET_BIT(b, 2 * i + 1);
288*f9fbec18Smcpowers 		bi <<= 1;
289*f9fbec18Smcpowers 		bi |= MP_GET_BIT(b, 2 * i);
290*f9fbec18Smcpowers 		/* R = 2^2 * R */
291*f9fbec18Smcpowers 		MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
292*f9fbec18Smcpowers 		MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
293*f9fbec18Smcpowers 		/* R = R + (ai * A + bi * B) */
294*f9fbec18Smcpowers 		MP_CHECKOK(group->
295*f9fbec18Smcpowers 				   point_add(rx, ry, &precomp[ai][bi][0],
296*f9fbec18Smcpowers 							 &precomp[ai][bi][1], rx, ry, group));
297*f9fbec18Smcpowers 	}
298*f9fbec18Smcpowers 
299*f9fbec18Smcpowers 	if (group->meth->field_dec) {
300*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
301*f9fbec18Smcpowers 		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
302*f9fbec18Smcpowers 	}
303*f9fbec18Smcpowers 
304*f9fbec18Smcpowers   CLEANUP:
305*f9fbec18Smcpowers 	for (i = 0; i < 4; i++) {
306*f9fbec18Smcpowers 		for (j = 0; j < 4; j++) {
307*f9fbec18Smcpowers 			mp_clear(&precomp[i][j][0]);
308*f9fbec18Smcpowers 			mp_clear(&precomp[i][j][1]);
309*f9fbec18Smcpowers 		}
310*f9fbec18Smcpowers 	}
311*f9fbec18Smcpowers 	return res;
312*f9fbec18Smcpowers }
313*f9fbec18Smcpowers 
314*f9fbec18Smcpowers /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
315*f9fbec18Smcpowers  * k2 * P(x, y), where G is the generator (base point) of the group of
316*f9fbec18Smcpowers  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
317*f9fbec18Smcpowers  * Input and output values are assumed to be NOT field-encoded. */
318*f9fbec18Smcpowers mp_err
319*f9fbec18Smcpowers ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
320*f9fbec18Smcpowers 			 const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
321*f9fbec18Smcpowers {
322*f9fbec18Smcpowers 	mp_err res = MP_OKAY;
323*f9fbec18Smcpowers 	mp_int k1t, k2t;
324*f9fbec18Smcpowers 	const mp_int *k1p, *k2p;
325*f9fbec18Smcpowers 
326*f9fbec18Smcpowers 	MP_DIGITS(&k1t) = 0;
327*f9fbec18Smcpowers 	MP_DIGITS(&k2t) = 0;
328*f9fbec18Smcpowers 
329*f9fbec18Smcpowers 	ARGCHK(group != NULL, MP_BADARG);
330*f9fbec18Smcpowers 
331*f9fbec18Smcpowers 	/* want scalar to be less than or equal to group order */
332*f9fbec18Smcpowers 	if (k1 != NULL) {
333*f9fbec18Smcpowers 		if (mp_cmp(k1, &group->order) >= 0) {
334*f9fbec18Smcpowers 			MP_CHECKOK(mp_init(&k1t, FLAG(k1)));
335*f9fbec18Smcpowers 			MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
336*f9fbec18Smcpowers 			k1p = &k1t;
337*f9fbec18Smcpowers 		} else {
338*f9fbec18Smcpowers 			k1p = k1;
339*f9fbec18Smcpowers 		}
340*f9fbec18Smcpowers 	} else {
341*f9fbec18Smcpowers 		k1p = k1;
342*f9fbec18Smcpowers 	}
343*f9fbec18Smcpowers 	if (k2 != NULL) {
344*f9fbec18Smcpowers 		if (mp_cmp(k2, &group->order) >= 0) {
345*f9fbec18Smcpowers 			MP_CHECKOK(mp_init(&k2t, FLAG(k2)));
346*f9fbec18Smcpowers 			MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
347*f9fbec18Smcpowers 			k2p = &k2t;
348*f9fbec18Smcpowers 		} else {
349*f9fbec18Smcpowers 			k2p = k2;
350*f9fbec18Smcpowers 		}
351*f9fbec18Smcpowers 	} else {
352*f9fbec18Smcpowers 		k2p = k2;
353*f9fbec18Smcpowers 	}
354*f9fbec18Smcpowers 
355*f9fbec18Smcpowers 	/* if points_mul is defined, then use it */
356*f9fbec18Smcpowers 	if (group->points_mul) {
357*f9fbec18Smcpowers 		res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
358*f9fbec18Smcpowers 	} else {
359*f9fbec18Smcpowers 		res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
360*f9fbec18Smcpowers 	}
361*f9fbec18Smcpowers 
362*f9fbec18Smcpowers   CLEANUP:
363*f9fbec18Smcpowers 	mp_clear(&k1t);
364*f9fbec18Smcpowers 	mp_clear(&k2t);
365*f9fbec18Smcpowers 	return res;
366*f9fbec18Smcpowers }
367