1*f9fbec18Smcpowers /* 2*f9fbec18Smcpowers * ***** BEGIN LICENSE BLOCK ***** 3*f9fbec18Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4*f9fbec18Smcpowers * 5*f9fbec18Smcpowers * The contents of this file are subject to the Mozilla Public License Version 6*f9fbec18Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with 7*f9fbec18Smcpowers * the License. You may obtain a copy of the License at 8*f9fbec18Smcpowers * http://www.mozilla.org/MPL/ 9*f9fbec18Smcpowers * 10*f9fbec18Smcpowers * Software distributed under the License is distributed on an "AS IS" basis, 11*f9fbec18Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12*f9fbec18Smcpowers * for the specific language governing rights and limitations under the 13*f9fbec18Smcpowers * License. 14*f9fbec18Smcpowers * 15*f9fbec18Smcpowers * The Original Code is the elliptic curve math library for binary polynomial field curves. 16*f9fbec18Smcpowers * 17*f9fbec18Smcpowers * The Initial Developer of the Original Code is 18*f9fbec18Smcpowers * Sun Microsystems, Inc. 19*f9fbec18Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003 20*f9fbec18Smcpowers * the Initial Developer. All Rights Reserved. 21*f9fbec18Smcpowers * 22*f9fbec18Smcpowers * Contributor(s): 23*f9fbec18Smcpowers * Sheueling Chang-Shantz <sheueling.chang@sun.com>, 24*f9fbec18Smcpowers * Stephen Fung <fungstep@hotmail.com>, and 25*f9fbec18Smcpowers * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories. 26*f9fbec18Smcpowers * 27*f9fbec18Smcpowers * Alternatively, the contents of this file may be used under the terms of 28*f9fbec18Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or 29*f9fbec18Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 30*f9fbec18Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead 31*f9fbec18Smcpowers * of those above. If you wish to allow use of your version of this file only 32*f9fbec18Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to 33*f9fbec18Smcpowers * use your version of this file under the terms of the MPL, indicate your 34*f9fbec18Smcpowers * decision by deleting the provisions above and replace them with the notice 35*f9fbec18Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete 36*f9fbec18Smcpowers * the provisions above, a recipient may use your version of this file under 37*f9fbec18Smcpowers * the terms of any one of the MPL, the GPL or the LGPL. 38*f9fbec18Smcpowers * 39*f9fbec18Smcpowers * ***** END LICENSE BLOCK ***** */ 40*f9fbec18Smcpowers /* 41*f9fbec18Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 42*f9fbec18Smcpowers * Use is subject to license terms. 43*f9fbec18Smcpowers * 44*f9fbec18Smcpowers * Sun elects to use this software under the MPL license. 45*f9fbec18Smcpowers */ 46*f9fbec18Smcpowers 47*f9fbec18Smcpowers #pragma ident "%Z%%M% %I% %E% SMI" 48*f9fbec18Smcpowers 49*f9fbec18Smcpowers #include "ec2.h" 50*f9fbec18Smcpowers #include "mplogic.h" 51*f9fbec18Smcpowers #include "mp_gf2m.h" 52*f9fbec18Smcpowers #ifndef _KERNEL 53*f9fbec18Smcpowers #include <stdlib.h> 54*f9fbec18Smcpowers #endif 55*f9fbec18Smcpowers 56*f9fbec18Smcpowers /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery 57*f9fbec18Smcpowers * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J. 58*f9fbec18Smcpowers * and Dahab, R. "Fast multiplication on elliptic curves over GF(2^m) 59*f9fbec18Smcpowers * without precomputation". modified to not require precomputation of 60*f9fbec18Smcpowers * c=b^{2^{m-1}}. */ 61*f9fbec18Smcpowers static mp_err 62*f9fbec18Smcpowers gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group, int kmflag) 63*f9fbec18Smcpowers { 64*f9fbec18Smcpowers mp_err res = MP_OKAY; 65*f9fbec18Smcpowers mp_int t1; 66*f9fbec18Smcpowers 67*f9fbec18Smcpowers MP_DIGITS(&t1) = 0; 68*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t1, kmflag)); 69*f9fbec18Smcpowers 70*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(x, x, group->meth)); 71*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth)); 72*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth)); 73*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(x, x, group->meth)); 74*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth)); 75*f9fbec18Smcpowers MP_CHECKOK(group->meth-> 76*f9fbec18Smcpowers field_mul(&group->curveb, &t1, &t1, group->meth)); 77*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth)); 78*f9fbec18Smcpowers 79*f9fbec18Smcpowers CLEANUP: 80*f9fbec18Smcpowers mp_clear(&t1); 81*f9fbec18Smcpowers return res; 82*f9fbec18Smcpowers } 83*f9fbec18Smcpowers 84*f9fbec18Smcpowers /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in 85*f9fbec18Smcpowers * Montgomery projective coordinates. Uses algorithm Madd in appendix of 86*f9fbec18Smcpowers * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over 87*f9fbec18Smcpowers * GF(2^m) without precomputation". */ 88*f9fbec18Smcpowers static mp_err 89*f9fbec18Smcpowers gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2, 90*f9fbec18Smcpowers const ECGroup *group, int kmflag) 91*f9fbec18Smcpowers { 92*f9fbec18Smcpowers mp_err res = MP_OKAY; 93*f9fbec18Smcpowers mp_int t1, t2; 94*f9fbec18Smcpowers 95*f9fbec18Smcpowers MP_DIGITS(&t1) = 0; 96*f9fbec18Smcpowers MP_DIGITS(&t2) = 0; 97*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t1, kmflag)); 98*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t2, kmflag)); 99*f9fbec18Smcpowers 100*f9fbec18Smcpowers MP_CHECKOK(mp_copy(x, &t1)); 101*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth)); 102*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth)); 103*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth)); 104*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth)); 105*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth)); 106*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth)); 107*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth)); 108*f9fbec18Smcpowers 109*f9fbec18Smcpowers CLEANUP: 110*f9fbec18Smcpowers mp_clear(&t1); 111*f9fbec18Smcpowers mp_clear(&t2); 112*f9fbec18Smcpowers return res; 113*f9fbec18Smcpowers } 114*f9fbec18Smcpowers 115*f9fbec18Smcpowers /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) 116*f9fbec18Smcpowers * using Montgomery point multiplication algorithm Mxy() in appendix of 117*f9fbec18Smcpowers * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over 118*f9fbec18Smcpowers * GF(2^m) without precomputation". Returns: 0 on error 1 if return value 119*f9fbec18Smcpowers * should be the point at infinity 2 otherwise */ 120*f9fbec18Smcpowers static int 121*f9fbec18Smcpowers gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1, 122*f9fbec18Smcpowers mp_int *x2, mp_int *z2, const ECGroup *group) 123*f9fbec18Smcpowers { 124*f9fbec18Smcpowers mp_err res = MP_OKAY; 125*f9fbec18Smcpowers int ret = 0; 126*f9fbec18Smcpowers mp_int t3, t4, t5; 127*f9fbec18Smcpowers 128*f9fbec18Smcpowers MP_DIGITS(&t3) = 0; 129*f9fbec18Smcpowers MP_DIGITS(&t4) = 0; 130*f9fbec18Smcpowers MP_DIGITS(&t5) = 0; 131*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t3, FLAG(x2))); 132*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t4, FLAG(x2))); 133*f9fbec18Smcpowers MP_CHECKOK(mp_init(&t5, FLAG(x2))); 134*f9fbec18Smcpowers 135*f9fbec18Smcpowers if (mp_cmp_z(z1) == 0) { 136*f9fbec18Smcpowers mp_zero(x2); 137*f9fbec18Smcpowers mp_zero(z2); 138*f9fbec18Smcpowers ret = 1; 139*f9fbec18Smcpowers goto CLEANUP; 140*f9fbec18Smcpowers } 141*f9fbec18Smcpowers 142*f9fbec18Smcpowers if (mp_cmp_z(z2) == 0) { 143*f9fbec18Smcpowers MP_CHECKOK(mp_copy(x, x2)); 144*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth)); 145*f9fbec18Smcpowers ret = 2; 146*f9fbec18Smcpowers goto CLEANUP; 147*f9fbec18Smcpowers } 148*f9fbec18Smcpowers 149*f9fbec18Smcpowers MP_CHECKOK(mp_set_int(&t5, 1)); 150*f9fbec18Smcpowers if (group->meth->field_enc) { 151*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth)); 152*f9fbec18Smcpowers } 153*f9fbec18Smcpowers 154*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth)); 155*f9fbec18Smcpowers 156*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth)); 157*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth)); 158*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth)); 159*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth)); 160*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth)); 161*f9fbec18Smcpowers 162*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth)); 163*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth)); 164*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth)); 165*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth)); 166*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth)); 167*f9fbec18Smcpowers 168*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth)); 169*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth)); 170*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth)); 171*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth)); 172*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth)); 173*f9fbec18Smcpowers 174*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth)); 175*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth)); 176*f9fbec18Smcpowers 177*f9fbec18Smcpowers ret = 2; 178*f9fbec18Smcpowers 179*f9fbec18Smcpowers CLEANUP: 180*f9fbec18Smcpowers mp_clear(&t3); 181*f9fbec18Smcpowers mp_clear(&t4); 182*f9fbec18Smcpowers mp_clear(&t5); 183*f9fbec18Smcpowers if (res == MP_OKAY) { 184*f9fbec18Smcpowers return ret; 185*f9fbec18Smcpowers } else { 186*f9fbec18Smcpowers return 0; 187*f9fbec18Smcpowers } 188*f9fbec18Smcpowers } 189*f9fbec18Smcpowers 190*f9fbec18Smcpowers /* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R. "Fast 191*f9fbec18Smcpowers * multiplication on elliptic curves over GF(2^m) without 192*f9fbec18Smcpowers * precomputation". Elliptic curve points P and R can be identical. Uses 193*f9fbec18Smcpowers * Montgomery projective coordinates. */ 194*f9fbec18Smcpowers mp_err 195*f9fbec18Smcpowers ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py, 196*f9fbec18Smcpowers mp_int *rx, mp_int *ry, const ECGroup *group) 197*f9fbec18Smcpowers { 198*f9fbec18Smcpowers mp_err res = MP_OKAY; 199*f9fbec18Smcpowers mp_int x1, x2, z1, z2; 200*f9fbec18Smcpowers int i, j; 201*f9fbec18Smcpowers mp_digit top_bit, mask; 202*f9fbec18Smcpowers 203*f9fbec18Smcpowers MP_DIGITS(&x1) = 0; 204*f9fbec18Smcpowers MP_DIGITS(&x2) = 0; 205*f9fbec18Smcpowers MP_DIGITS(&z1) = 0; 206*f9fbec18Smcpowers MP_DIGITS(&z2) = 0; 207*f9fbec18Smcpowers MP_CHECKOK(mp_init(&x1, FLAG(n))); 208*f9fbec18Smcpowers MP_CHECKOK(mp_init(&x2, FLAG(n))); 209*f9fbec18Smcpowers MP_CHECKOK(mp_init(&z1, FLAG(n))); 210*f9fbec18Smcpowers MP_CHECKOK(mp_init(&z2, FLAG(n))); 211*f9fbec18Smcpowers 212*f9fbec18Smcpowers /* if result should be point at infinity */ 213*f9fbec18Smcpowers if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) { 214*f9fbec18Smcpowers MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry)); 215*f9fbec18Smcpowers goto CLEANUP; 216*f9fbec18Smcpowers } 217*f9fbec18Smcpowers 218*f9fbec18Smcpowers MP_CHECKOK(mp_copy(px, &x1)); /* x1 = px */ 219*f9fbec18Smcpowers MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */ 220*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth)); /* z2 = 221*f9fbec18Smcpowers * x1^2 = 222*f9fbec18Smcpowers * px^2 */ 223*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth)); 224*f9fbec18Smcpowers MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth)); /* x2 225*f9fbec18Smcpowers * = 226*f9fbec18Smcpowers * px^4 227*f9fbec18Smcpowers * + 228*f9fbec18Smcpowers * b 229*f9fbec18Smcpowers */ 230*f9fbec18Smcpowers 231*f9fbec18Smcpowers /* find top-most bit and go one past it */ 232*f9fbec18Smcpowers i = MP_USED(n) - 1; 233*f9fbec18Smcpowers j = MP_DIGIT_BIT - 1; 234*f9fbec18Smcpowers top_bit = 1; 235*f9fbec18Smcpowers top_bit <<= MP_DIGIT_BIT - 1; 236*f9fbec18Smcpowers mask = top_bit; 237*f9fbec18Smcpowers while (!(MP_DIGITS(n)[i] & mask)) { 238*f9fbec18Smcpowers mask >>= 1; 239*f9fbec18Smcpowers j--; 240*f9fbec18Smcpowers } 241*f9fbec18Smcpowers mask >>= 1; 242*f9fbec18Smcpowers j--; 243*f9fbec18Smcpowers 244*f9fbec18Smcpowers /* if top most bit was at word break, go to next word */ 245*f9fbec18Smcpowers if (!mask) { 246*f9fbec18Smcpowers i--; 247*f9fbec18Smcpowers j = MP_DIGIT_BIT - 1; 248*f9fbec18Smcpowers mask = top_bit; 249*f9fbec18Smcpowers } 250*f9fbec18Smcpowers 251*f9fbec18Smcpowers for (; i >= 0; i--) { 252*f9fbec18Smcpowers for (; j >= 0; j--) { 253*f9fbec18Smcpowers if (MP_DIGITS(n)[i] & mask) { 254*f9fbec18Smcpowers MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n))); 255*f9fbec18Smcpowers MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n))); 256*f9fbec18Smcpowers } else { 257*f9fbec18Smcpowers MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n))); 258*f9fbec18Smcpowers MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n))); 259*f9fbec18Smcpowers } 260*f9fbec18Smcpowers mask >>= 1; 261*f9fbec18Smcpowers } 262*f9fbec18Smcpowers j = MP_DIGIT_BIT - 1; 263*f9fbec18Smcpowers mask = top_bit; 264*f9fbec18Smcpowers } 265*f9fbec18Smcpowers 266*f9fbec18Smcpowers /* convert out of "projective" coordinates */ 267*f9fbec18Smcpowers i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group); 268*f9fbec18Smcpowers if (i == 0) { 269*f9fbec18Smcpowers res = MP_BADARG; 270*f9fbec18Smcpowers goto CLEANUP; 271*f9fbec18Smcpowers } else if (i == 1) { 272*f9fbec18Smcpowers MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry)); 273*f9fbec18Smcpowers } else { 274*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&x2, rx)); 275*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&z2, ry)); 276*f9fbec18Smcpowers } 277*f9fbec18Smcpowers 278*f9fbec18Smcpowers CLEANUP: 279*f9fbec18Smcpowers mp_clear(&x1); 280*f9fbec18Smcpowers mp_clear(&x2); 281*f9fbec18Smcpowers mp_clear(&z1); 282*f9fbec18Smcpowers mp_clear(&z2); 283*f9fbec18Smcpowers return res; 284*f9fbec18Smcpowers } 285