xref: /titanic_51/usr/src/common/crypto/ecc/ec2_233.c (revision 3c112a2b34403220c06c3e2fcac403358cfba168)
1 /*
2  * ***** BEGIN LICENSE BLOCK *****
3  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4  *
5  * The contents of this file are subject to the Mozilla Public License Version
6  * 1.1 (the "License"); you may not use this file except in compliance with
7  * the License. You may obtain a copy of the License at
8  * http://www.mozilla.org/MPL/
9  *
10  * Software distributed under the License is distributed on an "AS IS" basis,
11  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12  * for the specific language governing rights and limitations under the
13  * License.
14  *
15  * The Original Code is the elliptic curve math library for binary polynomial field curves.
16  *
17  * The Initial Developer of the Original Code is
18  * Sun Microsystems, Inc.
19  * Portions created by the Initial Developer are Copyright (C) 2003
20  * the Initial Developer. All Rights Reserved.
21  *
22  * Contributor(s):
23  *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24  *   Stephen Fung <fungstep@hotmail.com>, and
25  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
26  *
27  * Alternatively, the contents of this file may be used under the terms of
28  * either the GNU General Public License Version 2 or later (the "GPL"), or
29  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
30  * in which case the provisions of the GPL or the LGPL are applicable instead
31  * of those above. If you wish to allow use of your version of this file only
32  * under the terms of either the GPL or the LGPL, and not to allow others to
33  * use your version of this file under the terms of the MPL, indicate your
34  * decision by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL or the LGPL. If you do not delete
36  * the provisions above, a recipient may use your version of this file under
37  * the terms of any one of the MPL, the GPL or the LGPL.
38  *
39  * ***** END LICENSE BLOCK ***** */
40 /*
41  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
42  * Use is subject to license terms.
43  *
44  * Sun elects to use this software under the MPL license.
45  */
46 
47 #pragma ident	"%Z%%M%	%I%	%E% SMI"
48 
49 #include "ec2.h"
50 #include "mp_gf2m.h"
51 #include "mp_gf2m-priv.h"
52 #include "mpi.h"
53 #include "mpi-priv.h"
54 #ifndef _KERNEL
55 #include <stdlib.h>
56 #endif
57 
58 /* Fast reduction for polynomials over a 233-bit curve. Assumes reduction
59  * polynomial with terms {233, 74, 0}. */
60 mp_err
61 ec_GF2m_233_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
62 {
63 	mp_err res = MP_OKAY;
64 	mp_digit *u, z;
65 
66 	if (a != r) {
67 		MP_CHECKOK(mp_copy(a, r));
68 	}
69 #ifdef ECL_SIXTY_FOUR_BIT
70 	if (MP_USED(r) < 8) {
71 		MP_CHECKOK(s_mp_pad(r, 8));
72 	}
73 	u = MP_DIGITS(r);
74 	MP_USED(r) = 8;
75 
76 	/* u[7] only has 18 significant bits */
77 	z = u[7];
78 	u[4] ^= (z << 33) ^ (z >> 41);
79 	u[3] ^= (z << 23);
80 	z = u[6];
81 	u[4] ^= (z >> 31);
82 	u[3] ^= (z << 33) ^ (z >> 41);
83 	u[2] ^= (z << 23);
84 	z = u[5];
85 	u[3] ^= (z >> 31);
86 	u[2] ^= (z << 33) ^ (z >> 41);
87 	u[1] ^= (z << 23);
88 	z = u[4];
89 	u[2] ^= (z >> 31);
90 	u[1] ^= (z << 33) ^ (z >> 41);
91 	u[0] ^= (z << 23);
92 	z = u[3] >> 41;				/* z only has 23 significant bits */
93 	u[1] ^= (z << 10);
94 	u[0] ^= z;
95 	/* clear bits above 233 */
96 	u[7] = u[6] = u[5] = u[4] = 0;
97 	u[3] ^= z << 41;
98 #else
99 	if (MP_USED(r) < 15) {
100 		MP_CHECKOK(s_mp_pad(r, 15));
101 	}
102 	u = MP_DIGITS(r);
103 	MP_USED(r) = 15;
104 
105 	/* u[14] only has 18 significant bits */
106 	z = u[14];
107 	u[9] ^= (z << 1);
108 	u[7] ^= (z >> 9);
109 	u[6] ^= (z << 23);
110 	z = u[13];
111 	u[9] ^= (z >> 31);
112 	u[8] ^= (z << 1);
113 	u[6] ^= (z >> 9);
114 	u[5] ^= (z << 23);
115 	z = u[12];
116 	u[8] ^= (z >> 31);
117 	u[7] ^= (z << 1);
118 	u[5] ^= (z >> 9);
119 	u[4] ^= (z << 23);
120 	z = u[11];
121 	u[7] ^= (z >> 31);
122 	u[6] ^= (z << 1);
123 	u[4] ^= (z >> 9);
124 	u[3] ^= (z << 23);
125 	z = u[10];
126 	u[6] ^= (z >> 31);
127 	u[5] ^= (z << 1);
128 	u[3] ^= (z >> 9);
129 	u[2] ^= (z << 23);
130 	z = u[9];
131 	u[5] ^= (z >> 31);
132 	u[4] ^= (z << 1);
133 	u[2] ^= (z >> 9);
134 	u[1] ^= (z << 23);
135 	z = u[8];
136 	u[4] ^= (z >> 31);
137 	u[3] ^= (z << 1);
138 	u[1] ^= (z >> 9);
139 	u[0] ^= (z << 23);
140 	z = u[7] >> 9;				/* z only has 23 significant bits */
141 	u[3] ^= (z >> 22);
142 	u[2] ^= (z << 10);
143 	u[0] ^= z;
144 	/* clear bits above 233 */
145 	u[14] = u[13] = u[12] = u[11] = u[10] = u[9] = u[8] = 0;
146 	u[7] ^= z << 9;
147 #endif
148 	s_mp_clamp(r);
149 
150   CLEANUP:
151 	return res;
152 }
153 
154 /* Fast squaring for polynomials over a 233-bit curve. Assumes reduction
155  * polynomial with terms {233, 74, 0}. */
156 mp_err
157 ec_GF2m_233_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
158 {
159 	mp_err res = MP_OKAY;
160 	mp_digit *u, *v;
161 
162 	v = MP_DIGITS(a);
163 
164 #ifdef ECL_SIXTY_FOUR_BIT
165 	if (MP_USED(a) < 4) {
166 		return mp_bsqrmod(a, meth->irr_arr, r);
167 	}
168 	if (MP_USED(r) < 8) {
169 		MP_CHECKOK(s_mp_pad(r, 8));
170 	}
171 	MP_USED(r) = 8;
172 #else
173 	if (MP_USED(a) < 8) {
174 		return mp_bsqrmod(a, meth->irr_arr, r);
175 	}
176 	if (MP_USED(r) < 15) {
177 		MP_CHECKOK(s_mp_pad(r, 15));
178 	}
179 	MP_USED(r) = 15;
180 #endif
181 	u = MP_DIGITS(r);
182 
183 #ifdef ECL_THIRTY_TWO_BIT
184 	u[14] = gf2m_SQR0(v[7]);
185 	u[13] = gf2m_SQR1(v[6]);
186 	u[12] = gf2m_SQR0(v[6]);
187 	u[11] = gf2m_SQR1(v[5]);
188 	u[10] = gf2m_SQR0(v[5]);
189 	u[9] = gf2m_SQR1(v[4]);
190 	u[8] = gf2m_SQR0(v[4]);
191 #endif
192 	u[7] = gf2m_SQR1(v[3]);
193 	u[6] = gf2m_SQR0(v[3]);
194 	u[5] = gf2m_SQR1(v[2]);
195 	u[4] = gf2m_SQR0(v[2]);
196 	u[3] = gf2m_SQR1(v[1]);
197 	u[2] = gf2m_SQR0(v[1]);
198 	u[1] = gf2m_SQR1(v[0]);
199 	u[0] = gf2m_SQR0(v[0]);
200 	return ec_GF2m_233_mod(r, r, meth);
201 
202   CLEANUP:
203 	return res;
204 }
205 
206 /* Fast multiplication for polynomials over a 233-bit curve. Assumes
207  * reduction polynomial with terms {233, 74, 0}. */
208 mp_err
209 ec_GF2m_233_mul(const mp_int *a, const mp_int *b, mp_int *r,
210 				const GFMethod *meth)
211 {
212 	mp_err res = MP_OKAY;
213 	mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0;
214 
215 #ifdef ECL_THIRTY_TWO_BIT
216 	mp_digit a7 = 0, a6 = 0, a5 = 0, a4 = 0, b7 = 0, b6 = 0, b5 = 0, b4 =
217 		0;
218 	mp_digit rm[8];
219 #endif
220 
221 	if (a == b) {
222 		return ec_GF2m_233_sqr(a, r, meth);
223 	} else {
224 		switch (MP_USED(a)) {
225 #ifdef ECL_THIRTY_TWO_BIT
226 		case 8:
227 			a7 = MP_DIGIT(a, 7);
228 		case 7:
229 			a6 = MP_DIGIT(a, 6);
230 		case 6:
231 			a5 = MP_DIGIT(a, 5);
232 		case 5:
233 			a4 = MP_DIGIT(a, 4);
234 #endif
235 		case 4:
236 			a3 = MP_DIGIT(a, 3);
237 		case 3:
238 			a2 = MP_DIGIT(a, 2);
239 		case 2:
240 			a1 = MP_DIGIT(a, 1);
241 		default:
242 			a0 = MP_DIGIT(a, 0);
243 		}
244 		switch (MP_USED(b)) {
245 #ifdef ECL_THIRTY_TWO_BIT
246 		case 8:
247 			b7 = MP_DIGIT(b, 7);
248 		case 7:
249 			b6 = MP_DIGIT(b, 6);
250 		case 6:
251 			b5 = MP_DIGIT(b, 5);
252 		case 5:
253 			b4 = MP_DIGIT(b, 4);
254 #endif
255 		case 4:
256 			b3 = MP_DIGIT(b, 3);
257 		case 3:
258 			b2 = MP_DIGIT(b, 2);
259 		case 2:
260 			b1 = MP_DIGIT(b, 1);
261 		default:
262 			b0 = MP_DIGIT(b, 0);
263 		}
264 #ifdef ECL_SIXTY_FOUR_BIT
265 		MP_CHECKOK(s_mp_pad(r, 8));
266 		s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
267 		MP_USED(r) = 8;
268 		s_mp_clamp(r);
269 #else
270 		MP_CHECKOK(s_mp_pad(r, 16));
271 		s_bmul_4x4(MP_DIGITS(r) + 8, a7, a6, a5, a4, b7, b6, b5, b4);
272 		s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
273 		s_bmul_4x4(rm, a7 ^ a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b7 ^ b3,
274 				   b6 ^ b2, b5 ^ b1, b4 ^ b0);
275 		rm[7] ^= MP_DIGIT(r, 7) ^ MP_DIGIT(r, 15);
276 		rm[6] ^= MP_DIGIT(r, 6) ^ MP_DIGIT(r, 14);
277 		rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13);
278 		rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12);
279 		rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11);
280 		rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10);
281 		rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9);
282 		rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8);
283 		MP_DIGIT(r, 11) ^= rm[7];
284 		MP_DIGIT(r, 10) ^= rm[6];
285 		MP_DIGIT(r, 9) ^= rm[5];
286 		MP_DIGIT(r, 8) ^= rm[4];
287 		MP_DIGIT(r, 7) ^= rm[3];
288 		MP_DIGIT(r, 6) ^= rm[2];
289 		MP_DIGIT(r, 5) ^= rm[1];
290 		MP_DIGIT(r, 4) ^= rm[0];
291 		MP_USED(r) = 16;
292 		s_mp_clamp(r);
293 #endif
294 		return ec_GF2m_233_mod(r, r, meth);
295 	}
296 
297   CLEANUP:
298 	return res;
299 }
300 
301 /* Wire in fast field arithmetic for 233-bit curves. */
302 mp_err
303 ec_group_set_gf2m233(ECGroup *group, ECCurveName name)
304 {
305 	group->meth->field_mod = &ec_GF2m_233_mod;
306 	group->meth->field_mul = &ec_GF2m_233_mul;
307 	group->meth->field_sqr = &ec_GF2m_233_sqr;
308 	return MP_OKAY;
309 }
310