1*f9fbec18Smcpowers /* 2*f9fbec18Smcpowers * ***** BEGIN LICENSE BLOCK ***** 3*f9fbec18Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4*f9fbec18Smcpowers * 5*f9fbec18Smcpowers * The contents of this file are subject to the Mozilla Public License Version 6*f9fbec18Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with 7*f9fbec18Smcpowers * the License. You may obtain a copy of the License at 8*f9fbec18Smcpowers * http://www.mozilla.org/MPL/ 9*f9fbec18Smcpowers * 10*f9fbec18Smcpowers * Software distributed under the License is distributed on an "AS IS" basis, 11*f9fbec18Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12*f9fbec18Smcpowers * for the specific language governing rights and limitations under the 13*f9fbec18Smcpowers * License. 14*f9fbec18Smcpowers * 15*f9fbec18Smcpowers * The Original Code is the elliptic curve math library for binary polynomial field curves. 16*f9fbec18Smcpowers * 17*f9fbec18Smcpowers * The Initial Developer of the Original Code is 18*f9fbec18Smcpowers * Sun Microsystems, Inc. 19*f9fbec18Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003 20*f9fbec18Smcpowers * the Initial Developer. All Rights Reserved. 21*f9fbec18Smcpowers * 22*f9fbec18Smcpowers * Contributor(s): 23*f9fbec18Smcpowers * Sheueling Chang-Shantz <sheueling.chang@sun.com>, 24*f9fbec18Smcpowers * Stephen Fung <fungstep@hotmail.com>, and 25*f9fbec18Smcpowers * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories. 26*f9fbec18Smcpowers * 27*f9fbec18Smcpowers * Alternatively, the contents of this file may be used under the terms of 28*f9fbec18Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or 29*f9fbec18Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 30*f9fbec18Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead 31*f9fbec18Smcpowers * of those above. If you wish to allow use of your version of this file only 32*f9fbec18Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to 33*f9fbec18Smcpowers * use your version of this file under the terms of the MPL, indicate your 34*f9fbec18Smcpowers * decision by deleting the provisions above and replace them with the notice 35*f9fbec18Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete 36*f9fbec18Smcpowers * the provisions above, a recipient may use your version of this file under 37*f9fbec18Smcpowers * the terms of any one of the MPL, the GPL or the LGPL. 38*f9fbec18Smcpowers * 39*f9fbec18Smcpowers * ***** END LICENSE BLOCK ***** */ 40*f9fbec18Smcpowers /* 41*f9fbec18Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 42*f9fbec18Smcpowers * Use is subject to license terms. 43*f9fbec18Smcpowers * 44*f9fbec18Smcpowers * Sun elects to use this software under the MPL license. 45*f9fbec18Smcpowers */ 46*f9fbec18Smcpowers 47*f9fbec18Smcpowers #pragma ident "%Z%%M% %I% %E% SMI" 48*f9fbec18Smcpowers 49*f9fbec18Smcpowers #include "ec2.h" 50*f9fbec18Smcpowers #include "mp_gf2m.h" 51*f9fbec18Smcpowers #include "mp_gf2m-priv.h" 52*f9fbec18Smcpowers #include "mpi.h" 53*f9fbec18Smcpowers #include "mpi-priv.h" 54*f9fbec18Smcpowers #ifndef _KERNEL 55*f9fbec18Smcpowers #include <stdlib.h> 56*f9fbec18Smcpowers #endif 57*f9fbec18Smcpowers 58*f9fbec18Smcpowers /* Fast reduction for polynomials over a 233-bit curve. Assumes reduction 59*f9fbec18Smcpowers * polynomial with terms {233, 74, 0}. */ 60*f9fbec18Smcpowers mp_err 61*f9fbec18Smcpowers ec_GF2m_233_mod(const mp_int *a, mp_int *r, const GFMethod *meth) 62*f9fbec18Smcpowers { 63*f9fbec18Smcpowers mp_err res = MP_OKAY; 64*f9fbec18Smcpowers mp_digit *u, z; 65*f9fbec18Smcpowers 66*f9fbec18Smcpowers if (a != r) { 67*f9fbec18Smcpowers MP_CHECKOK(mp_copy(a, r)); 68*f9fbec18Smcpowers } 69*f9fbec18Smcpowers #ifdef ECL_SIXTY_FOUR_BIT 70*f9fbec18Smcpowers if (MP_USED(r) < 8) { 71*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 8)); 72*f9fbec18Smcpowers } 73*f9fbec18Smcpowers u = MP_DIGITS(r); 74*f9fbec18Smcpowers MP_USED(r) = 8; 75*f9fbec18Smcpowers 76*f9fbec18Smcpowers /* u[7] only has 18 significant bits */ 77*f9fbec18Smcpowers z = u[7]; 78*f9fbec18Smcpowers u[4] ^= (z << 33) ^ (z >> 41); 79*f9fbec18Smcpowers u[3] ^= (z << 23); 80*f9fbec18Smcpowers z = u[6]; 81*f9fbec18Smcpowers u[4] ^= (z >> 31); 82*f9fbec18Smcpowers u[3] ^= (z << 33) ^ (z >> 41); 83*f9fbec18Smcpowers u[2] ^= (z << 23); 84*f9fbec18Smcpowers z = u[5]; 85*f9fbec18Smcpowers u[3] ^= (z >> 31); 86*f9fbec18Smcpowers u[2] ^= (z << 33) ^ (z >> 41); 87*f9fbec18Smcpowers u[1] ^= (z << 23); 88*f9fbec18Smcpowers z = u[4]; 89*f9fbec18Smcpowers u[2] ^= (z >> 31); 90*f9fbec18Smcpowers u[1] ^= (z << 33) ^ (z >> 41); 91*f9fbec18Smcpowers u[0] ^= (z << 23); 92*f9fbec18Smcpowers z = u[3] >> 41; /* z only has 23 significant bits */ 93*f9fbec18Smcpowers u[1] ^= (z << 10); 94*f9fbec18Smcpowers u[0] ^= z; 95*f9fbec18Smcpowers /* clear bits above 233 */ 96*f9fbec18Smcpowers u[7] = u[6] = u[5] = u[4] = 0; 97*f9fbec18Smcpowers u[3] ^= z << 41; 98*f9fbec18Smcpowers #else 99*f9fbec18Smcpowers if (MP_USED(r) < 15) { 100*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 15)); 101*f9fbec18Smcpowers } 102*f9fbec18Smcpowers u = MP_DIGITS(r); 103*f9fbec18Smcpowers MP_USED(r) = 15; 104*f9fbec18Smcpowers 105*f9fbec18Smcpowers /* u[14] only has 18 significant bits */ 106*f9fbec18Smcpowers z = u[14]; 107*f9fbec18Smcpowers u[9] ^= (z << 1); 108*f9fbec18Smcpowers u[7] ^= (z >> 9); 109*f9fbec18Smcpowers u[6] ^= (z << 23); 110*f9fbec18Smcpowers z = u[13]; 111*f9fbec18Smcpowers u[9] ^= (z >> 31); 112*f9fbec18Smcpowers u[8] ^= (z << 1); 113*f9fbec18Smcpowers u[6] ^= (z >> 9); 114*f9fbec18Smcpowers u[5] ^= (z << 23); 115*f9fbec18Smcpowers z = u[12]; 116*f9fbec18Smcpowers u[8] ^= (z >> 31); 117*f9fbec18Smcpowers u[7] ^= (z << 1); 118*f9fbec18Smcpowers u[5] ^= (z >> 9); 119*f9fbec18Smcpowers u[4] ^= (z << 23); 120*f9fbec18Smcpowers z = u[11]; 121*f9fbec18Smcpowers u[7] ^= (z >> 31); 122*f9fbec18Smcpowers u[6] ^= (z << 1); 123*f9fbec18Smcpowers u[4] ^= (z >> 9); 124*f9fbec18Smcpowers u[3] ^= (z << 23); 125*f9fbec18Smcpowers z = u[10]; 126*f9fbec18Smcpowers u[6] ^= (z >> 31); 127*f9fbec18Smcpowers u[5] ^= (z << 1); 128*f9fbec18Smcpowers u[3] ^= (z >> 9); 129*f9fbec18Smcpowers u[2] ^= (z << 23); 130*f9fbec18Smcpowers z = u[9]; 131*f9fbec18Smcpowers u[5] ^= (z >> 31); 132*f9fbec18Smcpowers u[4] ^= (z << 1); 133*f9fbec18Smcpowers u[2] ^= (z >> 9); 134*f9fbec18Smcpowers u[1] ^= (z << 23); 135*f9fbec18Smcpowers z = u[8]; 136*f9fbec18Smcpowers u[4] ^= (z >> 31); 137*f9fbec18Smcpowers u[3] ^= (z << 1); 138*f9fbec18Smcpowers u[1] ^= (z >> 9); 139*f9fbec18Smcpowers u[0] ^= (z << 23); 140*f9fbec18Smcpowers z = u[7] >> 9; /* z only has 23 significant bits */ 141*f9fbec18Smcpowers u[3] ^= (z >> 22); 142*f9fbec18Smcpowers u[2] ^= (z << 10); 143*f9fbec18Smcpowers u[0] ^= z; 144*f9fbec18Smcpowers /* clear bits above 233 */ 145*f9fbec18Smcpowers u[14] = u[13] = u[12] = u[11] = u[10] = u[9] = u[8] = 0; 146*f9fbec18Smcpowers u[7] ^= z << 9; 147*f9fbec18Smcpowers #endif 148*f9fbec18Smcpowers s_mp_clamp(r); 149*f9fbec18Smcpowers 150*f9fbec18Smcpowers CLEANUP: 151*f9fbec18Smcpowers return res; 152*f9fbec18Smcpowers } 153*f9fbec18Smcpowers 154*f9fbec18Smcpowers /* Fast squaring for polynomials over a 233-bit curve. Assumes reduction 155*f9fbec18Smcpowers * polynomial with terms {233, 74, 0}. */ 156*f9fbec18Smcpowers mp_err 157*f9fbec18Smcpowers ec_GF2m_233_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) 158*f9fbec18Smcpowers { 159*f9fbec18Smcpowers mp_err res = MP_OKAY; 160*f9fbec18Smcpowers mp_digit *u, *v; 161*f9fbec18Smcpowers 162*f9fbec18Smcpowers v = MP_DIGITS(a); 163*f9fbec18Smcpowers 164*f9fbec18Smcpowers #ifdef ECL_SIXTY_FOUR_BIT 165*f9fbec18Smcpowers if (MP_USED(a) < 4) { 166*f9fbec18Smcpowers return mp_bsqrmod(a, meth->irr_arr, r); 167*f9fbec18Smcpowers } 168*f9fbec18Smcpowers if (MP_USED(r) < 8) { 169*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 8)); 170*f9fbec18Smcpowers } 171*f9fbec18Smcpowers MP_USED(r) = 8; 172*f9fbec18Smcpowers #else 173*f9fbec18Smcpowers if (MP_USED(a) < 8) { 174*f9fbec18Smcpowers return mp_bsqrmod(a, meth->irr_arr, r); 175*f9fbec18Smcpowers } 176*f9fbec18Smcpowers if (MP_USED(r) < 15) { 177*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 15)); 178*f9fbec18Smcpowers } 179*f9fbec18Smcpowers MP_USED(r) = 15; 180*f9fbec18Smcpowers #endif 181*f9fbec18Smcpowers u = MP_DIGITS(r); 182*f9fbec18Smcpowers 183*f9fbec18Smcpowers #ifdef ECL_THIRTY_TWO_BIT 184*f9fbec18Smcpowers u[14] = gf2m_SQR0(v[7]); 185*f9fbec18Smcpowers u[13] = gf2m_SQR1(v[6]); 186*f9fbec18Smcpowers u[12] = gf2m_SQR0(v[6]); 187*f9fbec18Smcpowers u[11] = gf2m_SQR1(v[5]); 188*f9fbec18Smcpowers u[10] = gf2m_SQR0(v[5]); 189*f9fbec18Smcpowers u[9] = gf2m_SQR1(v[4]); 190*f9fbec18Smcpowers u[8] = gf2m_SQR0(v[4]); 191*f9fbec18Smcpowers #endif 192*f9fbec18Smcpowers u[7] = gf2m_SQR1(v[3]); 193*f9fbec18Smcpowers u[6] = gf2m_SQR0(v[3]); 194*f9fbec18Smcpowers u[5] = gf2m_SQR1(v[2]); 195*f9fbec18Smcpowers u[4] = gf2m_SQR0(v[2]); 196*f9fbec18Smcpowers u[3] = gf2m_SQR1(v[1]); 197*f9fbec18Smcpowers u[2] = gf2m_SQR0(v[1]); 198*f9fbec18Smcpowers u[1] = gf2m_SQR1(v[0]); 199*f9fbec18Smcpowers u[0] = gf2m_SQR0(v[0]); 200*f9fbec18Smcpowers return ec_GF2m_233_mod(r, r, meth); 201*f9fbec18Smcpowers 202*f9fbec18Smcpowers CLEANUP: 203*f9fbec18Smcpowers return res; 204*f9fbec18Smcpowers } 205*f9fbec18Smcpowers 206*f9fbec18Smcpowers /* Fast multiplication for polynomials over a 233-bit curve. Assumes 207*f9fbec18Smcpowers * reduction polynomial with terms {233, 74, 0}. */ 208*f9fbec18Smcpowers mp_err 209*f9fbec18Smcpowers ec_GF2m_233_mul(const mp_int *a, const mp_int *b, mp_int *r, 210*f9fbec18Smcpowers const GFMethod *meth) 211*f9fbec18Smcpowers { 212*f9fbec18Smcpowers mp_err res = MP_OKAY; 213*f9fbec18Smcpowers mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0; 214*f9fbec18Smcpowers 215*f9fbec18Smcpowers #ifdef ECL_THIRTY_TWO_BIT 216*f9fbec18Smcpowers mp_digit a7 = 0, a6 = 0, a5 = 0, a4 = 0, b7 = 0, b6 = 0, b5 = 0, b4 = 217*f9fbec18Smcpowers 0; 218*f9fbec18Smcpowers mp_digit rm[8]; 219*f9fbec18Smcpowers #endif 220*f9fbec18Smcpowers 221*f9fbec18Smcpowers if (a == b) { 222*f9fbec18Smcpowers return ec_GF2m_233_sqr(a, r, meth); 223*f9fbec18Smcpowers } else { 224*f9fbec18Smcpowers switch (MP_USED(a)) { 225*f9fbec18Smcpowers #ifdef ECL_THIRTY_TWO_BIT 226*f9fbec18Smcpowers case 8: 227*f9fbec18Smcpowers a7 = MP_DIGIT(a, 7); 228*f9fbec18Smcpowers case 7: 229*f9fbec18Smcpowers a6 = MP_DIGIT(a, 6); 230*f9fbec18Smcpowers case 6: 231*f9fbec18Smcpowers a5 = MP_DIGIT(a, 5); 232*f9fbec18Smcpowers case 5: 233*f9fbec18Smcpowers a4 = MP_DIGIT(a, 4); 234*f9fbec18Smcpowers #endif 235*f9fbec18Smcpowers case 4: 236*f9fbec18Smcpowers a3 = MP_DIGIT(a, 3); 237*f9fbec18Smcpowers case 3: 238*f9fbec18Smcpowers a2 = MP_DIGIT(a, 2); 239*f9fbec18Smcpowers case 2: 240*f9fbec18Smcpowers a1 = MP_DIGIT(a, 1); 241*f9fbec18Smcpowers default: 242*f9fbec18Smcpowers a0 = MP_DIGIT(a, 0); 243*f9fbec18Smcpowers } 244*f9fbec18Smcpowers switch (MP_USED(b)) { 245*f9fbec18Smcpowers #ifdef ECL_THIRTY_TWO_BIT 246*f9fbec18Smcpowers case 8: 247*f9fbec18Smcpowers b7 = MP_DIGIT(b, 7); 248*f9fbec18Smcpowers case 7: 249*f9fbec18Smcpowers b6 = MP_DIGIT(b, 6); 250*f9fbec18Smcpowers case 6: 251*f9fbec18Smcpowers b5 = MP_DIGIT(b, 5); 252*f9fbec18Smcpowers case 5: 253*f9fbec18Smcpowers b4 = MP_DIGIT(b, 4); 254*f9fbec18Smcpowers #endif 255*f9fbec18Smcpowers case 4: 256*f9fbec18Smcpowers b3 = MP_DIGIT(b, 3); 257*f9fbec18Smcpowers case 3: 258*f9fbec18Smcpowers b2 = MP_DIGIT(b, 2); 259*f9fbec18Smcpowers case 2: 260*f9fbec18Smcpowers b1 = MP_DIGIT(b, 1); 261*f9fbec18Smcpowers default: 262*f9fbec18Smcpowers b0 = MP_DIGIT(b, 0); 263*f9fbec18Smcpowers } 264*f9fbec18Smcpowers #ifdef ECL_SIXTY_FOUR_BIT 265*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 8)); 266*f9fbec18Smcpowers s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); 267*f9fbec18Smcpowers MP_USED(r) = 8; 268*f9fbec18Smcpowers s_mp_clamp(r); 269*f9fbec18Smcpowers #else 270*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 16)); 271*f9fbec18Smcpowers s_bmul_4x4(MP_DIGITS(r) + 8, a7, a6, a5, a4, b7, b6, b5, b4); 272*f9fbec18Smcpowers s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); 273*f9fbec18Smcpowers s_bmul_4x4(rm, a7 ^ a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b7 ^ b3, 274*f9fbec18Smcpowers b6 ^ b2, b5 ^ b1, b4 ^ b0); 275*f9fbec18Smcpowers rm[7] ^= MP_DIGIT(r, 7) ^ MP_DIGIT(r, 15); 276*f9fbec18Smcpowers rm[6] ^= MP_DIGIT(r, 6) ^ MP_DIGIT(r, 14); 277*f9fbec18Smcpowers rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13); 278*f9fbec18Smcpowers rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12); 279*f9fbec18Smcpowers rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11); 280*f9fbec18Smcpowers rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10); 281*f9fbec18Smcpowers rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9); 282*f9fbec18Smcpowers rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8); 283*f9fbec18Smcpowers MP_DIGIT(r, 11) ^= rm[7]; 284*f9fbec18Smcpowers MP_DIGIT(r, 10) ^= rm[6]; 285*f9fbec18Smcpowers MP_DIGIT(r, 9) ^= rm[5]; 286*f9fbec18Smcpowers MP_DIGIT(r, 8) ^= rm[4]; 287*f9fbec18Smcpowers MP_DIGIT(r, 7) ^= rm[3]; 288*f9fbec18Smcpowers MP_DIGIT(r, 6) ^= rm[2]; 289*f9fbec18Smcpowers MP_DIGIT(r, 5) ^= rm[1]; 290*f9fbec18Smcpowers MP_DIGIT(r, 4) ^= rm[0]; 291*f9fbec18Smcpowers MP_USED(r) = 16; 292*f9fbec18Smcpowers s_mp_clamp(r); 293*f9fbec18Smcpowers #endif 294*f9fbec18Smcpowers return ec_GF2m_233_mod(r, r, meth); 295*f9fbec18Smcpowers } 296*f9fbec18Smcpowers 297*f9fbec18Smcpowers CLEANUP: 298*f9fbec18Smcpowers return res; 299*f9fbec18Smcpowers } 300*f9fbec18Smcpowers 301*f9fbec18Smcpowers /* Wire in fast field arithmetic for 233-bit curves. */ 302*f9fbec18Smcpowers mp_err 303*f9fbec18Smcpowers ec_group_set_gf2m233(ECGroup *group, ECCurveName name) 304*f9fbec18Smcpowers { 305*f9fbec18Smcpowers group->meth->field_mod = &ec_GF2m_233_mod; 306*f9fbec18Smcpowers group->meth->field_mul = &ec_GF2m_233_mul; 307*f9fbec18Smcpowers group->meth->field_sqr = &ec_GF2m_233_sqr; 308*f9fbec18Smcpowers return MP_OKAY; 309*f9fbec18Smcpowers } 310