1*f9fbec18Smcpowers /* 2*f9fbec18Smcpowers * ***** BEGIN LICENSE BLOCK ***** 3*f9fbec18Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4*f9fbec18Smcpowers * 5*f9fbec18Smcpowers * The contents of this file are subject to the Mozilla Public License Version 6*f9fbec18Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with 7*f9fbec18Smcpowers * the License. You may obtain a copy of the License at 8*f9fbec18Smcpowers * http://www.mozilla.org/MPL/ 9*f9fbec18Smcpowers * 10*f9fbec18Smcpowers * Software distributed under the License is distributed on an "AS IS" basis, 11*f9fbec18Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12*f9fbec18Smcpowers * for the specific language governing rights and limitations under the 13*f9fbec18Smcpowers * License. 14*f9fbec18Smcpowers * 15*f9fbec18Smcpowers * The Original Code is the elliptic curve math library for binary polynomial field curves. 16*f9fbec18Smcpowers * 17*f9fbec18Smcpowers * The Initial Developer of the Original Code is 18*f9fbec18Smcpowers * Sun Microsystems, Inc. 19*f9fbec18Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003 20*f9fbec18Smcpowers * the Initial Developer. All Rights Reserved. 21*f9fbec18Smcpowers * 22*f9fbec18Smcpowers * Contributor(s): 23*f9fbec18Smcpowers * Sheueling Chang-Shantz <sheueling.chang@sun.com>, 24*f9fbec18Smcpowers * Stephen Fung <fungstep@hotmail.com>, and 25*f9fbec18Smcpowers * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories. 26*f9fbec18Smcpowers * 27*f9fbec18Smcpowers * Alternatively, the contents of this file may be used under the terms of 28*f9fbec18Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or 29*f9fbec18Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 30*f9fbec18Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead 31*f9fbec18Smcpowers * of those above. If you wish to allow use of your version of this file only 32*f9fbec18Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to 33*f9fbec18Smcpowers * use your version of this file under the terms of the MPL, indicate your 34*f9fbec18Smcpowers * decision by deleting the provisions above and replace them with the notice 35*f9fbec18Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete 36*f9fbec18Smcpowers * the provisions above, a recipient may use your version of this file under 37*f9fbec18Smcpowers * the terms of any one of the MPL, the GPL or the LGPL. 38*f9fbec18Smcpowers * 39*f9fbec18Smcpowers * ***** END LICENSE BLOCK ***** */ 40*f9fbec18Smcpowers /* 41*f9fbec18Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 42*f9fbec18Smcpowers * Use is subject to license terms. 43*f9fbec18Smcpowers * 44*f9fbec18Smcpowers * Sun elects to use this software under the MPL license. 45*f9fbec18Smcpowers */ 46*f9fbec18Smcpowers 47*f9fbec18Smcpowers #pragma ident "%Z%%M% %I% %E% SMI" 48*f9fbec18Smcpowers 49*f9fbec18Smcpowers #include "ec2.h" 50*f9fbec18Smcpowers #include "mp_gf2m.h" 51*f9fbec18Smcpowers #include "mp_gf2m-priv.h" 52*f9fbec18Smcpowers #include "mpi.h" 53*f9fbec18Smcpowers #include "mpi-priv.h" 54*f9fbec18Smcpowers #ifndef _KERNEL 55*f9fbec18Smcpowers #include <stdlib.h> 56*f9fbec18Smcpowers #endif 57*f9fbec18Smcpowers 58*f9fbec18Smcpowers /* Fast reduction for polynomials over a 193-bit curve. Assumes reduction 59*f9fbec18Smcpowers * polynomial with terms {193, 15, 0}. */ 60*f9fbec18Smcpowers mp_err 61*f9fbec18Smcpowers ec_GF2m_193_mod(const mp_int *a, mp_int *r, const GFMethod *meth) 62*f9fbec18Smcpowers { 63*f9fbec18Smcpowers mp_err res = MP_OKAY; 64*f9fbec18Smcpowers mp_digit *u, z; 65*f9fbec18Smcpowers 66*f9fbec18Smcpowers if (a != r) { 67*f9fbec18Smcpowers MP_CHECKOK(mp_copy(a, r)); 68*f9fbec18Smcpowers } 69*f9fbec18Smcpowers #ifdef ECL_SIXTY_FOUR_BIT 70*f9fbec18Smcpowers if (MP_USED(r) < 7) { 71*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 7)); 72*f9fbec18Smcpowers } 73*f9fbec18Smcpowers u = MP_DIGITS(r); 74*f9fbec18Smcpowers MP_USED(r) = 7; 75*f9fbec18Smcpowers 76*f9fbec18Smcpowers /* u[6] only has 2 significant bits */ 77*f9fbec18Smcpowers z = u[6]; 78*f9fbec18Smcpowers u[3] ^= (z << 14) ^ (z >> 1); 79*f9fbec18Smcpowers u[2] ^= (z << 63); 80*f9fbec18Smcpowers z = u[5]; 81*f9fbec18Smcpowers u[3] ^= (z >> 50); 82*f9fbec18Smcpowers u[2] ^= (z << 14) ^ (z >> 1); 83*f9fbec18Smcpowers u[1] ^= (z << 63); 84*f9fbec18Smcpowers z = u[4]; 85*f9fbec18Smcpowers u[2] ^= (z >> 50); 86*f9fbec18Smcpowers u[1] ^= (z << 14) ^ (z >> 1); 87*f9fbec18Smcpowers u[0] ^= (z << 63); 88*f9fbec18Smcpowers z = u[3] >> 1; /* z only has 63 significant bits */ 89*f9fbec18Smcpowers u[1] ^= (z >> 49); 90*f9fbec18Smcpowers u[0] ^= (z << 15) ^ z; 91*f9fbec18Smcpowers /* clear bits above 193 */ 92*f9fbec18Smcpowers u[6] = u[5] = u[4] = 0; 93*f9fbec18Smcpowers u[3] ^= z << 1; 94*f9fbec18Smcpowers #else 95*f9fbec18Smcpowers if (MP_USED(r) < 13) { 96*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 13)); 97*f9fbec18Smcpowers } 98*f9fbec18Smcpowers u = MP_DIGITS(r); 99*f9fbec18Smcpowers MP_USED(r) = 13; 100*f9fbec18Smcpowers 101*f9fbec18Smcpowers /* u[12] only has 2 significant bits */ 102*f9fbec18Smcpowers z = u[12]; 103*f9fbec18Smcpowers u[6] ^= (z << 14) ^ (z >> 1); 104*f9fbec18Smcpowers u[5] ^= (z << 31); 105*f9fbec18Smcpowers z = u[11]; 106*f9fbec18Smcpowers u[6] ^= (z >> 18); 107*f9fbec18Smcpowers u[5] ^= (z << 14) ^ (z >> 1); 108*f9fbec18Smcpowers u[4] ^= (z << 31); 109*f9fbec18Smcpowers z = u[10]; 110*f9fbec18Smcpowers u[5] ^= (z >> 18); 111*f9fbec18Smcpowers u[4] ^= (z << 14) ^ (z >> 1); 112*f9fbec18Smcpowers u[3] ^= (z << 31); 113*f9fbec18Smcpowers z = u[9]; 114*f9fbec18Smcpowers u[4] ^= (z >> 18); 115*f9fbec18Smcpowers u[3] ^= (z << 14) ^ (z >> 1); 116*f9fbec18Smcpowers u[2] ^= (z << 31); 117*f9fbec18Smcpowers z = u[8]; 118*f9fbec18Smcpowers u[3] ^= (z >> 18); 119*f9fbec18Smcpowers u[2] ^= (z << 14) ^ (z >> 1); 120*f9fbec18Smcpowers u[1] ^= (z << 31); 121*f9fbec18Smcpowers z = u[7]; 122*f9fbec18Smcpowers u[2] ^= (z >> 18); 123*f9fbec18Smcpowers u[1] ^= (z << 14) ^ (z >> 1); 124*f9fbec18Smcpowers u[0] ^= (z << 31); 125*f9fbec18Smcpowers z = u[6] >> 1; /* z only has 31 significant bits */ 126*f9fbec18Smcpowers u[1] ^= (z >> 17); 127*f9fbec18Smcpowers u[0] ^= (z << 15) ^ z; 128*f9fbec18Smcpowers /* clear bits above 193 */ 129*f9fbec18Smcpowers u[12] = u[11] = u[10] = u[9] = u[8] = u[7] = 0; 130*f9fbec18Smcpowers u[6] ^= z << 1; 131*f9fbec18Smcpowers #endif 132*f9fbec18Smcpowers s_mp_clamp(r); 133*f9fbec18Smcpowers 134*f9fbec18Smcpowers CLEANUP: 135*f9fbec18Smcpowers return res; 136*f9fbec18Smcpowers } 137*f9fbec18Smcpowers 138*f9fbec18Smcpowers /* Fast squaring for polynomials over a 193-bit curve. Assumes reduction 139*f9fbec18Smcpowers * polynomial with terms {193, 15, 0}. */ 140*f9fbec18Smcpowers mp_err 141*f9fbec18Smcpowers ec_GF2m_193_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) 142*f9fbec18Smcpowers { 143*f9fbec18Smcpowers mp_err res = MP_OKAY; 144*f9fbec18Smcpowers mp_digit *u, *v; 145*f9fbec18Smcpowers 146*f9fbec18Smcpowers v = MP_DIGITS(a); 147*f9fbec18Smcpowers 148*f9fbec18Smcpowers #ifdef ECL_SIXTY_FOUR_BIT 149*f9fbec18Smcpowers if (MP_USED(a) < 4) { 150*f9fbec18Smcpowers return mp_bsqrmod(a, meth->irr_arr, r); 151*f9fbec18Smcpowers } 152*f9fbec18Smcpowers if (MP_USED(r) < 7) { 153*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 7)); 154*f9fbec18Smcpowers } 155*f9fbec18Smcpowers MP_USED(r) = 7; 156*f9fbec18Smcpowers #else 157*f9fbec18Smcpowers if (MP_USED(a) < 7) { 158*f9fbec18Smcpowers return mp_bsqrmod(a, meth->irr_arr, r); 159*f9fbec18Smcpowers } 160*f9fbec18Smcpowers if (MP_USED(r) < 13) { 161*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 13)); 162*f9fbec18Smcpowers } 163*f9fbec18Smcpowers MP_USED(r) = 13; 164*f9fbec18Smcpowers #endif 165*f9fbec18Smcpowers u = MP_DIGITS(r); 166*f9fbec18Smcpowers 167*f9fbec18Smcpowers #ifdef ECL_THIRTY_TWO_BIT 168*f9fbec18Smcpowers u[12] = gf2m_SQR0(v[6]); 169*f9fbec18Smcpowers u[11] = gf2m_SQR1(v[5]); 170*f9fbec18Smcpowers u[10] = gf2m_SQR0(v[5]); 171*f9fbec18Smcpowers u[9] = gf2m_SQR1(v[4]); 172*f9fbec18Smcpowers u[8] = gf2m_SQR0(v[4]); 173*f9fbec18Smcpowers u[7] = gf2m_SQR1(v[3]); 174*f9fbec18Smcpowers #endif 175*f9fbec18Smcpowers u[6] = gf2m_SQR0(v[3]); 176*f9fbec18Smcpowers u[5] = gf2m_SQR1(v[2]); 177*f9fbec18Smcpowers u[4] = gf2m_SQR0(v[2]); 178*f9fbec18Smcpowers u[3] = gf2m_SQR1(v[1]); 179*f9fbec18Smcpowers u[2] = gf2m_SQR0(v[1]); 180*f9fbec18Smcpowers u[1] = gf2m_SQR1(v[0]); 181*f9fbec18Smcpowers u[0] = gf2m_SQR0(v[0]); 182*f9fbec18Smcpowers return ec_GF2m_193_mod(r, r, meth); 183*f9fbec18Smcpowers 184*f9fbec18Smcpowers CLEANUP: 185*f9fbec18Smcpowers return res; 186*f9fbec18Smcpowers } 187*f9fbec18Smcpowers 188*f9fbec18Smcpowers /* Fast multiplication for polynomials over a 193-bit curve. Assumes 189*f9fbec18Smcpowers * reduction polynomial with terms {193, 15, 0}. */ 190*f9fbec18Smcpowers mp_err 191*f9fbec18Smcpowers ec_GF2m_193_mul(const mp_int *a, const mp_int *b, mp_int *r, 192*f9fbec18Smcpowers const GFMethod *meth) 193*f9fbec18Smcpowers { 194*f9fbec18Smcpowers mp_err res = MP_OKAY; 195*f9fbec18Smcpowers mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0; 196*f9fbec18Smcpowers 197*f9fbec18Smcpowers #ifdef ECL_THIRTY_TWO_BIT 198*f9fbec18Smcpowers mp_digit a6 = 0, a5 = 0, a4 = 0, b6 = 0, b5 = 0, b4 = 0; 199*f9fbec18Smcpowers mp_digit rm[8]; 200*f9fbec18Smcpowers #endif 201*f9fbec18Smcpowers 202*f9fbec18Smcpowers if (a == b) { 203*f9fbec18Smcpowers return ec_GF2m_193_sqr(a, r, meth); 204*f9fbec18Smcpowers } else { 205*f9fbec18Smcpowers switch (MP_USED(a)) { 206*f9fbec18Smcpowers #ifdef ECL_THIRTY_TWO_BIT 207*f9fbec18Smcpowers case 7: 208*f9fbec18Smcpowers a6 = MP_DIGIT(a, 6); 209*f9fbec18Smcpowers case 6: 210*f9fbec18Smcpowers a5 = MP_DIGIT(a, 5); 211*f9fbec18Smcpowers case 5: 212*f9fbec18Smcpowers a4 = MP_DIGIT(a, 4); 213*f9fbec18Smcpowers #endif 214*f9fbec18Smcpowers case 4: 215*f9fbec18Smcpowers a3 = MP_DIGIT(a, 3); 216*f9fbec18Smcpowers case 3: 217*f9fbec18Smcpowers a2 = MP_DIGIT(a, 2); 218*f9fbec18Smcpowers case 2: 219*f9fbec18Smcpowers a1 = MP_DIGIT(a, 1); 220*f9fbec18Smcpowers default: 221*f9fbec18Smcpowers a0 = MP_DIGIT(a, 0); 222*f9fbec18Smcpowers } 223*f9fbec18Smcpowers switch (MP_USED(b)) { 224*f9fbec18Smcpowers #ifdef ECL_THIRTY_TWO_BIT 225*f9fbec18Smcpowers case 7: 226*f9fbec18Smcpowers b6 = MP_DIGIT(b, 6); 227*f9fbec18Smcpowers case 6: 228*f9fbec18Smcpowers b5 = MP_DIGIT(b, 5); 229*f9fbec18Smcpowers case 5: 230*f9fbec18Smcpowers b4 = MP_DIGIT(b, 4); 231*f9fbec18Smcpowers #endif 232*f9fbec18Smcpowers case 4: 233*f9fbec18Smcpowers b3 = MP_DIGIT(b, 3); 234*f9fbec18Smcpowers case 3: 235*f9fbec18Smcpowers b2 = MP_DIGIT(b, 2); 236*f9fbec18Smcpowers case 2: 237*f9fbec18Smcpowers b1 = MP_DIGIT(b, 1); 238*f9fbec18Smcpowers default: 239*f9fbec18Smcpowers b0 = MP_DIGIT(b, 0); 240*f9fbec18Smcpowers } 241*f9fbec18Smcpowers #ifdef ECL_SIXTY_FOUR_BIT 242*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 8)); 243*f9fbec18Smcpowers s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); 244*f9fbec18Smcpowers MP_USED(r) = 8; 245*f9fbec18Smcpowers s_mp_clamp(r); 246*f9fbec18Smcpowers #else 247*f9fbec18Smcpowers MP_CHECKOK(s_mp_pad(r, 14)); 248*f9fbec18Smcpowers s_bmul_3x3(MP_DIGITS(r) + 8, a6, a5, a4, b6, b5, b4); 249*f9fbec18Smcpowers s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); 250*f9fbec18Smcpowers s_bmul_4x4(rm, a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b3, b6 ^ b2, b5 ^ b1, 251*f9fbec18Smcpowers b4 ^ b0); 252*f9fbec18Smcpowers rm[7] ^= MP_DIGIT(r, 7); 253*f9fbec18Smcpowers rm[6] ^= MP_DIGIT(r, 6); 254*f9fbec18Smcpowers rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13); 255*f9fbec18Smcpowers rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12); 256*f9fbec18Smcpowers rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11); 257*f9fbec18Smcpowers rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10); 258*f9fbec18Smcpowers rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9); 259*f9fbec18Smcpowers rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8); 260*f9fbec18Smcpowers MP_DIGIT(r, 11) ^= rm[7]; 261*f9fbec18Smcpowers MP_DIGIT(r, 10) ^= rm[6]; 262*f9fbec18Smcpowers MP_DIGIT(r, 9) ^= rm[5]; 263*f9fbec18Smcpowers MP_DIGIT(r, 8) ^= rm[4]; 264*f9fbec18Smcpowers MP_DIGIT(r, 7) ^= rm[3]; 265*f9fbec18Smcpowers MP_DIGIT(r, 6) ^= rm[2]; 266*f9fbec18Smcpowers MP_DIGIT(r, 5) ^= rm[1]; 267*f9fbec18Smcpowers MP_DIGIT(r, 4) ^= rm[0]; 268*f9fbec18Smcpowers MP_USED(r) = 14; 269*f9fbec18Smcpowers s_mp_clamp(r); 270*f9fbec18Smcpowers #endif 271*f9fbec18Smcpowers return ec_GF2m_193_mod(r, r, meth); 272*f9fbec18Smcpowers } 273*f9fbec18Smcpowers 274*f9fbec18Smcpowers CLEANUP: 275*f9fbec18Smcpowers return res; 276*f9fbec18Smcpowers } 277*f9fbec18Smcpowers 278*f9fbec18Smcpowers /* Wire in fast field arithmetic for 193-bit curves. */ 279*f9fbec18Smcpowers mp_err 280*f9fbec18Smcpowers ec_group_set_gf2m193(ECGroup *group, ECCurveName name) 281*f9fbec18Smcpowers { 282*f9fbec18Smcpowers group->meth->field_mod = &ec_GF2m_193_mod; 283*f9fbec18Smcpowers group->meth->field_mul = &ec_GF2m_193_mul; 284*f9fbec18Smcpowers group->meth->field_sqr = &ec_GF2m_193_sqr; 285*f9fbec18Smcpowers return MP_OKAY; 286*f9fbec18Smcpowers } 287