190bcde94Sda73024 /* 290bcde94Sda73024 * --------------------------------------------------------------------------- 390bcde94Sda73024 * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. 490bcde94Sda73024 * 590bcde94Sda73024 * LICENSE TERMS 690bcde94Sda73024 * 790bcde94Sda73024 * The free distribution and use of this software is allowed (with or without 890bcde94Sda73024 * changes) provided that: 990bcde94Sda73024 * 1090bcde94Sda73024 * 1. source code distributions include the above copyright notice, this 1190bcde94Sda73024 * list of conditions and the following disclaimer; 1290bcde94Sda73024 * 1390bcde94Sda73024 * 2. binary distributions include the above copyright notice, this list 1490bcde94Sda73024 * of conditions and the following disclaimer in their documentation; 1590bcde94Sda73024 * 1690bcde94Sda73024 * 3. the name of the copyright holder is not used to endorse products 1790bcde94Sda73024 * built using this software without specific written permission. 1890bcde94Sda73024 * 1990bcde94Sda73024 * DISCLAIMER 2090bcde94Sda73024 * 2190bcde94Sda73024 * This software is provided 'as is' with no explicit or implied warranties 2290bcde94Sda73024 * in respect of its properties, including, but not limited to, correctness 2390bcde94Sda73024 * and/or fitness for purpose. 2490bcde94Sda73024 * --------------------------------------------------------------------------- 2590bcde94Sda73024 * Issue Date: 20/12/2007 2690bcde94Sda73024 * 2790bcde94Sda73024 * This file contains the compilation options for AES (Rijndael) and code 2890bcde94Sda73024 * that is common across encryption, key scheduling and table generation. 2990bcde94Sda73024 * 3090bcde94Sda73024 * OPERATION 3190bcde94Sda73024 * 3290bcde94Sda73024 * These source code files implement the AES algorithm Rijndael designed by 3390bcde94Sda73024 * Joan Daemen and Vincent Rijmen. This version is designed for the standard 3490bcde94Sda73024 * block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24 3590bcde94Sda73024 * and 32 bytes). 3690bcde94Sda73024 * 3790bcde94Sda73024 * This version is designed for flexibility and speed using operations on 3890bcde94Sda73024 * 32-bit words rather than operations on bytes. It can be compiled with 3990bcde94Sda73024 * either big or little endian internal byte order but is faster when the 4090bcde94Sda73024 * native byte order for the processor is used. 4190bcde94Sda73024 * 4290bcde94Sda73024 * THE CIPHER INTERFACE 4390bcde94Sda73024 * 4490bcde94Sda73024 * The cipher interface is implemented as an array of bytes in which lower 4590bcde94Sda73024 * AES bit sequence indexes map to higher numeric significance within bytes. 4690bcde94Sda73024 */ 4790bcde94Sda73024 4890bcde94Sda73024 /* 4990bcde94Sda73024 * OpenSolaris changes 5090bcde94Sda73024 * 1. Added __cplusplus and _AESTAB_H header guards 5190bcde94Sda73024 * 2. Added header files sys/types.h and aes_impl.h 5290bcde94Sda73024 * 3. Added defines for AES_ENCRYPT, AES_DECRYPT, AES_REV_DKS, and ASM_AMD64_C 5390bcde94Sda73024 * 4. Moved defines for IS_BIG_ENDIAN, IS_LITTLE_ENDIAN, PLATFORM_BYTE_ORDER 5490bcde94Sda73024 * from brg_endian.h 5590bcde94Sda73024 * 5. Undefined VIA_ACE_POSSIBLE and ASSUME_VIA_ACE_PRESENT 5690bcde94Sda73024 * 6. Changed uint_8t and uint_32t to uint8_t and uint32_t 57*4b56a003SDaniel Anderson * 7. Defined aes_sw32 as htonl() for byte swapping 58*4b56a003SDaniel Anderson * 8. Cstyled and hdrchk code 5990bcde94Sda73024 * 6090bcde94Sda73024 */ 6190bcde94Sda73024 6290bcde94Sda73024 #ifndef _AESOPT_H 6390bcde94Sda73024 #define _AESOPT_H 6490bcde94Sda73024 6590bcde94Sda73024 #ifdef __cplusplus 6690bcde94Sda73024 extern "C" { 6790bcde94Sda73024 #endif 6890bcde94Sda73024 6990bcde94Sda73024 #include <sys/types.h> 70*4b56a003SDaniel Anderson #include <sys/byteorder.h> 7190bcde94Sda73024 #include <aes_impl.h> 7290bcde94Sda73024 7390bcde94Sda73024 /* SUPPORT FEATURES */ 7490bcde94Sda73024 #define AES_ENCRYPT /* if support for encryption is needed */ 7590bcde94Sda73024 #define AES_DECRYPT /* if support for decryption is needed */ 7690bcde94Sda73024 7790bcde94Sda73024 /* PLATFORM-SPECIFIC FEATURES */ 7890bcde94Sda73024 #define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */ 7990bcde94Sda73024 #define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */ 8090bcde94Sda73024 #define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN 8190bcde94Sda73024 #define AES_REV_DKS /* define to reverse decryption key schedule */ 8290bcde94Sda73024 8390bcde94Sda73024 8490bcde94Sda73024 /* 8590bcde94Sda73024 * CONFIGURATION - THE USE OF DEFINES 8690bcde94Sda73024 * Later in this section there are a number of defines that control the 8790bcde94Sda73024 * operation of the code. In each section, the purpose of each define is 8890bcde94Sda73024 * explained so that the relevant form can be included or excluded by 8990bcde94Sda73024 * setting either 1's or 0's respectively on the branches of the related 9090bcde94Sda73024 * #if clauses. The following local defines should not be changed. 9190bcde94Sda73024 */ 9290bcde94Sda73024 9390bcde94Sda73024 #define ENCRYPTION_IN_C 1 9490bcde94Sda73024 #define DECRYPTION_IN_C 2 9590bcde94Sda73024 #define ENC_KEYING_IN_C 4 9690bcde94Sda73024 #define DEC_KEYING_IN_C 8 9790bcde94Sda73024 9890bcde94Sda73024 #define NO_TABLES 0 9990bcde94Sda73024 #define ONE_TABLE 1 10090bcde94Sda73024 #define FOUR_TABLES 4 10190bcde94Sda73024 #define NONE 0 10290bcde94Sda73024 #define PARTIAL 1 10390bcde94Sda73024 #define FULL 2 10490bcde94Sda73024 10590bcde94Sda73024 /* --- START OF USER CONFIGURED OPTIONS --- */ 10690bcde94Sda73024 10790bcde94Sda73024 /* 10890bcde94Sda73024 * 1. BYTE ORDER WITHIN 32 BIT WORDS 10990bcde94Sda73024 * 11090bcde94Sda73024 * The fundamental data processing units in Rijndael are 8-bit bytes. The 11190bcde94Sda73024 * input, output and key input are all enumerated arrays of bytes in which 11290bcde94Sda73024 * bytes are numbered starting at zero and increasing to one less than the 11390bcde94Sda73024 * number of bytes in the array in question. This enumeration is only used 11490bcde94Sda73024 * for naming bytes and does not imply any adjacency or order relationship 11590bcde94Sda73024 * from one byte to another. When these inputs and outputs are considered 11690bcde94Sda73024 * as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to 11790bcde94Sda73024 * byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte. 11890bcde94Sda73024 * In this implementation bits are numbered from 0 to 7 starting at the 11990bcde94Sda73024 * numerically least significant end of each byte. Bit n represents 2^n. 12090bcde94Sda73024 * 12190bcde94Sda73024 * However, Rijndael can be implemented more efficiently using 32-bit 12290bcde94Sda73024 * words by packing bytes into words so that bytes 4*n to 4*n+3 are placed 12390bcde94Sda73024 * into word[n]. While in principle these bytes can be assembled into words 12490bcde94Sda73024 * in any positions, this implementation only supports the two formats in 12590bcde94Sda73024 * which bytes in adjacent positions within words also have adjacent byte 12690bcde94Sda73024 * numbers. This order is called big-endian if the lowest numbered bytes 12790bcde94Sda73024 * in words have the highest numeric significance and little-endian if the 12890bcde94Sda73024 * opposite applies. 12990bcde94Sda73024 * 13090bcde94Sda73024 * This code can work in either order irrespective of the order used by the 13190bcde94Sda73024 * machine on which it runs. Normally the internal byte order will be set 13290bcde94Sda73024 * to the order of the processor on which the code is to be run but this 13390bcde94Sda73024 * define can be used to reverse this in special situations 13490bcde94Sda73024 * 13590bcde94Sda73024 * WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set. 13690bcde94Sda73024 * This define will hence be redefined later (in section 4) if necessary 13790bcde94Sda73024 */ 13890bcde94Sda73024 13990bcde94Sda73024 #if 1 14090bcde94Sda73024 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER 14190bcde94Sda73024 #elif 0 14290bcde94Sda73024 #define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN 14390bcde94Sda73024 #elif 0 14490bcde94Sda73024 #define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN 14590bcde94Sda73024 #else 14690bcde94Sda73024 #error The algorithm byte order is not defined 14790bcde94Sda73024 #endif 14890bcde94Sda73024 14990bcde94Sda73024 /* 2. VIA ACE SUPPORT */ 15090bcde94Sda73024 15190bcde94Sda73024 #if defined(__GNUC__) && defined(__i386__) || \ 15290bcde94Sda73024 defined(_WIN32) && defined(_M_IX86) && \ 15390bcde94Sda73024 !(defined(_WIN64) || defined(_WIN32_WCE) || \ 15490bcde94Sda73024 defined(_MSC_VER) && (_MSC_VER <= 800)) 15590bcde94Sda73024 #define VIA_ACE_POSSIBLE 15690bcde94Sda73024 #endif 15790bcde94Sda73024 15890bcde94Sda73024 /* 15990bcde94Sda73024 * Define this option if support for the VIA ACE is required. This uses 16090bcde94Sda73024 * inline assembler instructions and is only implemented for the Microsoft, 16190bcde94Sda73024 * Intel and GCC compilers. If VIA ACE is known to be present, then defining 16290bcde94Sda73024 * ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption 16390bcde94Sda73024 * code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if 16490bcde94Sda73024 * it is detected (both present and enabled) but the normal AES code will 16590bcde94Sda73024 * also be present. 16690bcde94Sda73024 * 16790bcde94Sda73024 * When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte 16890bcde94Sda73024 * aligned; other input/output buffers do not need to be 16 byte aligned 16990bcde94Sda73024 * but there are very large performance gains if this can be arranged. 17090bcde94Sda73024 * VIA ACE also requires the decryption key schedule to be in reverse 17190bcde94Sda73024 * order (which later checks below ensure). 17290bcde94Sda73024 */ 17390bcde94Sda73024 17490bcde94Sda73024 /* VIA ACE is not used here for OpenSolaris: */ 17590bcde94Sda73024 #undef VIA_ACE_POSSIBLE 17690bcde94Sda73024 #undef ASSUME_VIA_ACE_PRESENT 17790bcde94Sda73024 17890bcde94Sda73024 #if 0 && defined(VIA_ACE_POSSIBLE) && !defined(USE_VIA_ACE_IF_PRESENT) 17990bcde94Sda73024 #define USE_VIA_ACE_IF_PRESENT 18090bcde94Sda73024 #endif 18190bcde94Sda73024 18290bcde94Sda73024 #if 0 && defined(VIA_ACE_POSSIBLE) && !defined(ASSUME_VIA_ACE_PRESENT) 18390bcde94Sda73024 #define ASSUME_VIA_ACE_PRESENT 18490bcde94Sda73024 #endif 18590bcde94Sda73024 18690bcde94Sda73024 18790bcde94Sda73024 /* 18890bcde94Sda73024 * 3. ASSEMBLER SUPPORT 18990bcde94Sda73024 * 19090bcde94Sda73024 * This define (which can be on the command line) enables the use of the 19190bcde94Sda73024 * assembler code routines for encryption, decryption and key scheduling 19290bcde94Sda73024 * as follows: 19390bcde94Sda73024 * 19490bcde94Sda73024 * ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for 19590bcde94Sda73024 * encryption and decryption and but with key scheduling in C 19690bcde94Sda73024 * ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for 19790bcde94Sda73024 * encryption, decryption and key scheduling 19890bcde94Sda73024 * ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for 19990bcde94Sda73024 * encryption and decryption and but with key scheduling in C 20090bcde94Sda73024 * ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for 20190bcde94Sda73024 * encryption and decryption and but with key scheduling in C 20290bcde94Sda73024 * 20390bcde94Sda73024 * Change one 'if 0' below to 'if 1' to select the version or define 20490bcde94Sda73024 * as a compilation option. 20590bcde94Sda73024 */ 20690bcde94Sda73024 20790bcde94Sda73024 #if 0 && !defined(ASM_X86_V1C) 20890bcde94Sda73024 #define ASM_X86_V1C 20990bcde94Sda73024 #elif 0 && !defined(ASM_X86_V2) 21090bcde94Sda73024 #define ASM_X86_V2 21190bcde94Sda73024 #elif 0 && !defined(ASM_X86_V2C) 21290bcde94Sda73024 #define ASM_X86_V2C 21390bcde94Sda73024 #elif 1 && !defined(ASM_AMD64_C) 21490bcde94Sda73024 #define ASM_AMD64_C 21590bcde94Sda73024 #endif 21690bcde94Sda73024 21790bcde94Sda73024 #if (defined(ASM_X86_V1C) || defined(ASM_X86_V2) || defined(ASM_X86_V2C)) && \ 21890bcde94Sda73024 !defined(_M_IX86) || defined(ASM_AMD64_C) && !defined(_M_X64) && \ 21990bcde94Sda73024 !defined(__amd64) 22090bcde94Sda73024 #error Assembler code is only available for x86 and AMD64 systems 22190bcde94Sda73024 #endif 22290bcde94Sda73024 22390bcde94Sda73024 /* 22490bcde94Sda73024 * 4. FAST INPUT/OUTPUT OPERATIONS. 22590bcde94Sda73024 * 22690bcde94Sda73024 * On some machines it is possible to improve speed by transferring the 22790bcde94Sda73024 * bytes in the input and output arrays to and from the internal 32-bit 22890bcde94Sda73024 * variables by addressing these arrays as if they are arrays of 32-bit 22990bcde94Sda73024 * words. On some machines this will always be possible but there may 23090bcde94Sda73024 * be a large performance penalty if the byte arrays are not aligned on 23190bcde94Sda73024 * the normal word boundaries. On other machines this technique will 23290bcde94Sda73024 * lead to memory access errors when such 32-bit word accesses are not 23390bcde94Sda73024 * properly aligned. The option SAFE_IO avoids such problems but will 23490bcde94Sda73024 * often be slower on those machines that support misaligned access 23590bcde94Sda73024 * (especially so if care is taken to align the input and output byte 23690bcde94Sda73024 * arrays on 32-bit word boundaries). If SAFE_IO is not defined it is 23790bcde94Sda73024 * assumed that access to byte arrays as if they are arrays of 32-bit 23890bcde94Sda73024 * words will not cause problems when such accesses are misaligned. 23990bcde94Sda73024 */ 24090bcde94Sda73024 #if 1 && !defined(_MSC_VER) 24190bcde94Sda73024 #define SAFE_IO 24290bcde94Sda73024 #endif 24390bcde94Sda73024 24490bcde94Sda73024 /* 24590bcde94Sda73024 * 5. LOOP UNROLLING 24690bcde94Sda73024 * 24790bcde94Sda73024 * The code for encryption and decryption cycles through a number of rounds 24890bcde94Sda73024 * that can be implemented either in a loop or by expanding the code into a 24990bcde94Sda73024 * long sequence of instructions, the latter producing a larger program but 25090bcde94Sda73024 * one that will often be much faster. The latter is called loop unrolling. 25190bcde94Sda73024 * There are also potential speed advantages in expanding two iterations in 25290bcde94Sda73024 * a loop with half the number of iterations, which is called partial loop 25390bcde94Sda73024 * unrolling. The following options allow partial or full loop unrolling 25490bcde94Sda73024 * to be set independently for encryption and decryption 25590bcde94Sda73024 */ 25690bcde94Sda73024 #if 1 25790bcde94Sda73024 #define ENC_UNROLL FULL 25890bcde94Sda73024 #elif 0 25990bcde94Sda73024 #define ENC_UNROLL PARTIAL 26090bcde94Sda73024 #else 26190bcde94Sda73024 #define ENC_UNROLL NONE 26290bcde94Sda73024 #endif 26390bcde94Sda73024 26490bcde94Sda73024 #if 1 26590bcde94Sda73024 #define DEC_UNROLL FULL 26690bcde94Sda73024 #elif 0 26790bcde94Sda73024 #define DEC_UNROLL PARTIAL 26890bcde94Sda73024 #else 26990bcde94Sda73024 #define DEC_UNROLL NONE 27090bcde94Sda73024 #endif 27190bcde94Sda73024 27290bcde94Sda73024 #if 1 27390bcde94Sda73024 #define ENC_KS_UNROLL 27490bcde94Sda73024 #endif 27590bcde94Sda73024 27690bcde94Sda73024 #if 1 27790bcde94Sda73024 #define DEC_KS_UNROLL 27890bcde94Sda73024 #endif 27990bcde94Sda73024 28090bcde94Sda73024 /* 28190bcde94Sda73024 * 6. FAST FINITE FIELD OPERATIONS 28290bcde94Sda73024 * 28390bcde94Sda73024 * If this section is included, tables are used to provide faster finite 28490bcde94Sda73024 * field arithmetic. This has no effect if FIXED_TABLES is defined. 28590bcde94Sda73024 */ 28690bcde94Sda73024 #if 1 28790bcde94Sda73024 #define FF_TABLES 28890bcde94Sda73024 #endif 28990bcde94Sda73024 29090bcde94Sda73024 /* 29190bcde94Sda73024 * 7. INTERNAL STATE VARIABLE FORMAT 29290bcde94Sda73024 * 29390bcde94Sda73024 * The internal state of Rijndael is stored in a number of local 32-bit 29490bcde94Sda73024 * word variables which can be defined either as an array or as individual 29590bcde94Sda73024 * names variables. Include this section if you want to store these local 29690bcde94Sda73024 * variables in arrays. Otherwise individual local variables will be used. 29790bcde94Sda73024 */ 29890bcde94Sda73024 #if 1 29990bcde94Sda73024 #define ARRAYS 30090bcde94Sda73024 #endif 30190bcde94Sda73024 30290bcde94Sda73024 /* 30390bcde94Sda73024 * 8. FIXED OR DYNAMIC TABLES 30490bcde94Sda73024 * 30590bcde94Sda73024 * When this section is included the tables used by the code are compiled 30690bcde94Sda73024 * statically into the binary file. Otherwise the subroutine aes_init() 30790bcde94Sda73024 * must be called to compute them before the code is first used. 30890bcde94Sda73024 */ 30990bcde94Sda73024 #if 1 && !(defined(_MSC_VER) && (_MSC_VER <= 800)) 31090bcde94Sda73024 #define FIXED_TABLES 31190bcde94Sda73024 #endif 31290bcde94Sda73024 31390bcde94Sda73024 /* 31490bcde94Sda73024 * 9. MASKING OR CASTING FROM LONGER VALUES TO BYTES 31590bcde94Sda73024 * 31690bcde94Sda73024 * In some systems it is better to mask longer values to extract bytes 31790bcde94Sda73024 * rather than using a cast. This option allows this choice. 31890bcde94Sda73024 */ 31990bcde94Sda73024 #if 0 32090bcde94Sda73024 #define to_byte(x) ((uint8_t)(x)) 32190bcde94Sda73024 #else 32290bcde94Sda73024 #define to_byte(x) ((x) & 0xff) 32390bcde94Sda73024 #endif 32490bcde94Sda73024 32590bcde94Sda73024 /* 32690bcde94Sda73024 * 10. TABLE ALIGNMENT 32790bcde94Sda73024 * 32890bcde94Sda73024 * On some systems speed will be improved by aligning the AES large lookup 32990bcde94Sda73024 * tables on particular boundaries. This define should be set to a power of 33090bcde94Sda73024 * two giving the desired alignment. It can be left undefined if alignment 33190bcde94Sda73024 * is not needed. This option is specific to the Micrsoft VC++ compiler - 33290bcde94Sda73024 * it seems to sometimes cause trouble for the VC++ version 6 compiler. 33390bcde94Sda73024 */ 33490bcde94Sda73024 33590bcde94Sda73024 #if 1 && defined(_MSC_VER) && (_MSC_VER >= 1300) 33690bcde94Sda73024 #define TABLE_ALIGN 32 33790bcde94Sda73024 #endif 33890bcde94Sda73024 33990bcde94Sda73024 /* 34090bcde94Sda73024 * 11. REDUCE CODE AND TABLE SIZE 34190bcde94Sda73024 * 34290bcde94Sda73024 * This replaces some expanded macros with function calls if AES_ASM_V2 or 34390bcde94Sda73024 * AES_ASM_V2C are defined 34490bcde94Sda73024 */ 34590bcde94Sda73024 34690bcde94Sda73024 #if 1 && (defined(ASM_X86_V2) || defined(ASM_X86_V2C)) 34790bcde94Sda73024 #define REDUCE_CODE_SIZE 34890bcde94Sda73024 #endif 34990bcde94Sda73024 35090bcde94Sda73024 /* 35190bcde94Sda73024 * 12. TABLE OPTIONS 35290bcde94Sda73024 * 35390bcde94Sda73024 * This cipher proceeds by repeating in a number of cycles known as rounds 35490bcde94Sda73024 * which are implemented by a round function which is optionally be speeded 35590bcde94Sda73024 * up using tables. The basic tables are 256 32-bit words, with either 35690bcde94Sda73024 * one or four tables being required for each round function depending on 35790bcde94Sda73024 * how much speed is required. Encryption and decryption round functions 35890bcde94Sda73024 * are different and the last encryption and decryption round functions are 35990bcde94Sda73024 * different again making four different round functions in all. 36090bcde94Sda73024 * 36190bcde94Sda73024 * This means that: 36290bcde94Sda73024 * 1. Normal encryption and decryption rounds can each use either 0, 1 36390bcde94Sda73024 * or 4 tables and table spaces of 0, 1024 or 4096 bytes each. 36490bcde94Sda73024 * 2. The last encryption and decryption rounds can also use either 0, 1 36590bcde94Sda73024 * or 4 tables and table spaces of 0, 1024 or 4096 bytes each. 36690bcde94Sda73024 * 36790bcde94Sda73024 * Include or exclude the appropriate definitions below to set the number 36890bcde94Sda73024 * of tables used by this implementation. 36990bcde94Sda73024 */ 37090bcde94Sda73024 37190bcde94Sda73024 #if 1 /* set tables for the normal encryption round */ 37290bcde94Sda73024 #define ENC_ROUND FOUR_TABLES 37390bcde94Sda73024 #elif 0 37490bcde94Sda73024 #define ENC_ROUND ONE_TABLE 37590bcde94Sda73024 #else 37690bcde94Sda73024 #define ENC_ROUND NO_TABLES 37790bcde94Sda73024 #endif 37890bcde94Sda73024 37990bcde94Sda73024 #if 1 /* set tables for the last encryption round */ 38090bcde94Sda73024 #define LAST_ENC_ROUND FOUR_TABLES 38190bcde94Sda73024 #elif 0 38290bcde94Sda73024 #define LAST_ENC_ROUND ONE_TABLE 38390bcde94Sda73024 #else 38490bcde94Sda73024 #define LAST_ENC_ROUND NO_TABLES 38590bcde94Sda73024 #endif 38690bcde94Sda73024 38790bcde94Sda73024 #if 1 /* set tables for the normal decryption round */ 38890bcde94Sda73024 #define DEC_ROUND FOUR_TABLES 38990bcde94Sda73024 #elif 0 39090bcde94Sda73024 #define DEC_ROUND ONE_TABLE 39190bcde94Sda73024 #else 39290bcde94Sda73024 #define DEC_ROUND NO_TABLES 39390bcde94Sda73024 #endif 39490bcde94Sda73024 39590bcde94Sda73024 #if 1 /* set tables for the last decryption round */ 39690bcde94Sda73024 #define LAST_DEC_ROUND FOUR_TABLES 39790bcde94Sda73024 #elif 0 39890bcde94Sda73024 #define LAST_DEC_ROUND ONE_TABLE 39990bcde94Sda73024 #else 40090bcde94Sda73024 #define LAST_DEC_ROUND NO_TABLES 40190bcde94Sda73024 #endif 40290bcde94Sda73024 40390bcde94Sda73024 /* 40490bcde94Sda73024 * The decryption key schedule can be speeded up with tables in the same 40590bcde94Sda73024 * way that the round functions can. Include or exclude the following 40690bcde94Sda73024 * defines to set this requirement. 40790bcde94Sda73024 */ 40890bcde94Sda73024 #if 1 40990bcde94Sda73024 #define KEY_SCHED FOUR_TABLES 41090bcde94Sda73024 #elif 0 41190bcde94Sda73024 #define KEY_SCHED ONE_TABLE 41290bcde94Sda73024 #else 41390bcde94Sda73024 #define KEY_SCHED NO_TABLES 41490bcde94Sda73024 #endif 41590bcde94Sda73024 41690bcde94Sda73024 /* ---- END OF USER CONFIGURED OPTIONS ---- */ 41790bcde94Sda73024 41890bcde94Sda73024 /* VIA ACE support is only available for VC++ and GCC */ 41990bcde94Sda73024 42090bcde94Sda73024 #if !defined(_MSC_VER) && !defined(__GNUC__) 42190bcde94Sda73024 #if defined(ASSUME_VIA_ACE_PRESENT) 42290bcde94Sda73024 #undef ASSUME_VIA_ACE_PRESENT 42390bcde94Sda73024 #endif 42490bcde94Sda73024 #if defined(USE_VIA_ACE_IF_PRESENT) 42590bcde94Sda73024 #undef USE_VIA_ACE_IF_PRESENT 42690bcde94Sda73024 #endif 42790bcde94Sda73024 #endif 42890bcde94Sda73024 42990bcde94Sda73024 #if defined(ASSUME_VIA_ACE_PRESENT) && !defined(USE_VIA_ACE_IF_PRESENT) 43090bcde94Sda73024 #define USE_VIA_ACE_IF_PRESENT 43190bcde94Sda73024 #endif 43290bcde94Sda73024 43390bcde94Sda73024 #if defined(USE_VIA_ACE_IF_PRESENT) && !defined(AES_REV_DKS) 43490bcde94Sda73024 #define AES_REV_DKS 43590bcde94Sda73024 #endif 43690bcde94Sda73024 43790bcde94Sda73024 /* Assembler support requires the use of platform byte order */ 43890bcde94Sda73024 43990bcde94Sda73024 #if (defined(ASM_X86_V1C) || defined(ASM_X86_V2C) || defined(ASM_AMD64_C)) && \ 44090bcde94Sda73024 (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER) 44190bcde94Sda73024 #undef ALGORITHM_BYTE_ORDER 44290bcde94Sda73024 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER 44390bcde94Sda73024 #endif 44490bcde94Sda73024 44590bcde94Sda73024 /* 44690bcde94Sda73024 * In this implementation the columns of the state array are each held in 44790bcde94Sda73024 * 32-bit words. The state array can be held in various ways: in an array 44890bcde94Sda73024 * of words, in a number of individual word variables or in a number of 44990bcde94Sda73024 * processor registers. The following define maps a variable name x and 45090bcde94Sda73024 * a column number c to the way the state array variable is to be held. 45190bcde94Sda73024 * The first define below maps the state into an array x[c] whereas the 45290bcde94Sda73024 * second form maps the state into a number of individual variables x0, 45390bcde94Sda73024 * x1, etc. Another form could map individual state columns to machine 45490bcde94Sda73024 * register names. 45590bcde94Sda73024 */ 45690bcde94Sda73024 45790bcde94Sda73024 #if defined(ARRAYS) 45890bcde94Sda73024 #define s(x, c) x[c] 45990bcde94Sda73024 #else 46090bcde94Sda73024 #define s(x, c) x##c 46190bcde94Sda73024 #endif 46290bcde94Sda73024 46390bcde94Sda73024 /* 46490bcde94Sda73024 * This implementation provides subroutines for encryption, decryption 46590bcde94Sda73024 * and for setting the three key lengths (separately) for encryption 46690bcde94Sda73024 * and decryption. Since not all functions are needed, masks are set 46790bcde94Sda73024 * up here to determine which will be implemented in C 46890bcde94Sda73024 */ 46990bcde94Sda73024 47090bcde94Sda73024 #if !defined(AES_ENCRYPT) 47190bcde94Sda73024 #define EFUNCS_IN_C 0 47290bcde94Sda73024 #elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \ 47390bcde94Sda73024 defined(ASM_X86_V2C) || defined(ASM_AMD64_C) 47490bcde94Sda73024 #define EFUNCS_IN_C ENC_KEYING_IN_C 47590bcde94Sda73024 #elif !defined(ASM_X86_V2) 47690bcde94Sda73024 #define EFUNCS_IN_C (ENCRYPTION_IN_C | ENC_KEYING_IN_C) 47790bcde94Sda73024 #else 47890bcde94Sda73024 #define EFUNCS_IN_C 0 47990bcde94Sda73024 #endif 48090bcde94Sda73024 48190bcde94Sda73024 #if !defined(AES_DECRYPT) 48290bcde94Sda73024 #define DFUNCS_IN_C 0 48390bcde94Sda73024 #elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \ 48490bcde94Sda73024 defined(ASM_X86_V2C) || defined(ASM_AMD64_C) 48590bcde94Sda73024 #define DFUNCS_IN_C DEC_KEYING_IN_C 48690bcde94Sda73024 #elif !defined(ASM_X86_V2) 48790bcde94Sda73024 #define DFUNCS_IN_C (DECRYPTION_IN_C | DEC_KEYING_IN_C) 48890bcde94Sda73024 #else 48990bcde94Sda73024 #define DFUNCS_IN_C 0 49090bcde94Sda73024 #endif 49190bcde94Sda73024 49290bcde94Sda73024 #define FUNCS_IN_C (EFUNCS_IN_C | DFUNCS_IN_C) 49390bcde94Sda73024 49490bcde94Sda73024 /* END OF CONFIGURATION OPTIONS */ 49590bcde94Sda73024 49690bcde94Sda73024 /* Disable or report errors on some combinations of options */ 49790bcde94Sda73024 49890bcde94Sda73024 #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES 49990bcde94Sda73024 #undef LAST_ENC_ROUND 50090bcde94Sda73024 #define LAST_ENC_ROUND NO_TABLES 50190bcde94Sda73024 #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES 50290bcde94Sda73024 #undef LAST_ENC_ROUND 50390bcde94Sda73024 #define LAST_ENC_ROUND ONE_TABLE 50490bcde94Sda73024 #endif 50590bcde94Sda73024 50690bcde94Sda73024 #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE 50790bcde94Sda73024 #undef ENC_UNROLL 50890bcde94Sda73024 #define ENC_UNROLL NONE 50990bcde94Sda73024 #endif 51090bcde94Sda73024 51190bcde94Sda73024 #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES 51290bcde94Sda73024 #undef LAST_DEC_ROUND 51390bcde94Sda73024 #define LAST_DEC_ROUND NO_TABLES 51490bcde94Sda73024 #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES 51590bcde94Sda73024 #undef LAST_DEC_ROUND 51690bcde94Sda73024 #define LAST_DEC_ROUND ONE_TABLE 51790bcde94Sda73024 #endif 51890bcde94Sda73024 51990bcde94Sda73024 #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE 52090bcde94Sda73024 #undef DEC_UNROLL 52190bcde94Sda73024 #define DEC_UNROLL NONE 52290bcde94Sda73024 #endif 52390bcde94Sda73024 524*4b56a003SDaniel Anderson #if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN) 525*4b56a003SDaniel Anderson #define aes_sw32 htonl 526*4b56a003SDaniel Anderson #elif defined(bswap32) 52790bcde94Sda73024 #define aes_sw32 bswap32 52890bcde94Sda73024 #elif defined(bswap_32) 52990bcde94Sda73024 #define aes_sw32 bswap_32 53090bcde94Sda73024 #else 531*4b56a003SDaniel Anderson #define brot(x, n) (((uint32_t)(x) << (n)) | ((uint32_t)(x) >> (32 - (n)))) 53290bcde94Sda73024 #define aes_sw32(x) ((brot((x), 8) & 0x00ff00ff) | (brot((x), 24) & 0xff00ff00)) 53390bcde94Sda73024 #endif 53490bcde94Sda73024 535*4b56a003SDaniel Anderson 53690bcde94Sda73024 /* 53790bcde94Sda73024 * upr(x, n): rotates bytes within words by n positions, moving bytes to 53890bcde94Sda73024 * higher index positions with wrap around into low positions 53990bcde94Sda73024 * ups(x, n): moves bytes by n positions to higher index positions in 54090bcde94Sda73024 * words but without wrap around 54190bcde94Sda73024 * bval(x, n): extracts a byte from a word 54290bcde94Sda73024 * 54390bcde94Sda73024 * WARNING: The definitions given here are intended only for use with 54490bcde94Sda73024 * unsigned variables and with shift counts that are compile 54590bcde94Sda73024 * time constants 54690bcde94Sda73024 */ 54790bcde94Sda73024 54890bcde94Sda73024 #if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN) 54990bcde94Sda73024 #define upr(x, n) (((uint32_t)(x) << (8 * (n))) | \ 55090bcde94Sda73024 ((uint32_t)(x) >> (32 - 8 * (n)))) 55190bcde94Sda73024 #define ups(x, n) ((uint32_t)(x) << (8 * (n))) 55290bcde94Sda73024 #define bval(x, n) to_byte((x) >> (8 * (n))) 55390bcde94Sda73024 #define bytes2word(b0, b1, b2, b3) \ 55490bcde94Sda73024 (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | \ 55590bcde94Sda73024 ((uint32_t)(b1) << 8) | (b0)) 55690bcde94Sda73024 #endif 55790bcde94Sda73024 55890bcde94Sda73024 #if (ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN) 55990bcde94Sda73024 #define upr(x, n) (((uint32_t)(x) >> (8 * (n))) | \ 56090bcde94Sda73024 ((uint32_t)(x) << (32 - 8 * (n)))) 56190bcde94Sda73024 #define ups(x, n) ((uint32_t)(x) >> (8 * (n))) 56290bcde94Sda73024 #define bval(x, n) to_byte((x) >> (24 - 8 * (n))) 56390bcde94Sda73024 #define bytes2word(b0, b1, b2, b3) \ 56490bcde94Sda73024 (((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | \ 56590bcde94Sda73024 ((uint32_t)(b2) << 8) | (b3)) 56690bcde94Sda73024 #endif 56790bcde94Sda73024 56890bcde94Sda73024 #if defined(SAFE_IO) 56990bcde94Sda73024 #define word_in(x, c) bytes2word(((const uint8_t *)(x) + 4 * c)[0], \ 57090bcde94Sda73024 ((const uint8_t *)(x) + 4 * c)[1], \ 57190bcde94Sda73024 ((const uint8_t *)(x) + 4 * c)[2], \ 57290bcde94Sda73024 ((const uint8_t *)(x) + 4 * c)[3]) 57390bcde94Sda73024 #define word_out(x, c, v) { ((uint8_t *)(x) + 4 * c)[0] = bval(v, 0); \ 57490bcde94Sda73024 ((uint8_t *)(x) + 4 * c)[1] = bval(v, 1); \ 57590bcde94Sda73024 ((uint8_t *)(x) + 4 * c)[2] = bval(v, 2); \ 57690bcde94Sda73024 ((uint8_t *)(x) + 4 * c)[3] = bval(v, 3); } 57790bcde94Sda73024 #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER) 57890bcde94Sda73024 #define word_in(x, c) (*((uint32_t *)(x) + (c))) 57990bcde94Sda73024 #define word_out(x, c, v) (*((uint32_t *)(x) + (c)) = (v)) 58090bcde94Sda73024 #else 58190bcde94Sda73024 #define word_in(x, c) aes_sw32(*((uint32_t *)(x) + (c))) 58290bcde94Sda73024 #define word_out(x, c, v) (*((uint32_t *)(x) + (c)) = aes_sw32(v)) 58390bcde94Sda73024 #endif 58490bcde94Sda73024 58590bcde94Sda73024 /* the finite field modular polynomial and elements */ 58690bcde94Sda73024 58790bcde94Sda73024 #define WPOLY 0x011b 58890bcde94Sda73024 #define BPOLY 0x1b 58990bcde94Sda73024 59090bcde94Sda73024 /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ 59190bcde94Sda73024 59290bcde94Sda73024 #define m1 0x80808080 59390bcde94Sda73024 #define m2 0x7f7f7f7f 59490bcde94Sda73024 #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY)) 59590bcde94Sda73024 59690bcde94Sda73024 /* 59790bcde94Sda73024 * The following defines provide alternative definitions of gf_mulx that might 59890bcde94Sda73024 * give improved performance if a fast 32-bit multiply is not available. Note 59990bcde94Sda73024 * that a temporary variable u needs to be defined where gf_mulx is used. 60090bcde94Sda73024 * 60190bcde94Sda73024 * #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ \ 60290bcde94Sda73024 * ((u >> 3) | (u >> 6)) 60390bcde94Sda73024 * #define m4 (0x01010101 * BPOLY) 60490bcde94Sda73024 * #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) \ 60590bcde94Sda73024 * & m4) 60690bcde94Sda73024 */ 60790bcde94Sda73024 60890bcde94Sda73024 /* Work out which tables are needed for the different options */ 60990bcde94Sda73024 61090bcde94Sda73024 #if defined(ASM_X86_V1C) 61190bcde94Sda73024 #if defined(ENC_ROUND) 61290bcde94Sda73024 #undef ENC_ROUND 61390bcde94Sda73024 #endif 61490bcde94Sda73024 #define ENC_ROUND FOUR_TABLES 61590bcde94Sda73024 #if defined(LAST_ENC_ROUND) 61690bcde94Sda73024 #undef LAST_ENC_ROUND 61790bcde94Sda73024 #endif 61890bcde94Sda73024 #define LAST_ENC_ROUND FOUR_TABLES 61990bcde94Sda73024 #if defined(DEC_ROUND) 62090bcde94Sda73024 #undef DEC_ROUND 62190bcde94Sda73024 #endif 62290bcde94Sda73024 #define DEC_ROUND FOUR_TABLES 62390bcde94Sda73024 #if defined(LAST_DEC_ROUND) 62490bcde94Sda73024 #undef LAST_DEC_ROUND 62590bcde94Sda73024 #endif 62690bcde94Sda73024 #define LAST_DEC_ROUND FOUR_TABLES 62790bcde94Sda73024 #if defined(KEY_SCHED) 62890bcde94Sda73024 #undef KEY_SCHED 62990bcde94Sda73024 #define KEY_SCHED FOUR_TABLES 63090bcde94Sda73024 #endif 63190bcde94Sda73024 #endif 63290bcde94Sda73024 63390bcde94Sda73024 #if (FUNCS_IN_C & ENCRYPTION_IN_C) || defined(ASM_X86_V1C) 63490bcde94Sda73024 #if ENC_ROUND == ONE_TABLE 63590bcde94Sda73024 #define FT1_SET 63690bcde94Sda73024 #elif ENC_ROUND == FOUR_TABLES 63790bcde94Sda73024 #define FT4_SET 63890bcde94Sda73024 #else 63990bcde94Sda73024 #define SBX_SET 64090bcde94Sda73024 #endif 64190bcde94Sda73024 #if LAST_ENC_ROUND == ONE_TABLE 64290bcde94Sda73024 #define FL1_SET 64390bcde94Sda73024 #elif LAST_ENC_ROUND == FOUR_TABLES 64490bcde94Sda73024 #define FL4_SET 64590bcde94Sda73024 #elif !defined(SBX_SET) 64690bcde94Sda73024 #define SBX_SET 64790bcde94Sda73024 #endif 64890bcde94Sda73024 #endif 64990bcde94Sda73024 65090bcde94Sda73024 #if (FUNCS_IN_C & DECRYPTION_IN_C) || defined(ASM_X86_V1C) 65190bcde94Sda73024 #if DEC_ROUND == ONE_TABLE 65290bcde94Sda73024 #define IT1_SET 65390bcde94Sda73024 #elif DEC_ROUND == FOUR_TABLES 65490bcde94Sda73024 #define IT4_SET 65590bcde94Sda73024 #else 65690bcde94Sda73024 #define ISB_SET 65790bcde94Sda73024 #endif 65890bcde94Sda73024 #if LAST_DEC_ROUND == ONE_TABLE 65990bcde94Sda73024 #define IL1_SET 66090bcde94Sda73024 #elif LAST_DEC_ROUND == FOUR_TABLES 66190bcde94Sda73024 #define IL4_SET 66290bcde94Sda73024 #elif !defined(ISB_SET) 66390bcde94Sda73024 #define ISB_SET 66490bcde94Sda73024 #endif 66590bcde94Sda73024 #endif 66690bcde94Sda73024 66790bcde94Sda73024 66890bcde94Sda73024 #if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \ 66990bcde94Sda73024 defined(ASM_X86_V2C))) 67090bcde94Sda73024 #if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)) 67190bcde94Sda73024 #if KEY_SCHED == ONE_TABLE 67290bcde94Sda73024 #if !defined(FL1_SET) && !defined(FL4_SET) 67390bcde94Sda73024 #define LS1_SET 67490bcde94Sda73024 #endif 67590bcde94Sda73024 #elif KEY_SCHED == FOUR_TABLES 67690bcde94Sda73024 #if !defined(FL4_SET) 67790bcde94Sda73024 #define LS4_SET 67890bcde94Sda73024 #endif 67990bcde94Sda73024 #elif !defined(SBX_SET) 68090bcde94Sda73024 #define SBX_SET 68190bcde94Sda73024 #endif 68290bcde94Sda73024 #endif 68390bcde94Sda73024 #if (FUNCS_IN_C & DEC_KEYING_IN_C) 68490bcde94Sda73024 #if KEY_SCHED == ONE_TABLE 68590bcde94Sda73024 #define IM1_SET 68690bcde94Sda73024 #elif KEY_SCHED == FOUR_TABLES 68790bcde94Sda73024 #define IM4_SET 68890bcde94Sda73024 #elif !defined(SBX_SET) 68990bcde94Sda73024 #define SBX_SET 69090bcde94Sda73024 #endif 69190bcde94Sda73024 #endif 69290bcde94Sda73024 #endif 69390bcde94Sda73024 69490bcde94Sda73024 /* generic definitions of Rijndael macros that use tables */ 69590bcde94Sda73024 69690bcde94Sda73024 #define no_table(x, box, vf, rf, c) bytes2word(\ 69790bcde94Sda73024 box[bval(vf(x, 0, c), rf(0, c))], \ 69890bcde94Sda73024 box[bval(vf(x, 1, c), rf(1, c))], \ 69990bcde94Sda73024 box[bval(vf(x, 2, c), rf(2, c))], \ 70090bcde94Sda73024 box[bval(vf(x, 3, c), rf(3, c))]) 70190bcde94Sda73024 70290bcde94Sda73024 #define one_table(x, op, tab, vf, rf, c) \ 70390bcde94Sda73024 (tab[bval(vf(x, 0, c), rf(0, c))] \ 70490bcde94Sda73024 ^ op(tab[bval(vf(x, 1, c), rf(1, c))], 1) \ 70590bcde94Sda73024 ^ op(tab[bval(vf(x, 2, c), rf(2, c))], 2) \ 70690bcde94Sda73024 ^ op(tab[bval(vf(x, 3, c), rf(3, c))], 3)) 70790bcde94Sda73024 70890bcde94Sda73024 #define four_tables(x, tab, vf, rf, c) \ 70990bcde94Sda73024 (tab[0][bval(vf(x, 0, c), rf(0, c))] \ 71090bcde94Sda73024 ^ tab[1][bval(vf(x, 1, c), rf(1, c))] \ 71190bcde94Sda73024 ^ tab[2][bval(vf(x, 2, c), rf(2, c))] \ 71290bcde94Sda73024 ^ tab[3][bval(vf(x, 3, c), rf(3, c))]) 71390bcde94Sda73024 71490bcde94Sda73024 #define vf1(x, r, c) (x) 71590bcde94Sda73024 #define rf1(r, c) (r) 71690bcde94Sda73024 #define rf2(r, c) ((8+r-c)&3) 71790bcde94Sda73024 71890bcde94Sda73024 /* 71990bcde94Sda73024 * Perform forward and inverse column mix operation on four bytes in long word 72090bcde94Sda73024 * x in parallel. NOTE: x must be a simple variable, NOT an expression in 72190bcde94Sda73024 * these macros. 72290bcde94Sda73024 */ 72390bcde94Sda73024 72490bcde94Sda73024 #if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \ 72590bcde94Sda73024 defined(ASM_X86_V2C))) 72690bcde94Sda73024 72790bcde94Sda73024 #if defined(FM4_SET) /* not currently used */ 72890bcde94Sda73024 #define fwd_mcol(x) four_tables(x, t_use(f, m), vf1, rf1, 0) 72990bcde94Sda73024 #elif defined(FM1_SET) /* not currently used */ 73090bcde94Sda73024 #define fwd_mcol(x) one_table(x, upr, t_use(f, m), vf1, rf1, 0) 73190bcde94Sda73024 #else 73290bcde94Sda73024 #define dec_fmvars uint32_t g2 73390bcde94Sda73024 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ \ 73490bcde94Sda73024 upr((x), 2) ^ upr((x), 1)) 73590bcde94Sda73024 #endif 73690bcde94Sda73024 73790bcde94Sda73024 #if defined(IM4_SET) 73890bcde94Sda73024 #define inv_mcol(x) four_tables(x, t_use(i, m), vf1, rf1, 0) 73990bcde94Sda73024 #elif defined(IM1_SET) 74090bcde94Sda73024 #define inv_mcol(x) one_table(x, upr, t_use(i, m), vf1, rf1, 0) 74190bcde94Sda73024 #else 74290bcde94Sda73024 #define dec_imvars uint32_t g2, g4, g9 74390bcde94Sda73024 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = \ 74490bcde94Sda73024 (x) ^ gf_mulx(g4), g4 ^= g9, \ 74590bcde94Sda73024 (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ \ 74690bcde94Sda73024 upr(g4, 2) ^ upr(g9, 1)) 74790bcde94Sda73024 #endif 74890bcde94Sda73024 74990bcde94Sda73024 #if defined(FL4_SET) 75090bcde94Sda73024 #define ls_box(x, c) four_tables(x, t_use(f, l), vf1, rf2, c) 75190bcde94Sda73024 #elif defined(LS4_SET) 75290bcde94Sda73024 #define ls_box(x, c) four_tables(x, t_use(l, s), vf1, rf2, c) 75390bcde94Sda73024 #elif defined(FL1_SET) 75490bcde94Sda73024 #define ls_box(x, c) one_table(x, upr, t_use(f, l), vf1, rf2, c) 75590bcde94Sda73024 #elif defined(LS1_SET) 75690bcde94Sda73024 #define ls_box(x, c) one_table(x, upr, t_use(l, s), vf1, rf2, c) 75790bcde94Sda73024 #else 75890bcde94Sda73024 #define ls_box(x, c) no_table(x, t_use(s, box), vf1, rf2, c) 75990bcde94Sda73024 #endif 76090bcde94Sda73024 76190bcde94Sda73024 #endif 76290bcde94Sda73024 76390bcde94Sda73024 #if defined(ASM_X86_V1C) && defined(AES_DECRYPT) && !defined(ISB_SET) 76490bcde94Sda73024 #define ISB_SET 76590bcde94Sda73024 #endif 76690bcde94Sda73024 76790bcde94Sda73024 #ifdef __cplusplus 76890bcde94Sda73024 } 76990bcde94Sda73024 #endif 77090bcde94Sda73024 77190bcde94Sda73024 #endif /* _AESOPT_H */ 772