xref: /titanic_51/usr/src/common/crypto/aes/amd64/aes_amd64.s (revision db3659e514c8bf3f03bcca6dd082e363bd7b466a)
1/*
2 * ---------------------------------------------------------------------------
3 * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
4 *
5 * LICENSE TERMS
6 *
7 * The free distribution and use of this software is allowed (with or without
8 * changes) provided that:
9 *
10 *  1. source code distributions include the above copyright notice, this
11 *     list of conditions and the following disclaimer;
12 *
13 *  2. binary distributions include the above copyright notice, this list
14 *     of conditions and the following disclaimer in their documentation;
15 *
16 *  3. the name of the copyright holder is not used to endorse products
17 *     built using this software without specific written permission.
18 *
19 * DISCLAIMER
20 *
21 * This software is provided 'as is' with no explicit or implied warranties
22 * in respect of its properties, including, but not limited to, correctness
23 * and/or fitness for purpose.
24 * ---------------------------------------------------------------------------
25 * Issue 20/12/2007
26 *
27 * I am grateful to Dag Arne Osvik for many discussions of the techniques that
28 * can be used to optimise AES assembler code on AMD64/EM64T architectures.
29 * Some of the techniques used in this implementation are the result of
30 * suggestions made by him for which I am most grateful.
31 *
32 * An AES implementation for AMD64 processors using the YASM assembler.  This
33 * implementation provides only encryption, decryption and hence requires key
34 * scheduling support in C. It uses 8k bytes of tables but its encryption and
35 * decryption performance is very close to that obtained using large tables.
36 * It can use either MS Windows or Gnu/Linux/OpenSolaris OS calling conventions,
37 * which are as follows:
38 *               ms windows  gnu/linux/opensolaris os
39 *
40 *   in_blk          rcx     rdi
41 *   out_blk         rdx     rsi
42 *   context (cx)     r8     rdx
43 *
44 *   preserved       rsi      -    + rbx, rbp, rsp, r12, r13, r14 & r15
45 *   registers       rdi      -      on both
46 *
47 *   destroyed        -      rsi   + rax, rcx, rdx, r8, r9, r10 & r11
48 *   registers        -      rdi     on both
49 *
50 * The convention used here is that for gnu/linux/opensolaris os.
51 *
52 * This code provides the standard AES block size (128 bits, 16 bytes) and the
53 * three standard AES key sizes (128, 192 and 256 bits). It has the same call
54 * interface as my C implementation.  It uses the Microsoft C AMD64 calling
55 * conventions in which the three parameters are placed in  rcx, rdx and r8
56 * respectively.  The rbx, rsi, rdi, rbp and r12..r15 registers are preserved.
57 *
58 * OpenSolaris Note:
59 * Modified to use GNU/Linux/Solaris calling conventions.
60 * That is parameters are placed in rdi, rsi, rdx, and rcx, respectively.
61 *
62 *     AES_RETURN aes_encrypt(const unsigned char in_blk[],
63 *                   unsigned char out_blk[], const aes_encrypt_ctx cx[1])/
64 *
65 *     AES_RETURN aes_decrypt(const unsigned char in_blk[],
66 *                   unsigned char out_blk[], const aes_decrypt_ctx cx[1])/
67 *
68 *     AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
69 *                                            const aes_encrypt_ctx cx[1])/
70 *
71 *     AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
72 *                                            const aes_decrypt_ctx cx[1])/
73 *
74 *     AES_RETURN aes_encrypt_key(const unsigned char key[],
75 *                           unsigned int len, const aes_decrypt_ctx cx[1])/
76 *
77 *     AES_RETURN aes_decrypt_key(const unsigned char key[],
78 *                           unsigned int len, const aes_decrypt_ctx cx[1])/
79 *
80 * where <NNN> is 128, 102 or 256.  In the last two calls the length can be in
81 * either bits or bytes.
82 *
83 * Comment in/out the following lines to obtain the desired subroutines. These
84 * selections MUST match those in the C header file aesopt.h
85 */
86#define	AES_REV_DKS	  /* define if key decryption schedule is reversed */
87
88#define	LAST_ROUND_TABLES /* define for the faster version using extra tables */
89
90/*
91 * The encryption key schedule has the following in memory layout where N is the
92 * number of rounds (10, 12 or 14):
93 *
94 * lo: | input key (round 0)  |  / each round is four 32-bit words
95 *     | encryption round 1   |
96 *     | encryption round 2   |
97 *     ....
98 *     | encryption round N-1 |
99 * hi: | encryption round N   |
100 *
101 * The decryption key schedule is normally set up so that it has the same
102 * layout as above by actually reversing the order of the encryption key
103 * schedule in memory (this happens when AES_REV_DKS is set):
104 *
105 * lo: | decryption round 0   | =              | encryption round N   |
106 *     | decryption round 1   | = INV_MIX_COL[ | encryption round N-1 | ]
107 *     | decryption round 2   | = INV_MIX_COL[ | encryption round N-2 | ]
108 *     ....                       ....
109 *     | decryption round N-1 | = INV_MIX_COL[ | encryption round 1   | ]
110 * hi: | decryption round N   | =              | input key (round 0)  |
111 *
112 * with rounds except the first and last modified using inv_mix_column()
113 * But if AES_REV_DKS is NOT set the order of keys is left as it is for
114 * encryption so that it has to be accessed in reverse when used for
115 * decryption (although the inverse mix column modifications are done)
116 *
117 * lo: | decryption round 0   | =              | input key (round 0)  |
118 *     | decryption round 1   | = INV_MIX_COL[ | encryption round 1   | ]
119 *     | decryption round 2   | = INV_MIX_COL[ | encryption round 2   | ]
120 *     ....                       ....
121 *     | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
122 * hi: | decryption round N   | =              | encryption round N   |
123 *
124 * This layout is faster when the assembler key scheduling provided here
125 * is used.
126 *
127 * End of user defines
128 */
129
130/*
131 * ---------------------------------------------------------------------------
132 * OpenSolaris OS modifications
133 *
134 * This source originates from Brian Gladman file aes_amd64.asm
135 * in http://fp.gladman.plus.com/AES/aes-src-04-03-08.zip
136 * with these changes:
137 *
138 * 1. Removed MS Windows-specific code within DLL_EXPORT, _SEH_, and
139 * !__GNUC__ ifdefs.  Also removed ENCRYPTION, DECRYPTION,
140 * AES_128, AES_192, AES_256, AES_VAR ifdefs.
141 *
142 * 2. Translate yasm/nasm %define and .macro definitions to cpp(1) #define
143 *
144 * 3. Translate yasm/nasm %ifdef/%ifndef to cpp(1) #ifdef
145 *
146 * 4. Translate Intel/yasm/nasm syntax to ATT/OpenSolaris as(1) syntax
147 * (operands reversed, literals prefixed with "$", registers prefixed with "%",
148 * and "[register+offset]", addressing changed to "offset(register)",
149 * parenthesis in constant expressions "()" changed to square brackets "[]",
150 * "." removed from  local (numeric) labels, and other changes.
151 * Examples:
152 * Intel/yasm/nasm Syntax	ATT/OpenSolaris Syntax
153 * mov	rax,(4*20h)		mov	$[4*0x20],%rax
154 * mov	rax,[ebx+20h]		mov	0x20(%ebx),%rax
155 * lea	rax,[ebx+ecx]		lea	(%ebx,%ecx),%rax
156 * sub	rax,[ebx+ecx*4-20h]	sub	-0x20(%ebx,%ecx,4),%rax
157 *
158 * 5. Added OpenSolaris ENTRY_NP/SET_SIZE macros from
159 * /usr/include/sys/asm_linkage.h, .ident keywords, and lint(1B) guards.
160 *
161 * 6. Renamed functions and reordered parameters to match OpenSolaris:
162 * Original Gladman interface:
163 *	int aes_encrypt(const unsigned char *in,
164 *		unsigned char *out, const aes_encrypt_ctx cx[1])/
165 *	int aes_decrypt(const unsigned char *in,
166 *		unsigned char *out, const aes_encrypt_ctx cx[1])/
167 * Note: aes_encrypt_ctx contains ks, a 60 element array of uint32_t,
168 * and a union type, inf., containing inf.l, a uint32_t and
169 * inf.b, a 4-element array of uint32_t.  Only b[0] in the array (aka "l") is
170 * used and contains the key schedule length * 16 where key schedule length is
171 * 10, 12, or 14 bytes.
172 *
173 * OpenSolaris OS interface:
174 *	void aes_encrypt_impl(const aes_ks_t *ks, int Nr,
175 *		const uint32_t pt[4], uint32_t ct[4])/
176 *	void aes_decrypt_impl(const aes_ks_t *ks, int Nr,
177 *		const uint32_t pt[4], uint32_t ct[4])/
178 *	typedef union {uint64_t ks64[(MAX_AES_NR + 1) * 4]/
179 *		 uint32_t ks32[(MAX_AES_NR + 1) * 4]/ } aes_ks_t/
180 * Note: ks is the AES key schedule, Nr is number of rounds, pt is plain text,
181 * ct is crypto text, and MAX_AES_NR is 14.
182 * For the x86 64-bit architecture, OpenSolaris OS uses ks32 instead of ks64.
183 */
184
185#if !defined(lint) && !defined(__lint)
186	.ident	"%Z%%M%	%I%	%E% SMI"
187#include <sys/asm_linkage.h>
188
189#define	KS_LENGTH	60
190
191#define	raxd		eax
192#define	rdxd		edx
193#define	rcxd		ecx
194#define	rbxd		ebx
195#define	rsid		esi
196#define	rdid		edi
197
198#define	raxb		al
199#define	rdxb		dl
200#define	rcxb		cl
201#define	rbxb		bl
202#define	rsib		sil
203#define	rdib		dil
204
205/ finite field multiplies by {02}, {04} and {08}
206
207#define	f2(x) [[x<<1]^[[[x>>7]&1]*0x11b]]
208#define	f4(x) [[x<<2]^[[[x>>6]&1]*0x11b]^[[[x>>6]&2]*0x11b]]
209#define	f8(x) [[x<<3]^[[[x>>5]&1]*0x11b]^[[[x>>5]&2]*0x11b]^[[[x>>5]&4]*0x11b]]
210
211/ finite field multiplies required in table generation
212
213#define	f3(x) [[f2(x)] ^ [x]]
214#define	f9(x) [[f8(x)] ^ [x]]
215#define	fb(x) [[f8(x)] ^ [f2(x)] ^ [x]]
216#define	fd(x) [[f8(x)] ^ [f4(x)] ^ [x]]
217#define	fe(x) [[f8(x)] ^ [f4(x)] ^ [f2(x)]]
218
219/ macros for expanding S-box data
220
221#define	u8(x) [f2(x)], [x], [x], [f3(x)], [f2(x)], [x], [x], [f3(x)]
222#define	v8(x) [fe(x)], [f9(x)], [fd(x)], [fb(x)], [fe(x)], [f9(x)], [fd(x)], [x]
223#define	w8(x) [x], 0, 0, 0, [x], 0, 0, 0
224
225#define	enc_vals(x)	\
226   .byte x(0x63),x(0x7c),x(0x77),x(0x7b),x(0xf2),x(0x6b),x(0x6f),x(0xc5); \
227   .byte x(0x30),x(0x01),x(0x67),x(0x2b),x(0xfe),x(0xd7),x(0xab),x(0x76); \
228   .byte x(0xca),x(0x82),x(0xc9),x(0x7d),x(0xfa),x(0x59),x(0x47),x(0xf0); \
229   .byte x(0xad),x(0xd4),x(0xa2),x(0xaf),x(0x9c),x(0xa4),x(0x72),x(0xc0); \
230   .byte x(0xb7),x(0xfd),x(0x93),x(0x26),x(0x36),x(0x3f),x(0xf7),x(0xcc); \
231   .byte x(0x34),x(0xa5),x(0xe5),x(0xf1),x(0x71),x(0xd8),x(0x31),x(0x15); \
232   .byte x(0x04),x(0xc7),x(0x23),x(0xc3),x(0x18),x(0x96),x(0x05),x(0x9a); \
233   .byte x(0x07),x(0x12),x(0x80),x(0xe2),x(0xeb),x(0x27),x(0xb2),x(0x75); \
234   .byte x(0x09),x(0x83),x(0x2c),x(0x1a),x(0x1b),x(0x6e),x(0x5a),x(0xa0); \
235   .byte x(0x52),x(0x3b),x(0xd6),x(0xb3),x(0x29),x(0xe3),x(0x2f),x(0x84); \
236   .byte x(0x53),x(0xd1),x(0x00),x(0xed),x(0x20),x(0xfc),x(0xb1),x(0x5b); \
237   .byte x(0x6a),x(0xcb),x(0xbe),x(0x39),x(0x4a),x(0x4c),x(0x58),x(0xcf); \
238   .byte x(0xd0),x(0xef),x(0xaa),x(0xfb),x(0x43),x(0x4d),x(0x33),x(0x85); \
239   .byte x(0x45),x(0xf9),x(0x02),x(0x7f),x(0x50),x(0x3c),x(0x9f),x(0xa8); \
240   .byte x(0x51),x(0xa3),x(0x40),x(0x8f),x(0x92),x(0x9d),x(0x38),x(0xf5); \
241   .byte x(0xbc),x(0xb6),x(0xda),x(0x21),x(0x10),x(0xff),x(0xf3),x(0xd2); \
242   .byte x(0xcd),x(0x0c),x(0x13),x(0xec),x(0x5f),x(0x97),x(0x44),x(0x17); \
243   .byte x(0xc4),x(0xa7),x(0x7e),x(0x3d),x(0x64),x(0x5d),x(0x19),x(0x73); \
244   .byte x(0x60),x(0x81),x(0x4f),x(0xdc),x(0x22),x(0x2a),x(0x90),x(0x88); \
245   .byte x(0x46),x(0xee),x(0xb8),x(0x14),x(0xde),x(0x5e),x(0x0b),x(0xdb); \
246   .byte x(0xe0),x(0x32),x(0x3a),x(0x0a),x(0x49),x(0x06),x(0x24),x(0x5c); \
247   .byte x(0xc2),x(0xd3),x(0xac),x(0x62),x(0x91),x(0x95),x(0xe4),x(0x79); \
248   .byte x(0xe7),x(0xc8),x(0x37),x(0x6d),x(0x8d),x(0xd5),x(0x4e),x(0xa9); \
249   .byte x(0x6c),x(0x56),x(0xf4),x(0xea),x(0x65),x(0x7a),x(0xae),x(0x08); \
250   .byte x(0xba),x(0x78),x(0x25),x(0x2e),x(0x1c),x(0xa6),x(0xb4),x(0xc6); \
251   .byte x(0xe8),x(0xdd),x(0x74),x(0x1f),x(0x4b),x(0xbd),x(0x8b),x(0x8a); \
252   .byte x(0x70),x(0x3e),x(0xb5),x(0x66),x(0x48),x(0x03),x(0xf6),x(0x0e); \
253   .byte x(0x61),x(0x35),x(0x57),x(0xb9),x(0x86),x(0xc1),x(0x1d),x(0x9e); \
254   .byte x(0xe1),x(0xf8),x(0x98),x(0x11),x(0x69),x(0xd9),x(0x8e),x(0x94); \
255   .byte x(0x9b),x(0x1e),x(0x87),x(0xe9),x(0xce),x(0x55),x(0x28),x(0xdf); \
256   .byte x(0x8c),x(0xa1),x(0x89),x(0x0d),x(0xbf),x(0xe6),x(0x42),x(0x68); \
257   .byte x(0x41),x(0x99),x(0x2d),x(0x0f),x(0xb0),x(0x54),x(0xbb),x(0x16)
258
259#define	dec_vals(x) \
260   .byte x(0x52),x(0x09),x(0x6a),x(0xd5),x(0x30),x(0x36),x(0xa5),x(0x38); \
261   .byte x(0xbf),x(0x40),x(0xa3),x(0x9e),x(0x81),x(0xf3),x(0xd7),x(0xfb); \
262   .byte x(0x7c),x(0xe3),x(0x39),x(0x82),x(0x9b),x(0x2f),x(0xff),x(0x87); \
263   .byte x(0x34),x(0x8e),x(0x43),x(0x44),x(0xc4),x(0xde),x(0xe9),x(0xcb); \
264   .byte x(0x54),x(0x7b),x(0x94),x(0x32),x(0xa6),x(0xc2),x(0x23),x(0x3d); \
265   .byte x(0xee),x(0x4c),x(0x95),x(0x0b),x(0x42),x(0xfa),x(0xc3),x(0x4e); \
266   .byte x(0x08),x(0x2e),x(0xa1),x(0x66),x(0x28),x(0xd9),x(0x24),x(0xb2); \
267   .byte x(0x76),x(0x5b),x(0xa2),x(0x49),x(0x6d),x(0x8b),x(0xd1),x(0x25); \
268   .byte x(0x72),x(0xf8),x(0xf6),x(0x64),x(0x86),x(0x68),x(0x98),x(0x16); \
269   .byte x(0xd4),x(0xa4),x(0x5c),x(0xcc),x(0x5d),x(0x65),x(0xb6),x(0x92); \
270   .byte x(0x6c),x(0x70),x(0x48),x(0x50),x(0xfd),x(0xed),x(0xb9),x(0xda); \
271   .byte x(0x5e),x(0x15),x(0x46),x(0x57),x(0xa7),x(0x8d),x(0x9d),x(0x84); \
272   .byte x(0x90),x(0xd8),x(0xab),x(0x00),x(0x8c),x(0xbc),x(0xd3),x(0x0a); \
273   .byte x(0xf7),x(0xe4),x(0x58),x(0x05),x(0xb8),x(0xb3),x(0x45),x(0x06); \
274   .byte x(0xd0),x(0x2c),x(0x1e),x(0x8f),x(0xca),x(0x3f),x(0x0f),x(0x02); \
275   .byte x(0xc1),x(0xaf),x(0xbd),x(0x03),x(0x01),x(0x13),x(0x8a),x(0x6b); \
276   .byte x(0x3a),x(0x91),x(0x11),x(0x41),x(0x4f),x(0x67),x(0xdc),x(0xea); \
277   .byte x(0x97),x(0xf2),x(0xcf),x(0xce),x(0xf0),x(0xb4),x(0xe6),x(0x73); \
278   .byte x(0x96),x(0xac),x(0x74),x(0x22),x(0xe7),x(0xad),x(0x35),x(0x85); \
279   .byte x(0xe2),x(0xf9),x(0x37),x(0xe8),x(0x1c),x(0x75),x(0xdf),x(0x6e); \
280   .byte x(0x47),x(0xf1),x(0x1a),x(0x71),x(0x1d),x(0x29),x(0xc5),x(0x89); \
281   .byte x(0x6f),x(0xb7),x(0x62),x(0x0e),x(0xaa),x(0x18),x(0xbe),x(0x1b); \
282   .byte x(0xfc),x(0x56),x(0x3e),x(0x4b),x(0xc6),x(0xd2),x(0x79),x(0x20); \
283   .byte x(0x9a),x(0xdb),x(0xc0),x(0xfe),x(0x78),x(0xcd),x(0x5a),x(0xf4); \
284   .byte x(0x1f),x(0xdd),x(0xa8),x(0x33),x(0x88),x(0x07),x(0xc7),x(0x31); \
285   .byte x(0xb1),x(0x12),x(0x10),x(0x59),x(0x27),x(0x80),x(0xec),x(0x5f); \
286   .byte x(0x60),x(0x51),x(0x7f),x(0xa9),x(0x19),x(0xb5),x(0x4a),x(0x0d); \
287   .byte x(0x2d),x(0xe5),x(0x7a),x(0x9f),x(0x93),x(0xc9),x(0x9c),x(0xef); \
288   .byte x(0xa0),x(0xe0),x(0x3b),x(0x4d),x(0xae),x(0x2a),x(0xf5),x(0xb0); \
289   .byte x(0xc8),x(0xeb),x(0xbb),x(0x3c),x(0x83),x(0x53),x(0x99),x(0x61); \
290   .byte x(0x17),x(0x2b),x(0x04),x(0x7e),x(0xba),x(0x77),x(0xd6),x(0x26); \
291   .byte x(0xe1),x(0x69),x(0x14),x(0x63),x(0x55),x(0x21),x(0x0c),x(0x7d)
292
293#define	tptr	%rbp	/* table pointer */
294#define	kptr	%r8	/* key schedule pointer */
295#define	fofs	128	/* adjust offset in key schedule to keep |disp| < 128 */
296#define	fk_ref(x, y)	-16*x+fofs+4*y(kptr)
297
298#ifdef	AES_REV_DKS
299#define	rofs		128
300#define	ik_ref(x, y)	-16*x+rofs+4*y(kptr)
301
302#else
303#define	rofs		-128
304#define	ik_ref(x, y)	16*x+rofs+4*y(kptr)
305#endif	/* AES_REV_DKS */
306
307#define	tab_0(x)	(tptr,x,8)
308#define	tab_1(x)	3(tptr,x,8)
309#define	tab_2(x)	2(tptr,x,8)
310#define	tab_3(x)	1(tptr,x,8)
311#define	tab_f(x)	1(tptr,x,8)
312#define	tab_i(x)	7(tptr,x,8)
313
314	/* EXPORT DELETE START */
315#define	ff_rnd(p1, p2, p3, p4, round)	/* normal forward round */ \
316	mov	fk_ref(round,0), p1; \
317	mov	fk_ref(round,1), p2; \
318	mov	fk_ref(round,2), p3; \
319	mov	fk_ref(round,3), p4; \
320 \
321	movzx	%al, %esi; \
322	movzx	%ah, %edi; \
323	shr	$16, %eax; \
324	xor	tab_0(%rsi), p1; \
325	xor	tab_1(%rdi), p4; \
326	movzx	%al, %esi; \
327	movzx	%ah, %edi; \
328	xor	tab_2(%rsi), p3; \
329	xor	tab_3(%rdi), p2; \
330 \
331	movzx	%bl, %esi; \
332	movzx	%bh, %edi; \
333	shr	$16, %ebx; \
334	xor	tab_0(%rsi), p2; \
335	xor	tab_1(%rdi), p1; \
336	movzx	%bl, %esi; \
337	movzx	%bh, %edi; \
338	xor	tab_2(%rsi), p4; \
339	xor	tab_3(%rdi), p3; \
340 \
341	movzx	%cl, %esi; \
342	movzx	%ch, %edi; \
343	shr	$16, %ecx; \
344	xor	tab_0(%rsi), p3; \
345	xor	tab_1(%rdi), p2; \
346	movzx	%cl, %esi; \
347	movzx	%ch, %edi; \
348	xor	tab_2(%rsi), p1; \
349	xor	tab_3(%rdi), p4; \
350 \
351	movzx	%dl, %esi; \
352	movzx	%dh, %edi; \
353	shr	$16, %edx; \
354	xor	tab_0(%rsi), p4; \
355	xor	tab_1(%rdi), p3; \
356	movzx	%dl, %esi; \
357	movzx	%dh, %edi; \
358	xor	tab_2(%rsi), p2; \
359	xor	tab_3(%rdi), p1; \
360 \
361	mov	p1, %eax; \
362	mov	p2, %ebx; \
363	mov	p3, %ecx; \
364	mov	p4, %edx
365
366#ifdef	LAST_ROUND_TABLES
367
368#define	fl_rnd(p1, p2, p3, p4, round)	/* last forward round */ \
369	add	$2048, tptr; \
370	mov	fk_ref(round,0), p1; \
371	mov	fk_ref(round,1), p2; \
372	mov	fk_ref(round,2), p3; \
373	mov	fk_ref(round,3), p4; \
374 \
375	movzx	%al, %esi; \
376	movzx	%ah, %edi; \
377	shr	$16, %eax; \
378	xor	tab_0(%rsi), p1; \
379	xor	tab_1(%rdi), p4; \
380	movzx	%al, %esi; \
381	movzx	%ah, %edi; \
382	xor	tab_2(%rsi), p3; \
383	xor	tab_3(%rdi), p2; \
384 \
385	movzx	%bl, %esi; \
386	movzx	%bh, %edi; \
387	shr	$16, %ebx; \
388	xor	tab_0(%rsi), p2; \
389	xor	tab_1(%rdi), p1; \
390	movzx	%bl, %esi; \
391	movzx	%bh, %edi; \
392	xor	tab_2(%rsi), p4; \
393	xor	tab_3(%rdi), p3; \
394 \
395	movzx	%cl, %esi; \
396	movzx	%ch, %edi; \
397	shr	$16, %ecx; \
398	xor	tab_0(%rsi), p3; \
399	xor	tab_1(%rdi), p2; \
400	movzx	%cl, %esi; \
401	movzx	%ch, %edi; \
402	xor	tab_2(%rsi), p1; \
403	xor	tab_3(%rdi), p4; \
404 \
405	movzx	%dl, %esi; \
406	movzx	%dh, %edi; \
407	shr	$16, %edx; \
408	xor	tab_0(%rsi), p4; \
409	xor	tab_1(%rdi), p3; \
410	movzx	%dl, %esi; \
411	movzx	%dh, %edi; \
412	xor	tab_2(%rsi), p2; \
413	xor	tab_3(%rdi), p1
414
415#else
416
417#define	fl_rnd(p1, p2, p3, p4, round)	/* last forward round */ \
418	mov	fk_ref(round,0), p1; \
419	mov	fk_ref(round,1), p2; \
420	mov	fk_ref(round,2), p3; \
421	mov	fk_ref(round,3), p4; \
422 \
423	movzx	%al, %esi; \
424	movzx	%ah, %edi; \
425	shr	$16, %eax; \
426	movzx	tab_f(%rsi), %esi; \
427	movzx	tab_f(%rdi), %edi; \
428	xor	%esi, p1; \
429	rol	$8, %edi; \
430	xor	%edi, p4; \
431	movzx	%al, %esi; \
432	movzx	%ah, %edi; \
433	movzx	tab_f(%rsi), %esi; \
434	movzx	tab_f(%rdi), %edi; \
435	rol	$16, %esi; \
436	rol	$24, %edi; \
437	xor	%esi, p3; \
438	xor	%edi, p2; \
439 \
440	movzx	%bl, %esi; \
441	movzx	%bh, %edi; \
442	shr	$16, %ebx; \
443	movzx	tab_f(%rsi), %esi; \
444	movzx	tab_f(%rdi), %edi; \
445	xor	%esi, p2; \
446	rol	$8, %edi; \
447	xor	%edi, p1; \
448	movzx	%bl, %esi; \
449	movzx	%bh, %edi; \
450	movzx	tab_f(%rsi), %esi; \
451	movzx	tab_f(%rdi), %edi; \
452	rol	$16, %esi; \
453	rol	$24, %edi; \
454	xor	%esi, p4; \
455	xor	%edi, p3; \
456 \
457	movzx	%cl, %esi; \
458	movzx	%ch, %edi; \
459	movzx	tab_f(%rsi), %esi; \
460	movzx	tab_f(%rdi), %edi; \
461	shr	$16, %ecx; \
462	xor	%esi, p3; \
463	rol	$8, %edi; \
464	xor	%edi, p2; \
465	movzx	%cl, %esi; \
466	movzx	%ch, %edi; \
467	movzx	tab_f(%rsi), %esi; \
468	movzx	tab_f(%rdi), %edi; \
469	rol	$16, %esi; \
470	rol	$24, %edi; \
471	xor	%esi, p1; \
472	xor	%edi, p4; \
473 \
474	movzx	%dl, %esi; \
475	movzx	%dh, %edi; \
476	movzx	tab_f(%rsi), %esi; \
477	movzx	tab_f(%rdi), %edi; \
478	shr	$16, %edx; \
479	xor	%esi, p4; \
480	rol	$8, %edi; \
481	xor	%edi, p3; \
482	movzx	%dl, %esi; \
483	movzx	%dh, %edi; \
484	movzx	tab_f(%rsi), %esi; \
485	movzx	tab_f(%rdi), %edi; \
486	rol	$16, %esi; \
487	rol	$24, %edi; \
488	xor	%esi, p2; \
489	xor	%edi, p1
490
491#endif	/* LAST_ROUND_TABLES */
492
493#define	ii_rnd(p1, p2, p3, p4, round)	/* normal inverse round */ \
494	mov	ik_ref(round,0), p1; \
495	mov	ik_ref(round,1), p2; \
496	mov	ik_ref(round,2), p3; \
497	mov	ik_ref(round,3), p4; \
498 \
499	movzx	%al, %esi; \
500	movzx	%ah, %edi; \
501	shr	$16, %eax; \
502	xor	tab_0(%rsi), p1; \
503	xor	tab_1(%rdi), p2; \
504	movzx	%al, %esi; \
505	movzx	%ah, %edi; \
506	xor	tab_2(%rsi), p3; \
507	xor	tab_3(%rdi), p4; \
508 \
509	movzx	%bl, %esi; \
510	movzx	%bh, %edi; \
511	shr	$16, %ebx; \
512	xor	tab_0(%rsi), p2; \
513	xor	tab_1(%rdi), p3; \
514	movzx	%bl, %esi; \
515	movzx	%bh, %edi; \
516	xor	tab_2(%rsi), p4; \
517	xor	tab_3(%rdi), p1; \
518 \
519	movzx	%cl, %esi; \
520	movzx	%ch, %edi; \
521	shr	$16, %ecx; \
522	xor	tab_0(%rsi), p3; \
523	xor	tab_1(%rdi), p4; \
524	movzx	%cl, %esi; \
525	movzx	%ch, %edi; \
526	xor	tab_2(%rsi), p1; \
527	xor	tab_3(%rdi), p2; \
528 \
529	movzx	%dl, %esi; \
530	movzx	%dh, %edi; \
531	shr	$16, %edx; \
532	xor	tab_0(%rsi), p4; \
533	xor	tab_1(%rdi), p1; \
534	movzx	%dl, %esi; \
535	movzx	%dh, %edi; \
536	xor	tab_2(%rsi), p2; \
537	xor	tab_3(%rdi), p3; \
538 \
539	mov	p1, %eax; \
540	mov	p2, %ebx; \
541	mov	p3, %ecx; \
542	mov	p4, %edx
543
544#ifdef	LAST_ROUND_TABLES
545
546#define	il_rnd(p1, p2, p3, p4, round)	/* last inverse round */ \
547	add	$2048, tptr; \
548	mov	ik_ref(round,0), p1; \
549	mov	ik_ref(round,1), p2; \
550	mov	ik_ref(round,2), p3; \
551	mov	ik_ref(round,3), p4; \
552 \
553	movzx	%al, %esi; \
554	movzx	%ah, %edi; \
555	shr	$16, %eax; \
556	xor	tab_0(%rsi), p1; \
557	xor	tab_1(%rdi), p2; \
558	movzx	%al, %esi; \
559	movzx	%ah, %edi; \
560	xor	tab_2(%rsi), p3; \
561	xor	tab_3(%rdi), p4; \
562 \
563	movzx	%bl, %esi; \
564	movzx	%bh, %edi; \
565	shr	$16, %ebx; \
566	xor	tab_0(%rsi), p2; \
567	xor	tab_1(%rdi), p3; \
568	movzx	%bl, %esi; \
569	movzx	%bh, %edi; \
570	xor	tab_2(%rsi), p4; \
571	xor	tab_3(%rdi), p1; \
572 \
573	movzx	%cl, %esi; \
574	movzx	%ch, %edi; \
575	shr	$16, %ecx; \
576	xor	tab_0(%rsi), p3; \
577	xor	tab_1(%rdi), p4; \
578	movzx	%cl, %esi; \
579	movzx	%ch, %edi; \
580	xor	tab_2(%rsi), p1; \
581	xor	tab_3(%rdi), p2; \
582 \
583	movzx	%dl, %esi; \
584	movzx	%dh, %edi; \
585	shr	$16, %edx; \
586	xor	tab_0(%rsi), p4; \
587	xor	tab_1(%rdi), p1; \
588	movzx	%dl, %esi; \
589	movzx	%dh, %edi; \
590	xor	tab_2(%rsi), p2; \
591	xor	tab_3(%rdi), p3
592
593#else
594
595#define	il_rnd(p1, p2, p3, p4, round)	/* last inverse round */ \
596	mov	ik_ref(round,0), p1; \
597	mov	ik_ref(round,1), p2; \
598	mov	ik_ref(round,2), p3; \
599	mov	ik_ref(round,3), p4; \
600 \
601	movzx	%al, %esi; \
602	movzx	%ah, %edi; \
603	movzx	tab_i(%rsi), %esi; \
604	movzx	tab_i(%rdi), %edi; \
605	shr	$16, %eax; \
606	xor	%esi, p1; \
607	rol	$8, %edi; \
608	xor	%edi, p2; \
609	movzx	%al, %esi; \
610	movzx	%ah, %edi; \
611	movzx	tab_i(%rsi), %esi; \
612	movzx	tab_i(%rdi), %edi; \
613	rol	$16, %esi; \
614	rol	$24, %edi; \
615	xor	%esi, p3; \
616	xor	%edi, p4; \
617 \
618	movzx	%bl, %esi; \
619	movzx	%bh, %edi; \
620	movzx	tab_i(%rsi), %esi; \
621	movzx	tab_i(%rdi), %edi; \
622	shr	$16, %ebx; \
623	xor	%esi, p2; \
624	rol	$8, %edi; \
625	xor	%edi, p3; \
626	movzx	%bl, %esi; \
627	movzx	%bh, %edi; \
628	movzx	tab_i(%rsi), %esi; \
629	movzx	tab_i(%rdi), %edi; \
630	rol	$16, %esi; \
631	rol	$24, %edi; \
632	xor	%esi, p4; \
633	xor	%edi, p1; \
634 \
635	movzx	%cl, %esi; \
636	movzx	%ch, %edi; \
637	movzx	tab_i(%rsi), %esi; \
638	movzx	tab_i(%rdi), %edi; \
639	shr	$16, %ecx; \
640	xor	%esi, p3; \
641	rol	$8, %edi; \
642	xor	%edi, p4; \
643	movzx	%cl, %esi; \
644	movzx	%ch, %edi; \
645	movzx	tab_i(%rsi), %esi; \
646	movzx	tab_i(%rdi), %edi; \
647	rol	$16, %esi; \
648	rol	$24, %edi; \
649	xor	%esi, p1; \
650	xor	%edi, p2; \
651 \
652	movzx	%dl, %esi; \
653	movzx	%dh, %edi; \
654	movzx	tab_i(%rsi), %esi; \
655	movzx	tab_i(%rdi), %edi; \
656	shr	$16, %edx; \
657	xor	%esi, p4; \
658	rol	$8, %edi; \
659	xor	%edi, p1; \
660	movzx	%dl, %esi; \
661	movzx	%dh, %edi; \
662	movzx	tab_i(%rsi), %esi; \
663	movzx	tab_i(%rdi), %edi; \
664	rol	$16, %esi; \
665	rol	$24, %edi; \
666	xor	%esi, p2; \
667	xor	%edi, p3
668
669#endif	/* LAST_ROUND_TABLES */
670	/* EXPORT DELETE END */
671
672/*
673 * OpenSolaris OS:
674 * void aes_encrypt_impl(const aes_ks_t *ks, int Nr,
675 *	const uint32_t pt[4], uint32_t ct[4])/
676 *
677 * Original interface:
678 * int aes_encrypt(const unsigned char *in,
679 *	unsigned char *out, const aes_encrypt_ctx cx[1])/
680 */
681	.align	64
682enc_tab:
683	enc_vals(u8)
684#ifdef	LAST_ROUND_TABLES
685	/ Last Round Tables:
686	enc_vals(w8)
687#endif
688
689
690	ENTRY_NP(aes_encrypt_impl)
691	/* EXPORT DELETE START */
692#ifdef	GLADMAN_INTERFACE
693	/ Original interface
694	sub	$[4*8], %rsp	/ gnu/linux/opensolaris binary interface
695	mov	%rsi, (%rsp)	/ output pointer (P2)
696	mov	%rdx, %r8	/ context (P3)
697
698	mov	%rbx, 1*8(%rsp)	/ P1: input pointer in rdi
699	mov	%rbp, 2*8(%rsp)	/ P2: output pointer in (rsp)
700	mov	%r12, 3*8(%rsp)	/ P3: context in r8
701	movzx	4*KS_LENGTH(kptr), %esi	/ Get byte key length * 16
702
703#else
704	/ OpenSolaris OS interface
705	sub	$[4*8], %rsp	/ Make room on stack to save registers
706	mov	%rcx, (%rsp)	/ Save output pointer (P4) on stack
707	mov	%rdi, %r8	/ context (P1)
708	mov	%rdx, %rdi	/ P3: save input pointer
709	shl	$4, %esi	/ P2: esi byte key length * 16
710
711	mov	%rbx, 1*8(%rsp)	/ Save registers
712	mov	%rbp, 2*8(%rsp)
713	mov	%r12, 3*8(%rsp)
714	/ P1: context in r8
715	/ P2: byte key length * 16 in esi
716	/ P3: input pointer in rdi
717	/ P4: output pointer in (rsp)
718#endif	/* GLADMAN_INTERFACE */
719
720	lea	enc_tab(%rip), tptr
721	sub	$fofs, kptr
722
723	/ Load input block into registers
724	mov	(%rdi), %eax
725	mov	1*4(%rdi), %ebx
726	mov	2*4(%rdi), %ecx
727	mov	3*4(%rdi), %edx
728
729	xor	fofs(kptr), %eax
730	xor	fofs+4(kptr), %ebx
731	xor	fofs+8(kptr), %ecx
732	xor	fofs+12(kptr), %edx
733
734	lea	(kptr,%rsi), kptr
735	/ Jump based on byte key length * 16:
736	cmp	$[10*16], %esi
737	je	3f
738	cmp	$[12*16], %esi
739	je	2f
740	cmp	$[14*16], %esi
741	je	1f
742	mov	$-1, %rax	/ error
743	jmp	4f
744
745	/ Perform normal forward rounds
7461:	ff_rnd(%r9d, %r10d, %r11d, %r12d, 13)
747	ff_rnd(%r9d, %r10d, %r11d, %r12d, 12)
7482:	ff_rnd(%r9d, %r10d, %r11d, %r12d, 11)
749	ff_rnd(%r9d, %r10d, %r11d, %r12d, 10)
7503:	ff_rnd(%r9d, %r10d, %r11d, %r12d,  9)
751	ff_rnd(%r9d, %r10d, %r11d, %r12d,  8)
752	ff_rnd(%r9d, %r10d, %r11d, %r12d,  7)
753	ff_rnd(%r9d, %r10d, %r11d, %r12d,  6)
754	ff_rnd(%r9d, %r10d, %r11d, %r12d,  5)
755	ff_rnd(%r9d, %r10d, %r11d, %r12d,  4)
756	ff_rnd(%r9d, %r10d, %r11d, %r12d,  3)
757	ff_rnd(%r9d, %r10d, %r11d, %r12d,  2)
758	ff_rnd(%r9d, %r10d, %r11d, %r12d,  1)
759	fl_rnd(%r9d, %r10d, %r11d, %r12d,  0)
760
761	/ Copy results
762	mov	(%rsp), %rbx
763	mov	%r9d, (%rbx)
764	mov	%r10d, 4(%rbx)
765	mov	%r11d, 8(%rbx)
766	mov	%r12d, 12(%rbx)
767	xor	%rax, %rax
7684:	/ Restore registers
769	mov	1*8(%rsp), %rbx
770	mov	2*8(%rsp), %rbp
771	mov	3*8(%rsp), %r12
772	add	$[4*8], %rsp
773	/* EXPORT DELETE END */
774	ret
775
776	SET_SIZE(aes_encrypt_impl)
777
778/*
779 * OpenSolaris OS:
780 * void aes_decrypt_impl(const aes_ks_t *ks, int Nr,
781 *	const uint32_t pt[4], uint32_t ct[4])/
782 *
783 * Original interface:
784 * int aes_decrypt(const unsigned char *in,
785 *	unsigned char *out, const aes_encrypt_ctx cx[1])/
786 */
787	.align	64
788dec_tab:
789	dec_vals(v8)
790#ifdef	LAST_ROUND_TABLES
791	/ Last Round Tables:
792	dec_vals(w8)
793#endif
794
795
796	ENTRY_NP(aes_decrypt_impl)
797	/* EXPORT DELETE START */
798#ifdef	GLADMAN_INTERFACE
799	/ Original interface
800	sub	$[4*8], %rsp	/ gnu/linux/opensolaris binary interface
801	mov	%rsi, (%rsp)	/ output pointer (P2)
802	mov	%rdx, %r8	/ context (P3)
803
804	mov	%rbx, 1*8(%rsp)	/ P1: input pointer in rdi
805	mov	%rbp, 2*8(%rsp)	/ P2: output pointer in (rsp)
806	mov	%r12, 3*8(%rsp)	/ P3: context in r8
807	movzx	4*KS_LENGTH(kptr), %esi	/ Get byte key length * 16
808
809#else
810	/ OpenSolaris OS interface
811	sub	$[4*8], %rsp	/ Make room on stack to save registers
812	mov	%rcx, (%rsp)	/ Save output pointer (P4) on stack
813	mov	%rdi, %r8	/ context (P1)
814	mov	%rdx, %rdi	/ P3: save input pointer
815	shl	$4, %esi	/ P2: esi byte key length * 16
816
817	mov	%rbx, 1*8(%rsp)	/ Save registers
818	mov	%rbp, 2*8(%rsp)
819	mov	%r12, 3*8(%rsp)
820	/ P1: context in r8
821	/ P2: byte key length * 16 in esi
822	/ P3: input pointer in rdi
823	/ P4: output pointer in (rsp)
824#endif	/* GLADMAN_INTERFACE */
825
826	lea	dec_tab(%rip), tptr
827	sub	$rofs, kptr
828
829	/ Load input block into registers
830	mov	(%rdi), %eax
831	mov	1*4(%rdi), %ebx
832	mov	2*4(%rdi), %ecx
833	mov	3*4(%rdi), %edx
834
835#ifdef AES_REV_DKS
836	mov	kptr, %rdi
837	lea	(kptr,%rsi), kptr
838#else
839	lea	(kptr,%rsi), %rdi
840#endif
841
842	xor	rofs(%rdi), %eax
843	xor	rofs+4(%rdi), %ebx
844	xor	rofs+8(%rdi), %ecx
845	xor	rofs+12(%rdi), %edx
846
847	/ Jump based on byte key length * 16:
848	cmp	$[10*16], %esi
849	je	3f
850	cmp	$[12*16], %esi
851	je	2f
852	cmp	$[14*16], %esi
853	je	1f
854	mov	$-1, %rax	/ error
855	jmp	4f
856
857	/ Perform normal inverse rounds
8581:	ii_rnd(%r9d, %r10d, %r11d, %r12d, 13)
859	ii_rnd(%r9d, %r10d, %r11d, %r12d, 12)
8602:	ii_rnd(%r9d, %r10d, %r11d, %r12d, 11)
861	ii_rnd(%r9d, %r10d, %r11d, %r12d, 10)
8623:	ii_rnd(%r9d, %r10d, %r11d, %r12d,  9)
863	ii_rnd(%r9d, %r10d, %r11d, %r12d,  8)
864	ii_rnd(%r9d, %r10d, %r11d, %r12d,  7)
865	ii_rnd(%r9d, %r10d, %r11d, %r12d,  6)
866	ii_rnd(%r9d, %r10d, %r11d, %r12d,  5)
867	ii_rnd(%r9d, %r10d, %r11d, %r12d,  4)
868	ii_rnd(%r9d, %r10d, %r11d, %r12d,  3)
869	ii_rnd(%r9d, %r10d, %r11d, %r12d,  2)
870	ii_rnd(%r9d, %r10d, %r11d, %r12d,  1)
871	il_rnd(%r9d, %r10d, %r11d, %r12d,  0)
872
873	/ Copy results
874	mov	(%rsp), %rbx
875	mov	%r9d, (%rbx)
876	mov	%r10d, 4(%rbx)
877	mov	%r11d, 8(%rbx)
878	mov	%r12d, 12(%rbx)
879	xor	%rax, %rax
8804:	/ Restore registers
881	mov	1*8(%rsp), %rbx
882	mov	2*8(%rsp), %rbp
883	mov	3*8(%rsp), %r12
884	add	$[4*8], %rsp
885	/* EXPORT DELETE END */
886	ret
887
888	SET_SIZE(aes_decrypt_impl)
889
890#else
891	/* LINTED */
892	/* Nothing to be linted in this file--it's pure assembly source. */
893#endif	/* !lint && !__lint */
894