1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * AVL - generic AVL tree implementation for kernel use 28 * 29 * A complete description of AVL trees can be found in many CS textbooks. 30 * 31 * Here is a very brief overview. An AVL tree is a binary search tree that is 32 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at 33 * any given node, the left and right subtrees are allowed to differ in height 34 * by at most 1 level. 35 * 36 * This relaxation from a perfectly balanced binary tree allows doing 37 * insertion and deletion relatively efficiently. Searching the tree is 38 * still a fast operation, roughly O(log(N)). 39 * 40 * The key to insertion and deletion is a set of tree manipulations called 41 * rotations, which bring unbalanced subtrees back into the semi-balanced state. 42 * 43 * This implementation of AVL trees has the following peculiarities: 44 * 45 * - The AVL specific data structures are physically embedded as fields 46 * in the "using" data structures. To maintain generality the code 47 * must constantly translate between "avl_node_t *" and containing 48 * data structure "void *"s by adding/subtracting the avl_offset. 49 * 50 * - Since the AVL data is always embedded in other structures, there is 51 * no locking or memory allocation in the AVL routines. This must be 52 * provided for by the enclosing data structure's semantics. Typically, 53 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of 54 * exclusive write lock. Other operations require a read lock. 55 * 56 * - The implementation uses iteration instead of explicit recursion, 57 * since it is intended to run on limited size kernel stacks. Since 58 * there is no recursion stack present to move "up" in the tree, 59 * there is an explicit "parent" link in the avl_node_t. 60 * 61 * - The left/right children pointers of a node are in an array. 62 * In the code, variables (instead of constants) are used to represent 63 * left and right indices. The implementation is written as if it only 64 * dealt with left handed manipulations. By changing the value assigned 65 * to "left", the code also works for right handed trees. The 66 * following variables/terms are frequently used: 67 * 68 * int left; // 0 when dealing with left children, 69 * // 1 for dealing with right children 70 * 71 * int left_heavy; // -1 when left subtree is taller at some node, 72 * // +1 when right subtree is taller 73 * 74 * int right; // will be the opposite of left (0 or 1) 75 * int right_heavy;// will be the opposite of left_heavy (-1 or 1) 76 * 77 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right) 78 * 79 * Though it is a little more confusing to read the code, the approach 80 * allows using half as much code (and hence cache footprint) for tree 81 * manipulations and eliminates many conditional branches. 82 * 83 * - The avl_index_t is an opaque "cookie" used to find nodes at or 84 * adjacent to where a new value would be inserted in the tree. The value 85 * is a modified "avl_node_t *". The bottom bit (normally 0 for a 86 * pointer) is set to indicate if that the new node has a value greater 87 * than the value of the indicated "avl_node_t *". 88 */ 89 90 #include <sys/types.h> 91 #include <sys/param.h> 92 #include <sys/debug.h> 93 #include <sys/avl.h> 94 #include <sys/cmn_err.h> 95 96 /* 97 * Small arrays to translate between balance (or diff) values and child indices. 98 * 99 * Code that deals with binary tree data structures will randomly use 100 * left and right children when examining a tree. C "if()" statements 101 * which evaluate randomly suffer from very poor hardware branch prediction. 102 * In this code we avoid some of the branch mispredictions by using the 103 * following translation arrays. They replace random branches with an 104 * additional memory reference. Since the translation arrays are both very 105 * small the data should remain efficiently in cache. 106 */ 107 static const int avl_child2balance[2] = {-1, 1}; 108 static const int avl_balance2child[] = {0, 0, 1}; 109 110 111 /* 112 * Walk from one node to the previous valued node (ie. an infix walk 113 * towards the left). At any given node we do one of 2 things: 114 * 115 * - If there is a left child, go to it, then to it's rightmost descendant. 116 * 117 * - otherwise we return through parent nodes until we've come from a right 118 * child. 119 * 120 * Return Value: 121 * NULL - if at the end of the nodes 122 * otherwise next node 123 */ 124 void * 125 avl_walk(avl_tree_t *tree, void *oldnode, int left) 126 { 127 size_t off = tree->avl_offset; 128 avl_node_t *node = AVL_DATA2NODE(oldnode, off); 129 int right = 1 - left; 130 int was_child; 131 132 133 /* 134 * nowhere to walk to if tree is empty 135 */ 136 if (node == NULL) 137 return (NULL); 138 139 /* 140 * Visit the previous valued node. There are two possibilities: 141 * 142 * If this node has a left child, go down one left, then all 143 * the way right. 144 */ 145 if (node->avl_child[left] != NULL) { 146 for (node = node->avl_child[left]; 147 node->avl_child[right] != NULL; 148 node = node->avl_child[right]) 149 ; 150 /* 151 * Otherwise, return thru left children as far as we can. 152 */ 153 } else { 154 for (;;) { 155 was_child = AVL_XCHILD(node); 156 node = AVL_XPARENT(node); 157 if (node == NULL) 158 return (NULL); 159 if (was_child == right) 160 break; 161 } 162 } 163 164 return (AVL_NODE2DATA(node, off)); 165 } 166 167 /* 168 * Return the lowest valued node in a tree or NULL. 169 * (leftmost child from root of tree) 170 */ 171 void * 172 avl_first(avl_tree_t *tree) 173 { 174 avl_node_t *node; 175 avl_node_t *prev = NULL; 176 size_t off = tree->avl_offset; 177 178 for (node = tree->avl_root; node != NULL; node = node->avl_child[0]) 179 prev = node; 180 181 if (prev != NULL) 182 return (AVL_NODE2DATA(prev, off)); 183 return (NULL); 184 } 185 186 /* 187 * Return the highest valued node in a tree or NULL. 188 * (rightmost child from root of tree) 189 */ 190 void * 191 avl_last(avl_tree_t *tree) 192 { 193 avl_node_t *node; 194 avl_node_t *prev = NULL; 195 size_t off = tree->avl_offset; 196 197 for (node = tree->avl_root; node != NULL; node = node->avl_child[1]) 198 prev = node; 199 200 if (prev != NULL) 201 return (AVL_NODE2DATA(prev, off)); 202 return (NULL); 203 } 204 205 /* 206 * Access the node immediately before or after an insertion point. 207 * 208 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child 209 * 210 * Return value: 211 * NULL: no node in the given direction 212 * "void *" of the found tree node 213 */ 214 void * 215 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction) 216 { 217 int child = AVL_INDEX2CHILD(where); 218 avl_node_t *node = AVL_INDEX2NODE(where); 219 void *data; 220 size_t off = tree->avl_offset; 221 222 if (node == NULL) { 223 ASSERT(tree->avl_root == NULL); 224 return (NULL); 225 } 226 data = AVL_NODE2DATA(node, off); 227 if (child != direction) 228 return (data); 229 230 return (avl_walk(tree, data, direction)); 231 } 232 233 234 /* 235 * Search for the node which contains "value". The algorithm is a 236 * simple binary tree search. 237 * 238 * return value: 239 * NULL: the value is not in the AVL tree 240 * *where (if not NULL) is set to indicate the insertion point 241 * "void *" of the found tree node 242 */ 243 void * 244 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where) 245 { 246 avl_node_t *node; 247 avl_node_t *prev = NULL; 248 int child = 0; 249 int diff; 250 size_t off = tree->avl_offset; 251 252 for (node = tree->avl_root; node != NULL; 253 node = node->avl_child[child]) { 254 255 prev = node; 256 257 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off)); 258 ASSERT(-1 <= diff && diff <= 1); 259 if (diff == 0) { 260 #ifdef DEBUG 261 if (where != NULL) 262 *where = 0; 263 #endif 264 return (AVL_NODE2DATA(node, off)); 265 } 266 child = avl_balance2child[1 + diff]; 267 268 } 269 270 if (where != NULL) 271 *where = AVL_MKINDEX(prev, child); 272 273 return (NULL); 274 } 275 276 277 /* 278 * Perform a rotation to restore balance at the subtree given by depth. 279 * 280 * This routine is used by both insertion and deletion. The return value 281 * indicates: 282 * 0 : subtree did not change height 283 * !0 : subtree was reduced in height 284 * 285 * The code is written as if handling left rotations, right rotations are 286 * symmetric and handled by swapping values of variables right/left[_heavy] 287 * 288 * On input balance is the "new" balance at "node". This value is either 289 * -2 or +2. 290 */ 291 static int 292 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance) 293 { 294 int left = !(balance < 0); /* when balance = -2, left will be 0 */ 295 int right = 1 - left; 296 int left_heavy = balance >> 1; 297 int right_heavy = -left_heavy; 298 avl_node_t *parent = AVL_XPARENT(node); 299 avl_node_t *child = node->avl_child[left]; 300 avl_node_t *cright; 301 avl_node_t *gchild; 302 avl_node_t *gright; 303 avl_node_t *gleft; 304 int which_child = AVL_XCHILD(node); 305 int child_bal = AVL_XBALANCE(child); 306 307 /* BEGIN CSTYLED */ 308 /* 309 * case 1 : node is overly left heavy, the left child is balanced or 310 * also left heavy. This requires the following rotation. 311 * 312 * (node bal:-2) 313 * / \ 314 * / \ 315 * (child bal:0 or -1) 316 * / \ 317 * / \ 318 * cright 319 * 320 * becomes: 321 * 322 * (child bal:1 or 0) 323 * / \ 324 * / \ 325 * (node bal:-1 or 0) 326 * / \ 327 * / \ 328 * cright 329 * 330 * we detect this situation by noting that child's balance is not 331 * right_heavy. 332 */ 333 /* END CSTYLED */ 334 if (child_bal != right_heavy) { 335 336 /* 337 * compute new balance of nodes 338 * 339 * If child used to be left heavy (now balanced) we reduced 340 * the height of this sub-tree -- used in "return...;" below 341 */ 342 child_bal += right_heavy; /* adjust towards right */ 343 344 /* 345 * move "cright" to be node's left child 346 */ 347 cright = child->avl_child[right]; 348 node->avl_child[left] = cright; 349 if (cright != NULL) { 350 AVL_SETPARENT(cright, node); 351 AVL_SETCHILD(cright, left); 352 } 353 354 /* 355 * move node to be child's right child 356 */ 357 child->avl_child[right] = node; 358 AVL_SETBALANCE(node, -child_bal); 359 AVL_SETCHILD(node, right); 360 AVL_SETPARENT(node, child); 361 362 /* 363 * update the pointer into this subtree 364 */ 365 AVL_SETBALANCE(child, child_bal); 366 AVL_SETCHILD(child, which_child); 367 AVL_SETPARENT(child, parent); 368 if (parent != NULL) 369 parent->avl_child[which_child] = child; 370 else 371 tree->avl_root = child; 372 373 return (child_bal == 0); 374 } 375 376 /* BEGIN CSTYLED */ 377 /* 378 * case 2 : When node is left heavy, but child is right heavy we use 379 * a different rotation. 380 * 381 * (node b:-2) 382 * / \ 383 * / \ 384 * / \ 385 * (child b:+1) 386 * / \ 387 * / \ 388 * (gchild b: != 0) 389 * / \ 390 * / \ 391 * gleft gright 392 * 393 * becomes: 394 * 395 * (gchild b:0) 396 * / \ 397 * / \ 398 * / \ 399 * (child b:?) (node b:?) 400 * / \ / \ 401 * / \ / \ 402 * gleft gright 403 * 404 * computing the new balances is more complicated. As an example: 405 * if gchild was right_heavy, then child is now left heavy 406 * else it is balanced 407 */ 408 /* END CSTYLED */ 409 gchild = child->avl_child[right]; 410 gleft = gchild->avl_child[left]; 411 gright = gchild->avl_child[right]; 412 413 /* 414 * move gright to left child of node and 415 * 416 * move gleft to right child of node 417 */ 418 node->avl_child[left] = gright; 419 if (gright != NULL) { 420 AVL_SETPARENT(gright, node); 421 AVL_SETCHILD(gright, left); 422 } 423 424 child->avl_child[right] = gleft; 425 if (gleft != NULL) { 426 AVL_SETPARENT(gleft, child); 427 AVL_SETCHILD(gleft, right); 428 } 429 430 /* 431 * move child to left child of gchild and 432 * 433 * move node to right child of gchild and 434 * 435 * fixup parent of all this to point to gchild 436 */ 437 balance = AVL_XBALANCE(gchild); 438 gchild->avl_child[left] = child; 439 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0)); 440 AVL_SETPARENT(child, gchild); 441 AVL_SETCHILD(child, left); 442 443 gchild->avl_child[right] = node; 444 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0)); 445 AVL_SETPARENT(node, gchild); 446 AVL_SETCHILD(node, right); 447 448 AVL_SETBALANCE(gchild, 0); 449 AVL_SETPARENT(gchild, parent); 450 AVL_SETCHILD(gchild, which_child); 451 if (parent != NULL) 452 parent->avl_child[which_child] = gchild; 453 else 454 tree->avl_root = gchild; 455 456 return (1); /* the new tree is always shorter */ 457 } 458 459 460 /* 461 * Insert a new node into an AVL tree at the specified (from avl_find()) place. 462 * 463 * Newly inserted nodes are always leaf nodes in the tree, since avl_find() 464 * searches out to the leaf positions. The avl_index_t indicates the node 465 * which will be the parent of the new node. 466 * 467 * After the node is inserted, a single rotation further up the tree may 468 * be necessary to maintain an acceptable AVL balance. 469 */ 470 void 471 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where) 472 { 473 avl_node_t *node; 474 avl_node_t *parent = AVL_INDEX2NODE(where); 475 int old_balance; 476 int new_balance; 477 int which_child = AVL_INDEX2CHILD(where); 478 size_t off = tree->avl_offset; 479 480 ASSERT(tree); 481 #ifdef _LP64 482 ASSERT(((uintptr_t)new_data & 0x7) == 0); 483 #endif 484 485 node = AVL_DATA2NODE(new_data, off); 486 487 /* 488 * First, add the node to the tree at the indicated position. 489 */ 490 ++tree->avl_numnodes; 491 492 node->avl_child[0] = NULL; 493 node->avl_child[1] = NULL; 494 495 AVL_SETCHILD(node, which_child); 496 AVL_SETBALANCE(node, 0); 497 AVL_SETPARENT(node, parent); 498 if (parent != NULL) { 499 ASSERT(parent->avl_child[which_child] == NULL); 500 parent->avl_child[which_child] = node; 501 } else { 502 ASSERT(tree->avl_root == NULL); 503 tree->avl_root = node; 504 } 505 /* 506 * Now, back up the tree modifying the balance of all nodes above the 507 * insertion point. If we get to a highly unbalanced ancestor, we 508 * need to do a rotation. If we back out of the tree we are done. 509 * If we brought any subtree into perfect balance (0), we are also done. 510 */ 511 for (;;) { 512 node = parent; 513 if (node == NULL) 514 return; 515 516 /* 517 * Compute the new balance 518 */ 519 old_balance = AVL_XBALANCE(node); 520 new_balance = old_balance + avl_child2balance[which_child]; 521 522 /* 523 * If we introduced equal balance, then we are done immediately 524 */ 525 if (new_balance == 0) { 526 AVL_SETBALANCE(node, 0); 527 return; 528 } 529 530 /* 531 * If both old and new are not zero we went 532 * from -1 to -2 balance, do a rotation. 533 */ 534 if (old_balance != 0) 535 break; 536 537 AVL_SETBALANCE(node, new_balance); 538 parent = AVL_XPARENT(node); 539 which_child = AVL_XCHILD(node); 540 } 541 542 /* 543 * perform a rotation to fix the tree and return 544 */ 545 (void) avl_rotation(tree, node, new_balance); 546 } 547 548 /* 549 * Insert "new_data" in "tree" in the given "direction" either after or 550 * before (AVL_AFTER, AVL_BEFORE) the data "here". 551 * 552 * Insertions can only be done at empty leaf points in the tree, therefore 553 * if the given child of the node is already present we move to either 554 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since 555 * every other node in the tree is a leaf, this always works. 556 * 557 * To help developers using this interface, we assert that the new node 558 * is correctly ordered at every step of the way in DEBUG kernels. 559 */ 560 void 561 avl_insert_here( 562 avl_tree_t *tree, 563 void *new_data, 564 void *here, 565 int direction) 566 { 567 avl_node_t *node; 568 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */ 569 #ifdef DEBUG 570 int diff; 571 #endif 572 573 ASSERT(tree != NULL); 574 ASSERT(new_data != NULL); 575 ASSERT(here != NULL); 576 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER); 577 578 /* 579 * If corresponding child of node is not NULL, go to the neighboring 580 * node and reverse the insertion direction. 581 */ 582 node = AVL_DATA2NODE(here, tree->avl_offset); 583 584 #ifdef DEBUG 585 diff = tree->avl_compar(new_data, here); 586 ASSERT(-1 <= diff && diff <= 1); 587 ASSERT(diff != 0); 588 ASSERT(diff > 0 ? child == 1 : child == 0); 589 #endif 590 591 if (node->avl_child[child] != NULL) { 592 node = node->avl_child[child]; 593 child = 1 - child; 594 while (node->avl_child[child] != NULL) { 595 #ifdef DEBUG 596 diff = tree->avl_compar(new_data, 597 AVL_NODE2DATA(node, tree->avl_offset)); 598 ASSERT(-1 <= diff && diff <= 1); 599 ASSERT(diff != 0); 600 ASSERT(diff > 0 ? child == 1 : child == 0); 601 #endif 602 node = node->avl_child[child]; 603 } 604 #ifdef DEBUG 605 diff = tree->avl_compar(new_data, 606 AVL_NODE2DATA(node, tree->avl_offset)); 607 ASSERT(-1 <= diff && diff <= 1); 608 ASSERT(diff != 0); 609 ASSERT(diff > 0 ? child == 1 : child == 0); 610 #endif 611 } 612 ASSERT(node->avl_child[child] == NULL); 613 614 avl_insert(tree, new_data, AVL_MKINDEX(node, child)); 615 } 616 617 /* 618 * Add a new node to an AVL tree. 619 */ 620 void 621 avl_add(avl_tree_t *tree, void *new_node) 622 { 623 avl_index_t where; 624 625 /* 626 * This is unfortunate. We want to call panic() here, even for 627 * non-DEBUG kernels. In userland, however, we can't depend on anything 628 * in libc or else the rtld build process gets confused. So, all we can 629 * do in userland is resort to a normal ASSERT(). 630 */ 631 if (avl_find(tree, new_node, &where) != NULL) 632 #ifdef _KERNEL 633 panic("avl_find() succeeded inside avl_add()"); 634 #else 635 ASSERT(0); 636 #endif 637 avl_insert(tree, new_node, where); 638 } 639 640 /* 641 * Delete a node from the AVL tree. Deletion is similar to insertion, but 642 * with 2 complications. 643 * 644 * First, we may be deleting an interior node. Consider the following subtree: 645 * 646 * d c c 647 * / \ / \ / \ 648 * b e b e b e 649 * / \ / \ / 650 * a c a a 651 * 652 * When we are deleting node (d), we find and bring up an adjacent valued leaf 653 * node, say (c), to take the interior node's place. In the code this is 654 * handled by temporarily swapping (d) and (c) in the tree and then using 655 * common code to delete (d) from the leaf position. 656 * 657 * Secondly, an interior deletion from a deep tree may require more than one 658 * rotation to fix the balance. This is handled by moving up the tree through 659 * parents and applying rotations as needed. The return value from 660 * avl_rotation() is used to detect when a subtree did not change overall 661 * height due to a rotation. 662 */ 663 void 664 avl_remove(avl_tree_t *tree, void *data) 665 { 666 avl_node_t *delete; 667 avl_node_t *parent; 668 avl_node_t *node; 669 avl_node_t tmp; 670 int old_balance; 671 int new_balance; 672 int left; 673 int right; 674 int which_child; 675 size_t off = tree->avl_offset; 676 677 ASSERT(tree); 678 679 delete = AVL_DATA2NODE(data, off); 680 681 /* 682 * Deletion is easiest with a node that has at most 1 child. 683 * We swap a node with 2 children with a sequentially valued 684 * neighbor node. That node will have at most 1 child. Note this 685 * has no effect on the ordering of the remaining nodes. 686 * 687 * As an optimization, we choose the greater neighbor if the tree 688 * is right heavy, otherwise the left neighbor. This reduces the 689 * number of rotations needed. 690 */ 691 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) { 692 693 /* 694 * choose node to swap from whichever side is taller 695 */ 696 old_balance = AVL_XBALANCE(delete); 697 left = avl_balance2child[old_balance + 1]; 698 right = 1 - left; 699 700 /* 701 * get to the previous value'd node 702 * (down 1 left, as far as possible right) 703 */ 704 for (node = delete->avl_child[left]; 705 node->avl_child[right] != NULL; 706 node = node->avl_child[right]) 707 ; 708 709 /* 710 * create a temp placeholder for 'node' 711 * move 'node' to delete's spot in the tree 712 */ 713 tmp = *node; 714 715 *node = *delete; 716 if (node->avl_child[left] == node) 717 node->avl_child[left] = &tmp; 718 719 parent = AVL_XPARENT(node); 720 if (parent != NULL) 721 parent->avl_child[AVL_XCHILD(node)] = node; 722 else 723 tree->avl_root = node; 724 AVL_SETPARENT(node->avl_child[left], node); 725 AVL_SETPARENT(node->avl_child[right], node); 726 727 /* 728 * Put tmp where node used to be (just temporary). 729 * It always has a parent and at most 1 child. 730 */ 731 delete = &tmp; 732 parent = AVL_XPARENT(delete); 733 parent->avl_child[AVL_XCHILD(delete)] = delete; 734 which_child = (delete->avl_child[1] != 0); 735 if (delete->avl_child[which_child] != NULL) 736 AVL_SETPARENT(delete->avl_child[which_child], delete); 737 } 738 739 740 /* 741 * Here we know "delete" is at least partially a leaf node. It can 742 * be easily removed from the tree. 743 */ 744 ASSERT(tree->avl_numnodes > 0); 745 --tree->avl_numnodes; 746 parent = AVL_XPARENT(delete); 747 which_child = AVL_XCHILD(delete); 748 if (delete->avl_child[0] != NULL) 749 node = delete->avl_child[0]; 750 else 751 node = delete->avl_child[1]; 752 753 /* 754 * Connect parent directly to node (leaving out delete). 755 */ 756 if (node != NULL) { 757 AVL_SETPARENT(node, parent); 758 AVL_SETCHILD(node, which_child); 759 } 760 if (parent == NULL) { 761 tree->avl_root = node; 762 return; 763 } 764 parent->avl_child[which_child] = node; 765 766 767 /* 768 * Since the subtree is now shorter, begin adjusting parent balances 769 * and performing any needed rotations. 770 */ 771 do { 772 773 /* 774 * Move up the tree and adjust the balance 775 * 776 * Capture the parent and which_child values for the next 777 * iteration before any rotations occur. 778 */ 779 node = parent; 780 old_balance = AVL_XBALANCE(node); 781 new_balance = old_balance - avl_child2balance[which_child]; 782 parent = AVL_XPARENT(node); 783 which_child = AVL_XCHILD(node); 784 785 /* 786 * If a node was in perfect balance but isn't anymore then 787 * we can stop, since the height didn't change above this point 788 * due to a deletion. 789 */ 790 if (old_balance == 0) { 791 AVL_SETBALANCE(node, new_balance); 792 break; 793 } 794 795 /* 796 * If the new balance is zero, we don't need to rotate 797 * else 798 * need a rotation to fix the balance. 799 * If the rotation doesn't change the height 800 * of the sub-tree we have finished adjusting. 801 */ 802 if (new_balance == 0) 803 AVL_SETBALANCE(node, new_balance); 804 else if (!avl_rotation(tree, node, new_balance)) 805 break; 806 } while (parent != NULL); 807 } 808 809 #define AVL_REINSERT(tree, obj) \ 810 avl_remove((tree), (obj)); \ 811 avl_add((tree), (obj)) 812 813 boolean_t 814 avl_update_lt(avl_tree_t *t, void *obj) 815 { 816 void *neighbor; 817 818 ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) || 819 (t->avl_compar(obj, neighbor) <= 0)); 820 821 neighbor = AVL_PREV(t, obj); 822 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 823 AVL_REINSERT(t, obj); 824 return (B_TRUE); 825 } 826 827 return (B_FALSE); 828 } 829 830 boolean_t 831 avl_update_gt(avl_tree_t *t, void *obj) 832 { 833 void *neighbor; 834 835 ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) || 836 (t->avl_compar(obj, neighbor) >= 0)); 837 838 neighbor = AVL_NEXT(t, obj); 839 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 840 AVL_REINSERT(t, obj); 841 return (B_TRUE); 842 } 843 844 return (B_FALSE); 845 } 846 847 boolean_t 848 avl_update(avl_tree_t *t, void *obj) 849 { 850 void *neighbor; 851 852 neighbor = AVL_PREV(t, obj); 853 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 854 AVL_REINSERT(t, obj); 855 return (B_TRUE); 856 } 857 858 neighbor = AVL_NEXT(t, obj); 859 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 860 AVL_REINSERT(t, obj); 861 return (B_TRUE); 862 } 863 864 return (B_FALSE); 865 } 866 867 /* 868 * initialize a new AVL tree 869 */ 870 void 871 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *), 872 size_t size, size_t offset) 873 { 874 ASSERT(tree); 875 ASSERT(compar); 876 ASSERT(size > 0); 877 ASSERT(size >= offset + sizeof (avl_node_t)); 878 #ifdef _LP64 879 ASSERT((offset & 0x7) == 0); 880 #endif 881 882 tree->avl_compar = compar; 883 tree->avl_root = NULL; 884 tree->avl_numnodes = 0; 885 tree->avl_size = size; 886 tree->avl_offset = offset; 887 } 888 889 /* 890 * Delete a tree. 891 */ 892 /* ARGSUSED */ 893 void 894 avl_destroy(avl_tree_t *tree) 895 { 896 ASSERT(tree); 897 ASSERT(tree->avl_numnodes == 0); 898 ASSERT(tree->avl_root == NULL); 899 } 900 901 902 /* 903 * Return the number of nodes in an AVL tree. 904 */ 905 ulong_t 906 avl_numnodes(avl_tree_t *tree) 907 { 908 ASSERT(tree); 909 return (tree->avl_numnodes); 910 } 911 912 boolean_t 913 avl_is_empty(avl_tree_t *tree) 914 { 915 ASSERT(tree); 916 return (tree->avl_numnodes == 0); 917 } 918 919 #define CHILDBIT (1L) 920 921 /* 922 * Post-order tree walk used to visit all tree nodes and destroy the tree 923 * in post order. This is used for destroying a tree without paying any cost 924 * for rebalancing it. 925 * 926 * example: 927 * 928 * void *cookie = NULL; 929 * my_data_t *node; 930 * 931 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 932 * free(node); 933 * avl_destroy(tree); 934 * 935 * The cookie is really an avl_node_t to the current node's parent and 936 * an indication of which child you looked at last. 937 * 938 * On input, a cookie value of CHILDBIT indicates the tree is done. 939 */ 940 void * 941 avl_destroy_nodes(avl_tree_t *tree, void **cookie) 942 { 943 avl_node_t *node; 944 avl_node_t *parent; 945 int child; 946 void *first; 947 size_t off = tree->avl_offset; 948 949 /* 950 * Initial calls go to the first node or it's right descendant. 951 */ 952 if (*cookie == NULL) { 953 first = avl_first(tree); 954 955 /* 956 * deal with an empty tree 957 */ 958 if (first == NULL) { 959 *cookie = (void *)CHILDBIT; 960 return (NULL); 961 } 962 963 node = AVL_DATA2NODE(first, off); 964 parent = AVL_XPARENT(node); 965 goto check_right_side; 966 } 967 968 /* 969 * If there is no parent to return to we are done. 970 */ 971 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT); 972 if (parent == NULL) { 973 if (tree->avl_root != NULL) { 974 ASSERT(tree->avl_numnodes == 1); 975 tree->avl_root = NULL; 976 tree->avl_numnodes = 0; 977 } 978 return (NULL); 979 } 980 981 /* 982 * Remove the child pointer we just visited from the parent and tree. 983 */ 984 child = (uintptr_t)(*cookie) & CHILDBIT; 985 parent->avl_child[child] = NULL; 986 ASSERT(tree->avl_numnodes > 1); 987 --tree->avl_numnodes; 988 989 /* 990 * If we just did a right child or there isn't one, go up to parent. 991 */ 992 if (child == 1 || parent->avl_child[1] == NULL) { 993 node = parent; 994 parent = AVL_XPARENT(parent); 995 goto done; 996 } 997 998 /* 999 * Do parent's right child, then leftmost descendent. 1000 */ 1001 node = parent->avl_child[1]; 1002 while (node->avl_child[0] != NULL) { 1003 parent = node; 1004 node = node->avl_child[0]; 1005 } 1006 1007 /* 1008 * If here, we moved to a left child. It may have one 1009 * child on the right (when balance == +1). 1010 */ 1011 check_right_side: 1012 if (node->avl_child[1] != NULL) { 1013 ASSERT(AVL_XBALANCE(node) == 1); 1014 parent = node; 1015 node = node->avl_child[1]; 1016 ASSERT(node->avl_child[0] == NULL && 1017 node->avl_child[1] == NULL); 1018 } else { 1019 ASSERT(AVL_XBALANCE(node) <= 0); 1020 } 1021 1022 done: 1023 if (parent == NULL) { 1024 *cookie = (void *)CHILDBIT; 1025 ASSERT(node == tree->avl_root); 1026 } else { 1027 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node)); 1028 } 1029 1030 return (AVL_NODE2DATA(node, off)); 1031 } 1032