xref: /titanic_51/usr/src/common/avl/avl.c (revision 45818ee124adeaaf947698996b4f4c722afc6d1f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2014 by Delphix. All rights reserved.
28  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
29  */
30 
31 /*
32  * AVL - generic AVL tree implementation for kernel use
33  *
34  * A complete description of AVL trees can be found in many CS textbooks.
35  *
36  * Here is a very brief overview. An AVL tree is a binary search tree that is
37  * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
38  * any given node, the left and right subtrees are allowed to differ in height
39  * by at most 1 level.
40  *
41  * This relaxation from a perfectly balanced binary tree allows doing
42  * insertion and deletion relatively efficiently. Searching the tree is
43  * still a fast operation, roughly O(log(N)).
44  *
45  * The key to insertion and deletion is a set of tree manipulations called
46  * rotations, which bring unbalanced subtrees back into the semi-balanced state.
47  *
48  * This implementation of AVL trees has the following peculiarities:
49  *
50  *	- The AVL specific data structures are physically embedded as fields
51  *	  in the "using" data structures.  To maintain generality the code
52  *	  must constantly translate between "avl_node_t *" and containing
53  *	  data structure "void *"s by adding/subtracting the avl_offset.
54  *
55  *	- Since the AVL data is always embedded in other structures, there is
56  *	  no locking or memory allocation in the AVL routines. This must be
57  *	  provided for by the enclosing data structure's semantics. Typically,
58  *	  avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
59  *	  exclusive write lock. Other operations require a read lock.
60  *
61  *      - The implementation uses iteration instead of explicit recursion,
62  *	  since it is intended to run on limited size kernel stacks. Since
63  *	  there is no recursion stack present to move "up" in the tree,
64  *	  there is an explicit "parent" link in the avl_node_t.
65  *
66  *      - The left/right children pointers of a node are in an array.
67  *	  In the code, variables (instead of constants) are used to represent
68  *	  left and right indices.  The implementation is written as if it only
69  *	  dealt with left handed manipulations.  By changing the value assigned
70  *	  to "left", the code also works for right handed trees.  The
71  *	  following variables/terms are frequently used:
72  *
73  *		int left;	// 0 when dealing with left children,
74  *				// 1 for dealing with right children
75  *
76  *		int left_heavy;	// -1 when left subtree is taller at some node,
77  *				// +1 when right subtree is taller
78  *
79  *		int right;	// will be the opposite of left (0 or 1)
80  *		int right_heavy;// will be the opposite of left_heavy (-1 or 1)
81  *
82  *		int direction;  // 0 for "<" (ie. left child); 1 for ">" (right)
83  *
84  *	  Though it is a little more confusing to read the code, the approach
85  *	  allows using half as much code (and hence cache footprint) for tree
86  *	  manipulations and eliminates many conditional branches.
87  *
88  *	- The avl_index_t is an opaque "cookie" used to find nodes at or
89  *	  adjacent to where a new value would be inserted in the tree. The value
90  *	  is a modified "avl_node_t *".  The bottom bit (normally 0 for a
91  *	  pointer) is set to indicate if that the new node has a value greater
92  *	  than the value of the indicated "avl_node_t *".
93  *
94  * Note - in addition to userland (e.g. libavl and libutil) and the kernel
95  * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module,
96  * which each have their own compilation environments and subsequent
97  * requirements. Each of these environments must be considered when adding
98  * dependencies from avl.c.
99  */
100 
101 #include <sys/types.h>
102 #include <sys/param.h>
103 #include <sys/debug.h>
104 #include <sys/avl.h>
105 #include <sys/cmn_err.h>
106 
107 /*
108  * Small arrays to translate between balance (or diff) values and child indices.
109  *
110  * Code that deals with binary tree data structures will randomly use
111  * left and right children when examining a tree.  C "if()" statements
112  * which evaluate randomly suffer from very poor hardware branch prediction.
113  * In this code we avoid some of the branch mispredictions by using the
114  * following translation arrays. They replace random branches with an
115  * additional memory reference. Since the translation arrays are both very
116  * small the data should remain efficiently in cache.
117  */
118 static const int  avl_child2balance[2]	= {-1, 1};
119 static const int  avl_balance2child[]	= {0, 0, 1};
120 
121 
122 /*
123  * Walk from one node to the previous valued node (ie. an infix walk
124  * towards the left). At any given node we do one of 2 things:
125  *
126  * - If there is a left child, go to it, then to it's rightmost descendant.
127  *
128  * - otherwise we return through parent nodes until we've come from a right
129  *   child.
130  *
131  * Return Value:
132  * NULL - if at the end of the nodes
133  * otherwise next node
134  */
135 void *
136 avl_walk(avl_tree_t *tree, void	*oldnode, int left)
137 {
138 	size_t off = tree->avl_offset;
139 	avl_node_t *node = AVL_DATA2NODE(oldnode, off);
140 	int right = 1 - left;
141 	int was_child;
142 
143 
144 	/*
145 	 * nowhere to walk to if tree is empty
146 	 */
147 	if (node == NULL)
148 		return (NULL);
149 
150 	/*
151 	 * Visit the previous valued node. There are two possibilities:
152 	 *
153 	 * If this node has a left child, go down one left, then all
154 	 * the way right.
155 	 */
156 	if (node->avl_child[left] != NULL) {
157 		for (node = node->avl_child[left];
158 		    node->avl_child[right] != NULL;
159 		    node = node->avl_child[right])
160 			;
161 	/*
162 	 * Otherwise, return thru left children as far as we can.
163 	 */
164 	} else {
165 		for (;;) {
166 			was_child = AVL_XCHILD(node);
167 			node = AVL_XPARENT(node);
168 			if (node == NULL)
169 				return (NULL);
170 			if (was_child == right)
171 				break;
172 		}
173 	}
174 
175 	return (AVL_NODE2DATA(node, off));
176 }
177 
178 /*
179  * Return the lowest valued node in a tree or NULL.
180  * (leftmost child from root of tree)
181  */
182 void *
183 avl_first(avl_tree_t *tree)
184 {
185 	avl_node_t *node;
186 	avl_node_t *prev = NULL;
187 	size_t off = tree->avl_offset;
188 
189 	for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
190 		prev = node;
191 
192 	if (prev != NULL)
193 		return (AVL_NODE2DATA(prev, off));
194 	return (NULL);
195 }
196 
197 /*
198  * Return the highest valued node in a tree or NULL.
199  * (rightmost child from root of tree)
200  */
201 void *
202 avl_last(avl_tree_t *tree)
203 {
204 	avl_node_t *node;
205 	avl_node_t *prev = NULL;
206 	size_t off = tree->avl_offset;
207 
208 	for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
209 		prev = node;
210 
211 	if (prev != NULL)
212 		return (AVL_NODE2DATA(prev, off));
213 	return (NULL);
214 }
215 
216 /*
217  * Access the node immediately before or after an insertion point.
218  *
219  * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
220  *
221  * Return value:
222  *	NULL: no node in the given direction
223  *	"void *"  of the found tree node
224  */
225 void *
226 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
227 {
228 	int child = AVL_INDEX2CHILD(where);
229 	avl_node_t *node = AVL_INDEX2NODE(where);
230 	void *data;
231 	size_t off = tree->avl_offset;
232 
233 	if (node == NULL) {
234 		ASSERT(tree->avl_root == NULL);
235 		return (NULL);
236 	}
237 	data = AVL_NODE2DATA(node, off);
238 	if (child != direction)
239 		return (data);
240 
241 	return (avl_walk(tree, data, direction));
242 }
243 
244 
245 /*
246  * Search for the node which contains "value".  The algorithm is a
247  * simple binary tree search.
248  *
249  * return value:
250  *	NULL: the value is not in the AVL tree
251  *		*where (if not NULL)  is set to indicate the insertion point
252  *	"void *"  of the found tree node
253  */
254 void *
255 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where)
256 {
257 	avl_node_t *node;
258 	avl_node_t *prev = NULL;
259 	int child = 0;
260 	int diff;
261 	size_t off = tree->avl_offset;
262 
263 	for (node = tree->avl_root; node != NULL;
264 	    node = node->avl_child[child]) {
265 
266 		prev = node;
267 
268 		diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
269 		ASSERT(-1 <= diff && diff <= 1);
270 		if (diff == 0) {
271 #ifdef DEBUG
272 			if (where != NULL)
273 				*where = 0;
274 #endif
275 			return (AVL_NODE2DATA(node, off));
276 		}
277 		child = avl_balance2child[1 + diff];
278 
279 	}
280 
281 	if (where != NULL)
282 		*where = AVL_MKINDEX(prev, child);
283 
284 	return (NULL);
285 }
286 
287 
288 /*
289  * Perform a rotation to restore balance at the subtree given by depth.
290  *
291  * This routine is used by both insertion and deletion. The return value
292  * indicates:
293  *	 0 : subtree did not change height
294  *	!0 : subtree was reduced in height
295  *
296  * The code is written as if handling left rotations, right rotations are
297  * symmetric and handled by swapping values of variables right/left[_heavy]
298  *
299  * On input balance is the "new" balance at "node". This value is either
300  * -2 or +2.
301  */
302 static int
303 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
304 {
305 	int left = !(balance < 0);	/* when balance = -2, left will be 0 */
306 	int right = 1 - left;
307 	int left_heavy = balance >> 1;
308 	int right_heavy = -left_heavy;
309 	avl_node_t *parent = AVL_XPARENT(node);
310 	avl_node_t *child = node->avl_child[left];
311 	avl_node_t *cright;
312 	avl_node_t *gchild;
313 	avl_node_t *gright;
314 	avl_node_t *gleft;
315 	int which_child = AVL_XCHILD(node);
316 	int child_bal = AVL_XBALANCE(child);
317 
318 	/* BEGIN CSTYLED */
319 	/*
320 	 * case 1 : node is overly left heavy, the left child is balanced or
321 	 * also left heavy. This requires the following rotation.
322 	 *
323 	 *                   (node bal:-2)
324 	 *                    /           \
325 	 *                   /             \
326 	 *              (child bal:0 or -1)
327 	 *              /    \
328 	 *             /      \
329 	 *                     cright
330 	 *
331 	 * becomes:
332 	 *
333 	 *              (child bal:1 or 0)
334 	 *              /        \
335 	 *             /          \
336 	 *                        (node bal:-1 or 0)
337 	 *                         /     \
338 	 *                        /       \
339 	 *                     cright
340 	 *
341 	 * we detect this situation by noting that child's balance is not
342 	 * right_heavy.
343 	 */
344 	/* END CSTYLED */
345 	if (child_bal != right_heavy) {
346 
347 		/*
348 		 * compute new balance of nodes
349 		 *
350 		 * If child used to be left heavy (now balanced) we reduced
351 		 * the height of this sub-tree -- used in "return...;" below
352 		 */
353 		child_bal += right_heavy; /* adjust towards right */
354 
355 		/*
356 		 * move "cright" to be node's left child
357 		 */
358 		cright = child->avl_child[right];
359 		node->avl_child[left] = cright;
360 		if (cright != NULL) {
361 			AVL_SETPARENT(cright, node);
362 			AVL_SETCHILD(cright, left);
363 		}
364 
365 		/*
366 		 * move node to be child's right child
367 		 */
368 		child->avl_child[right] = node;
369 		AVL_SETBALANCE(node, -child_bal);
370 		AVL_SETCHILD(node, right);
371 		AVL_SETPARENT(node, child);
372 
373 		/*
374 		 * update the pointer into this subtree
375 		 */
376 		AVL_SETBALANCE(child, child_bal);
377 		AVL_SETCHILD(child, which_child);
378 		AVL_SETPARENT(child, parent);
379 		if (parent != NULL)
380 			parent->avl_child[which_child] = child;
381 		else
382 			tree->avl_root = child;
383 
384 		return (child_bal == 0);
385 	}
386 
387 	/* BEGIN CSTYLED */
388 	/*
389 	 * case 2 : When node is left heavy, but child is right heavy we use
390 	 * a different rotation.
391 	 *
392 	 *                   (node b:-2)
393 	 *                    /   \
394 	 *                   /     \
395 	 *                  /       \
396 	 *             (child b:+1)
397 	 *              /     \
398 	 *             /       \
399 	 *                   (gchild b: != 0)
400 	 *                     /  \
401 	 *                    /    \
402 	 *                 gleft   gright
403 	 *
404 	 * becomes:
405 	 *
406 	 *              (gchild b:0)
407 	 *              /       \
408 	 *             /         \
409 	 *            /           \
410 	 *        (child b:?)   (node b:?)
411 	 *         /  \          /   \
412 	 *        /    \        /     \
413 	 *            gleft   gright
414 	 *
415 	 * computing the new balances is more complicated. As an example:
416 	 *	 if gchild was right_heavy, then child is now left heavy
417 	 *		else it is balanced
418 	 */
419 	/* END CSTYLED */
420 	gchild = child->avl_child[right];
421 	gleft = gchild->avl_child[left];
422 	gright = gchild->avl_child[right];
423 
424 	/*
425 	 * move gright to left child of node and
426 	 *
427 	 * move gleft to right child of node
428 	 */
429 	node->avl_child[left] = gright;
430 	if (gright != NULL) {
431 		AVL_SETPARENT(gright, node);
432 		AVL_SETCHILD(gright, left);
433 	}
434 
435 	child->avl_child[right] = gleft;
436 	if (gleft != NULL) {
437 		AVL_SETPARENT(gleft, child);
438 		AVL_SETCHILD(gleft, right);
439 	}
440 
441 	/*
442 	 * move child to left child of gchild and
443 	 *
444 	 * move node to right child of gchild and
445 	 *
446 	 * fixup parent of all this to point to gchild
447 	 */
448 	balance = AVL_XBALANCE(gchild);
449 	gchild->avl_child[left] = child;
450 	AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
451 	AVL_SETPARENT(child, gchild);
452 	AVL_SETCHILD(child, left);
453 
454 	gchild->avl_child[right] = node;
455 	AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
456 	AVL_SETPARENT(node, gchild);
457 	AVL_SETCHILD(node, right);
458 
459 	AVL_SETBALANCE(gchild, 0);
460 	AVL_SETPARENT(gchild, parent);
461 	AVL_SETCHILD(gchild, which_child);
462 	if (parent != NULL)
463 		parent->avl_child[which_child] = gchild;
464 	else
465 		tree->avl_root = gchild;
466 
467 	return (1);	/* the new tree is always shorter */
468 }
469 
470 
471 /*
472  * Insert a new node into an AVL tree at the specified (from avl_find()) place.
473  *
474  * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
475  * searches out to the leaf positions.  The avl_index_t indicates the node
476  * which will be the parent of the new node.
477  *
478  * After the node is inserted, a single rotation further up the tree may
479  * be necessary to maintain an acceptable AVL balance.
480  */
481 void
482 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
483 {
484 	avl_node_t *node;
485 	avl_node_t *parent = AVL_INDEX2NODE(where);
486 	int old_balance;
487 	int new_balance;
488 	int which_child = AVL_INDEX2CHILD(where);
489 	size_t off = tree->avl_offset;
490 
491 	ASSERT(tree);
492 #ifdef _LP64
493 	ASSERT(((uintptr_t)new_data & 0x7) == 0);
494 #endif
495 
496 	node = AVL_DATA2NODE(new_data, off);
497 
498 	/*
499 	 * First, add the node to the tree at the indicated position.
500 	 */
501 	++tree->avl_numnodes;
502 
503 	node->avl_child[0] = NULL;
504 	node->avl_child[1] = NULL;
505 
506 	AVL_SETCHILD(node, which_child);
507 	AVL_SETBALANCE(node, 0);
508 	AVL_SETPARENT(node, parent);
509 	if (parent != NULL) {
510 		ASSERT(parent->avl_child[which_child] == NULL);
511 		parent->avl_child[which_child] = node;
512 	} else {
513 		ASSERT(tree->avl_root == NULL);
514 		tree->avl_root = node;
515 	}
516 	/*
517 	 * Now, back up the tree modifying the balance of all nodes above the
518 	 * insertion point. If we get to a highly unbalanced ancestor, we
519 	 * need to do a rotation.  If we back out of the tree we are done.
520 	 * If we brought any subtree into perfect balance (0), we are also done.
521 	 */
522 	for (;;) {
523 		node = parent;
524 		if (node == NULL)
525 			return;
526 
527 		/*
528 		 * Compute the new balance
529 		 */
530 		old_balance = AVL_XBALANCE(node);
531 		new_balance = old_balance + avl_child2balance[which_child];
532 
533 		/*
534 		 * If we introduced equal balance, then we are done immediately
535 		 */
536 		if (new_balance == 0) {
537 			AVL_SETBALANCE(node, 0);
538 			return;
539 		}
540 
541 		/*
542 		 * If both old and new are not zero we went
543 		 * from -1 to -2 balance, do a rotation.
544 		 */
545 		if (old_balance != 0)
546 			break;
547 
548 		AVL_SETBALANCE(node, new_balance);
549 		parent = AVL_XPARENT(node);
550 		which_child = AVL_XCHILD(node);
551 	}
552 
553 	/*
554 	 * perform a rotation to fix the tree and return
555 	 */
556 	(void) avl_rotation(tree, node, new_balance);
557 }
558 
559 /*
560  * Insert "new_data" in "tree" in the given "direction" either after or
561  * before (AVL_AFTER, AVL_BEFORE) the data "here".
562  *
563  * Insertions can only be done at empty leaf points in the tree, therefore
564  * if the given child of the node is already present we move to either
565  * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
566  * every other node in the tree is a leaf, this always works.
567  *
568  * To help developers using this interface, we assert that the new node
569  * is correctly ordered at every step of the way in DEBUG kernels.
570  */
571 void
572 avl_insert_here(
573 	avl_tree_t *tree,
574 	void *new_data,
575 	void *here,
576 	int direction)
577 {
578 	avl_node_t *node;
579 	int child = direction;	/* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
580 #ifdef DEBUG
581 	int diff;
582 #endif
583 
584 	ASSERT(tree != NULL);
585 	ASSERT(new_data != NULL);
586 	ASSERT(here != NULL);
587 	ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
588 
589 	/*
590 	 * If corresponding child of node is not NULL, go to the neighboring
591 	 * node and reverse the insertion direction.
592 	 */
593 	node = AVL_DATA2NODE(here, tree->avl_offset);
594 
595 #ifdef DEBUG
596 	diff = tree->avl_compar(new_data, here);
597 	ASSERT(-1 <= diff && diff <= 1);
598 	ASSERT(diff != 0);
599 	ASSERT(diff > 0 ? child == 1 : child == 0);
600 #endif
601 
602 	if (node->avl_child[child] != NULL) {
603 		node = node->avl_child[child];
604 		child = 1 - child;
605 		while (node->avl_child[child] != NULL) {
606 #ifdef DEBUG
607 			diff = tree->avl_compar(new_data,
608 			    AVL_NODE2DATA(node, tree->avl_offset));
609 			ASSERT(-1 <= diff && diff <= 1);
610 			ASSERT(diff != 0);
611 			ASSERT(diff > 0 ? child == 1 : child == 0);
612 #endif
613 			node = node->avl_child[child];
614 		}
615 #ifdef DEBUG
616 		diff = tree->avl_compar(new_data,
617 		    AVL_NODE2DATA(node, tree->avl_offset));
618 		ASSERT(-1 <= diff && diff <= 1);
619 		ASSERT(diff != 0);
620 		ASSERT(diff > 0 ? child == 1 : child == 0);
621 #endif
622 	}
623 	ASSERT(node->avl_child[child] == NULL);
624 
625 	avl_insert(tree, new_data, AVL_MKINDEX(node, child));
626 }
627 
628 /*
629  * Add a new node to an AVL tree.
630  */
631 void
632 avl_add(avl_tree_t *tree, void *new_node)
633 {
634 	avl_index_t where;
635 
636 	/*
637 	 * This is unfortunate.  We want to call panic() here, even for
638 	 * non-DEBUG kernels.  In userland, however, we can't depend on anything
639 	 * in libc or else the rtld build process gets confused.
640 	 * Thankfully, rtld provides us with its own assfail() so we can use
641 	 * that here.  We use assfail() directly to get a nice error message
642 	 * in the core - much like what panic() does for crashdumps.
643 	 */
644 	if (avl_find(tree, new_node, &where) != NULL)
645 #ifdef _KERNEL
646 		panic("avl_find() succeeded inside avl_add()");
647 #else
648 		(void) assfail("avl_find() succeeded inside avl_add()",
649 		    __FILE__, __LINE__);
650 #endif
651 	avl_insert(tree, new_node, where);
652 }
653 
654 /*
655  * Delete a node from the AVL tree.  Deletion is similar to insertion, but
656  * with 2 complications.
657  *
658  * First, we may be deleting an interior node. Consider the following subtree:
659  *
660  *     d           c            c
661  *    / \         / \          / \
662  *   b   e       b   e        b   e
663  *  / \	        / \          /
664  * a   c       a            a
665  *
666  * When we are deleting node (d), we find and bring up an adjacent valued leaf
667  * node, say (c), to take the interior node's place. In the code this is
668  * handled by temporarily swapping (d) and (c) in the tree and then using
669  * common code to delete (d) from the leaf position.
670  *
671  * Secondly, an interior deletion from a deep tree may require more than one
672  * rotation to fix the balance. This is handled by moving up the tree through
673  * parents and applying rotations as needed. The return value from
674  * avl_rotation() is used to detect when a subtree did not change overall
675  * height due to a rotation.
676  */
677 void
678 avl_remove(avl_tree_t *tree, void *data)
679 {
680 	avl_node_t *delete;
681 	avl_node_t *parent;
682 	avl_node_t *node;
683 	avl_node_t tmp;
684 	int old_balance;
685 	int new_balance;
686 	int left;
687 	int right;
688 	int which_child;
689 	size_t off = tree->avl_offset;
690 
691 	ASSERT(tree);
692 
693 	delete = AVL_DATA2NODE(data, off);
694 
695 	/*
696 	 * Deletion is easiest with a node that has at most 1 child.
697 	 * We swap a node with 2 children with a sequentially valued
698 	 * neighbor node. That node will have at most 1 child. Note this
699 	 * has no effect on the ordering of the remaining nodes.
700 	 *
701 	 * As an optimization, we choose the greater neighbor if the tree
702 	 * is right heavy, otherwise the left neighbor. This reduces the
703 	 * number of rotations needed.
704 	 */
705 	if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
706 
707 		/*
708 		 * choose node to swap from whichever side is taller
709 		 */
710 		old_balance = AVL_XBALANCE(delete);
711 		left = avl_balance2child[old_balance + 1];
712 		right = 1 - left;
713 
714 		/*
715 		 * get to the previous value'd node
716 		 * (down 1 left, as far as possible right)
717 		 */
718 		for (node = delete->avl_child[left];
719 		    node->avl_child[right] != NULL;
720 		    node = node->avl_child[right])
721 			;
722 
723 		/*
724 		 * create a temp placeholder for 'node'
725 		 * move 'node' to delete's spot in the tree
726 		 */
727 		tmp = *node;
728 
729 		*node = *delete;
730 		if (node->avl_child[left] == node)
731 			node->avl_child[left] = &tmp;
732 
733 		parent = AVL_XPARENT(node);
734 		if (parent != NULL)
735 			parent->avl_child[AVL_XCHILD(node)] = node;
736 		else
737 			tree->avl_root = node;
738 		AVL_SETPARENT(node->avl_child[left], node);
739 		AVL_SETPARENT(node->avl_child[right], node);
740 
741 		/*
742 		 * Put tmp where node used to be (just temporary).
743 		 * It always has a parent and at most 1 child.
744 		 */
745 		delete = &tmp;
746 		parent = AVL_XPARENT(delete);
747 		parent->avl_child[AVL_XCHILD(delete)] = delete;
748 		which_child = (delete->avl_child[1] != 0);
749 		if (delete->avl_child[which_child] != NULL)
750 			AVL_SETPARENT(delete->avl_child[which_child], delete);
751 	}
752 
753 
754 	/*
755 	 * Here we know "delete" is at least partially a leaf node. It can
756 	 * be easily removed from the tree.
757 	 */
758 	ASSERT(tree->avl_numnodes > 0);
759 	--tree->avl_numnodes;
760 	parent = AVL_XPARENT(delete);
761 	which_child = AVL_XCHILD(delete);
762 	if (delete->avl_child[0] != NULL)
763 		node = delete->avl_child[0];
764 	else
765 		node = delete->avl_child[1];
766 
767 	/*
768 	 * Connect parent directly to node (leaving out delete).
769 	 */
770 	if (node != NULL) {
771 		AVL_SETPARENT(node, parent);
772 		AVL_SETCHILD(node, which_child);
773 	}
774 	if (parent == NULL) {
775 		tree->avl_root = node;
776 		return;
777 	}
778 	parent->avl_child[which_child] = node;
779 
780 
781 	/*
782 	 * Since the subtree is now shorter, begin adjusting parent balances
783 	 * and performing any needed rotations.
784 	 */
785 	do {
786 
787 		/*
788 		 * Move up the tree and adjust the balance
789 		 *
790 		 * Capture the parent and which_child values for the next
791 		 * iteration before any rotations occur.
792 		 */
793 		node = parent;
794 		old_balance = AVL_XBALANCE(node);
795 		new_balance = old_balance - avl_child2balance[which_child];
796 		parent = AVL_XPARENT(node);
797 		which_child = AVL_XCHILD(node);
798 
799 		/*
800 		 * If a node was in perfect balance but isn't anymore then
801 		 * we can stop, since the height didn't change above this point
802 		 * due to a deletion.
803 		 */
804 		if (old_balance == 0) {
805 			AVL_SETBALANCE(node, new_balance);
806 			break;
807 		}
808 
809 		/*
810 		 * If the new balance is zero, we don't need to rotate
811 		 * else
812 		 * need a rotation to fix the balance.
813 		 * If the rotation doesn't change the height
814 		 * of the sub-tree we have finished adjusting.
815 		 */
816 		if (new_balance == 0)
817 			AVL_SETBALANCE(node, new_balance);
818 		else if (!avl_rotation(tree, node, new_balance))
819 			break;
820 	} while (parent != NULL);
821 }
822 
823 #define	AVL_REINSERT(tree, obj)		\
824 	avl_remove((tree), (obj));	\
825 	avl_add((tree), (obj))
826 
827 boolean_t
828 avl_update_lt(avl_tree_t *t, void *obj)
829 {
830 	void *neighbor;
831 
832 	ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
833 	    (t->avl_compar(obj, neighbor) <= 0));
834 
835 	neighbor = AVL_PREV(t, obj);
836 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
837 		AVL_REINSERT(t, obj);
838 		return (B_TRUE);
839 	}
840 
841 	return (B_FALSE);
842 }
843 
844 boolean_t
845 avl_update_gt(avl_tree_t *t, void *obj)
846 {
847 	void *neighbor;
848 
849 	ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
850 	    (t->avl_compar(obj, neighbor) >= 0));
851 
852 	neighbor = AVL_NEXT(t, obj);
853 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
854 		AVL_REINSERT(t, obj);
855 		return (B_TRUE);
856 	}
857 
858 	return (B_FALSE);
859 }
860 
861 boolean_t
862 avl_update(avl_tree_t *t, void *obj)
863 {
864 	void *neighbor;
865 
866 	neighbor = AVL_PREV(t, obj);
867 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
868 		AVL_REINSERT(t, obj);
869 		return (B_TRUE);
870 	}
871 
872 	neighbor = AVL_NEXT(t, obj);
873 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
874 		AVL_REINSERT(t, obj);
875 		return (B_TRUE);
876 	}
877 
878 	return (B_FALSE);
879 }
880 
881 void
882 avl_swap(avl_tree_t *tree1, avl_tree_t *tree2)
883 {
884 	avl_node_t *temp_node;
885 	ulong_t temp_numnodes;
886 
887 	ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar);
888 	ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset);
889 	ASSERT3U(tree1->avl_size, ==, tree2->avl_size);
890 
891 	temp_node = tree1->avl_root;
892 	temp_numnodes = tree1->avl_numnodes;
893 	tree1->avl_root = tree2->avl_root;
894 	tree1->avl_numnodes = tree2->avl_numnodes;
895 	tree2->avl_root = temp_node;
896 	tree2->avl_numnodes = temp_numnodes;
897 }
898 
899 /*
900  * initialize a new AVL tree
901  */
902 void
903 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
904     size_t size, size_t offset)
905 {
906 	ASSERT(tree);
907 	ASSERT(compar);
908 	ASSERT(size > 0);
909 	ASSERT(size >= offset + sizeof (avl_node_t));
910 #ifdef _LP64
911 	ASSERT((offset & 0x7) == 0);
912 #endif
913 
914 	tree->avl_compar = compar;
915 	tree->avl_root = NULL;
916 	tree->avl_numnodes = 0;
917 	tree->avl_size = size;
918 	tree->avl_offset = offset;
919 }
920 
921 /*
922  * Delete a tree.
923  */
924 /* ARGSUSED */
925 void
926 avl_destroy(avl_tree_t *tree)
927 {
928 	ASSERT(tree);
929 	ASSERT(tree->avl_numnodes == 0);
930 	ASSERT(tree->avl_root == NULL);
931 }
932 
933 
934 /*
935  * Return the number of nodes in an AVL tree.
936  */
937 ulong_t
938 avl_numnodes(avl_tree_t *tree)
939 {
940 	ASSERT(tree);
941 	return (tree->avl_numnodes);
942 }
943 
944 boolean_t
945 avl_is_empty(avl_tree_t *tree)
946 {
947 	ASSERT(tree);
948 	return (tree->avl_numnodes == 0);
949 }
950 
951 #define	CHILDBIT	(1L)
952 
953 /*
954  * Post-order tree walk used to visit all tree nodes and destroy the tree
955  * in post order. This is used for destroying a tree without paying any cost
956  * for rebalancing it.
957  *
958  * example:
959  *
960  *	void *cookie = NULL;
961  *	my_data_t *node;
962  *
963  *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
964  *		free(node);
965  *	avl_destroy(tree);
966  *
967  * The cookie is really an avl_node_t to the current node's parent and
968  * an indication of which child you looked at last.
969  *
970  * On input, a cookie value of CHILDBIT indicates the tree is done.
971  */
972 void *
973 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
974 {
975 	avl_node_t	*node;
976 	avl_node_t	*parent;
977 	int		child;
978 	void		*first;
979 	size_t		off = tree->avl_offset;
980 
981 	/*
982 	 * Initial calls go to the first node or it's right descendant.
983 	 */
984 	if (*cookie == NULL) {
985 		first = avl_first(tree);
986 
987 		/*
988 		 * deal with an empty tree
989 		 */
990 		if (first == NULL) {
991 			*cookie = (void *)CHILDBIT;
992 			return (NULL);
993 		}
994 
995 		node = AVL_DATA2NODE(first, off);
996 		parent = AVL_XPARENT(node);
997 		goto check_right_side;
998 	}
999 
1000 	/*
1001 	 * If there is no parent to return to we are done.
1002 	 */
1003 	parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
1004 	if (parent == NULL) {
1005 		if (tree->avl_root != NULL) {
1006 			ASSERT(tree->avl_numnodes == 1);
1007 			tree->avl_root = NULL;
1008 			tree->avl_numnodes = 0;
1009 		}
1010 		return (NULL);
1011 	}
1012 
1013 	/*
1014 	 * Remove the child pointer we just visited from the parent and tree.
1015 	 */
1016 	child = (uintptr_t)(*cookie) & CHILDBIT;
1017 	parent->avl_child[child] = NULL;
1018 	ASSERT(tree->avl_numnodes > 1);
1019 	--tree->avl_numnodes;
1020 
1021 	/*
1022 	 * If we just did a right child or there isn't one, go up to parent.
1023 	 */
1024 	if (child == 1 || parent->avl_child[1] == NULL) {
1025 		node = parent;
1026 		parent = AVL_XPARENT(parent);
1027 		goto done;
1028 	}
1029 
1030 	/*
1031 	 * Do parent's right child, then leftmost descendent.
1032 	 */
1033 	node = parent->avl_child[1];
1034 	while (node->avl_child[0] != NULL) {
1035 		parent = node;
1036 		node = node->avl_child[0];
1037 	}
1038 
1039 	/*
1040 	 * If here, we moved to a left child. It may have one
1041 	 * child on the right (when balance == +1).
1042 	 */
1043 check_right_side:
1044 	if (node->avl_child[1] != NULL) {
1045 		ASSERT(AVL_XBALANCE(node) == 1);
1046 		parent = node;
1047 		node = node->avl_child[1];
1048 		ASSERT(node->avl_child[0] == NULL &&
1049 		    node->avl_child[1] == NULL);
1050 	} else {
1051 		ASSERT(AVL_XBALANCE(node) <= 0);
1052 	}
1053 
1054 done:
1055 	if (parent == NULL) {
1056 		*cookie = (void *)CHILDBIT;
1057 		ASSERT(node == tree->avl_root);
1058 	} else {
1059 		*cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1060 	}
1061 
1062 	return (AVL_NODE2DATA(node, off));
1063 }
1064