1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * The objective of this program is to provide a DMU/ZAP/SPA stress test 31 * that runs entirely in userland, is easy to use, and easy to extend. 32 * 33 * The overall design of the ztest program is as follows: 34 * 35 * (1) For each major functional area (e.g. adding vdevs to a pool, 36 * creating and destroying datasets, reading and writing objects, etc) 37 * we have a simple routine to test that functionality. These 38 * individual routines do not have to do anything "stressful". 39 * 40 * (2) We turn these simple functionality tests into a stress test by 41 * running them all in parallel, with as many threads as desired, 42 * and spread across as many datasets, objects, and vdevs as desired. 43 * 44 * (3) While all this is happening, we inject faults into the pool to 45 * verify that self-healing data really works. 46 * 47 * (4) Every time we open a dataset, we change its checksum and compression 48 * functions. Thus even individual objects vary from block to block 49 * in which checksum they use and whether they're compressed. 50 * 51 * (5) To verify that we never lose on-disk consistency after a crash, 52 * we run the entire test in a child of the main process. 53 * At random times, the child self-immolates with a SIGKILL. 54 * This is the software equivalent of pulling the power cord. 55 * The parent then runs the test again, using the existing 56 * storage pool, as many times as desired. 57 * 58 * (6) To verify that we don't have future leaks or temporal incursions, 59 * many of the functional tests record the transaction group number 60 * as part of their data. When reading old data, they verify that 61 * the transaction group number is less than the current, open txg. 62 * If you add a new test, please do this if applicable. 63 * 64 * When run with no arguments, ztest runs for about five minutes and 65 * produces no output if successful. To get a little bit of information, 66 * specify -V. To get more information, specify -VV, and so on. 67 * 68 * To turn this into an overnight stress test, use -T to specify run time. 69 * 70 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 71 * to increase the pool capacity, fanout, and overall stress level. 72 * 73 * The -N(okill) option will suppress kills, so each child runs to completion. 74 * This can be useful when you're trying to distinguish temporal incursions 75 * from plain old race conditions. 76 */ 77 78 #include <sys/zfs_context.h> 79 #include <sys/spa.h> 80 #include <sys/dmu.h> 81 #include <sys/txg.h> 82 #include <sys/zap.h> 83 #include <sys/dmu_traverse.h> 84 #include <sys/dmu_objset.h> 85 #include <sys/poll.h> 86 #include <sys/stat.h> 87 #include <sys/time.h> 88 #include <sys/wait.h> 89 #include <sys/mman.h> 90 #include <sys/resource.h> 91 #include <sys/zio.h> 92 #include <sys/zio_checksum.h> 93 #include <sys/zio_compress.h> 94 #include <sys/zil.h> 95 #include <sys/vdev_impl.h> 96 #include <sys/spa_impl.h> 97 #include <sys/dsl_prop.h> 98 #include <sys/refcount.h> 99 #include <stdio.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 109 static char cmdname[] = "ztest"; 110 static char *zopt_pool = cmdname; 111 112 static uint64_t zopt_vdevs = 5; 113 static uint64_t zopt_vdevtime; 114 static int zopt_mirrors = 2; 115 static int zopt_raidz = 4; 116 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 117 static int zopt_dirs = 7; 118 static int zopt_threads = 23; 119 static uint64_t zopt_passtime = 60; /* 60 seconds */ 120 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 121 static int zopt_verbose = 0; 122 static int zopt_init = 1; 123 static char *zopt_dir = "/tmp"; 124 static uint64_t zopt_time = 300; /* 5 minutes */ 125 static int zopt_maxfaults; 126 127 typedef struct ztest_args { 128 char *za_pool; 129 objset_t *za_os; 130 zilog_t *za_zilog; 131 thread_t za_thread; 132 uint64_t za_instance; 133 uint64_t za_random; 134 uint64_t za_diroff; 135 uint64_t za_diroff_shared; 136 hrtime_t za_start; 137 hrtime_t za_stop; 138 hrtime_t za_kill; 139 traverse_handle_t *za_th; 140 } ztest_args_t; 141 142 typedef void ztest_func_t(ztest_args_t *); 143 144 /* 145 * Note: these aren't static because we want dladdr() to work. 146 */ 147 ztest_func_t ztest_dmu_read_write; 148 ztest_func_t ztest_dmu_write_parallel; 149 ztest_func_t ztest_dmu_object_alloc_free; 150 ztest_func_t ztest_zap; 151 ztest_func_t ztest_zap_parallel; 152 ztest_func_t ztest_traverse; 153 ztest_func_t ztest_dsl_prop_get_set; 154 ztest_func_t ztest_dmu_objset_create_destroy; 155 ztest_func_t ztest_dmu_snapshot_create_destroy; 156 ztest_func_t ztest_spa_create_destroy; 157 ztest_func_t ztest_fault_inject; 158 ztest_func_t ztest_vdev_attach_detach; 159 ztest_func_t ztest_vdev_LUN_growth; 160 ztest_func_t ztest_vdev_add_remove; 161 ztest_func_t ztest_scrub; 162 ztest_func_t ztest_spa_rename; 163 164 typedef struct ztest_info { 165 ztest_func_t *zi_func; /* test function */ 166 uint64_t *zi_interval; /* execute every <interval> seconds */ 167 uint64_t zi_calls; /* per-pass count */ 168 uint64_t zi_call_time; /* per-pass time */ 169 uint64_t zi_call_total; /* cumulative total */ 170 uint64_t zi_call_target; /* target cumulative total */ 171 } ztest_info_t; 172 173 uint64_t zopt_always = 0; /* all the time */ 174 uint64_t zopt_often = 1; /* every second */ 175 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 176 uint64_t zopt_rarely = 60; /* every 60 seconds */ 177 178 ztest_info_t ztest_info[] = { 179 { ztest_dmu_read_write, &zopt_always }, 180 { ztest_dmu_write_parallel, &zopt_always }, 181 { ztest_dmu_object_alloc_free, &zopt_always }, 182 { ztest_zap, &zopt_always }, 183 { ztest_zap_parallel, &zopt_always }, 184 { ztest_traverse, &zopt_often }, 185 { ztest_dsl_prop_get_set, &zopt_sometimes }, 186 { ztest_dmu_objset_create_destroy, &zopt_sometimes }, 187 { ztest_dmu_snapshot_create_destroy, &zopt_sometimes }, 188 { ztest_spa_create_destroy, &zopt_sometimes }, 189 { ztest_fault_inject, &zopt_sometimes }, 190 { ztest_spa_rename, &zopt_rarely }, 191 { ztest_vdev_attach_detach, &zopt_rarely }, 192 { ztest_vdev_LUN_growth, &zopt_rarely }, 193 { ztest_vdev_add_remove, &zopt_vdevtime }, 194 { ztest_scrub, &zopt_vdevtime }, 195 }; 196 197 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 198 199 #define ZTEST_SYNC_LOCKS 16 200 201 /* 202 * Stuff we need to share writably between parent and child. 203 */ 204 typedef struct ztest_shared { 205 mutex_t zs_vdev_lock; 206 rwlock_t zs_name_lock; 207 uint64_t zs_vdev_primaries; 208 uint64_t zs_enospc_count; 209 hrtime_t zs_start_time; 210 hrtime_t zs_stop_time; 211 uint64_t zs_alloc; 212 uint64_t zs_space; 213 ztest_info_t zs_info[ZTEST_FUNCS]; 214 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 215 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 216 } ztest_shared_t; 217 218 typedef struct ztest_block_tag { 219 uint64_t bt_objset; 220 uint64_t bt_object; 221 uint64_t bt_offset; 222 uint64_t bt_txg; 223 uint64_t bt_thread; 224 uint64_t bt_seq; 225 } ztest_block_tag_t; 226 227 static char ztest_dev_template[] = "%s/%s.%llua"; 228 static ztest_shared_t *ztest_shared; 229 230 static int ztest_random_fd; 231 static int ztest_dump_core = 1; 232 233 extern uint64_t zio_gang_bang; 234 235 #define ZTEST_DIROBJ 1 236 #define ZTEST_MICROZAP_OBJ 2 237 #define ZTEST_FATZAP_OBJ 3 238 239 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 240 #define ZTEST_DIRSIZE 256 241 242 /* 243 * These libumem hooks provide a reasonable set of defaults for the allocator's 244 * debugging facilities. 245 */ 246 const char * 247 _umem_debug_init() 248 { 249 return ("default,verbose"); /* $UMEM_DEBUG setting */ 250 } 251 252 const char * 253 _umem_logging_init(void) 254 { 255 return ("fail,contents"); /* $UMEM_LOGGING setting */ 256 } 257 258 #define FATAL_MSG_SZ 1024 259 260 char *fatal_msg; 261 262 static void 263 fatal(int do_perror, char *message, ...) 264 { 265 va_list args; 266 int save_errno = errno; 267 char buf[FATAL_MSG_SZ]; 268 269 (void) fflush(stdout); 270 271 va_start(args, message); 272 (void) sprintf(buf, "ztest: "); 273 /* LINTED */ 274 (void) vsprintf(buf + strlen(buf), message, args); 275 va_end(args); 276 if (do_perror) { 277 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 278 ": %s", strerror(save_errno)); 279 } 280 (void) fprintf(stderr, "%s\n", buf); 281 fatal_msg = buf; /* to ease debugging */ 282 if (ztest_dump_core) 283 abort(); 284 exit(3); 285 } 286 287 static int 288 str2shift(const char *buf) 289 { 290 const char *ends = "BKMGTPEZ"; 291 int i; 292 293 if (buf[0] == '\0') 294 return (0); 295 for (i = 0; i < strlen(ends); i++) { 296 if (toupper(buf[0]) == ends[i]) 297 break; 298 } 299 if (i == strlen(ends)) 300 fatal(0, "invalid bytes suffix: %s", buf); 301 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 302 return (10*i); 303 } 304 fatal(0, "invalid bytes suffix: %s", buf); 305 return (-1); 306 } 307 308 static uint64_t 309 nicenumtoull(const char *buf) 310 { 311 char *end; 312 uint64_t val; 313 314 val = strtoull(buf, &end, 0); 315 if (end == buf) { 316 fatal(0, "bad numeric value: %s", buf); 317 } else if (end[0] == '.') { 318 double fval = strtod(buf, &end); 319 fval *= pow(2, str2shift(end)); 320 if (fval > UINT64_MAX) 321 fatal(0, "value too large: %s", buf); 322 val = (uint64_t)fval; 323 } else { 324 int shift = str2shift(end); 325 if (shift >= 64 || (val << shift) >> shift != val) 326 fatal(0, "value too large: %s", buf); 327 val <<= shift; 328 } 329 return (val); 330 } 331 332 static void 333 usage(void) 334 { 335 char nice_vdev_size[10]; 336 char nice_gang_bang[10]; 337 338 nicenum(zopt_vdev_size, nice_vdev_size); 339 nicenum(zio_gang_bang, nice_gang_bang); 340 341 (void) printf("Usage: %s\n" 342 "\t[-v vdevs (default: %llu)]\n" 343 "\t[-s size_of_each_vdev (default: %s)]\n" 344 "\t[-m mirror_copies (default: %d)]\n" 345 "\t[-r raidz_disks (default: %d)]\n" 346 "\t[-d datasets (default: %d)]\n" 347 "\t[-t threads (default: %d)]\n" 348 "\t[-g gang_block_threshold (default: %s)]\n" 349 "\t[-i initialize pool i times (default: %d)]\n" 350 "\t[-k kill percentage (default: %llu%%)]\n" 351 "\t[-p pool_name (default: %s)]\n" 352 "\t[-f file directory for vdev files (default: %s)]\n" 353 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 354 "\t[-E(xisting)] (use existing pool instead of creating new one\n" 355 "\t[-I(mport)] (discover and import existing pools)\n" 356 "\t[-T time] total run time (default: %llu sec)\n" 357 "\t[-P passtime] time per pass (default: %llu sec)\n" 358 "", 359 cmdname, 360 (u_longlong_t)zopt_vdevs, /* -v */ 361 nice_vdev_size, /* -s */ 362 zopt_mirrors, /* -m */ 363 zopt_raidz, /* -r */ 364 zopt_dirs, /* -d */ 365 zopt_threads, /* -t */ 366 nice_gang_bang, /* -g */ 367 zopt_init, /* -i */ 368 (u_longlong_t)zopt_killrate, /* -k */ 369 zopt_pool, /* -p */ 370 zopt_dir, /* -f */ 371 (u_longlong_t)zopt_time, /* -T */ 372 (u_longlong_t)zopt_passtime); /* -P */ 373 exit(1); 374 } 375 376 static uint64_t 377 ztest_random(uint64_t range) 378 { 379 uint64_t r; 380 381 if (range == 0) 382 return (0); 383 384 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 385 fatal(1, "short read from /dev/urandom"); 386 387 return (r % range); 388 } 389 390 static void 391 ztest_record_enospc(char *s) 392 { 393 dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>"); 394 ztest_shared->zs_enospc_count++; 395 } 396 397 static void 398 process_options(int argc, char **argv) 399 { 400 int opt; 401 uint64_t value; 402 403 /* By default, test gang blocks for blocks 32K and greater */ 404 zio_gang_bang = 32 << 10; 405 406 while ((opt = getopt(argc, argv, 407 "v:s:m:r:c:d:t:g:i:k:p:f:VEIT:P:S")) != EOF) { 408 value = 0; 409 switch (opt) { 410 case 'v': 411 case 's': 412 case 'm': 413 case 'r': 414 case 'c': 415 case 'd': 416 case 't': 417 case 'g': 418 case 'i': 419 case 'k': 420 case 'T': 421 case 'P': 422 value = nicenumtoull(optarg); 423 } 424 switch (opt) { 425 case 'v': 426 zopt_vdevs = value; 427 break; 428 case 's': 429 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 430 break; 431 case 'm': 432 zopt_mirrors = value; 433 break; 434 case 'r': 435 zopt_raidz = MAX(1, value); 436 break; 437 case 'd': 438 zopt_dirs = MAX(1, value); 439 break; 440 case 't': 441 zopt_threads = MAX(1, value); 442 break; 443 case 'g': 444 zio_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 445 break; 446 case 'i': 447 zopt_init = value; 448 break; 449 case 'k': 450 zopt_killrate = value; 451 break; 452 case 'p': 453 zopt_pool = strdup(optarg); 454 break; 455 case 'f': 456 zopt_dir = strdup(optarg); 457 break; 458 case 'V': 459 zopt_verbose++; 460 break; 461 case 'E': 462 zopt_init = 0; 463 break; 464 case 'T': 465 zopt_time = value; 466 break; 467 case 'P': 468 zopt_passtime = MAX(1, value); 469 break; 470 case '?': 471 default: 472 usage(); 473 break; 474 } 475 } 476 477 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 478 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz >= 2 ? 2 : 1) - 1; 479 } 480 481 static nvlist_t * 482 make_vdev_file(size_t size) 483 { 484 char dev_name[MAXPATHLEN]; 485 uint64_t vdev; 486 int fd; 487 nvlist_t *file; 488 489 if (size == 0) { 490 (void) snprintf(dev_name, sizeof (dev_name), "%s", 491 "/dev/bogus"); 492 } else { 493 vdev = ztest_shared->zs_vdev_primaries++; 494 (void) sprintf(dev_name, ztest_dev_template, 495 zopt_dir, zopt_pool, vdev); 496 497 fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666); 498 if (fd == -1) 499 fatal(1, "can't open %s", dev_name); 500 if (ftruncate(fd, size) != 0) 501 fatal(1, "can't ftruncate %s", dev_name); 502 (void) close(fd); 503 } 504 505 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 506 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 507 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, dev_name) == 0); 508 509 return (file); 510 } 511 512 static nvlist_t * 513 make_vdev_raidz(size_t size, int r) 514 { 515 nvlist_t *raidz, **child; 516 int c; 517 518 if (r < 2) 519 return (make_vdev_file(size)); 520 521 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 522 523 for (c = 0; c < r; c++) 524 child[c] = make_vdev_file(size); 525 526 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 527 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 528 VDEV_TYPE_RAIDZ) == 0); 529 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 530 child, r) == 0); 531 532 for (c = 0; c < r; c++) 533 nvlist_free(child[c]); 534 535 umem_free(child, r * sizeof (nvlist_t *)); 536 537 return (raidz); 538 } 539 540 static nvlist_t * 541 make_vdev_mirror(size_t size, int r, int m) 542 { 543 nvlist_t *mirror, **child; 544 int c; 545 546 if (m < 1) 547 return (make_vdev_raidz(size, r)); 548 549 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 550 551 for (c = 0; c < m; c++) 552 child[c] = make_vdev_raidz(size, r); 553 554 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 555 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 556 VDEV_TYPE_MIRROR) == 0); 557 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 558 child, m) == 0); 559 560 for (c = 0; c < m; c++) 561 nvlist_free(child[c]); 562 563 umem_free(child, m * sizeof (nvlist_t *)); 564 565 return (mirror); 566 } 567 568 static nvlist_t * 569 make_vdev_root(size_t size, int r, int m, int t) 570 { 571 nvlist_t *root, **child; 572 int c; 573 574 ASSERT(t > 0); 575 576 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 577 578 for (c = 0; c < t; c++) 579 child[c] = make_vdev_mirror(size, r, m); 580 581 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 582 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 583 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 584 child, t) == 0); 585 586 for (c = 0; c < t; c++) 587 nvlist_free(child[c]); 588 589 umem_free(child, t * sizeof (nvlist_t *)); 590 591 return (root); 592 } 593 594 static void 595 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 596 { 597 int bs = SPA_MINBLOCKSHIFT + 598 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 599 int ibs = DN_MIN_INDBLKSHIFT + 600 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 601 int error; 602 603 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 604 if (error) { 605 char osname[300]; 606 dmu_objset_name(os, osname); 607 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 608 osname, object, 1 << bs, ibs, error); 609 } 610 } 611 612 static uint8_t 613 ztest_random_checksum(void) 614 { 615 uint8_t checksum; 616 617 do { 618 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 619 } while (zio_checksum_table[checksum].ci_zbt); 620 621 if (checksum == ZIO_CHECKSUM_OFF) 622 checksum = ZIO_CHECKSUM_ON; 623 624 return (checksum); 625 } 626 627 static uint8_t 628 ztest_random_compress(void) 629 { 630 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 631 } 632 633 typedef struct ztest_replay { 634 objset_t *zr_os; 635 uint64_t zr_assign; 636 } ztest_replay_t; 637 638 static int 639 ztest_replay_create(ztest_replay_t *zr, lr_create_t *lr, boolean_t byteswap) 640 { 641 objset_t *os = zr->zr_os; 642 dmu_tx_t *tx; 643 int error; 644 645 if (byteswap) 646 byteswap_uint64_array(lr, sizeof (*lr)); 647 648 tx = dmu_tx_create(os); 649 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 650 error = dmu_tx_assign(tx, zr->zr_assign); 651 if (error) { 652 dmu_tx_abort(tx); 653 return (error); 654 } 655 656 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 657 DMU_OT_NONE, 0, tx); 658 ASSERT(error == 0); 659 dmu_tx_commit(tx); 660 661 if (zopt_verbose >= 5) { 662 char osname[MAXNAMELEN]; 663 dmu_objset_name(os, osname); 664 (void) printf("replay create of %s object %llu" 665 " in txg %llu = %d\n", 666 osname, (u_longlong_t)lr->lr_doid, 667 (u_longlong_t)zr->zr_assign, error); 668 } 669 670 return (error); 671 } 672 673 static int 674 ztest_replay_remove(ztest_replay_t *zr, lr_remove_t *lr, boolean_t byteswap) 675 { 676 objset_t *os = zr->zr_os; 677 dmu_tx_t *tx; 678 int error; 679 680 if (byteswap) 681 byteswap_uint64_array(lr, sizeof (*lr)); 682 683 tx = dmu_tx_create(os); 684 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 685 error = dmu_tx_assign(tx, zr->zr_assign); 686 if (error) { 687 dmu_tx_abort(tx); 688 return (error); 689 } 690 691 error = dmu_object_free(os, lr->lr_doid, tx); 692 dmu_tx_commit(tx); 693 694 return (error); 695 } 696 697 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 698 NULL, /* 0 no such transaction type */ 699 ztest_replay_create, /* TX_CREATE */ 700 NULL, /* TX_MKDIR */ 701 NULL, /* TX_MKXATTR */ 702 NULL, /* TX_SYMLINK */ 703 ztest_replay_remove, /* TX_REMOVE */ 704 NULL, /* TX_RMDIR */ 705 NULL, /* TX_LINK */ 706 NULL, /* TX_RENAME */ 707 NULL, /* TX_WRITE */ 708 NULL, /* TX_TRUNCATE */ 709 NULL, /* TX_SETATTR */ 710 NULL, /* TX_ACL */ 711 }; 712 713 /* 714 * Verify that we can't destroy an active pool, create an existing pool, 715 * or create a pool with a bad vdev spec. 716 */ 717 void 718 ztest_spa_create_destroy(ztest_args_t *za) 719 { 720 int error; 721 spa_t *spa; 722 nvlist_t *nvroot; 723 724 /* 725 * Attempt to create using a bad file. 726 */ 727 nvroot = make_vdev_root(0, 0, 0, 1); 728 error = spa_create("ztest_bad_file", nvroot, NULL); 729 nvlist_free(nvroot); 730 if (error != ENOENT) 731 fatal(0, "spa_create(bad_file) = %d", error); 732 733 /* 734 * Attempt to create using a bad mirror. 735 */ 736 nvroot = make_vdev_root(0, 0, 2, 1); 737 error = spa_create("ztest_bad_mirror", nvroot, NULL); 738 nvlist_free(nvroot); 739 if (error != ENOENT) 740 fatal(0, "spa_create(bad_mirror) = %d", error); 741 742 /* 743 * Attempt to create an existing pool. It shouldn't matter 744 * what's in the nvroot; we should fail with EEXIST. 745 */ 746 (void) rw_rdlock(&ztest_shared->zs_name_lock); 747 nvroot = make_vdev_root(0, 0, 0, 1); 748 error = spa_create(za->za_pool, nvroot, NULL); 749 nvlist_free(nvroot); 750 if (error != EEXIST) 751 fatal(0, "spa_create(whatever) = %d", error); 752 753 error = spa_open(za->za_pool, &spa, FTAG); 754 if (error) 755 fatal(0, "spa_open() = %d", error); 756 757 error = spa_destroy(za->za_pool); 758 if (error != EBUSY) 759 fatal(0, "spa_destroy() = %d", error); 760 761 spa_close(spa, FTAG); 762 (void) rw_unlock(&ztest_shared->zs_name_lock); 763 } 764 765 /* 766 * Verify that vdev_add() works as expected. 767 */ 768 void 769 ztest_vdev_add_remove(ztest_args_t *za) 770 { 771 spa_t *spa = dmu_objset_spa(za->za_os); 772 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 773 nvlist_t *nvroot; 774 int error; 775 776 if (zopt_verbose >= 6) 777 (void) printf("adding vdev\n"); 778 779 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 780 781 spa_config_enter(spa, RW_READER); 782 783 ztest_shared->zs_vdev_primaries = 784 spa->spa_root_vdev->vdev_children * leaves; 785 786 spa_config_exit(spa); 787 788 nvroot = make_vdev_root(zopt_vdev_size, zopt_raidz, zopt_mirrors, 1); 789 error = spa_vdev_add(spa, nvroot); 790 nvlist_free(nvroot); 791 792 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 793 794 if (error == ENOSPC) 795 ztest_record_enospc("spa_vdev_add"); 796 else if (error != 0) 797 fatal(0, "spa_vdev_add() = %d", error); 798 799 if (zopt_verbose >= 6) 800 (void) printf("spa_vdev_add = %d, as expected\n", error); 801 } 802 803 /* 804 * Verify that we can attach and detach devices. 805 */ 806 void 807 ztest_vdev_attach_detach(ztest_args_t *za) 808 { 809 spa_t *spa = dmu_objset_spa(za->za_os); 810 vdev_t *rvd = spa->spa_root_vdev; 811 vdev_t *vd0, *vd1, *pvd; 812 nvlist_t *root, *file; 813 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 814 uint64_t leaf, top; 815 size_t size0, size1; 816 char path0[MAXPATHLEN], path1[MAXPATHLEN]; 817 int replacing; 818 int error, expected_error; 819 int fd; 820 821 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 822 823 spa_config_enter(spa, RW_READER); 824 825 /* 826 * Decide whether to do an attach or a replace. 827 */ 828 replacing = ztest_random(2); 829 830 /* 831 * Pick a random top-level vdev. 832 */ 833 top = ztest_random(rvd->vdev_children); 834 835 /* 836 * Pick a random leaf within it. 837 */ 838 leaf = ztest_random(leaves); 839 840 /* 841 * Generate the path to this leaf. The filename will end with 'a'. 842 * We'll alternate replacements with a filename that ends with 'b'. 843 */ 844 (void) snprintf(path0, sizeof (path0), 845 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); 846 847 bcopy(path0, path1, MAXPATHLEN); 848 849 /* 850 * If the 'a' file isn't part of the pool, the 'b' file must be. 851 */ 852 if (vdev_lookup_by_path(rvd, path0) == NULL) 853 path0[strlen(path0) - 1] = 'b'; 854 else 855 path1[strlen(path1) - 1] = 'b'; 856 857 /* 858 * Now path0 represents something that's already in the pool, 859 * and path1 is the thing we'll try to attach. 860 */ 861 vd0 = vdev_lookup_by_path(rvd, path0); 862 vd1 = vdev_lookup_by_path(rvd, path1); 863 ASSERT(vd0 != NULL); 864 pvd = vd0->vdev_parent; 865 866 867 /* 868 * Make size1 a little bigger or smaller than size0. 869 * If it's smaller, the attach should fail. 870 * If it's larger, and we're doing a replace, 871 * we should get dynamic LUN growth when we're done. 872 */ 873 size0 = vd0->vdev_psize; 874 size1 = 10 * size0 / (9 + ztest_random(3)); 875 876 /* 877 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 878 * unless it's a replace; in that case any non-replacing parent is OK. 879 * 880 * If vd1 is already part of the pool, it should fail with EBUSY. 881 * 882 * If vd1 is too small, it should fail with EOVERFLOW. 883 */ 884 if (pvd->vdev_ops != &vdev_mirror_ops && 885 pvd->vdev_ops != &vdev_root_ops && 886 (!replacing || pvd->vdev_ops == &vdev_replacing_ops)) 887 expected_error = ENOTSUP; 888 else if (vd1 != NULL) 889 expected_error = EBUSY; 890 else if (size1 < size0) 891 expected_error = EOVERFLOW; 892 else 893 expected_error = 0; 894 895 /* 896 * If vd1 isn't already part of the pool, create it. 897 */ 898 if (vd1 == NULL) { 899 fd = open(path1, O_RDWR | O_CREAT | O_TRUNC, 0666); 900 if (fd == -1) 901 fatal(1, "can't open %s", path1); 902 if (ftruncate(fd, size1) != 0) 903 fatal(1, "can't ftruncate %s", path1); 904 (void) close(fd); 905 } 906 907 spa_config_exit(spa); 908 909 /* 910 * Build the nvlist describing path1. 911 */ 912 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 913 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 914 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path1) == 0); 915 916 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 917 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 918 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 919 &file, 1) == 0); 920 921 error = spa_vdev_attach(spa, path0, root, replacing); 922 923 nvlist_free(file); 924 nvlist_free(root); 925 926 /* 927 * If our parent was the replacing vdev, but the replace completed, 928 * then instead of failing with ENOTSUP we may either succeed, 929 * fail with ENODEV, or fail with EOVERFLOW. 930 */ 931 if (expected_error == ENOTSUP && 932 (error == 0 || error == ENODEV || error == EOVERFLOW)) 933 expected_error = error; 934 935 if (error != expected_error) { 936 fatal(0, "attach (%s, %s, %d) returned %d, expected %d", 937 path0, path1, replacing, error, expected_error); 938 } 939 940 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 941 } 942 943 /* 944 * Verify that dynamic LUN growth works as expected. 945 */ 946 /* ARGSUSED */ 947 void 948 ztest_vdev_LUN_growth(ztest_args_t *za) 949 { 950 spa_t *spa = dmu_objset_spa(za->za_os); 951 char dev_name[MAXPATHLEN]; 952 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 953 uint64_t vdev; 954 size_t fsize; 955 int fd; 956 957 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 958 959 /* 960 * Pick a random leaf vdev. 961 */ 962 spa_config_enter(spa, RW_READER); 963 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves); 964 spa_config_exit(spa); 965 966 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 967 968 if ((fd = open(dev_name, O_RDWR)) != -1) { 969 /* 970 * Determine the size. 971 */ 972 fsize = lseek(fd, 0, SEEK_END); 973 974 /* 975 * If it's less than 2x the original size, grow by around 3%. 976 */ 977 if (fsize < 2 * zopt_vdev_size) { 978 size_t newsize = fsize + ztest_random(fsize / 32); 979 (void) ftruncate(fd, newsize); 980 if (zopt_verbose >= 6) { 981 (void) printf("%s grew from %lu to %lu bytes\n", 982 dev_name, (ulong_t)fsize, (ulong_t)newsize); 983 } 984 } 985 (void) close(fd); 986 } 987 988 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 989 } 990 991 /* ARGSUSED */ 992 static void 993 ztest_create_cb(objset_t *os, void *arg, dmu_tx_t *tx) 994 { 995 /* 996 * Create the directory object. 997 */ 998 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 999 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1000 DMU_OT_UINT64_OTHER, sizeof (ztest_block_tag_t), tx) == 0); 1001 1002 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1003 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1004 1005 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1006 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1007 } 1008 1009 /* ARGSUSED */ 1010 static void 1011 ztest_destroy_cb(char *name, void *arg) 1012 { 1013 objset_t *os; 1014 dmu_object_info_t doi; 1015 int error; 1016 1017 /* 1018 * Verify that the dataset contains a directory object. 1019 */ 1020 error = dmu_objset_open(name, DMU_OST_OTHER, 1021 DS_MODE_STANDARD | DS_MODE_READONLY, &os); 1022 ASSERT3U(error, ==, 0); 1023 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 1024 ASSERT3U(error, ==, 0); 1025 ASSERT3U(doi.doi_type, ==, DMU_OT_UINT64_OTHER); 1026 ASSERT3S(doi.doi_physical_blks, >=, 0); 1027 dmu_objset_close(os); 1028 1029 /* 1030 * Destroy the dataset. 1031 */ 1032 error = dmu_objset_destroy(name); 1033 ASSERT3U(error, ==, 0); 1034 } 1035 1036 /* 1037 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1038 */ 1039 static uint64_t 1040 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1041 { 1042 itx_t *itx; 1043 lr_create_t *lr; 1044 size_t namesize; 1045 char name[24]; 1046 1047 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1048 namesize = strlen(name) + 1; 1049 1050 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1051 ztest_random(ZIL_MAX_BLKSZ)); 1052 lr = (lr_create_t *)&itx->itx_lr; 1053 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1054 lr->lr_doid = object; 1055 lr->lr_foid = 0; 1056 lr->lr_mode = mode; 1057 lr->lr_uid = 0; 1058 lr->lr_gid = 0; 1059 lr->lr_gen = dmu_tx_get_txg(tx); 1060 lr->lr_crtime[0] = time(NULL); 1061 lr->lr_crtime[1] = 0; 1062 lr->lr_rdev = 0; 1063 bcopy(name, (char *)(lr + 1), namesize); 1064 1065 return (zil_itx_assign(zilog, itx, tx)); 1066 } 1067 1068 #ifndef lint 1069 static uint64_t 1070 ztest_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t object) 1071 { 1072 itx_t *itx; 1073 lr_remove_t *lr; 1074 size_t namesize; 1075 char name[24]; 1076 1077 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1078 namesize = strlen(name) + 1; 1079 1080 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize + 1081 ztest_random(8000)); 1082 lr = (lr_remove_t *)&itx->itx_lr; 1083 lr->lr_doid = object; 1084 bcopy(name, (char *)(lr + 1), namesize); 1085 1086 return (zil_itx_assign(zilog, itx, tx)); 1087 } 1088 #endif /* lint */ 1089 1090 void 1091 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1092 { 1093 int error; 1094 objset_t *os; 1095 char name[100]; 1096 int mode, basemode, expected_error; 1097 zilog_t *zilog; 1098 uint64_t seq; 1099 uint64_t objects; 1100 ztest_replay_t zr; 1101 1102 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1103 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1104 (u_longlong_t)za->za_instance); 1105 1106 basemode = DS_MODE_LEVEL(za->za_instance); 1107 if (basemode == DS_MODE_NONE) 1108 basemode++; 1109 1110 /* 1111 * If this dataset exists from a previous run, process its replay log 1112 * half of the time. If we don't replay it, then dmu_objset_destroy() 1113 * (invoked from ztest_destroy_cb() below) should just throw it away. 1114 */ 1115 if (ztest_random(2) == 0 && 1116 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_PRIMARY, &os) == 0) { 1117 zr.zr_os = os; 1118 zil_replay(os, &zr, &zr.zr_assign, ztest_replay_vector, NULL); 1119 dmu_objset_close(os); 1120 } 1121 1122 /* 1123 * There may be an old instance of the dataset we're about to 1124 * create lying around from a previous run. If so, destroy it 1125 * and all of its snapshots. 1126 */ 1127 dmu_objset_find(name, ztest_destroy_cb, NULL, DS_FIND_SNAPSHOTS); 1128 1129 /* 1130 * Verify that the destroyed dataset is no longer in the namespace. 1131 */ 1132 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1133 if (error != ENOENT) 1134 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1135 name, os); 1136 1137 /* 1138 * Verify that we can create a new dataset. 1139 */ 1140 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, ztest_create_cb, 1141 NULL); 1142 if (error) { 1143 if (error == ENOSPC) { 1144 ztest_record_enospc("dmu_objset_create"); 1145 (void) rw_unlock(&ztest_shared->zs_name_lock); 1146 return; 1147 } 1148 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1149 } 1150 1151 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1152 if (error) { 1153 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1154 } 1155 1156 /* 1157 * Open the intent log for it. 1158 */ 1159 zilog = zil_open(os, NULL); 1160 1161 /* 1162 * Put a random number of objects in there. 1163 */ 1164 objects = ztest_random(50); 1165 seq = 0; 1166 while (objects-- != 0) { 1167 uint64_t object; 1168 dmu_tx_t *tx = dmu_tx_create(os); 1169 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1170 error = dmu_tx_assign(tx, TXG_WAIT); 1171 if (error) { 1172 dmu_tx_abort(tx); 1173 } else { 1174 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1175 DMU_OT_NONE, 0, tx); 1176 ztest_set_random_blocksize(os, object, tx); 1177 seq = ztest_log_create(zilog, tx, object, 1178 DMU_OT_UINT64_OTHER); 1179 dmu_write(os, object, 0, sizeof (name), name, tx); 1180 dmu_tx_commit(tx); 1181 } 1182 if (ztest_random(5) == 0) { 1183 zil_commit(zilog, seq, FSYNC); 1184 } 1185 if (ztest_random(5) == 0) { 1186 error = zil_suspend(zilog); 1187 if (error == 0) { 1188 zil_resume(zilog); 1189 } 1190 } 1191 } 1192 1193 /* 1194 * Verify that we cannot create an existing dataset. 1195 */ 1196 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, NULL, NULL); 1197 if (error != EEXIST) 1198 fatal(0, "created existing dataset, error = %d", error); 1199 1200 /* 1201 * Verify that multiple dataset opens are allowed, but only when 1202 * the new access mode is compatible with the base mode. 1203 * We use a mixture of typed and typeless opens, and when the 1204 * open succeeds, verify that the discovered type is correct. 1205 */ 1206 for (mode = DS_MODE_STANDARD; mode < DS_MODE_LEVELS; mode++) { 1207 objset_t *os2; 1208 error = dmu_objset_open(name, DMU_OST_OTHER, mode, &os2); 1209 expected_error = (basemode + mode < DS_MODE_LEVELS) ? 0 : EBUSY; 1210 if (error != expected_error) 1211 fatal(0, "dmu_objset_open('%s') = %d, expected %d", 1212 name, error, expected_error); 1213 if (error == 0) 1214 dmu_objset_close(os2); 1215 } 1216 1217 zil_close(zilog); 1218 dmu_objset_close(os); 1219 1220 error = dmu_objset_destroy(name); 1221 if (error) 1222 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1223 1224 (void) rw_unlock(&ztest_shared->zs_name_lock); 1225 } 1226 1227 /* 1228 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1229 */ 1230 void 1231 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1232 { 1233 int error; 1234 objset_t *os = za->za_os; 1235 char snapname[100]; 1236 char osname[MAXNAMELEN]; 1237 1238 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1239 dmu_objset_name(os, osname); 1240 (void) snprintf(snapname, 100, "%s@%llu", osname, 1241 (u_longlong_t)za->za_instance); 1242 1243 error = dmu_objset_destroy(snapname); 1244 if (error != 0 && error != ENOENT) 1245 fatal(0, "dmu_objset_destroy() = %d", error); 1246 error = dmu_objset_create(snapname, DMU_OST_OTHER, NULL, NULL, NULL); 1247 if (error == ENOSPC) 1248 ztest_record_enospc("dmu_take_snapshot"); 1249 else if (error != 0 && error != EEXIST) 1250 fatal(0, "dmu_take_snapshot() = %d", error); 1251 (void) rw_unlock(&ztest_shared->zs_name_lock); 1252 } 1253 1254 #define ZTEST_TRAVERSE_BLOCKS 1000 1255 1256 static int 1257 ztest_blk_cb(traverse_blk_cache_t *bc, spa_t *spa, void *arg) 1258 { 1259 ztest_args_t *za = arg; 1260 zbookmark_t *zb = &bc->bc_bookmark; 1261 blkptr_t *bp = &bc->bc_blkptr; 1262 dnode_phys_t *dnp = bc->bc_dnode; 1263 traverse_handle_t *th = za->za_th; 1264 uint64_t size = BP_GET_LSIZE(bp); 1265 1266 ASSERT(dnp != NULL); 1267 1268 if (bc->bc_errno) 1269 return (ERESTART); 1270 1271 /* 1272 * Once in a while, abort the traverse. We only do this to odd 1273 * instance numbers to ensure that even ones can run to completion. 1274 */ 1275 if ((za->za_instance & 1) && ztest_random(10000) == 0) 1276 return (EINTR); 1277 1278 if (bp->blk_birth == 0) { 1279 ASSERT(th->th_advance & ADVANCE_HOLES); 1280 return (0); 1281 } 1282 1283 if (zb->zb_level == 0 && !(th->th_advance & ADVANCE_DATA) && 1284 bc == &th->th_cache[ZB_DN_CACHE][0]) { 1285 ASSERT(bc->bc_data == NULL); 1286 return (0); 1287 } 1288 1289 ASSERT(bc->bc_data != NULL); 1290 1291 /* 1292 * This is an expensive question, so don't ask it too often. 1293 */ 1294 if (((za->za_random ^ th->th_callbacks) & 0xff) == 0) { 1295 void *xbuf = umem_alloc(size, UMEM_NOFAIL); 1296 if (arc_tryread(spa, bp, xbuf) == 0) { 1297 ASSERT(bcmp(bc->bc_data, xbuf, size) == 0); 1298 } 1299 umem_free(xbuf, size); 1300 } 1301 1302 if (zb->zb_level > 0) { 1303 ASSERT3U(size, ==, 1ULL << dnp->dn_indblkshift); 1304 return (0); 1305 } 1306 1307 if (zb->zb_level == -1) { 1308 ASSERT3U(size, ==, sizeof (objset_phys_t)); 1309 return (0); 1310 } 1311 1312 ASSERT(zb->zb_level == 0); 1313 ASSERT3U(size, ==, dnp->dn_datablkszsec << DEV_BSHIFT); 1314 1315 return (0); 1316 } 1317 1318 /* 1319 * Verify that live pool traversal works. 1320 */ 1321 void 1322 ztest_traverse(ztest_args_t *za) 1323 { 1324 spa_t *spa = dmu_objset_spa(za->za_os); 1325 traverse_handle_t *th = za->za_th; 1326 int rc, advance; 1327 uint64_t cbstart, cblimit; 1328 1329 if (th == NULL) { 1330 advance = 0; 1331 1332 if (ztest_random(2) == 0) 1333 advance |= ADVANCE_PRE; 1334 1335 if (ztest_random(2) == 0) 1336 advance |= ADVANCE_PRUNE; 1337 1338 if (ztest_random(2) == 0) 1339 advance |= ADVANCE_DATA; 1340 1341 if (ztest_random(2) == 0) 1342 advance |= ADVANCE_HOLES; 1343 1344 th = za->za_th = traverse_init(spa, ztest_blk_cb, za, advance, 1345 ZIO_FLAG_CANFAIL); 1346 1347 traverse_add_pool(th, 0, -1ULL); 1348 } 1349 1350 advance = th->th_advance; 1351 cbstart = th->th_callbacks; 1352 cblimit = cbstart + ((advance & ADVANCE_DATA) ? 100 : 1000); 1353 1354 while ((rc = traverse_more(th)) == EAGAIN && th->th_callbacks < cblimit) 1355 continue; 1356 1357 if (zopt_verbose >= 5) 1358 (void) printf("traverse %s%s%s%s %llu blocks to " 1359 "<%llu, %llu, %d, %llx>%s\n", 1360 (advance & ADVANCE_PRE) ? "pre" : "post", 1361 (advance & ADVANCE_PRUNE) ? "|prune" : "", 1362 (advance & ADVANCE_DATA) ? "|data" : "", 1363 (advance & ADVANCE_HOLES) ? "|holes" : "", 1364 (u_longlong_t)(th->th_callbacks - cbstart), 1365 (u_longlong_t)th->th_lastcb.zb_objset, 1366 (u_longlong_t)th->th_lastcb.zb_object, 1367 th->th_lastcb.zb_level, 1368 (u_longlong_t)th->th_lastcb.zb_blkid, 1369 rc == 0 ? " [done]" : 1370 rc == EINTR ? " [aborted]" : 1371 rc == EAGAIN ? "" : 1372 strerror(rc)); 1373 1374 if (rc != EAGAIN) { 1375 if (rc != 0 && rc != EINTR) 1376 fatal(0, "traverse_more(%p) = %d", th, rc); 1377 traverse_fini(th); 1378 za->za_th = NULL; 1379 } 1380 } 1381 1382 /* 1383 * Verify that dmu_object_{alloc,free} work as expected. 1384 */ 1385 void 1386 ztest_dmu_object_alloc_free(ztest_args_t *za) 1387 { 1388 objset_t *os = za->za_os; 1389 dmu_buf_t *db; 1390 dmu_tx_t *tx; 1391 uint64_t batchobj, object, batchsize, endoff, temp; 1392 int b, c, error, bonuslen; 1393 dmu_object_info_t doi; 1394 char osname[MAXNAMELEN]; 1395 1396 dmu_objset_name(os, osname); 1397 1398 endoff = -8ULL; 1399 batchsize = 2; 1400 1401 /* 1402 * Create a batch object if necessary, and record it in the directory. 1403 */ 1404 dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &batchobj); 1405 if (batchobj == 0) { 1406 tx = dmu_tx_create(os); 1407 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1408 sizeof (uint64_t)); 1409 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1410 error = dmu_tx_assign(tx, TXG_WAIT); 1411 if (error) { 1412 ztest_record_enospc("create a batch object"); 1413 dmu_tx_abort(tx); 1414 return; 1415 } 1416 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1417 DMU_OT_NONE, 0, tx); 1418 ztest_set_random_blocksize(os, batchobj, tx); 1419 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1420 sizeof (uint64_t), &batchobj, tx); 1421 dmu_tx_commit(tx); 1422 } 1423 1424 /* 1425 * Destroy the previous batch of objects. 1426 */ 1427 for (b = 0; b < batchsize; b++) { 1428 dmu_read(os, batchobj, b * sizeof (uint64_t), 1429 sizeof (uint64_t), &object); 1430 if (object == 0) 1431 continue; 1432 /* 1433 * Read and validate contents. 1434 * We expect the nth byte of the bonus buffer to be n. 1435 */ 1436 db = dmu_bonus_hold(os, object); 1437 1438 dmu_object_info_from_db(db, &doi); 1439 ASSERT(doi.doi_type == DMU_OT_UINT64_OTHER); 1440 ASSERT(doi.doi_bonus_type == DMU_OT_PLAIN_OTHER); 1441 ASSERT3S(doi.doi_physical_blks, >=, 0); 1442 1443 dmu_buf_read(db); 1444 1445 bonuslen = db->db_size; 1446 1447 for (c = 0; c < bonuslen; c++) { 1448 if (((uint8_t *)db->db_data)[c] != 1449 (uint8_t)(c + bonuslen)) { 1450 fatal(0, 1451 "bad bonus: %s, obj %llu, off %d: %u != %u", 1452 osname, object, c, 1453 ((uint8_t *)db->db_data)[c], 1454 (uint8_t)(c + bonuslen)); 1455 } 1456 } 1457 1458 dmu_buf_rele(db); 1459 1460 /* 1461 * We expect the word at endoff to be our object number. 1462 */ 1463 dmu_read(os, object, endoff, sizeof (uint64_t), &temp); 1464 1465 if (temp != object) { 1466 fatal(0, "bad data in %s, got %llu, expected %llu", 1467 osname, temp, object); 1468 } 1469 1470 /* 1471 * Destroy old object and clear batch entry. 1472 */ 1473 tx = dmu_tx_create(os); 1474 dmu_tx_hold_write(tx, batchobj, 1475 b * sizeof (uint64_t), sizeof (uint64_t)); 1476 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1477 error = dmu_tx_assign(tx, TXG_WAIT); 1478 if (error) { 1479 ztest_record_enospc("free object"); 1480 dmu_tx_abort(tx); 1481 return; 1482 } 1483 error = dmu_object_free(os, object, tx); 1484 if (error) { 1485 fatal(0, "dmu_object_free('%s', %llu) = %d", 1486 osname, object, error); 1487 } 1488 object = 0; 1489 1490 dmu_object_set_checksum(os, batchobj, 1491 ztest_random_checksum(), tx); 1492 dmu_object_set_compress(os, batchobj, 1493 ztest_random_compress(), tx); 1494 1495 dmu_write(os, batchobj, b * sizeof (uint64_t), 1496 sizeof (uint64_t), &object, tx); 1497 1498 dmu_tx_commit(tx); 1499 } 1500 1501 /* 1502 * Before creating the new batch of objects, generate a bunch of churn. 1503 */ 1504 for (b = ztest_random(100); b > 0; b--) { 1505 tx = dmu_tx_create(os); 1506 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1507 error = dmu_tx_assign(tx, TXG_WAIT); 1508 if (error) { 1509 ztest_record_enospc("churn objects"); 1510 dmu_tx_abort(tx); 1511 return; 1512 } 1513 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1514 DMU_OT_NONE, 0, tx); 1515 ztest_set_random_blocksize(os, object, tx); 1516 error = dmu_object_free(os, object, tx); 1517 if (error) { 1518 fatal(0, "dmu_object_free('%s', %llu) = %d", 1519 osname, object, error); 1520 } 1521 dmu_tx_commit(tx); 1522 } 1523 1524 /* 1525 * Create a new batch of objects with randomly chosen 1526 * blocksizes and record them in the batch directory. 1527 */ 1528 for (b = 0; b < batchsize; b++) { 1529 uint32_t va_blksize; 1530 u_longlong_t va_nblocks; 1531 1532 tx = dmu_tx_create(os); 1533 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1534 sizeof (uint64_t)); 1535 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1536 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1537 sizeof (uint64_t)); 1538 error = dmu_tx_assign(tx, TXG_WAIT); 1539 if (error) { 1540 ztest_record_enospc("create batchobj"); 1541 dmu_tx_abort(tx); 1542 return; 1543 } 1544 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1545 1546 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1547 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1548 1549 ztest_set_random_blocksize(os, object, tx); 1550 1551 dmu_object_set_checksum(os, object, 1552 ztest_random_checksum(), tx); 1553 dmu_object_set_compress(os, object, 1554 ztest_random_compress(), tx); 1555 1556 dmu_write(os, batchobj, b * sizeof (uint64_t), 1557 sizeof (uint64_t), &object, tx); 1558 1559 /* 1560 * Write to both the bonus buffer and the regular data. 1561 */ 1562 db = dmu_bonus_hold(os, object); 1563 ASSERT3U(bonuslen, ==, db->db_size); 1564 1565 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1566 ASSERT3S(va_nblocks, >=, 0); 1567 1568 dmu_buf_will_dirty(db, tx); 1569 1570 /* 1571 * See comments above regarding the contents of 1572 * the bonus buffer and the word at endoff. 1573 */ 1574 for (c = 0; c < db->db_size; c++) 1575 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1576 1577 dmu_buf_rele(db); 1578 1579 /* 1580 * Write to a large offset to increase indirection. 1581 */ 1582 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1583 1584 dmu_tx_commit(tx); 1585 } 1586 } 1587 1588 /* 1589 * Verify that dmu_{read,write} work as expected. 1590 */ 1591 typedef struct bufwad { 1592 uint64_t bw_index; 1593 uint64_t bw_txg; 1594 uint64_t bw_data; 1595 } bufwad_t; 1596 1597 typedef struct dmu_read_write_dir { 1598 uint64_t dd_packobj; 1599 uint64_t dd_bigobj; 1600 uint64_t dd_chunk; 1601 } dmu_read_write_dir_t; 1602 1603 void 1604 ztest_dmu_read_write(ztest_args_t *za) 1605 { 1606 objset_t *os = za->za_os; 1607 dmu_read_write_dir_t dd; 1608 dmu_tx_t *tx; 1609 int i, freeit, error; 1610 uint64_t n, s, txg; 1611 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1612 uint64_t packoff, packsize, bigoff, bigsize; 1613 uint64_t regions = 997; 1614 uint64_t stride = 123456789ULL; 1615 uint64_t width = 40; 1616 int free_percent = 5; 1617 1618 /* 1619 * This test uses two objects, packobj and bigobj, that are always 1620 * updated together (i.e. in the same tx) so that their contents are 1621 * in sync and can be compared. Their contents relate to each other 1622 * in a simple way: packobj is a dense array of 'bufwad' structures, 1623 * while bigobj is a sparse array of the same bufwads. Specifically, 1624 * for any index n, there are three bufwads that should be identical: 1625 * 1626 * packobj, at offset n * sizeof (bufwad_t) 1627 * bigobj, at the head of the nth chunk 1628 * bigobj, at the tail of the nth chunk 1629 * 1630 * The chunk size is arbitrary. It doesn't have to be a power of two, 1631 * and it doesn't have any relation to the object blocksize. 1632 * The only requirement is that it can hold at least two bufwads. 1633 * 1634 * Normally, we write the bufwad to each of these locations. 1635 * However, free_percent of the time we instead write zeroes to 1636 * packobj and perform a dmu_free_range() on bigobj. By comparing 1637 * bigobj to packobj, we can verify that the DMU is correctly 1638 * tracking which parts of an object are allocated and free, 1639 * and that the contents of the allocated blocks are correct. 1640 */ 1641 1642 /* 1643 * Read the directory info. If it's the first time, set things up. 1644 */ 1645 dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd); 1646 if (dd.dd_chunk == 0) { 1647 ASSERT(dd.dd_packobj == 0); 1648 ASSERT(dd.dd_bigobj == 0); 1649 tx = dmu_tx_create(os); 1650 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1651 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1652 error = dmu_tx_assign(tx, TXG_WAIT); 1653 if (error) { 1654 ztest_record_enospc("create r/w directory"); 1655 dmu_tx_abort(tx); 1656 return; 1657 } 1658 1659 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1660 DMU_OT_NONE, 0, tx); 1661 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1662 DMU_OT_NONE, 0, tx); 1663 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 1664 1665 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 1666 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 1667 1668 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 1669 tx); 1670 dmu_tx_commit(tx); 1671 } 1672 1673 /* 1674 * Prefetch a random chunk of the big object. 1675 * Our aim here is to get some async reads in flight 1676 * for blocks that we may free below; the DMU should 1677 * handle this race correctly. 1678 */ 1679 n = ztest_random(regions) * stride + ztest_random(width); 1680 s = 1 + ztest_random(2 * width - 1); 1681 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 1682 1683 /* 1684 * Pick a random index and compute the offsets into packobj and bigobj. 1685 */ 1686 n = ztest_random(regions) * stride + ztest_random(width); 1687 s = 1 + ztest_random(width - 1); 1688 1689 packoff = n * sizeof (bufwad_t); 1690 packsize = s * sizeof (bufwad_t); 1691 1692 bigoff = n * dd.dd_chunk; 1693 bigsize = s * dd.dd_chunk; 1694 1695 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 1696 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 1697 1698 /* 1699 * free_percent of the time, free a range of bigobj rather than 1700 * overwriting it. 1701 */ 1702 freeit = (ztest_random(100) < free_percent); 1703 1704 /* 1705 * Read the current contents of our objects. 1706 */ 1707 dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf); 1708 dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf); 1709 1710 /* 1711 * Get a tx for the mods to both packobj and bigobj. 1712 */ 1713 tx = dmu_tx_create(os); 1714 1715 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 1716 1717 if (freeit) 1718 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 1719 else 1720 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 1721 1722 error = dmu_tx_assign(tx, TXG_WAIT); 1723 1724 if (error) { 1725 ztest_record_enospc("dmu r/w range"); 1726 dmu_tx_abort(tx); 1727 umem_free(packbuf, packsize); 1728 umem_free(bigbuf, bigsize); 1729 return; 1730 } 1731 1732 txg = dmu_tx_get_txg(tx); 1733 1734 /* 1735 * For each index from n to n + s, verify that the existing bufwad 1736 * in packobj matches the bufwads at the head and tail of the 1737 * corresponding chunk in bigobj. Then update all three bufwads 1738 * with the new values we want to write out. 1739 */ 1740 for (i = 0; i < s; i++) { 1741 /* LINTED */ 1742 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 1743 /* LINTED */ 1744 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 1745 /* LINTED */ 1746 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 1747 1748 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 1749 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 1750 1751 if (pack->bw_txg > txg) 1752 fatal(0, "future leak: got %llx, open txg is %llx", 1753 pack->bw_txg, txg); 1754 1755 if (pack->bw_data != 0 && pack->bw_index != n + i) 1756 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 1757 pack->bw_index, n, i); 1758 1759 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 1760 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 1761 1762 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 1763 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 1764 1765 if (freeit) { 1766 bzero(pack, sizeof (bufwad_t)); 1767 } else { 1768 pack->bw_index = n + i; 1769 pack->bw_txg = txg; 1770 pack->bw_data = 1 + ztest_random(-2ULL); 1771 } 1772 *bigH = *pack; 1773 *bigT = *pack; 1774 } 1775 1776 /* 1777 * We've verified all the old bufwads, and made new ones. 1778 * Now write them out. 1779 */ 1780 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 1781 1782 if (freeit) { 1783 if (zopt_verbose >= 6) { 1784 (void) printf("freeing offset %llx size %llx" 1785 " txg %llx\n", 1786 (u_longlong_t)bigoff, 1787 (u_longlong_t)bigsize, 1788 (u_longlong_t)txg); 1789 } 1790 dmu_free_range(os, dd.dd_bigobj, bigoff, bigsize, tx); 1791 } else { 1792 if (zopt_verbose >= 6) { 1793 (void) printf("writing offset %llx size %llx" 1794 " txg %llx\n", 1795 (u_longlong_t)bigoff, 1796 (u_longlong_t)bigsize, 1797 (u_longlong_t)txg); 1798 } 1799 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 1800 } 1801 1802 dmu_tx_commit(tx); 1803 1804 /* 1805 * Sanity check the stuff we just wrote. 1806 */ 1807 { 1808 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 1809 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 1810 1811 dmu_read(os, dd.dd_packobj, packoff, packsize, packcheck); 1812 dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigcheck); 1813 1814 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 1815 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 1816 1817 umem_free(packcheck, packsize); 1818 umem_free(bigcheck, bigsize); 1819 } 1820 1821 umem_free(packbuf, packsize); 1822 umem_free(bigbuf, bigsize); 1823 } 1824 1825 void 1826 ztest_dmu_write_parallel(ztest_args_t *za) 1827 { 1828 objset_t *os = za->za_os; 1829 dmu_tx_t *tx; 1830 dmu_buf_t *db; 1831 int i, b, error, do_free, bs; 1832 uint64_t off, txg_how, txg; 1833 mutex_t *lp; 1834 char osname[MAXNAMELEN]; 1835 char iobuf[SPA_MAXBLOCKSIZE]; 1836 ztest_block_tag_t rbt, wbt; 1837 1838 dmu_objset_name(os, osname); 1839 bs = ZTEST_DIROBJ_BLOCKSIZE; 1840 1841 /* 1842 * Have multiple threads write to large offsets in ZTEST_DIROBJ 1843 * to verify that having multiple threads writing to the same object 1844 * in parallel doesn't cause any trouble. 1845 * Also do parallel writes to the bonus buffer on occasion. 1846 */ 1847 for (i = 0; i < 50; i++) { 1848 b = ztest_random(ZTEST_SYNC_LOCKS); 1849 lp = &ztest_shared->zs_sync_lock[b]; 1850 1851 do_free = (ztest_random(4) == 0); 1852 1853 off = za->za_diroff_shared + ((uint64_t)b << SPA_MAXBLOCKSHIFT); 1854 1855 if (ztest_random(4) == 0) { 1856 /* 1857 * Do the bonus buffer instead of a regular block. 1858 */ 1859 do_free = 0; 1860 off = -1ULL; 1861 } 1862 1863 tx = dmu_tx_create(os); 1864 1865 if (off == -1ULL) 1866 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 1867 else if (do_free) 1868 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 1869 else 1870 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 1871 1872 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 1873 error = dmu_tx_assign(tx, txg_how); 1874 if (error) { 1875 dmu_tx_abort(tx); 1876 if (error == ERESTART) { 1877 ASSERT(txg_how == TXG_NOWAIT); 1878 txg_wait_open(dmu_objset_pool(os), 0); 1879 continue; 1880 } 1881 ztest_record_enospc("dmu write parallel"); 1882 return; 1883 } 1884 txg = dmu_tx_get_txg(tx); 1885 1886 if (do_free) { 1887 (void) mutex_lock(lp); 1888 dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx); 1889 (void) mutex_unlock(lp); 1890 dmu_tx_commit(tx); 1891 continue; 1892 } 1893 1894 wbt.bt_objset = dmu_objset_id(os); 1895 wbt.bt_object = ZTEST_DIROBJ; 1896 wbt.bt_offset = off; 1897 wbt.bt_txg = txg; 1898 wbt.bt_thread = za->za_instance; 1899 1900 if (off == -1ULL) { 1901 wbt.bt_seq = 0; 1902 db = dmu_bonus_hold(os, ZTEST_DIROBJ); 1903 ASSERT3U(db->db_size, ==, sizeof (wbt)); 1904 dmu_buf_read(db); 1905 bcopy(db->db_data, &rbt, db->db_size); 1906 if (rbt.bt_objset != 0) { 1907 ASSERT3U(rbt.bt_objset, ==, wbt.bt_objset); 1908 ASSERT3U(rbt.bt_object, ==, wbt.bt_object); 1909 ASSERT3U(rbt.bt_offset, ==, wbt.bt_offset); 1910 ASSERT3U(rbt.bt_txg, <=, wbt.bt_txg); 1911 } 1912 dmu_buf_will_dirty(db, tx); 1913 bcopy(&wbt, db->db_data, db->db_size); 1914 dmu_buf_rele(db); 1915 dmu_tx_commit(tx); 1916 continue; 1917 } 1918 1919 (void) mutex_lock(lp); 1920 1921 wbt.bt_seq = ztest_shared->zs_seq[b]++; 1922 1923 dmu_write(os, ZTEST_DIROBJ, off, sizeof (wbt), &wbt, tx); 1924 1925 (void) mutex_unlock(lp); 1926 1927 if (ztest_random(100) == 0) 1928 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 1929 1930 dmu_tx_commit(tx); 1931 1932 if (ztest_random(1000) == 0) 1933 txg_wait_synced(dmu_objset_pool(os), txg); 1934 1935 if (ztest_random(2) == 0) { 1936 blkptr_t blk = { 0 }; 1937 uint64_t blkoff; 1938 1939 txg_suspend(dmu_objset_pool(os)); 1940 (void) mutex_lock(lp); 1941 error = dmu_sync(os, ZTEST_DIROBJ, off, &blkoff, &blk, 1942 txg); 1943 (void) mutex_unlock(lp); 1944 if (error) { 1945 txg_resume(dmu_objset_pool(os)); 1946 dprintf("dmu_sync(%s, %d, %llx) = %d\n", 1947 osname, ZTEST_DIROBJ, off, error); 1948 continue; 1949 } 1950 1951 if (blk.blk_birth == 0) { /* concurrent free */ 1952 txg_resume(dmu_objset_pool(os)); 1953 continue; 1954 } 1955 1956 ASSERT(blk.blk_fill == 1); 1957 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 1958 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 1959 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 1960 1961 /* 1962 * Read the block that dmu_sync() returned to 1963 * make sure its contents match what we wrote. 1964 * We do this while still txg_suspend()ed to ensure 1965 * that the block can't be reused before we read it. 1966 */ 1967 error = zio_wait(zio_read(NULL, dmu_objset_spa(os), 1968 &blk, iobuf, bs, NULL, NULL, 1969 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED)); 1970 ASSERT(error == 0); 1971 1972 txg_resume(dmu_objset_pool(os)); 1973 1974 bcopy(&iobuf[blkoff], &rbt, sizeof (rbt)); 1975 1976 ASSERT3U(rbt.bt_objset, ==, wbt.bt_objset); 1977 ASSERT3U(rbt.bt_object, ==, wbt.bt_object); 1978 ASSERT3U(rbt.bt_offset, ==, wbt.bt_offset); 1979 1980 /* 1981 * The semantic of dmu_sync() is that we always 1982 * push the most recent version of the data, 1983 * so in the face of concurrent updates we may 1984 * see a newer version of the block. That's OK. 1985 */ 1986 ASSERT3U(rbt.bt_txg, >=, wbt.bt_txg); 1987 if (rbt.bt_thread == wbt.bt_thread) 1988 ASSERT3U(rbt.bt_seq, ==, wbt.bt_seq); 1989 else 1990 ASSERT3U(rbt.bt_seq, >, wbt.bt_seq); 1991 } 1992 } 1993 } 1994 1995 /* 1996 * Verify that zap_{create,destroy,add,remove,update} work as expected. 1997 */ 1998 #define ZTEST_ZAP_MIN_INTS 1 1999 #define ZTEST_ZAP_MAX_INTS 4 2000 #define ZTEST_ZAP_MAX_PROPS 1000 2001 2002 void 2003 ztest_zap(ztest_args_t *za) 2004 { 2005 objset_t *os = za->za_os; 2006 uint64_t object; 2007 uint64_t txg, last_txg; 2008 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2009 uint64_t zl_ints, zl_intsize, prop; 2010 int i, ints; 2011 int iters = 100; 2012 dmu_tx_t *tx; 2013 char propname[100], txgname[100]; 2014 int error; 2015 char osname[MAXNAMELEN]; 2016 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2017 2018 dmu_objset_name(os, osname); 2019 2020 /* 2021 * Create a new object if necessary, and record it in the directory. 2022 */ 2023 dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &object); 2024 2025 if (object == 0) { 2026 tx = dmu_tx_create(os); 2027 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2028 sizeof (uint64_t)); 2029 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 2); 2030 error = dmu_tx_assign(tx, TXG_WAIT); 2031 if (error) { 2032 ztest_record_enospc("create zap test obj"); 2033 dmu_tx_abort(tx); 2034 return; 2035 } 2036 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2037 if (error) { 2038 fatal(0, "zap_create('%s', %llu) = %d", 2039 osname, object, error); 2040 } 2041 ASSERT(object != 0); 2042 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2043 sizeof (uint64_t), &object, tx); 2044 /* 2045 * Generate a known hash collision, and verify that 2046 * we can lookup and remove both entries. 2047 */ 2048 for (i = 0; i < 2; i++) { 2049 value[i] = i; 2050 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2051 1, &value[i], tx); 2052 ASSERT3U(error, ==, 0); 2053 } 2054 for (i = 0; i < 2; i++) { 2055 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2056 1, &value[i], tx); 2057 ASSERT3U(error, ==, EEXIST); 2058 error = zap_length(os, object, hc[i], 2059 &zl_intsize, &zl_ints); 2060 ASSERT3U(error, ==, 0); 2061 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2062 ASSERT3U(zl_ints, ==, 1); 2063 } 2064 for (i = 0; i < 2; i++) { 2065 error = zap_remove(os, object, hc[i], tx); 2066 ASSERT3U(error, ==, 0); 2067 } 2068 2069 dmu_tx_commit(tx); 2070 } 2071 2072 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2073 2074 while (--iters >= 0) { 2075 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2076 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2077 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2078 bzero(value, sizeof (value)); 2079 last_txg = 0; 2080 2081 /* 2082 * If these zap entries already exist, validate their contents. 2083 */ 2084 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2085 if (error == 0) { 2086 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2087 ASSERT3U(zl_ints, ==, 1); 2088 2089 error = zap_lookup(os, object, txgname, zl_intsize, 2090 zl_ints, &last_txg); 2091 2092 ASSERT3U(error, ==, 0); 2093 2094 error = zap_length(os, object, propname, &zl_intsize, 2095 &zl_ints); 2096 2097 ASSERT3U(error, ==, 0); 2098 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2099 ASSERT3U(zl_ints, ==, ints); 2100 2101 error = zap_lookup(os, object, propname, zl_intsize, 2102 zl_ints, value); 2103 2104 ASSERT3U(error, ==, 0); 2105 2106 for (i = 0; i < ints; i++) { 2107 ASSERT3U(value[i], ==, last_txg + object + i); 2108 } 2109 } else { 2110 ASSERT3U(error, ==, ENOENT); 2111 } 2112 2113 /* 2114 * Atomically update two entries in our zap object. 2115 * The first is named txg_%llu, and contains the txg 2116 * in which the property was last updated. The second 2117 * is named prop_%llu, and the nth element of its value 2118 * should be txg + object + n. 2119 */ 2120 tx = dmu_tx_create(os); 2121 dmu_tx_hold_zap(tx, object, 2); 2122 error = dmu_tx_assign(tx, TXG_WAIT); 2123 if (error) { 2124 ztest_record_enospc("create zap entry"); 2125 dmu_tx_abort(tx); 2126 return; 2127 } 2128 txg = dmu_tx_get_txg(tx); 2129 2130 if (last_txg > txg) 2131 fatal(0, "zap future leak: old %llu new %llu", 2132 last_txg, txg); 2133 2134 for (i = 0; i < ints; i++) 2135 value[i] = txg + object + i; 2136 2137 error = zap_update(os, object, txgname, sizeof (uint64_t), 2138 1, &txg, tx); 2139 if (error) 2140 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2141 osname, object, txgname, error); 2142 2143 error = zap_update(os, object, propname, sizeof (uint64_t), 2144 ints, value, tx); 2145 if (error) 2146 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2147 osname, object, propname, error); 2148 2149 dmu_tx_commit(tx); 2150 2151 /* 2152 * Remove a random pair of entries. 2153 */ 2154 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2155 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2156 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2157 2158 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2159 2160 if (error == ENOENT) 2161 continue; 2162 2163 ASSERT3U(error, ==, 0); 2164 2165 tx = dmu_tx_create(os); 2166 dmu_tx_hold_zap(tx, object, 2); 2167 error = dmu_tx_assign(tx, TXG_WAIT); 2168 if (error) { 2169 ztest_record_enospc("remove zap entry"); 2170 dmu_tx_abort(tx); 2171 return; 2172 } 2173 error = zap_remove(os, object, txgname, tx); 2174 if (error) 2175 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2176 osname, object, txgname, error); 2177 2178 error = zap_remove(os, object, propname, tx); 2179 if (error) 2180 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2181 osname, object, propname, error); 2182 2183 dmu_tx_commit(tx); 2184 } 2185 2186 /* 2187 * Once in a while, destroy the object. 2188 */ 2189 if (ztest_random(100) != 0) 2190 return; 2191 2192 tx = dmu_tx_create(os); 2193 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2194 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2195 error = dmu_tx_assign(tx, TXG_WAIT); 2196 if (error) { 2197 ztest_record_enospc("destroy zap object"); 2198 dmu_tx_abort(tx); 2199 return; 2200 } 2201 error = zap_destroy(os, object, tx); 2202 if (error) 2203 fatal(0, "zap_destroy('%s', %llu) = %d", 2204 osname, object, error); 2205 object = 0; 2206 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2207 &object, tx); 2208 dmu_tx_commit(tx); 2209 } 2210 2211 void 2212 ztest_zap_parallel(ztest_args_t *za) 2213 { 2214 objset_t *os = za->za_os; 2215 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2216 int iters = 100; 2217 dmu_tx_t *tx; 2218 int i, namelen, error; 2219 char name[20], string_value[20]; 2220 void *data; 2221 2222 while (--iters >= 0) { 2223 /* 2224 * Generate a random name of the form 'xxx.....' where each 2225 * x is a random printable character and the dots are dots. 2226 * There are 94 such characters, and the name length goes from 2227 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2228 */ 2229 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2230 2231 for (i = 0; i < 3; i++) 2232 name[i] = '!' + ztest_random('~' - '!' + 1); 2233 for (; i < namelen - 1; i++) 2234 name[i] = '.'; 2235 name[i] = '\0'; 2236 2237 if (ztest_random(2) == 0) 2238 object = ZTEST_MICROZAP_OBJ; 2239 else 2240 object = ZTEST_FATZAP_OBJ; 2241 2242 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2243 wsize = sizeof (txg); 2244 wc = 1; 2245 data = &txg; 2246 } else { 2247 wsize = 1; 2248 wc = namelen; 2249 data = string_value; 2250 } 2251 2252 count = -1ULL; 2253 VERIFY(zap_count(os, object, &count) == 0); 2254 ASSERT(count != -1ULL); 2255 2256 /* 2257 * Select an operation: length, lookup, add, update, remove. 2258 */ 2259 i = ztest_random(5); 2260 2261 if (i >= 2) { 2262 tx = dmu_tx_create(os); 2263 dmu_tx_hold_zap(tx, object, 1); 2264 error = dmu_tx_assign(tx, TXG_WAIT); 2265 if (error) { 2266 ztest_record_enospc("zap parallel"); 2267 dmu_tx_abort(tx); 2268 return; 2269 } 2270 txg = dmu_tx_get_txg(tx); 2271 bcopy(name, string_value, namelen); 2272 } else { 2273 tx = NULL; 2274 txg = 0; 2275 bzero(string_value, namelen); 2276 } 2277 2278 switch (i) { 2279 2280 case 0: 2281 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 2282 if (error == 0) { 2283 ASSERT3U(wsize, ==, zl_wsize); 2284 ASSERT3U(wc, ==, zl_wc); 2285 } else { 2286 ASSERT3U(error, ==, ENOENT); 2287 } 2288 break; 2289 2290 case 1: 2291 error = zap_lookup(os, object, name, wsize, wc, data); 2292 if (error == 0) { 2293 if (data == string_value && 2294 bcmp(name, data, namelen) != 0) 2295 fatal(0, "name '%s' != val '%s' len %d", 2296 name, data, namelen); 2297 } else { 2298 ASSERT3U(error, ==, ENOENT); 2299 } 2300 break; 2301 2302 case 2: 2303 error = zap_add(os, object, name, wsize, wc, data, tx); 2304 ASSERT(error == 0 || error == EEXIST); 2305 break; 2306 2307 case 3: 2308 VERIFY(zap_update(os, object, name, wsize, wc, 2309 data, tx) == 0); 2310 break; 2311 2312 case 4: 2313 error = zap_remove(os, object, name, tx); 2314 ASSERT(error == 0 || error == ENOENT); 2315 break; 2316 } 2317 2318 if (tx != NULL) 2319 dmu_tx_commit(tx); 2320 } 2321 } 2322 2323 void 2324 ztest_dsl_prop_get_set(ztest_args_t *za) 2325 { 2326 objset_t *os = za->za_os; 2327 int i, inherit; 2328 uint64_t value; 2329 const char *prop, *valname; 2330 char setpoint[MAXPATHLEN]; 2331 char osname[MAXNAMELEN]; 2332 2333 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2334 2335 dmu_objset_name(os, osname); 2336 2337 for (i = 0; i < 2; i++) { 2338 if (i == 0) { 2339 prop = "checksum"; 2340 value = ztest_random_checksum(); 2341 inherit = (value == ZIO_CHECKSUM_INHERIT); 2342 } else { 2343 prop = "compression"; 2344 value = ztest_random_compress(); 2345 inherit = (value == ZIO_COMPRESS_INHERIT); 2346 } 2347 2348 VERIFY3U(dsl_prop_set(osname, prop, sizeof (value), 2349 !inherit, &value), ==, 0); 2350 2351 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 2352 1, &value, setpoint), ==, 0); 2353 2354 if (i == 0) 2355 valname = zio_checksum_table[value].ci_name; 2356 else 2357 valname = zio_compress_table[value].ci_name; 2358 2359 if (zopt_verbose >= 6) { 2360 (void) printf("%s %s = %s for '%s'\n", 2361 osname, prop, valname, setpoint); 2362 } 2363 } 2364 2365 (void) rw_unlock(&ztest_shared->zs_name_lock); 2366 } 2367 2368 /* 2369 * Inject random faults into the on-disk data. 2370 */ 2371 void 2372 ztest_fault_inject(ztest_args_t *za) 2373 { 2374 int fd; 2375 uint64_t offset; 2376 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2377 uint64_t bad = 0x1990c0ffeedecade; 2378 uint64_t top, leaf; 2379 char path0[MAXPATHLEN]; 2380 char path1[MAXPATHLEN]; 2381 char pathrand[MAXPATHLEN]; 2382 size_t fsize; 2383 spa_t *spa = dmu_objset_spa(za->za_os); 2384 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 2385 int iters = 1000; 2386 int ftype; 2387 2388 /* 2389 * Pick a random top-level vdev. 2390 */ 2391 spa_config_enter(spa, RW_READER); 2392 top = ztest_random(spa->spa_root_vdev->vdev_children); 2393 spa_config_exit(spa); 2394 2395 /* 2396 * Pick a random leaf. 2397 */ 2398 leaf = ztest_random(leaves); 2399 2400 /* 2401 * Generate paths to the first to leaves in this top-level vdev, 2402 * and to the random leaf we selected. We'll induce transient 2403 * faults on leaves 0 and 1, we'll online/offline leaf 1, 2404 * and we'll write random garbage to the randomly chosen leaf. 2405 */ 2406 (void) snprintf(path0, sizeof (path0), 2407 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + 0); 2408 (void) snprintf(path1, sizeof (path1), 2409 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + 1); 2410 (void) snprintf(pathrand, sizeof (pathrand), 2411 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); 2412 2413 if (leaves < 2) /* there is no second leaf */ 2414 path1[0] = '\0'; 2415 2416 dprintf("damaging %s, %s, and %s\n", path0, path1, pathrand); 2417 2418 /* 2419 * If we have exactly one-fault tolerance, just randomly offline 2420 * and online one device. 2421 */ 2422 if (zopt_maxfaults == 1 && path1[0] != '\0') { 2423 if (ztest_random(10) < 6) 2424 (void) vdev_offline(spa, path1); 2425 else 2426 (void) vdev_online(spa, path1); 2427 return; 2428 } 2429 2430 /* 2431 * Always inject a little random device failure, regardless of 2432 * the replication level. The I/Os should be retried successfully. 2433 * If we only have single-fault tolerance, don't inject write 2434 * faults, because then we'll be doing partial writes and won't 2435 * be able to recover when we inject data corruption. 2436 */ 2437 if (zopt_maxfaults <= 1) 2438 ftype = (1U << ZIO_TYPE_READ); 2439 else 2440 ftype = (1U << ZIO_TYPE_READ) | (1U << ZIO_TYPE_WRITE); 2441 2442 (void) vdev_error_setup(spa, path0, VDEV_FAULT_COUNT, ftype, 10); 2443 2444 /* 2445 * If we can tolerate three or more faults, make one of the 2446 * devices fail quite a lot. 2447 */ 2448 if (zopt_maxfaults >= 3 && path1[0] != '\0') 2449 (void) vdev_error_setup(spa, path1, VDEV_FAULT_COUNT, 2450 ftype, 100); 2451 2452 /* 2453 * If we can tolerate four or more faults, offline one of the devices. 2454 */ 2455 if (zopt_maxfaults >= 4 && path1[0] != '\0') { 2456 if (ztest_random(10) < 6) 2457 (void) vdev_offline(spa, path1); 2458 else 2459 (void) vdev_online(spa, path1); 2460 } 2461 2462 /* 2463 * If we have at least single-fault tolerance, inject data corruption. 2464 */ 2465 if (zopt_maxfaults < 1) 2466 return; 2467 2468 fd = open(pathrand, O_RDWR); 2469 2470 if (fd == -1) /* we hit a gap in the device namespace */ 2471 return; 2472 2473 fsize = lseek(fd, 0, SEEK_END); 2474 2475 while (--iters != 0) { 2476 offset = ztest_random(fsize / (leaves << bshift)) * 2477 (leaves << bshift) + (leaf << bshift) + 2478 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 2479 2480 if (offset >= fsize) 2481 continue; 2482 2483 if (zopt_verbose >= 6) 2484 (void) printf("injecting bad word into %s," 2485 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 2486 2487 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 2488 fatal(1, "can't inject bad word at 0x%llx in %s", 2489 offset, pathrand); 2490 } 2491 2492 (void) close(fd); 2493 } 2494 2495 static void 2496 ztest_error_setup(vdev_t *vd, int mode, int mask, uint64_t arg) 2497 { 2498 int c; 2499 2500 for (c = 0; c < vd->vdev_children; c++) 2501 ztest_error_setup(vd->vdev_child[c], mode, mask, arg); 2502 2503 if (vd->vdev_path != NULL) 2504 (void) vdev_error_setup(vd->vdev_spa, vd->vdev_path, 2505 mode, mask, arg); 2506 } 2507 2508 /* 2509 * Scrub the pool. 2510 */ 2511 void 2512 ztest_scrub(ztest_args_t *za) 2513 { 2514 spa_t *spa = dmu_objset_spa(za->za_os); 2515 2516 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_FALSE); 2517 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 2518 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_FALSE); 2519 } 2520 2521 /* 2522 * Rename the pool to a different name and then rename it back. 2523 */ 2524 void 2525 ztest_spa_rename(ztest_args_t *za) 2526 { 2527 char *oldname, *newname; 2528 int error; 2529 spa_t *spa; 2530 2531 (void) rw_wrlock(&ztest_shared->zs_name_lock); 2532 2533 oldname = za->za_pool; 2534 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 2535 (void) strcpy(newname, oldname); 2536 (void) strcat(newname, "_tmp"); 2537 2538 /* 2539 * Do the rename 2540 */ 2541 error = spa_rename(oldname, newname); 2542 if (error) 2543 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 2544 newname, error); 2545 2546 /* 2547 * Try to open it under the old name, which shouldn't exist 2548 */ 2549 error = spa_open(oldname, &spa, FTAG); 2550 if (error != ENOENT) 2551 fatal(0, "spa_open('%s') = %d", oldname, error); 2552 2553 /* 2554 * Open it under the new name and make sure it's still the same spa_t. 2555 */ 2556 error = spa_open(newname, &spa, FTAG); 2557 if (error != 0) 2558 fatal(0, "spa_open('%s') = %d", newname, error); 2559 2560 ASSERT(spa == dmu_objset_spa(za->za_os)); 2561 spa_close(spa, FTAG); 2562 2563 /* 2564 * Rename it back to the original 2565 */ 2566 error = spa_rename(newname, oldname); 2567 if (error) 2568 fatal(0, "spa_rename('%s', '%s') = %d", newname, 2569 oldname, error); 2570 2571 /* 2572 * Make sure it can still be opened 2573 */ 2574 error = spa_open(oldname, &spa, FTAG); 2575 if (error != 0) 2576 fatal(0, "spa_open('%s') = %d", oldname, error); 2577 2578 ASSERT(spa == dmu_objset_spa(za->za_os)); 2579 spa_close(spa, FTAG); 2580 2581 umem_free(newname, strlen(newname) + 1); 2582 2583 (void) rw_unlock(&ztest_shared->zs_name_lock); 2584 } 2585 2586 2587 /* 2588 * Completely obliterate one disk. 2589 */ 2590 static void 2591 ztest_obliterate_one_disk(uint64_t vdev) 2592 { 2593 int fd; 2594 char dev_name[MAXPATHLEN]; 2595 size_t fsize; 2596 2597 if (zopt_maxfaults < 2) 2598 return; 2599 2600 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2601 2602 fd = open(dev_name, O_RDWR); 2603 2604 if (fd == -1) 2605 fatal(1, "can't open %s", dev_name); 2606 2607 /* 2608 * Determine the size. 2609 */ 2610 fsize = lseek(fd, 0, SEEK_END); 2611 (void) close(fd); 2612 2613 /* 2614 * Remove it. 2615 */ 2616 VERIFY(remove(dev_name) == 0); 2617 2618 /* 2619 * Create a new one. 2620 */ 2621 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 2622 VERIFY(ftruncate(fd, fsize) == 0); 2623 (void) close(fd); 2624 } 2625 2626 static void 2627 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 2628 { 2629 char dev_name[MAXPATHLEN]; 2630 nvlist_t *file, *root; 2631 int error; 2632 2633 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2634 2635 /* 2636 * Build the nvlist describing dev_name. 2637 */ 2638 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 2639 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 2640 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, dev_name) == 0); 2641 2642 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 2643 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 2644 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 2645 &file, 1) == 0); 2646 2647 error = spa_vdev_attach(spa, dev_name, root, B_TRUE); 2648 if (error != 0 && error != EBUSY && error != ENOTSUP && error != ENODEV) 2649 fatal(0, "spa_vdev_attach(in-place) = %d", error); 2650 2651 nvlist_free(file); 2652 nvlist_free(root); 2653 } 2654 2655 static void 2656 ztest_verify_blocks(char *pool) 2657 { 2658 int status; 2659 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 2660 char zbuf[1024]; 2661 char *bin; 2662 FILE *fp; 2663 2664 (void) realpath(getexecname(), zdb); 2665 2666 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 2667 bin = strstr(zdb, "/usr/bin/"); 2668 /* LINTED */ 2669 (void) sprintf(bin, "/usr/sbin/zdb -bc%s%s -U -O %s %s", 2670 zopt_verbose >= 3 ? "s" : "", 2671 zopt_verbose >= 4 ? "v" : "", 2672 ztest_random(2) == 0 ? "pre" : "post", pool); 2673 2674 if (zopt_verbose >= 5) 2675 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 2676 2677 fp = popen(zdb, "r"); 2678 2679 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 2680 if (zopt_verbose >= 3) 2681 (void) printf("%s", zbuf); 2682 2683 status = pclose(fp); 2684 2685 if (status == 0) 2686 return; 2687 2688 ztest_dump_core = 0; 2689 if (WIFEXITED(status)) 2690 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 2691 else 2692 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 2693 } 2694 2695 static void 2696 ztest_walk_pool_directory(char *header) 2697 { 2698 spa_t *spa = NULL; 2699 2700 if (zopt_verbose >= 6) 2701 (void) printf("%s\n", header); 2702 2703 mutex_enter(&spa_namespace_lock); 2704 while ((spa = spa_next(spa)) != NULL) 2705 if (zopt_verbose >= 6) 2706 (void) printf("\t%s\n", spa_name(spa)); 2707 mutex_exit(&spa_namespace_lock); 2708 } 2709 2710 static void 2711 ztest_spa_import_export(char *oldname, char *newname) 2712 { 2713 nvlist_t *config; 2714 uint64_t pool_guid; 2715 spa_t *spa; 2716 int error; 2717 2718 if (zopt_verbose >= 4) { 2719 (void) printf("import/export: old = %s, new = %s\n", 2720 oldname, newname); 2721 } 2722 2723 /* 2724 * Clean up from previous runs. 2725 */ 2726 (void) spa_destroy(newname); 2727 2728 /* 2729 * Get the pool's configuration and guid. 2730 */ 2731 error = spa_open(oldname, &spa, FTAG); 2732 if (error) 2733 fatal(0, "spa_open('%s') = %d", oldname, error); 2734 2735 ASSERT(spa->spa_config != NULL); 2736 2737 VERIFY(nvlist_dup(spa->spa_config, &config, 0) == 0); 2738 pool_guid = spa_guid(spa); 2739 spa_close(spa, FTAG); 2740 2741 ztest_walk_pool_directory("pools before export"); 2742 2743 /* 2744 * Export it. 2745 */ 2746 error = spa_export(oldname); 2747 if (error) 2748 fatal(0, "spa_export('%s') = %d", oldname, error); 2749 2750 ztest_walk_pool_directory("pools after export"); 2751 2752 /* 2753 * Import it under the new name. 2754 */ 2755 error = spa_import(newname, config, NULL); 2756 if (error) 2757 fatal(0, "spa_import('%s') = %d", newname, error); 2758 2759 ztest_walk_pool_directory("pools after import"); 2760 2761 /* 2762 * Try to import it again -- should fail with EEXIST. 2763 */ 2764 error = spa_import(newname, config, NULL); 2765 if (error != EEXIST) 2766 fatal(0, "spa_import('%s') twice", newname); 2767 2768 /* 2769 * Try to import it under a different name -- should fail with EEXIST. 2770 */ 2771 error = spa_import(oldname, config, NULL); 2772 if (error != EEXIST) 2773 fatal(0, "spa_import('%s') under multiple names", newname); 2774 2775 /* 2776 * Verify that the pool is no longer visible under the old name. 2777 */ 2778 error = spa_open(oldname, &spa, FTAG); 2779 if (error != ENOENT) 2780 fatal(0, "spa_open('%s') = %d", newname, error); 2781 2782 /* 2783 * Verify that we can open and close the pool using the new name. 2784 */ 2785 error = spa_open(newname, &spa, FTAG); 2786 if (error) 2787 fatal(0, "spa_open('%s') = %d", newname, error); 2788 ASSERT(pool_guid == spa_guid(spa)); 2789 spa_close(spa, FTAG); 2790 2791 nvlist_free(config); 2792 } 2793 2794 static void * 2795 ztest_thread(void *arg) 2796 { 2797 ztest_args_t *za = arg; 2798 ztest_shared_t *zs = ztest_shared; 2799 hrtime_t now, functime; 2800 ztest_info_t *zi; 2801 int f; 2802 2803 while ((now = gethrtime()) < za->za_stop) { 2804 /* 2805 * See if it's time to force a crash. 2806 */ 2807 if (now > za->za_kill) { 2808 zs->zs_alloc = spa_get_alloc(dmu_objset_spa(za->za_os)); 2809 zs->zs_space = spa_get_space(dmu_objset_spa(za->za_os)); 2810 (void) kill(getpid(), SIGKILL); 2811 } 2812 2813 /* 2814 * Pick a random function. 2815 */ 2816 f = ztest_random(ZTEST_FUNCS); 2817 zi = &zs->zs_info[f]; 2818 2819 /* 2820 * Decide whether to call it, based on the requested frequency. 2821 */ 2822 if (zi->zi_call_target == 0 || 2823 (double)zi->zi_call_total / zi->zi_call_target > 2824 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 2825 continue; 2826 2827 atomic_add_64(&zi->zi_calls, 1); 2828 atomic_add_64(&zi->zi_call_total, 1); 2829 2830 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 2831 ZTEST_DIRSIZE; 2832 za->za_diroff_shared = (1ULL << 63); 2833 2834 ztest_dmu_write_parallel(za); 2835 2836 zi->zi_func(za); 2837 2838 functime = gethrtime() - now; 2839 2840 atomic_add_64(&zi->zi_call_time, functime); 2841 2842 if (zopt_verbose >= 4) { 2843 Dl_info dli; 2844 (void) dladdr((void *)zi->zi_func, &dli); 2845 (void) printf("%6.2f sec in %s\n", 2846 (double)functime / NANOSEC, dli.dli_sname); 2847 } 2848 2849 /* 2850 * If we're getting ENOSPC with some regularity, stop. 2851 */ 2852 if (zs->zs_enospc_count > 10) 2853 break; 2854 } 2855 2856 return (NULL); 2857 } 2858 2859 /* 2860 * Kick off threads to run tests on all datasets in parallel. 2861 */ 2862 static void 2863 ztest_run(char *pool) 2864 { 2865 int t, d, error; 2866 ztest_shared_t *zs = ztest_shared; 2867 ztest_args_t *za; 2868 spa_t *spa; 2869 char name[100]; 2870 2871 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 2872 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 2873 2874 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 2875 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 2876 2877 /* 2878 * Destroy one disk before we even start. 2879 * It's mirrored, so everything should work just fine. 2880 * This makes us exercise fault handling very early in spa_load(). 2881 */ 2882 ztest_obliterate_one_disk(0); 2883 2884 /* 2885 * Verify that the sum of the sizes of all blocks in the pool 2886 * equals the SPA's allocated space total. 2887 */ 2888 ztest_verify_blocks(pool); 2889 2890 /* 2891 * Kick off a replacement of the disk we just obliterated. 2892 */ 2893 kernel_init(FREAD | FWRITE); 2894 error = spa_open(pool, &spa, FTAG); 2895 if (error) 2896 fatal(0, "spa_open(%s) = %d", pool, error); 2897 ztest_replace_one_disk(spa, 0); 2898 if (zopt_verbose >= 5) 2899 show_pool_stats(spa); 2900 spa_close(spa, FTAG); 2901 kernel_fini(); 2902 2903 kernel_init(FREAD | FWRITE); 2904 2905 /* 2906 * Verify that we can export the pool and reimport it under a 2907 * different name. 2908 */ 2909 (void) snprintf(name, 100, "%s_import", pool); 2910 ztest_spa_import_export(pool, name); 2911 ztest_spa_import_export(name, pool); 2912 2913 /* 2914 * Verify that we can loop over all pools. 2915 */ 2916 mutex_enter(&spa_namespace_lock); 2917 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 2918 if (zopt_verbose > 3) { 2919 (void) printf("spa_next: found %s\n", spa_name(spa)); 2920 } 2921 } 2922 mutex_exit(&spa_namespace_lock); 2923 2924 /* 2925 * Open our pool. 2926 */ 2927 error = spa_open(pool, &spa, FTAG); 2928 if (error) 2929 fatal(0, "spa_open() = %d", error); 2930 2931 /* 2932 * Verify that we can safely inquire about about any object, 2933 * whether it's allocated or not. To make it interesting, 2934 * we probe a 5-wide window around each power of two. 2935 * This hits all edge cases, including zero and the max. 2936 */ 2937 for (t = 0; t < 64; t++) { 2938 for (d = -5; d <= 5; d++) { 2939 error = dmu_object_info(spa->spa_meta_objset, 2940 (1ULL << t) + d, NULL); 2941 ASSERT(error == 0 || error == ENOENT); 2942 } 2943 } 2944 2945 /* 2946 * Now kick off all the tests that run in parallel. 2947 */ 2948 zs->zs_enospc_count = 0; 2949 2950 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 2951 2952 if (zopt_verbose >= 4) 2953 (void) printf("starting main threads...\n"); 2954 2955 za[0].za_start = gethrtime(); 2956 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 2957 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 2958 za[0].za_kill = za[0].za_stop; 2959 if (ztest_random(100) < zopt_killrate) 2960 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 2961 2962 for (t = 0; t < zopt_threads; t++) { 2963 d = t % zopt_dirs; 2964 if (t < zopt_dirs) { 2965 ztest_replay_t zr; 2966 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2967 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 2968 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 2969 ztest_create_cb, NULL); 2970 if (error != 0 && error != EEXIST) { 2971 if (error == ENOSPC) { 2972 zs->zs_enospc_count++; 2973 (void) rw_unlock( 2974 &ztest_shared->zs_name_lock); 2975 break; 2976 } 2977 fatal(0, "dmu_objset_create(%s) = %d", 2978 name, error); 2979 } 2980 error = dmu_objset_open(name, DMU_OST_OTHER, 2981 DS_MODE_STANDARD, &za[d].za_os); 2982 if (error) 2983 fatal(0, "dmu_objset_open('%s') = %d", 2984 name, error); 2985 (void) rw_unlock(&ztest_shared->zs_name_lock); 2986 zr.zr_os = za[d].za_os; 2987 zil_replay(zr.zr_os, &zr, &zr.zr_assign, 2988 ztest_replay_vector, NULL); 2989 za[d].za_zilog = zil_open(za[d].za_os, NULL); 2990 } 2991 za[t].za_pool = spa_strdup(pool); 2992 za[t].za_os = za[d].za_os; 2993 za[t].za_zilog = za[d].za_zilog; 2994 za[t].za_instance = t; 2995 za[t].za_random = ztest_random(-1ULL); 2996 za[t].za_start = za[0].za_start; 2997 za[t].za_stop = za[0].za_stop; 2998 za[t].za_kill = za[0].za_kill; 2999 3000 error = thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3001 &za[t].za_thread); 3002 if (error) 3003 fatal(0, "can't create thread %d: error %d", 3004 t, error); 3005 } 3006 3007 while (--t >= 0) { 3008 error = thr_join(za[t].za_thread, NULL, NULL); 3009 if (error) 3010 fatal(0, "thr_join(%d) = %d", t, error); 3011 if (za[t].za_th) 3012 traverse_fini(za[t].za_th); 3013 if (t < zopt_dirs) { 3014 zil_close(za[t].za_zilog); 3015 dmu_objset_close(za[t].za_os); 3016 } 3017 spa_strfree(za[t].za_pool); 3018 } 3019 3020 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3021 3022 if (zopt_verbose >= 3) 3023 show_pool_stats(spa); 3024 3025 txg_wait_synced(spa_get_dsl(spa), 0); 3026 3027 zs->zs_alloc = spa_get_alloc(spa); 3028 zs->zs_space = spa_get_space(spa); 3029 3030 /* 3031 * Did we have out-of-space errors? If so, destroy a random objset. 3032 */ 3033 if (zs->zs_enospc_count != 0) { 3034 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3035 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, 3036 (int)ztest_random(zopt_dirs)); 3037 if (zopt_verbose >= 3) 3038 (void) printf("Destroying %s to free up space\n", name); 3039 dmu_objset_find(name, ztest_destroy_cb, NULL, 3040 DS_FIND_SNAPSHOTS); 3041 (void) rw_unlock(&ztest_shared->zs_name_lock); 3042 } 3043 3044 /* 3045 * Prepare every leaf device to inject a few random read faults. 3046 */ 3047 ztest_error_setup(spa->spa_root_vdev, VDEV_FAULT_COUNT, 3048 (1U << ZIO_TYPE_READ), 10); 3049 3050 /* 3051 * Right before closing the pool, kick off a bunch of async I/O; 3052 * spa_close() should wait for it to complete. 3053 */ 3054 for (t = 1; t < 50; t++) 3055 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3056 3057 spa_close(spa, FTAG); 3058 3059 kernel_fini(); 3060 } 3061 3062 void 3063 print_time(hrtime_t t, char *timebuf) 3064 { 3065 hrtime_t s = t / NANOSEC; 3066 hrtime_t m = s / 60; 3067 hrtime_t h = m / 60; 3068 hrtime_t d = h / 24; 3069 3070 s -= m * 60; 3071 m -= h * 60; 3072 h -= d * 24; 3073 3074 timebuf[0] = '\0'; 3075 3076 if (d) 3077 (void) sprintf(timebuf, 3078 "%llud%02lluh%02llum%02llus", d, h, m, s); 3079 else if (h) 3080 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3081 else if (m) 3082 (void) sprintf(timebuf, "%llum%02llus", m, s); 3083 else 3084 (void) sprintf(timebuf, "%llus", s); 3085 } 3086 3087 /* 3088 * Create a storage pool with the given name and initial vdev size. 3089 * Then create the specified number of datasets in the pool. 3090 */ 3091 static void 3092 ztest_init(char *pool) 3093 { 3094 spa_t *spa; 3095 int error; 3096 nvlist_t *nvroot; 3097 3098 kernel_init(FREAD | FWRITE); 3099 3100 /* 3101 * Create the storage pool. 3102 */ 3103 (void) spa_destroy(pool); 3104 ztest_shared->zs_vdev_primaries = 0; 3105 nvroot = make_vdev_root(zopt_vdev_size, zopt_raidz, zopt_mirrors, 1); 3106 error = spa_create(pool, nvroot, NULL); 3107 nvlist_free(nvroot); 3108 3109 if (error) 3110 fatal(0, "spa_create() = %d", error); 3111 error = spa_open(pool, &spa, FTAG); 3112 if (error) 3113 fatal(0, "spa_open() = %d", error); 3114 3115 if (zopt_verbose >= 3) 3116 show_pool_stats(spa); 3117 3118 spa_close(spa, FTAG); 3119 3120 kernel_fini(); 3121 } 3122 3123 int 3124 main(int argc, char **argv) 3125 { 3126 int kills = 0; 3127 int iters = 0; 3128 int i, f; 3129 ztest_shared_t *zs; 3130 ztest_info_t *zi; 3131 char timebuf[100]; 3132 char numbuf[6]; 3133 3134 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3135 3136 /* Override location of zpool.cache */ 3137 spa_config_dir = "/tmp"; 3138 3139 /* 3140 * Blow away any existing copy of zpool.cache 3141 */ 3142 (void) remove("/tmp/zpool.cache"); 3143 3144 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3145 3146 process_options(argc, argv); 3147 3148 argc -= optind; 3149 argv += optind; 3150 3151 dprintf_setup(&argc, argv); 3152 3153 zs = ztest_shared = (void *)mmap(0, 3154 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3155 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3156 3157 if (zopt_verbose >= 1) { 3158 (void) printf("%llu vdevs, %d datasets, %d threads," 3159 " %llu seconds...\n", 3160 (u_longlong_t)zopt_vdevs, zopt_dirs, zopt_threads, 3161 (u_longlong_t)zopt_time); 3162 } 3163 3164 /* 3165 * Create and initialize our storage pool. 3166 */ 3167 for (i = 1; i <= zopt_init; i++) { 3168 bzero(zs, sizeof (ztest_shared_t)); 3169 if (zopt_verbose >= 3 && zopt_init != 1) 3170 (void) printf("ztest_init(), pass %d\n", i); 3171 ztest_init(zopt_pool); 3172 } 3173 3174 /* 3175 * Initialize the call targets for each function. 3176 */ 3177 for (f = 0; f < ZTEST_FUNCS; f++) { 3178 zi = &zs->zs_info[f]; 3179 3180 *zi = ztest_info[f]; 3181 3182 if (*zi->zi_interval == 0) 3183 zi->zi_call_target = UINT64_MAX; 3184 else 3185 zi->zi_call_target = zopt_time / *zi->zi_interval; 3186 } 3187 3188 zs->zs_start_time = gethrtime(); 3189 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3190 3191 /* 3192 * Run the tests in a loop. These tests include fault injection 3193 * to verify that self-healing data works, and forced crashes 3194 * to verify that we never lose on-disk consistency. 3195 */ 3196 while (gethrtime() < zs->zs_stop_time) { 3197 int status; 3198 pid_t pid; 3199 char *tmp; 3200 3201 /* 3202 * Initialize the workload counters for each function. 3203 */ 3204 for (f = 0; f < ZTEST_FUNCS; f++) { 3205 zi = &zs->zs_info[f]; 3206 zi->zi_calls = 0; 3207 zi->zi_call_time = 0; 3208 } 3209 3210 pid = fork(); 3211 3212 if (pid == -1) 3213 fatal(1, "fork failed"); 3214 3215 if (pid == 0) { /* child */ 3216 struct rlimit rl = { 1024, 1024 }; 3217 (void) setrlimit(RLIMIT_NOFILE, &rl); 3218 ztest_run(zopt_pool); 3219 exit(0); 3220 } 3221 3222 while (waitpid(pid, &status, WEXITED) != pid) 3223 continue; 3224 3225 if (WIFEXITED(status)) { 3226 if (WEXITSTATUS(status) != 0) { 3227 (void) fprintf(stderr, 3228 "child exited with code %d\n", 3229 WEXITSTATUS(status)); 3230 exit(2); 3231 } 3232 } else { 3233 if (WTERMSIG(status) != SIGKILL) { 3234 (void) fprintf(stderr, 3235 "child died with signal %d\n", 3236 WTERMSIG(status)); 3237 exit(3); 3238 } 3239 kills++; 3240 } 3241 3242 iters++; 3243 3244 if (zopt_verbose >= 1) { 3245 hrtime_t now = gethrtime(); 3246 3247 now = MIN(now, zs->zs_stop_time); 3248 print_time(zs->zs_stop_time - now, timebuf); 3249 nicenum(zs->zs_space, numbuf); 3250 3251 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 3252 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 3253 iters, 3254 WIFEXITED(status) ? "Complete" : "SIGKILL", 3255 (u_longlong_t)zs->zs_enospc_count, 3256 100.0 * zs->zs_alloc / zs->zs_space, 3257 numbuf, 3258 100.0 * (now - zs->zs_start_time) / 3259 (zopt_time * NANOSEC), timebuf); 3260 } 3261 3262 if (zopt_verbose >= 2) { 3263 (void) printf("\nWorkload summary:\n\n"); 3264 (void) printf("%7s %9s %s\n", 3265 "Calls", "Time", "Function"); 3266 (void) printf("%7s %9s %s\n", 3267 "-----", "----", "--------"); 3268 for (f = 0; f < ZTEST_FUNCS; f++) { 3269 Dl_info dli; 3270 3271 zi = &zs->zs_info[f]; 3272 print_time(zi->zi_call_time, timebuf); 3273 (void) dladdr((void *)zi->zi_func, &dli); 3274 (void) printf("%7llu %9s %s\n", 3275 (u_longlong_t)zi->zi_calls, timebuf, 3276 dli.dli_sname); 3277 } 3278 (void) printf("\n"); 3279 } 3280 3281 /* 3282 * It's possible that we killed a child during a rename test, in 3283 * which case we'll have a 'ztest_tmp' pool lying around instead 3284 * of 'ztest'. Do a blind rename in case this happened. 3285 */ 3286 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 3287 (void) strcpy(tmp, zopt_pool); 3288 (void) strcat(tmp, "_tmp"); 3289 kernel_init(FREAD | FWRITE); 3290 (void) spa_rename(tmp, zopt_pool); 3291 kernel_fini(); 3292 umem_free(tmp, strlen(tmp) + 1); 3293 } 3294 3295 ztest_verify_blocks(zopt_pool); 3296 3297 if (zopt_verbose >= 1) { 3298 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 3299 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 3300 } 3301 3302 return (0); 3303 } 3304