1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/zap.h> 80 #include <sys/dmu_objset.h> 81 #include <sys/poll.h> 82 #include <sys/stat.h> 83 #include <sys/time.h> 84 #include <sys/wait.h> 85 #include <sys/mman.h> 86 #include <sys/resource.h> 87 #include <sys/zio.h> 88 #include <sys/zio_checksum.h> 89 #include <sys/zio_compress.h> 90 #include <sys/zil.h> 91 #include <sys/vdev_impl.h> 92 #include <sys/vdev_file.h> 93 #include <sys/spa_impl.h> 94 #include <sys/dsl_prop.h> 95 #include <sys/refcount.h> 96 #include <stdio.h> 97 #include <stdio_ext.h> 98 #include <stdlib.h> 99 #include <unistd.h> 100 #include <signal.h> 101 #include <umem.h> 102 #include <dlfcn.h> 103 #include <ctype.h> 104 #include <math.h> 105 #include <sys/fs/zfs.h> 106 107 static char cmdname[] = "ztest"; 108 static char *zopt_pool = cmdname; 109 110 static uint64_t zopt_vdevs = 5; 111 static uint64_t zopt_vdevtime; 112 static int zopt_ashift = SPA_MINBLOCKSHIFT; 113 static int zopt_mirrors = 2; 114 static int zopt_raidz = 4; 115 static int zopt_raidz_parity = 1; 116 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 117 static int zopt_datasets = 7; 118 static int zopt_threads = 23; 119 static uint64_t zopt_passtime = 60; /* 60 seconds */ 120 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 121 static int zopt_verbose = 0; 122 static int zopt_init = 1; 123 static char *zopt_dir = "/tmp"; 124 static uint64_t zopt_time = 300; /* 5 minutes */ 125 static int zopt_maxfaults; 126 127 typedef struct ztest_block_tag { 128 uint64_t bt_objset; 129 uint64_t bt_object; 130 uint64_t bt_offset; 131 uint64_t bt_txg; 132 uint64_t bt_thread; 133 uint64_t bt_seq; 134 } ztest_block_tag_t; 135 136 typedef struct ztest_args { 137 char za_pool[MAXNAMELEN]; 138 spa_t *za_spa; 139 objset_t *za_os; 140 zilog_t *za_zilog; 141 thread_t za_thread; 142 uint64_t za_instance; 143 uint64_t za_random; 144 uint64_t za_diroff; 145 uint64_t za_diroff_shared; 146 uint64_t za_zil_seq; 147 hrtime_t za_start; 148 hrtime_t za_stop; 149 hrtime_t za_kill; 150 /* 151 * Thread-local variables can go here to aid debugging. 152 */ 153 ztest_block_tag_t za_rbt; 154 ztest_block_tag_t za_wbt; 155 dmu_object_info_t za_doi; 156 dmu_buf_t *za_dbuf; 157 } ztest_args_t; 158 159 typedef void ztest_func_t(ztest_args_t *); 160 161 /* 162 * Note: these aren't static because we want dladdr() to work. 163 */ 164 ztest_func_t ztest_dmu_read_write; 165 ztest_func_t ztest_dmu_write_parallel; 166 ztest_func_t ztest_dmu_object_alloc_free; 167 ztest_func_t ztest_zap; 168 ztest_func_t ztest_zap_parallel; 169 ztest_func_t ztest_traverse; 170 ztest_func_t ztest_dsl_prop_get_set; 171 ztest_func_t ztest_dmu_objset_create_destroy; 172 ztest_func_t ztest_dmu_snapshot_create_destroy; 173 ztest_func_t ztest_spa_create_destroy; 174 ztest_func_t ztest_fault_inject; 175 ztest_func_t ztest_spa_rename; 176 ztest_func_t ztest_vdev_attach_detach; 177 ztest_func_t ztest_vdev_LUN_growth; 178 ztest_func_t ztest_vdev_add_remove; 179 ztest_func_t ztest_vdev_aux_add_remove; 180 ztest_func_t ztest_scrub; 181 182 typedef struct ztest_info { 183 ztest_func_t *zi_func; /* test function */ 184 uint64_t zi_iters; /* iterations per execution */ 185 uint64_t *zi_interval; /* execute every <interval> seconds */ 186 uint64_t zi_calls; /* per-pass count */ 187 uint64_t zi_call_time; /* per-pass time */ 188 uint64_t zi_call_total; /* cumulative total */ 189 uint64_t zi_call_target; /* target cumulative total */ 190 } ztest_info_t; 191 192 uint64_t zopt_always = 0; /* all the time */ 193 uint64_t zopt_often = 1; /* every second */ 194 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 195 uint64_t zopt_rarely = 60; /* every 60 seconds */ 196 197 ztest_info_t ztest_info[] = { 198 { ztest_dmu_read_write, 1, &zopt_always }, 199 { ztest_dmu_write_parallel, 30, &zopt_always }, 200 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 201 { ztest_zap, 30, &zopt_always }, 202 { ztest_zap_parallel, 100, &zopt_always }, 203 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 204 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 205 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 206 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 207 { ztest_fault_inject, 1, &zopt_sometimes }, 208 { ztest_spa_rename, 1, &zopt_rarely }, 209 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 210 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 211 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 212 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 213 { ztest_scrub, 1, &zopt_vdevtime }, 214 }; 215 216 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 217 218 #define ZTEST_SYNC_LOCKS 16 219 220 /* 221 * Stuff we need to share writably between parent and child. 222 */ 223 typedef struct ztest_shared { 224 mutex_t zs_vdev_lock; 225 rwlock_t zs_name_lock; 226 uint64_t zs_vdev_primaries; 227 uint64_t zs_vdev_aux; 228 uint64_t zs_enospc_count; 229 hrtime_t zs_start_time; 230 hrtime_t zs_stop_time; 231 uint64_t zs_alloc; 232 uint64_t zs_space; 233 ztest_info_t zs_info[ZTEST_FUNCS]; 234 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 235 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 236 } ztest_shared_t; 237 238 static char ztest_dev_template[] = "%s/%s.%llua"; 239 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 240 static ztest_shared_t *ztest_shared; 241 242 static int ztest_random_fd; 243 static int ztest_dump_core = 1; 244 245 static boolean_t ztest_exiting; 246 247 extern uint64_t metaslab_gang_bang; 248 249 #define ZTEST_DIROBJ 1 250 #define ZTEST_MICROZAP_OBJ 2 251 #define ZTEST_FATZAP_OBJ 3 252 253 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 254 #define ZTEST_DIRSIZE 256 255 256 static void usage(boolean_t) __NORETURN; 257 258 /* 259 * These libumem hooks provide a reasonable set of defaults for the allocator's 260 * debugging facilities. 261 */ 262 const char * 263 _umem_debug_init() 264 { 265 return ("default,verbose"); /* $UMEM_DEBUG setting */ 266 } 267 268 const char * 269 _umem_logging_init(void) 270 { 271 return ("fail,contents"); /* $UMEM_LOGGING setting */ 272 } 273 274 #define FATAL_MSG_SZ 1024 275 276 char *fatal_msg; 277 278 static void 279 fatal(int do_perror, char *message, ...) 280 { 281 va_list args; 282 int save_errno = errno; 283 char buf[FATAL_MSG_SZ]; 284 285 (void) fflush(stdout); 286 287 va_start(args, message); 288 (void) sprintf(buf, "ztest: "); 289 /* LINTED */ 290 (void) vsprintf(buf + strlen(buf), message, args); 291 va_end(args); 292 if (do_perror) { 293 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 294 ": %s", strerror(save_errno)); 295 } 296 (void) fprintf(stderr, "%s\n", buf); 297 fatal_msg = buf; /* to ease debugging */ 298 if (ztest_dump_core) 299 abort(); 300 exit(3); 301 } 302 303 static int 304 str2shift(const char *buf) 305 { 306 const char *ends = "BKMGTPEZ"; 307 int i; 308 309 if (buf[0] == '\0') 310 return (0); 311 for (i = 0; i < strlen(ends); i++) { 312 if (toupper(buf[0]) == ends[i]) 313 break; 314 } 315 if (i == strlen(ends)) { 316 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 317 buf); 318 usage(B_FALSE); 319 } 320 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 321 return (10*i); 322 } 323 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 324 usage(B_FALSE); 325 /* NOTREACHED */ 326 } 327 328 static uint64_t 329 nicenumtoull(const char *buf) 330 { 331 char *end; 332 uint64_t val; 333 334 val = strtoull(buf, &end, 0); 335 if (end == buf) { 336 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 337 usage(B_FALSE); 338 } else if (end[0] == '.') { 339 double fval = strtod(buf, &end); 340 fval *= pow(2, str2shift(end)); 341 if (fval > UINT64_MAX) { 342 (void) fprintf(stderr, "ztest: value too large: %s\n", 343 buf); 344 usage(B_FALSE); 345 } 346 val = (uint64_t)fval; 347 } else { 348 int shift = str2shift(end); 349 if (shift >= 64 || (val << shift) >> shift != val) { 350 (void) fprintf(stderr, "ztest: value too large: %s\n", 351 buf); 352 usage(B_FALSE); 353 } 354 val <<= shift; 355 } 356 return (val); 357 } 358 359 static void 360 usage(boolean_t requested) 361 { 362 char nice_vdev_size[10]; 363 char nice_gang_bang[10]; 364 FILE *fp = requested ? stdout : stderr; 365 366 nicenum(zopt_vdev_size, nice_vdev_size); 367 nicenum(metaslab_gang_bang, nice_gang_bang); 368 369 (void) fprintf(fp, "Usage: %s\n" 370 "\t[-v vdevs (default: %llu)]\n" 371 "\t[-s size_of_each_vdev (default: %s)]\n" 372 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 373 "\t[-m mirror_copies (default: %d)]\n" 374 "\t[-r raidz_disks (default: %d)]\n" 375 "\t[-R raidz_parity (default: %d)]\n" 376 "\t[-d datasets (default: %d)]\n" 377 "\t[-t threads (default: %d)]\n" 378 "\t[-g gang_block_threshold (default: %s)]\n" 379 "\t[-i initialize pool i times (default: %d)]\n" 380 "\t[-k kill percentage (default: %llu%%)]\n" 381 "\t[-p pool_name (default: %s)]\n" 382 "\t[-f file directory for vdev files (default: %s)]\n" 383 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 384 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 385 "\t[-T time] total run time (default: %llu sec)\n" 386 "\t[-P passtime] time per pass (default: %llu sec)\n" 387 "\t[-h] (print help)\n" 388 "", 389 cmdname, 390 (u_longlong_t)zopt_vdevs, /* -v */ 391 nice_vdev_size, /* -s */ 392 zopt_ashift, /* -a */ 393 zopt_mirrors, /* -m */ 394 zopt_raidz, /* -r */ 395 zopt_raidz_parity, /* -R */ 396 zopt_datasets, /* -d */ 397 zopt_threads, /* -t */ 398 nice_gang_bang, /* -g */ 399 zopt_init, /* -i */ 400 (u_longlong_t)zopt_killrate, /* -k */ 401 zopt_pool, /* -p */ 402 zopt_dir, /* -f */ 403 (u_longlong_t)zopt_time, /* -T */ 404 (u_longlong_t)zopt_passtime); /* -P */ 405 exit(requested ? 0 : 1); 406 } 407 408 static uint64_t 409 ztest_random(uint64_t range) 410 { 411 uint64_t r; 412 413 if (range == 0) 414 return (0); 415 416 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 417 fatal(1, "short read from /dev/urandom"); 418 419 return (r % range); 420 } 421 422 static void 423 ztest_record_enospc(char *s) 424 { 425 dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>"); 426 ztest_shared->zs_enospc_count++; 427 } 428 429 static void 430 process_options(int argc, char **argv) 431 { 432 int opt; 433 uint64_t value; 434 435 /* By default, test gang blocks for blocks 32K and greater */ 436 metaslab_gang_bang = 32 << 10; 437 438 while ((opt = getopt(argc, argv, 439 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 440 value = 0; 441 switch (opt) { 442 case 'v': 443 case 's': 444 case 'a': 445 case 'm': 446 case 'r': 447 case 'R': 448 case 'd': 449 case 't': 450 case 'g': 451 case 'i': 452 case 'k': 453 case 'T': 454 case 'P': 455 value = nicenumtoull(optarg); 456 } 457 switch (opt) { 458 case 'v': 459 zopt_vdevs = value; 460 break; 461 case 's': 462 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 463 break; 464 case 'a': 465 zopt_ashift = value; 466 break; 467 case 'm': 468 zopt_mirrors = value; 469 break; 470 case 'r': 471 zopt_raidz = MAX(1, value); 472 break; 473 case 'R': 474 zopt_raidz_parity = MIN(MAX(value, 1), 2); 475 break; 476 case 'd': 477 zopt_datasets = MAX(1, value); 478 break; 479 case 't': 480 zopt_threads = MAX(1, value); 481 break; 482 case 'g': 483 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 484 break; 485 case 'i': 486 zopt_init = value; 487 break; 488 case 'k': 489 zopt_killrate = value; 490 break; 491 case 'p': 492 zopt_pool = strdup(optarg); 493 break; 494 case 'f': 495 zopt_dir = strdup(optarg); 496 break; 497 case 'V': 498 zopt_verbose++; 499 break; 500 case 'E': 501 zopt_init = 0; 502 break; 503 case 'T': 504 zopt_time = value; 505 break; 506 case 'P': 507 zopt_passtime = MAX(1, value); 508 break; 509 case 'h': 510 usage(B_TRUE); 511 break; 512 case '?': 513 default: 514 usage(B_FALSE); 515 break; 516 } 517 } 518 519 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 520 521 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 522 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 523 } 524 525 static uint64_t 526 ztest_get_ashift(void) 527 { 528 if (zopt_ashift == 0) 529 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 530 return (zopt_ashift); 531 } 532 533 static nvlist_t * 534 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 535 { 536 char pathbuf[MAXPATHLEN]; 537 uint64_t vdev; 538 nvlist_t *file; 539 540 if (ashift == 0) 541 ashift = ztest_get_ashift(); 542 543 if (path == NULL) { 544 path = pathbuf; 545 546 if (aux != NULL) { 547 vdev = ztest_shared->zs_vdev_aux; 548 (void) sprintf(path, ztest_aux_template, 549 zopt_dir, zopt_pool, aux, vdev); 550 } else { 551 vdev = ztest_shared->zs_vdev_primaries++; 552 (void) sprintf(path, ztest_dev_template, 553 zopt_dir, zopt_pool, vdev); 554 } 555 } 556 557 if (size != 0) { 558 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 559 if (fd == -1) 560 fatal(1, "can't open %s", path); 561 if (ftruncate(fd, size) != 0) 562 fatal(1, "can't ftruncate %s", path); 563 (void) close(fd); 564 } 565 566 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 567 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 568 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 569 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 570 571 return (file); 572 } 573 574 static nvlist_t * 575 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 576 { 577 nvlist_t *raidz, **child; 578 int c; 579 580 if (r < 2) 581 return (make_vdev_file(path, aux, size, ashift)); 582 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 583 584 for (c = 0; c < r; c++) 585 child[c] = make_vdev_file(path, aux, size, ashift); 586 587 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 588 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 589 VDEV_TYPE_RAIDZ) == 0); 590 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 591 zopt_raidz_parity) == 0); 592 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 593 child, r) == 0); 594 595 for (c = 0; c < r; c++) 596 nvlist_free(child[c]); 597 598 umem_free(child, r * sizeof (nvlist_t *)); 599 600 return (raidz); 601 } 602 603 static nvlist_t * 604 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 605 int r, int m) 606 { 607 nvlist_t *mirror, **child; 608 int c; 609 610 if (m < 1) 611 return (make_vdev_raidz(path, aux, size, ashift, r)); 612 613 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 614 615 for (c = 0; c < m; c++) 616 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 617 618 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 619 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 620 VDEV_TYPE_MIRROR) == 0); 621 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 622 child, m) == 0); 623 624 for (c = 0; c < m; c++) 625 nvlist_free(child[c]); 626 627 umem_free(child, m * sizeof (nvlist_t *)); 628 629 return (mirror); 630 } 631 632 static nvlist_t * 633 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 634 int log, int r, int m, int t) 635 { 636 nvlist_t *root, **child; 637 int c; 638 639 ASSERT(t > 0); 640 641 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 642 643 for (c = 0; c < t; c++) { 644 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 645 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 646 log) == 0); 647 } 648 649 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 650 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 651 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 652 child, t) == 0); 653 654 for (c = 0; c < t; c++) 655 nvlist_free(child[c]); 656 657 umem_free(child, t * sizeof (nvlist_t *)); 658 659 return (root); 660 } 661 662 static void 663 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 664 { 665 int bs = SPA_MINBLOCKSHIFT + 666 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 667 int ibs = DN_MIN_INDBLKSHIFT + 668 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 669 int error; 670 671 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 672 if (error) { 673 char osname[300]; 674 dmu_objset_name(os, osname); 675 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 676 osname, object, 1 << bs, ibs, error); 677 } 678 } 679 680 static uint8_t 681 ztest_random_checksum(void) 682 { 683 uint8_t checksum; 684 685 do { 686 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 687 } while (zio_checksum_table[checksum].ci_zbt); 688 689 if (checksum == ZIO_CHECKSUM_OFF) 690 checksum = ZIO_CHECKSUM_ON; 691 692 return (checksum); 693 } 694 695 static uint8_t 696 ztest_random_compress(void) 697 { 698 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 699 } 700 701 static int 702 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap) 703 { 704 dmu_tx_t *tx; 705 int error; 706 707 if (byteswap) 708 byteswap_uint64_array(lr, sizeof (*lr)); 709 710 tx = dmu_tx_create(os); 711 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 712 error = dmu_tx_assign(tx, TXG_WAIT); 713 if (error) { 714 dmu_tx_abort(tx); 715 return (error); 716 } 717 718 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 719 DMU_OT_NONE, 0, tx); 720 ASSERT3U(error, ==, 0); 721 dmu_tx_commit(tx); 722 723 if (zopt_verbose >= 5) { 724 char osname[MAXNAMELEN]; 725 dmu_objset_name(os, osname); 726 (void) printf("replay create of %s object %llu" 727 " in txg %llu = %d\n", 728 osname, (u_longlong_t)lr->lr_doid, 729 (u_longlong_t)dmu_tx_get_txg(tx), error); 730 } 731 732 return (error); 733 } 734 735 static int 736 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap) 737 { 738 dmu_tx_t *tx; 739 int error; 740 741 if (byteswap) 742 byteswap_uint64_array(lr, sizeof (*lr)); 743 744 tx = dmu_tx_create(os); 745 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 746 error = dmu_tx_assign(tx, TXG_WAIT); 747 if (error) { 748 dmu_tx_abort(tx); 749 return (error); 750 } 751 752 error = dmu_object_free(os, lr->lr_doid, tx); 753 dmu_tx_commit(tx); 754 755 return (error); 756 } 757 758 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 759 NULL, /* 0 no such transaction type */ 760 ztest_replay_create, /* TX_CREATE */ 761 NULL, /* TX_MKDIR */ 762 NULL, /* TX_MKXATTR */ 763 NULL, /* TX_SYMLINK */ 764 ztest_replay_remove, /* TX_REMOVE */ 765 NULL, /* TX_RMDIR */ 766 NULL, /* TX_LINK */ 767 NULL, /* TX_RENAME */ 768 NULL, /* TX_WRITE */ 769 NULL, /* TX_TRUNCATE */ 770 NULL, /* TX_SETATTR */ 771 NULL, /* TX_ACL */ 772 }; 773 774 /* 775 * Verify that we can't destroy an active pool, create an existing pool, 776 * or create a pool with a bad vdev spec. 777 */ 778 void 779 ztest_spa_create_destroy(ztest_args_t *za) 780 { 781 int error; 782 spa_t *spa; 783 nvlist_t *nvroot; 784 785 /* 786 * Attempt to create using a bad file. 787 */ 788 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 789 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 790 nvlist_free(nvroot); 791 if (error != ENOENT) 792 fatal(0, "spa_create(bad_file) = %d", error); 793 794 /* 795 * Attempt to create using a bad mirror. 796 */ 797 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 798 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 799 nvlist_free(nvroot); 800 if (error != ENOENT) 801 fatal(0, "spa_create(bad_mirror) = %d", error); 802 803 /* 804 * Attempt to create an existing pool. It shouldn't matter 805 * what's in the nvroot; we should fail with EEXIST. 806 */ 807 (void) rw_rdlock(&ztest_shared->zs_name_lock); 808 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 809 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 810 nvlist_free(nvroot); 811 if (error != EEXIST) 812 fatal(0, "spa_create(whatever) = %d", error); 813 814 error = spa_open(za->za_pool, &spa, FTAG); 815 if (error) 816 fatal(0, "spa_open() = %d", error); 817 818 error = spa_destroy(za->za_pool); 819 if (error != EBUSY) 820 fatal(0, "spa_destroy() = %d", error); 821 822 spa_close(spa, FTAG); 823 (void) rw_unlock(&ztest_shared->zs_name_lock); 824 } 825 826 static vdev_t * 827 vdev_lookup_by_path(vdev_t *vd, const char *path) 828 { 829 vdev_t *mvd; 830 831 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 832 return (vd); 833 834 for (int c = 0; c < vd->vdev_children; c++) 835 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 836 NULL) 837 return (mvd); 838 839 return (NULL); 840 } 841 842 /* 843 * Verify that vdev_add() works as expected. 844 */ 845 void 846 ztest_vdev_add_remove(ztest_args_t *za) 847 { 848 spa_t *spa = za->za_spa; 849 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 850 nvlist_t *nvroot; 851 int error; 852 853 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 854 855 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 856 857 ztest_shared->zs_vdev_primaries = 858 spa->spa_root_vdev->vdev_children * leaves; 859 860 spa_config_exit(spa, SCL_VDEV, FTAG); 861 862 /* 863 * Make 1/4 of the devices be log devices. 864 */ 865 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 866 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 867 868 error = spa_vdev_add(spa, nvroot); 869 nvlist_free(nvroot); 870 871 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 872 873 if (error == ENOSPC) 874 ztest_record_enospc("spa_vdev_add"); 875 else if (error != 0) 876 fatal(0, "spa_vdev_add() = %d", error); 877 } 878 879 /* 880 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 881 */ 882 void 883 ztest_vdev_aux_add_remove(ztest_args_t *za) 884 { 885 spa_t *spa = za->za_spa; 886 vdev_t *rvd = spa->spa_root_vdev; 887 spa_aux_vdev_t *sav; 888 char *aux; 889 uint64_t guid = 0; 890 int error; 891 892 if (ztest_random(2) == 0) { 893 sav = &spa->spa_spares; 894 aux = ZPOOL_CONFIG_SPARES; 895 } else { 896 sav = &spa->spa_l2cache; 897 aux = ZPOOL_CONFIG_L2CACHE; 898 } 899 900 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 901 902 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 903 904 if (sav->sav_count != 0 && ztest_random(4) == 0) { 905 /* 906 * Pick a random device to remove. 907 */ 908 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 909 } else { 910 /* 911 * Find an unused device we can add. 912 */ 913 ztest_shared->zs_vdev_aux = 0; 914 for (;;) { 915 char path[MAXPATHLEN]; 916 int c; 917 (void) sprintf(path, ztest_aux_template, zopt_dir, 918 zopt_pool, aux, ztest_shared->zs_vdev_aux); 919 for (c = 0; c < sav->sav_count; c++) 920 if (strcmp(sav->sav_vdevs[c]->vdev_path, 921 path) == 0) 922 break; 923 if (c == sav->sav_count && 924 vdev_lookup_by_path(rvd, path) == NULL) 925 break; 926 ztest_shared->zs_vdev_aux++; 927 } 928 } 929 930 spa_config_exit(spa, SCL_VDEV, FTAG); 931 932 if (guid == 0) { 933 /* 934 * Add a new device. 935 */ 936 nvlist_t *nvroot = make_vdev_root(NULL, aux, 937 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 938 error = spa_vdev_add(spa, nvroot); 939 if (error != 0) 940 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 941 nvlist_free(nvroot); 942 } else { 943 /* 944 * Remove an existing device. Sometimes, dirty its 945 * vdev state first to make sure we handle removal 946 * of devices that have pending state changes. 947 */ 948 if (ztest_random(2) == 0) 949 (void) vdev_online(spa, guid, B_FALSE, NULL); 950 951 error = spa_vdev_remove(spa, guid, B_FALSE); 952 if (error != 0 && error != EBUSY) 953 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 954 } 955 956 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 957 } 958 959 /* 960 * Verify that we can attach and detach devices. 961 */ 962 void 963 ztest_vdev_attach_detach(ztest_args_t *za) 964 { 965 spa_t *spa = za->za_spa; 966 spa_aux_vdev_t *sav = &spa->spa_spares; 967 vdev_t *rvd = spa->spa_root_vdev; 968 vdev_t *oldvd, *newvd, *pvd; 969 nvlist_t *root; 970 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 971 uint64_t leaf, top; 972 uint64_t ashift = ztest_get_ashift(); 973 uint64_t oldguid; 974 size_t oldsize, newsize; 975 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 976 int replacing; 977 int oldvd_has_siblings = B_FALSE; 978 int newvd_is_spare = B_FALSE; 979 int oldvd_is_log; 980 int error, expected_error; 981 982 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 983 984 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 985 986 /* 987 * Decide whether to do an attach or a replace. 988 */ 989 replacing = ztest_random(2); 990 991 /* 992 * Pick a random top-level vdev. 993 */ 994 top = ztest_random(rvd->vdev_children); 995 996 /* 997 * Pick a random leaf within it. 998 */ 999 leaf = ztest_random(leaves); 1000 1001 /* 1002 * Locate this vdev. 1003 */ 1004 oldvd = rvd->vdev_child[top]; 1005 if (zopt_mirrors >= 1) 1006 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1007 if (zopt_raidz > 1) 1008 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1009 1010 /* 1011 * If we're already doing an attach or replace, oldvd may be a 1012 * mirror vdev -- in which case, pick a random child. 1013 */ 1014 while (oldvd->vdev_children != 0) { 1015 oldvd_has_siblings = B_TRUE; 1016 ASSERT(oldvd->vdev_children == 2); 1017 oldvd = oldvd->vdev_child[ztest_random(2)]; 1018 } 1019 1020 oldguid = oldvd->vdev_guid; 1021 oldsize = vdev_get_rsize(oldvd); 1022 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1023 (void) strcpy(oldpath, oldvd->vdev_path); 1024 pvd = oldvd->vdev_parent; 1025 1026 /* 1027 * If oldvd has siblings, then half of the time, detach it. 1028 */ 1029 if (oldvd_has_siblings && ztest_random(2) == 0) { 1030 spa_config_exit(spa, SCL_VDEV, FTAG); 1031 error = spa_vdev_detach(spa, oldguid, B_FALSE); 1032 if (error != 0 && error != ENODEV && error != EBUSY) 1033 fatal(0, "detach (%s) returned %d", 1034 oldpath, error); 1035 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1036 return; 1037 } 1038 1039 /* 1040 * For the new vdev, choose with equal probability between the two 1041 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1042 */ 1043 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1044 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1045 newvd_is_spare = B_TRUE; 1046 (void) strcpy(newpath, newvd->vdev_path); 1047 } else { 1048 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1049 zopt_dir, zopt_pool, top * leaves + leaf); 1050 if (ztest_random(2) == 0) 1051 newpath[strlen(newpath) - 1] = 'b'; 1052 newvd = vdev_lookup_by_path(rvd, newpath); 1053 } 1054 1055 if (newvd) { 1056 newsize = vdev_get_rsize(newvd); 1057 } else { 1058 /* 1059 * Make newsize a little bigger or smaller than oldsize. 1060 * If it's smaller, the attach should fail. 1061 * If it's larger, and we're doing a replace, 1062 * we should get dynamic LUN growth when we're done. 1063 */ 1064 newsize = 10 * oldsize / (9 + ztest_random(3)); 1065 } 1066 1067 /* 1068 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1069 * unless it's a replace; in that case any non-replacing parent is OK. 1070 * 1071 * If newvd is already part of the pool, it should fail with EBUSY. 1072 * 1073 * If newvd is too small, it should fail with EOVERFLOW. 1074 */ 1075 if (pvd->vdev_ops != &vdev_mirror_ops && 1076 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1077 pvd->vdev_ops == &vdev_replacing_ops || 1078 pvd->vdev_ops == &vdev_spare_ops)) 1079 expected_error = ENOTSUP; 1080 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1081 expected_error = ENOTSUP; 1082 else if (newvd == oldvd) 1083 expected_error = replacing ? 0 : EBUSY; 1084 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1085 expected_error = EBUSY; 1086 else if (newsize < oldsize) 1087 expected_error = EOVERFLOW; 1088 else if (ashift > oldvd->vdev_top->vdev_ashift) 1089 expected_error = EDOM; 1090 else 1091 expected_error = 0; 1092 1093 spa_config_exit(spa, SCL_VDEV, FTAG); 1094 1095 /* 1096 * Build the nvlist describing newpath. 1097 */ 1098 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1099 ashift, 0, 0, 0, 1); 1100 1101 error = spa_vdev_attach(spa, oldguid, root, replacing); 1102 1103 nvlist_free(root); 1104 1105 /* 1106 * If our parent was the replacing vdev, but the replace completed, 1107 * then instead of failing with ENOTSUP we may either succeed, 1108 * fail with ENODEV, or fail with EOVERFLOW. 1109 */ 1110 if (expected_error == ENOTSUP && 1111 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1112 expected_error = error; 1113 1114 /* 1115 * If someone grew the LUN, the replacement may be too small. 1116 */ 1117 if (error == EOVERFLOW || error == EBUSY) 1118 expected_error = error; 1119 1120 /* XXX workaround 6690467 */ 1121 if (error != expected_error && expected_error != EBUSY) { 1122 fatal(0, "attach (%s %llu, %s %llu, %d) " 1123 "returned %d, expected %d", 1124 oldpath, (longlong_t)oldsize, newpath, 1125 (longlong_t)newsize, replacing, error, expected_error); 1126 } 1127 1128 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1129 } 1130 1131 /* 1132 * Verify that dynamic LUN growth works as expected. 1133 */ 1134 /* ARGSUSED */ 1135 void 1136 ztest_vdev_LUN_growth(ztest_args_t *za) 1137 { 1138 spa_t *spa = za->za_spa; 1139 char dev_name[MAXPATHLEN]; 1140 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1141 uint64_t vdev; 1142 size_t fsize; 1143 int fd; 1144 1145 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1146 1147 /* 1148 * Pick a random leaf vdev. 1149 */ 1150 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1151 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves); 1152 spa_config_exit(spa, SCL_VDEV, FTAG); 1153 1154 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 1155 1156 if ((fd = open(dev_name, O_RDWR)) != -1) { 1157 /* 1158 * Determine the size. 1159 */ 1160 fsize = lseek(fd, 0, SEEK_END); 1161 1162 /* 1163 * If it's less than 2x the original size, grow by around 3%. 1164 */ 1165 if (fsize < 2 * zopt_vdev_size) { 1166 size_t newsize = fsize + ztest_random(fsize / 32); 1167 (void) ftruncate(fd, newsize); 1168 if (zopt_verbose >= 6) { 1169 (void) printf("%s grew from %lu to %lu bytes\n", 1170 dev_name, (ulong_t)fsize, (ulong_t)newsize); 1171 } 1172 } 1173 (void) close(fd); 1174 } 1175 1176 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1177 } 1178 1179 /* ARGSUSED */ 1180 static void 1181 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1182 { 1183 /* 1184 * Create the directory object. 1185 */ 1186 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1187 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1188 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1189 1190 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1191 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1192 1193 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1194 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1195 } 1196 1197 static int 1198 ztest_destroy_cb(char *name, void *arg) 1199 { 1200 ztest_args_t *za = arg; 1201 objset_t *os; 1202 dmu_object_info_t *doi = &za->za_doi; 1203 int error; 1204 1205 /* 1206 * Verify that the dataset contains a directory object. 1207 */ 1208 error = dmu_objset_open(name, DMU_OST_OTHER, 1209 DS_MODE_USER | DS_MODE_READONLY, &os); 1210 ASSERT3U(error, ==, 0); 1211 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1212 if (error != ENOENT) { 1213 /* We could have crashed in the middle of destroying it */ 1214 ASSERT3U(error, ==, 0); 1215 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1216 ASSERT3S(doi->doi_physical_blks, >=, 0); 1217 } 1218 dmu_objset_close(os); 1219 1220 /* 1221 * Destroy the dataset. 1222 */ 1223 error = dmu_objset_destroy(name); 1224 if (error) { 1225 (void) dmu_objset_open(name, DMU_OST_OTHER, 1226 DS_MODE_USER | DS_MODE_READONLY, &os); 1227 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error); 1228 } 1229 return (0); 1230 } 1231 1232 /* 1233 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1234 */ 1235 static uint64_t 1236 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1237 { 1238 itx_t *itx; 1239 lr_create_t *lr; 1240 size_t namesize; 1241 char name[24]; 1242 1243 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1244 namesize = strlen(name) + 1; 1245 1246 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1247 ztest_random(ZIL_MAX_BLKSZ)); 1248 lr = (lr_create_t *)&itx->itx_lr; 1249 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1250 lr->lr_doid = object; 1251 lr->lr_foid = 0; 1252 lr->lr_mode = mode; 1253 lr->lr_uid = 0; 1254 lr->lr_gid = 0; 1255 lr->lr_gen = dmu_tx_get_txg(tx); 1256 lr->lr_crtime[0] = time(NULL); 1257 lr->lr_crtime[1] = 0; 1258 lr->lr_rdev = 0; 1259 bcopy(name, (char *)(lr + 1), namesize); 1260 1261 return (zil_itx_assign(zilog, itx, tx)); 1262 } 1263 1264 void 1265 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1266 { 1267 int error; 1268 objset_t *os, *os2; 1269 char name[100]; 1270 int basemode, expected_error; 1271 zilog_t *zilog; 1272 uint64_t seq; 1273 uint64_t objects; 1274 1275 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1276 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1277 (u_longlong_t)za->za_instance); 1278 1279 basemode = DS_MODE_TYPE(za->za_instance); 1280 if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER) 1281 basemode = DS_MODE_USER; 1282 1283 /* 1284 * If this dataset exists from a previous run, process its replay log 1285 * half of the time. If we don't replay it, then dmu_objset_destroy() 1286 * (invoked from ztest_destroy_cb() below) should just throw it away. 1287 */ 1288 if (ztest_random(2) == 0 && 1289 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) { 1290 zil_replay(os, os, ztest_replay_vector); 1291 dmu_objset_close(os); 1292 } 1293 1294 /* 1295 * There may be an old instance of the dataset we're about to 1296 * create lying around from a previous run. If so, destroy it 1297 * and all of its snapshots. 1298 */ 1299 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1300 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1301 1302 /* 1303 * Verify that the destroyed dataset is no longer in the namespace. 1304 */ 1305 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1306 if (error != ENOENT) 1307 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1308 name, os); 1309 1310 /* 1311 * Verify that we can create a new dataset. 1312 */ 1313 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 1314 ztest_create_cb, NULL); 1315 if (error) { 1316 if (error == ENOSPC) { 1317 ztest_record_enospc("dmu_objset_create"); 1318 (void) rw_unlock(&ztest_shared->zs_name_lock); 1319 return; 1320 } 1321 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1322 } 1323 1324 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1325 if (error) { 1326 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1327 } 1328 1329 /* 1330 * Open the intent log for it. 1331 */ 1332 zilog = zil_open(os, NULL); 1333 1334 /* 1335 * Put a random number of objects in there. 1336 */ 1337 objects = ztest_random(20); 1338 seq = 0; 1339 while (objects-- != 0) { 1340 uint64_t object; 1341 dmu_tx_t *tx = dmu_tx_create(os); 1342 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1343 error = dmu_tx_assign(tx, TXG_WAIT); 1344 if (error) { 1345 dmu_tx_abort(tx); 1346 } else { 1347 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1348 DMU_OT_NONE, 0, tx); 1349 ztest_set_random_blocksize(os, object, tx); 1350 seq = ztest_log_create(zilog, tx, object, 1351 DMU_OT_UINT64_OTHER); 1352 dmu_write(os, object, 0, sizeof (name), name, tx); 1353 dmu_tx_commit(tx); 1354 } 1355 if (ztest_random(5) == 0) { 1356 zil_commit(zilog, seq, object); 1357 } 1358 if (ztest_random(100) == 0) { 1359 error = zil_suspend(zilog); 1360 if (error == 0) { 1361 zil_resume(zilog); 1362 } 1363 } 1364 } 1365 1366 /* 1367 * Verify that we cannot create an existing dataset. 1368 */ 1369 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL); 1370 if (error != EEXIST) 1371 fatal(0, "created existing dataset, error = %d", error); 1372 1373 /* 1374 * Verify that multiple dataset holds are allowed, but only when 1375 * the new access mode is compatible with the base mode. 1376 */ 1377 if (basemode == DS_MODE_OWNER) { 1378 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER, 1379 &os2); 1380 if (error) 1381 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1382 else 1383 dmu_objset_close(os2); 1384 } 1385 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2); 1386 expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0; 1387 if (error != expected_error) 1388 fatal(0, "dmu_objset_open('%s') = %d, expected %d", 1389 name, error, expected_error); 1390 if (error == 0) 1391 dmu_objset_close(os2); 1392 1393 zil_close(zilog); 1394 dmu_objset_close(os); 1395 1396 error = dmu_objset_destroy(name); 1397 if (error) 1398 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1399 1400 (void) rw_unlock(&ztest_shared->zs_name_lock); 1401 } 1402 1403 /* 1404 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1405 */ 1406 void 1407 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1408 { 1409 int error; 1410 objset_t *os = za->za_os; 1411 char snapname[100]; 1412 char osname[MAXNAMELEN]; 1413 1414 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1415 dmu_objset_name(os, osname); 1416 (void) snprintf(snapname, 100, "%s@%llu", osname, 1417 (u_longlong_t)za->za_instance); 1418 1419 error = dmu_objset_destroy(snapname); 1420 if (error != 0 && error != ENOENT) 1421 fatal(0, "dmu_objset_destroy() = %d", error); 1422 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, FALSE); 1423 if (error == ENOSPC) 1424 ztest_record_enospc("dmu_take_snapshot"); 1425 else if (error != 0 && error != EEXIST) 1426 fatal(0, "dmu_take_snapshot() = %d", error); 1427 (void) rw_unlock(&ztest_shared->zs_name_lock); 1428 } 1429 1430 /* 1431 * Verify that dmu_object_{alloc,free} work as expected. 1432 */ 1433 void 1434 ztest_dmu_object_alloc_free(ztest_args_t *za) 1435 { 1436 objset_t *os = za->za_os; 1437 dmu_buf_t *db; 1438 dmu_tx_t *tx; 1439 uint64_t batchobj, object, batchsize, endoff, temp; 1440 int b, c, error, bonuslen; 1441 dmu_object_info_t *doi = &za->za_doi; 1442 char osname[MAXNAMELEN]; 1443 1444 dmu_objset_name(os, osname); 1445 1446 endoff = -8ULL; 1447 batchsize = 2; 1448 1449 /* 1450 * Create a batch object if necessary, and record it in the directory. 1451 */ 1452 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1453 sizeof (uint64_t), &batchobj)); 1454 if (batchobj == 0) { 1455 tx = dmu_tx_create(os); 1456 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1457 sizeof (uint64_t)); 1458 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1459 error = dmu_tx_assign(tx, TXG_WAIT); 1460 if (error) { 1461 ztest_record_enospc("create a batch object"); 1462 dmu_tx_abort(tx); 1463 return; 1464 } 1465 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1466 DMU_OT_NONE, 0, tx); 1467 ztest_set_random_blocksize(os, batchobj, tx); 1468 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1469 sizeof (uint64_t), &batchobj, tx); 1470 dmu_tx_commit(tx); 1471 } 1472 1473 /* 1474 * Destroy the previous batch of objects. 1475 */ 1476 for (b = 0; b < batchsize; b++) { 1477 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1478 sizeof (uint64_t), &object)); 1479 if (object == 0) 1480 continue; 1481 /* 1482 * Read and validate contents. 1483 * We expect the nth byte of the bonus buffer to be n. 1484 */ 1485 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1486 za->za_dbuf = db; 1487 1488 dmu_object_info_from_db(db, doi); 1489 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1490 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1491 ASSERT3S(doi->doi_physical_blks, >=, 0); 1492 1493 bonuslen = doi->doi_bonus_size; 1494 1495 for (c = 0; c < bonuslen; c++) { 1496 if (((uint8_t *)db->db_data)[c] != 1497 (uint8_t)(c + bonuslen)) { 1498 fatal(0, 1499 "bad bonus: %s, obj %llu, off %d: %u != %u", 1500 osname, object, c, 1501 ((uint8_t *)db->db_data)[c], 1502 (uint8_t)(c + bonuslen)); 1503 } 1504 } 1505 1506 dmu_buf_rele(db, FTAG); 1507 za->za_dbuf = NULL; 1508 1509 /* 1510 * We expect the word at endoff to be our object number. 1511 */ 1512 VERIFY(0 == dmu_read(os, object, endoff, 1513 sizeof (uint64_t), &temp)); 1514 1515 if (temp != object) { 1516 fatal(0, "bad data in %s, got %llu, expected %llu", 1517 osname, temp, object); 1518 } 1519 1520 /* 1521 * Destroy old object and clear batch entry. 1522 */ 1523 tx = dmu_tx_create(os); 1524 dmu_tx_hold_write(tx, batchobj, 1525 b * sizeof (uint64_t), sizeof (uint64_t)); 1526 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1527 error = dmu_tx_assign(tx, TXG_WAIT); 1528 if (error) { 1529 ztest_record_enospc("free object"); 1530 dmu_tx_abort(tx); 1531 return; 1532 } 1533 error = dmu_object_free(os, object, tx); 1534 if (error) { 1535 fatal(0, "dmu_object_free('%s', %llu) = %d", 1536 osname, object, error); 1537 } 1538 object = 0; 1539 1540 dmu_object_set_checksum(os, batchobj, 1541 ztest_random_checksum(), tx); 1542 dmu_object_set_compress(os, batchobj, 1543 ztest_random_compress(), tx); 1544 1545 dmu_write(os, batchobj, b * sizeof (uint64_t), 1546 sizeof (uint64_t), &object, tx); 1547 1548 dmu_tx_commit(tx); 1549 } 1550 1551 /* 1552 * Before creating the new batch of objects, generate a bunch of churn. 1553 */ 1554 for (b = ztest_random(100); b > 0; b--) { 1555 tx = dmu_tx_create(os); 1556 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1557 error = dmu_tx_assign(tx, TXG_WAIT); 1558 if (error) { 1559 ztest_record_enospc("churn objects"); 1560 dmu_tx_abort(tx); 1561 return; 1562 } 1563 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1564 DMU_OT_NONE, 0, tx); 1565 ztest_set_random_blocksize(os, object, tx); 1566 error = dmu_object_free(os, object, tx); 1567 if (error) { 1568 fatal(0, "dmu_object_free('%s', %llu) = %d", 1569 osname, object, error); 1570 } 1571 dmu_tx_commit(tx); 1572 } 1573 1574 /* 1575 * Create a new batch of objects with randomly chosen 1576 * blocksizes and record them in the batch directory. 1577 */ 1578 for (b = 0; b < batchsize; b++) { 1579 uint32_t va_blksize; 1580 u_longlong_t va_nblocks; 1581 1582 tx = dmu_tx_create(os); 1583 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1584 sizeof (uint64_t)); 1585 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1586 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1587 sizeof (uint64_t)); 1588 error = dmu_tx_assign(tx, TXG_WAIT); 1589 if (error) { 1590 ztest_record_enospc("create batchobj"); 1591 dmu_tx_abort(tx); 1592 return; 1593 } 1594 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1595 1596 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1597 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1598 1599 ztest_set_random_blocksize(os, object, tx); 1600 1601 dmu_object_set_checksum(os, object, 1602 ztest_random_checksum(), tx); 1603 dmu_object_set_compress(os, object, 1604 ztest_random_compress(), tx); 1605 1606 dmu_write(os, batchobj, b * sizeof (uint64_t), 1607 sizeof (uint64_t), &object, tx); 1608 1609 /* 1610 * Write to both the bonus buffer and the regular data. 1611 */ 1612 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1613 za->za_dbuf = db; 1614 ASSERT3U(bonuslen, <=, db->db_size); 1615 1616 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1617 ASSERT3S(va_nblocks, >=, 0); 1618 1619 dmu_buf_will_dirty(db, tx); 1620 1621 /* 1622 * See comments above regarding the contents of 1623 * the bonus buffer and the word at endoff. 1624 */ 1625 for (c = 0; c < bonuslen; c++) 1626 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1627 1628 dmu_buf_rele(db, FTAG); 1629 za->za_dbuf = NULL; 1630 1631 /* 1632 * Write to a large offset to increase indirection. 1633 */ 1634 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1635 1636 dmu_tx_commit(tx); 1637 } 1638 } 1639 1640 /* 1641 * Verify that dmu_{read,write} work as expected. 1642 */ 1643 typedef struct bufwad { 1644 uint64_t bw_index; 1645 uint64_t bw_txg; 1646 uint64_t bw_data; 1647 } bufwad_t; 1648 1649 typedef struct dmu_read_write_dir { 1650 uint64_t dd_packobj; 1651 uint64_t dd_bigobj; 1652 uint64_t dd_chunk; 1653 } dmu_read_write_dir_t; 1654 1655 void 1656 ztest_dmu_read_write(ztest_args_t *za) 1657 { 1658 objset_t *os = za->za_os; 1659 dmu_read_write_dir_t dd; 1660 dmu_tx_t *tx; 1661 int i, freeit, error; 1662 uint64_t n, s, txg; 1663 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1664 uint64_t packoff, packsize, bigoff, bigsize; 1665 uint64_t regions = 997; 1666 uint64_t stride = 123456789ULL; 1667 uint64_t width = 40; 1668 int free_percent = 5; 1669 1670 /* 1671 * This test uses two objects, packobj and bigobj, that are always 1672 * updated together (i.e. in the same tx) so that their contents are 1673 * in sync and can be compared. Their contents relate to each other 1674 * in a simple way: packobj is a dense array of 'bufwad' structures, 1675 * while bigobj is a sparse array of the same bufwads. Specifically, 1676 * for any index n, there are three bufwads that should be identical: 1677 * 1678 * packobj, at offset n * sizeof (bufwad_t) 1679 * bigobj, at the head of the nth chunk 1680 * bigobj, at the tail of the nth chunk 1681 * 1682 * The chunk size is arbitrary. It doesn't have to be a power of two, 1683 * and it doesn't have any relation to the object blocksize. 1684 * The only requirement is that it can hold at least two bufwads. 1685 * 1686 * Normally, we write the bufwad to each of these locations. 1687 * However, free_percent of the time we instead write zeroes to 1688 * packobj and perform a dmu_free_range() on bigobj. By comparing 1689 * bigobj to packobj, we can verify that the DMU is correctly 1690 * tracking which parts of an object are allocated and free, 1691 * and that the contents of the allocated blocks are correct. 1692 */ 1693 1694 /* 1695 * Read the directory info. If it's the first time, set things up. 1696 */ 1697 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1698 sizeof (dd), &dd)); 1699 if (dd.dd_chunk == 0) { 1700 ASSERT(dd.dd_packobj == 0); 1701 ASSERT(dd.dd_bigobj == 0); 1702 tx = dmu_tx_create(os); 1703 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1704 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1705 error = dmu_tx_assign(tx, TXG_WAIT); 1706 if (error) { 1707 ztest_record_enospc("create r/w directory"); 1708 dmu_tx_abort(tx); 1709 return; 1710 } 1711 1712 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1713 DMU_OT_NONE, 0, tx); 1714 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1715 DMU_OT_NONE, 0, tx); 1716 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 1717 1718 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 1719 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 1720 1721 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 1722 tx); 1723 dmu_tx_commit(tx); 1724 } 1725 1726 /* 1727 * Prefetch a random chunk of the big object. 1728 * Our aim here is to get some async reads in flight 1729 * for blocks that we may free below; the DMU should 1730 * handle this race correctly. 1731 */ 1732 n = ztest_random(regions) * stride + ztest_random(width); 1733 s = 1 + ztest_random(2 * width - 1); 1734 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 1735 1736 /* 1737 * Pick a random index and compute the offsets into packobj and bigobj. 1738 */ 1739 n = ztest_random(regions) * stride + ztest_random(width); 1740 s = 1 + ztest_random(width - 1); 1741 1742 packoff = n * sizeof (bufwad_t); 1743 packsize = s * sizeof (bufwad_t); 1744 1745 bigoff = n * dd.dd_chunk; 1746 bigsize = s * dd.dd_chunk; 1747 1748 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 1749 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 1750 1751 /* 1752 * free_percent of the time, free a range of bigobj rather than 1753 * overwriting it. 1754 */ 1755 freeit = (ztest_random(100) < free_percent); 1756 1757 /* 1758 * Read the current contents of our objects. 1759 */ 1760 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf); 1761 ASSERT3U(error, ==, 0); 1762 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf); 1763 ASSERT3U(error, ==, 0); 1764 1765 /* 1766 * Get a tx for the mods to both packobj and bigobj. 1767 */ 1768 tx = dmu_tx_create(os); 1769 1770 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 1771 1772 if (freeit) 1773 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 1774 else 1775 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 1776 1777 error = dmu_tx_assign(tx, TXG_WAIT); 1778 1779 if (error) { 1780 ztest_record_enospc("dmu r/w range"); 1781 dmu_tx_abort(tx); 1782 umem_free(packbuf, packsize); 1783 umem_free(bigbuf, bigsize); 1784 return; 1785 } 1786 1787 txg = dmu_tx_get_txg(tx); 1788 1789 /* 1790 * For each index from n to n + s, verify that the existing bufwad 1791 * in packobj matches the bufwads at the head and tail of the 1792 * corresponding chunk in bigobj. Then update all three bufwads 1793 * with the new values we want to write out. 1794 */ 1795 for (i = 0; i < s; i++) { 1796 /* LINTED */ 1797 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 1798 /* LINTED */ 1799 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 1800 /* LINTED */ 1801 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 1802 1803 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 1804 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 1805 1806 if (pack->bw_txg > txg) 1807 fatal(0, "future leak: got %llx, open txg is %llx", 1808 pack->bw_txg, txg); 1809 1810 if (pack->bw_data != 0 && pack->bw_index != n + i) 1811 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 1812 pack->bw_index, n, i); 1813 1814 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 1815 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 1816 1817 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 1818 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 1819 1820 if (freeit) { 1821 bzero(pack, sizeof (bufwad_t)); 1822 } else { 1823 pack->bw_index = n + i; 1824 pack->bw_txg = txg; 1825 pack->bw_data = 1 + ztest_random(-2ULL); 1826 } 1827 *bigH = *pack; 1828 *bigT = *pack; 1829 } 1830 1831 /* 1832 * We've verified all the old bufwads, and made new ones. 1833 * Now write them out. 1834 */ 1835 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 1836 1837 if (freeit) { 1838 if (zopt_verbose >= 6) { 1839 (void) printf("freeing offset %llx size %llx" 1840 " txg %llx\n", 1841 (u_longlong_t)bigoff, 1842 (u_longlong_t)bigsize, 1843 (u_longlong_t)txg); 1844 } 1845 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 1846 bigsize, tx)); 1847 } else { 1848 if (zopt_verbose >= 6) { 1849 (void) printf("writing offset %llx size %llx" 1850 " txg %llx\n", 1851 (u_longlong_t)bigoff, 1852 (u_longlong_t)bigsize, 1853 (u_longlong_t)txg); 1854 } 1855 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 1856 } 1857 1858 dmu_tx_commit(tx); 1859 1860 /* 1861 * Sanity check the stuff we just wrote. 1862 */ 1863 { 1864 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 1865 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 1866 1867 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 1868 packsize, packcheck)); 1869 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 1870 bigsize, bigcheck)); 1871 1872 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 1873 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 1874 1875 umem_free(packcheck, packsize); 1876 umem_free(bigcheck, bigsize); 1877 } 1878 1879 umem_free(packbuf, packsize); 1880 umem_free(bigbuf, bigsize); 1881 } 1882 1883 void 1884 ztest_dmu_check_future_leak(ztest_args_t *za) 1885 { 1886 objset_t *os = za->za_os; 1887 dmu_buf_t *db; 1888 ztest_block_tag_t *bt; 1889 dmu_object_info_t *doi = &za->za_doi; 1890 1891 /* 1892 * Make sure that, if there is a write record in the bonus buffer 1893 * of the ZTEST_DIROBJ, that the txg for this record is <= the 1894 * last synced txg of the pool. 1895 */ 1896 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 1897 za->za_dbuf = db; 1898 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 1899 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 1900 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 1901 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 1902 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 1903 if (bt->bt_objset != 0) { 1904 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1905 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 1906 ASSERT3U(bt->bt_offset, ==, -1ULL); 1907 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 1908 } 1909 dmu_buf_rele(db, FTAG); 1910 za->za_dbuf = NULL; 1911 } 1912 1913 void 1914 ztest_dmu_write_parallel(ztest_args_t *za) 1915 { 1916 objset_t *os = za->za_os; 1917 ztest_block_tag_t *rbt = &za->za_rbt; 1918 ztest_block_tag_t *wbt = &za->za_wbt; 1919 const size_t btsize = sizeof (ztest_block_tag_t); 1920 dmu_buf_t *db; 1921 int b, error; 1922 int bs = ZTEST_DIROBJ_BLOCKSIZE; 1923 int do_free = 0; 1924 uint64_t off, txg, txg_how; 1925 mutex_t *lp; 1926 char osname[MAXNAMELEN]; 1927 char iobuf[SPA_MAXBLOCKSIZE]; 1928 blkptr_t blk = { 0 }; 1929 uint64_t blkoff; 1930 zbookmark_t zb; 1931 dmu_tx_t *tx = dmu_tx_create(os); 1932 1933 dmu_objset_name(os, osname); 1934 1935 /* 1936 * Have multiple threads write to large offsets in ZTEST_DIROBJ 1937 * to verify that having multiple threads writing to the same object 1938 * in parallel doesn't cause any trouble. 1939 */ 1940 if (ztest_random(4) == 0) { 1941 /* 1942 * Do the bonus buffer instead of a regular block. 1943 * We need a lock to serialize resize vs. others, 1944 * so we hash on the objset ID. 1945 */ 1946 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 1947 off = -1ULL; 1948 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 1949 } else { 1950 b = ztest_random(ZTEST_SYNC_LOCKS); 1951 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 1952 if (ztest_random(4) == 0) { 1953 do_free = 1; 1954 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 1955 } else { 1956 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 1957 } 1958 } 1959 1960 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 1961 error = dmu_tx_assign(tx, txg_how); 1962 if (error) { 1963 if (error == ERESTART) { 1964 ASSERT(txg_how == TXG_NOWAIT); 1965 dmu_tx_wait(tx); 1966 } else { 1967 ztest_record_enospc("dmu write parallel"); 1968 } 1969 dmu_tx_abort(tx); 1970 return; 1971 } 1972 txg = dmu_tx_get_txg(tx); 1973 1974 lp = &ztest_shared->zs_sync_lock[b]; 1975 (void) mutex_lock(lp); 1976 1977 wbt->bt_objset = dmu_objset_id(os); 1978 wbt->bt_object = ZTEST_DIROBJ; 1979 wbt->bt_offset = off; 1980 wbt->bt_txg = txg; 1981 wbt->bt_thread = za->za_instance; 1982 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 1983 1984 /* 1985 * Occasionally, write an all-zero block to test the behavior 1986 * of blocks that compress into holes. 1987 */ 1988 if (off != -1ULL && ztest_random(8) == 0) 1989 bzero(wbt, btsize); 1990 1991 if (off == -1ULL) { 1992 dmu_object_info_t *doi = &za->za_doi; 1993 char *dboff; 1994 1995 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 1996 za->za_dbuf = db; 1997 dmu_object_info_from_db(db, doi); 1998 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 1999 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2000 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2001 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2002 bcopy(dboff, rbt, btsize); 2003 if (rbt->bt_objset != 0) { 2004 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2005 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2006 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2007 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2008 } 2009 if (ztest_random(10) == 0) { 2010 int newsize = (ztest_random(db->db_size / 2011 btsize) + 1) * btsize; 2012 2013 ASSERT3U(newsize, >=, btsize); 2014 ASSERT3U(newsize, <=, db->db_size); 2015 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2016 dboff = (char *)db->db_data + newsize - btsize; 2017 } 2018 dmu_buf_will_dirty(db, tx); 2019 bcopy(wbt, dboff, btsize); 2020 dmu_buf_rele(db, FTAG); 2021 za->za_dbuf = NULL; 2022 } else if (do_free) { 2023 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2024 } else { 2025 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2026 } 2027 2028 (void) mutex_unlock(lp); 2029 2030 if (ztest_random(1000) == 0) 2031 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2032 2033 dmu_tx_commit(tx); 2034 2035 if (ztest_random(10000) == 0) 2036 txg_wait_synced(dmu_objset_pool(os), txg); 2037 2038 if (off == -1ULL || do_free) 2039 return; 2040 2041 if (ztest_random(2) != 0) 2042 return; 2043 2044 /* 2045 * dmu_sync() the block we just wrote. 2046 */ 2047 (void) mutex_lock(lp); 2048 2049 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2050 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2051 za->za_dbuf = db; 2052 if (error) { 2053 dprintf("dmu_buf_hold(%s, %d, %llx) = %d\n", 2054 osname, ZTEST_DIROBJ, blkoff, error); 2055 (void) mutex_unlock(lp); 2056 return; 2057 } 2058 blkoff = off - blkoff; 2059 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2060 dmu_buf_rele(db, FTAG); 2061 za->za_dbuf = NULL; 2062 2063 (void) mutex_unlock(lp); 2064 2065 if (error) { 2066 dprintf("dmu_sync(%s, %d, %llx) = %d\n", 2067 osname, ZTEST_DIROBJ, off, error); 2068 return; 2069 } 2070 2071 if (blk.blk_birth == 0) /* concurrent free */ 2072 return; 2073 2074 txg_suspend(dmu_objset_pool(os)); 2075 2076 ASSERT(blk.blk_fill == 1); 2077 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2078 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2079 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2080 2081 /* 2082 * Read the block that dmu_sync() returned to make sure its contents 2083 * match what we wrote. We do this while still txg_suspend()ed 2084 * to ensure that the block can't be reused before we read it. 2085 */ 2086 zb.zb_objset = dmu_objset_id(os); 2087 zb.zb_object = ZTEST_DIROBJ; 2088 zb.zb_level = 0; 2089 zb.zb_blkid = off / bs; 2090 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2091 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2092 ASSERT3U(error, ==, 0); 2093 2094 txg_resume(dmu_objset_pool(os)); 2095 2096 bcopy(&iobuf[blkoff], rbt, btsize); 2097 2098 if (rbt->bt_objset == 0) /* concurrent free */ 2099 return; 2100 2101 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2102 return; 2103 2104 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2105 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2106 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2107 2108 /* 2109 * The semantic of dmu_sync() is that we always push the most recent 2110 * version of the data, so in the face of concurrent updates we may 2111 * see a newer version of the block. That's OK. 2112 */ 2113 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2114 if (rbt->bt_thread == wbt->bt_thread) 2115 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2116 else 2117 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2118 } 2119 2120 /* 2121 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2122 */ 2123 #define ZTEST_ZAP_MIN_INTS 1 2124 #define ZTEST_ZAP_MAX_INTS 4 2125 #define ZTEST_ZAP_MAX_PROPS 1000 2126 2127 void 2128 ztest_zap(ztest_args_t *za) 2129 { 2130 objset_t *os = za->za_os; 2131 uint64_t object; 2132 uint64_t txg, last_txg; 2133 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2134 uint64_t zl_ints, zl_intsize, prop; 2135 int i, ints; 2136 dmu_tx_t *tx; 2137 char propname[100], txgname[100]; 2138 int error; 2139 char osname[MAXNAMELEN]; 2140 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2141 2142 dmu_objset_name(os, osname); 2143 2144 /* 2145 * Create a new object if necessary, and record it in the directory. 2146 */ 2147 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2148 sizeof (uint64_t), &object)); 2149 2150 if (object == 0) { 2151 tx = dmu_tx_create(os); 2152 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2153 sizeof (uint64_t)); 2154 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2155 error = dmu_tx_assign(tx, TXG_WAIT); 2156 if (error) { 2157 ztest_record_enospc("create zap test obj"); 2158 dmu_tx_abort(tx); 2159 return; 2160 } 2161 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2162 if (error) { 2163 fatal(0, "zap_create('%s', %llu) = %d", 2164 osname, object, error); 2165 } 2166 ASSERT(object != 0); 2167 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2168 sizeof (uint64_t), &object, tx); 2169 /* 2170 * Generate a known hash collision, and verify that 2171 * we can lookup and remove both entries. 2172 */ 2173 for (i = 0; i < 2; i++) { 2174 value[i] = i; 2175 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2176 1, &value[i], tx); 2177 ASSERT3U(error, ==, 0); 2178 } 2179 for (i = 0; i < 2; i++) { 2180 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2181 1, &value[i], tx); 2182 ASSERT3U(error, ==, EEXIST); 2183 error = zap_length(os, object, hc[i], 2184 &zl_intsize, &zl_ints); 2185 ASSERT3U(error, ==, 0); 2186 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2187 ASSERT3U(zl_ints, ==, 1); 2188 } 2189 for (i = 0; i < 2; i++) { 2190 error = zap_remove(os, object, hc[i], tx); 2191 ASSERT3U(error, ==, 0); 2192 } 2193 2194 dmu_tx_commit(tx); 2195 } 2196 2197 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2198 2199 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2200 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2201 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2202 bzero(value, sizeof (value)); 2203 last_txg = 0; 2204 2205 /* 2206 * If these zap entries already exist, validate their contents. 2207 */ 2208 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2209 if (error == 0) { 2210 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2211 ASSERT3U(zl_ints, ==, 1); 2212 2213 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2214 zl_ints, &last_txg) == 0); 2215 2216 VERIFY(zap_length(os, object, propname, &zl_intsize, 2217 &zl_ints) == 0); 2218 2219 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2220 ASSERT3U(zl_ints, ==, ints); 2221 2222 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2223 zl_ints, value) == 0); 2224 2225 for (i = 0; i < ints; i++) { 2226 ASSERT3U(value[i], ==, last_txg + object + i); 2227 } 2228 } else { 2229 ASSERT3U(error, ==, ENOENT); 2230 } 2231 2232 /* 2233 * Atomically update two entries in our zap object. 2234 * The first is named txg_%llu, and contains the txg 2235 * in which the property was last updated. The second 2236 * is named prop_%llu, and the nth element of its value 2237 * should be txg + object + n. 2238 */ 2239 tx = dmu_tx_create(os); 2240 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2241 error = dmu_tx_assign(tx, TXG_WAIT); 2242 if (error) { 2243 ztest_record_enospc("create zap entry"); 2244 dmu_tx_abort(tx); 2245 return; 2246 } 2247 txg = dmu_tx_get_txg(tx); 2248 2249 if (last_txg > txg) 2250 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2251 2252 for (i = 0; i < ints; i++) 2253 value[i] = txg + object + i; 2254 2255 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2256 if (error) 2257 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2258 osname, object, txgname, error); 2259 2260 error = zap_update(os, object, propname, sizeof (uint64_t), 2261 ints, value, tx); 2262 if (error) 2263 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2264 osname, object, propname, error); 2265 2266 dmu_tx_commit(tx); 2267 2268 /* 2269 * Remove a random pair of entries. 2270 */ 2271 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2272 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2273 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2274 2275 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2276 2277 if (error == ENOENT) 2278 return; 2279 2280 ASSERT3U(error, ==, 0); 2281 2282 tx = dmu_tx_create(os); 2283 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2284 error = dmu_tx_assign(tx, TXG_WAIT); 2285 if (error) { 2286 ztest_record_enospc("remove zap entry"); 2287 dmu_tx_abort(tx); 2288 return; 2289 } 2290 error = zap_remove(os, object, txgname, tx); 2291 if (error) 2292 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2293 osname, object, txgname, error); 2294 2295 error = zap_remove(os, object, propname, tx); 2296 if (error) 2297 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2298 osname, object, propname, error); 2299 2300 dmu_tx_commit(tx); 2301 2302 /* 2303 * Once in a while, destroy the object. 2304 */ 2305 if (ztest_random(1000) != 0) 2306 return; 2307 2308 tx = dmu_tx_create(os); 2309 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2310 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2311 error = dmu_tx_assign(tx, TXG_WAIT); 2312 if (error) { 2313 ztest_record_enospc("destroy zap object"); 2314 dmu_tx_abort(tx); 2315 return; 2316 } 2317 error = zap_destroy(os, object, tx); 2318 if (error) 2319 fatal(0, "zap_destroy('%s', %llu) = %d", 2320 osname, object, error); 2321 object = 0; 2322 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2323 &object, tx); 2324 dmu_tx_commit(tx); 2325 } 2326 2327 void 2328 ztest_zap_parallel(ztest_args_t *za) 2329 { 2330 objset_t *os = za->za_os; 2331 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2332 dmu_tx_t *tx; 2333 int i, namelen, error; 2334 char name[20], string_value[20]; 2335 void *data; 2336 2337 /* 2338 * Generate a random name of the form 'xxx.....' where each 2339 * x is a random printable character and the dots are dots. 2340 * There are 94 such characters, and the name length goes from 2341 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2342 */ 2343 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2344 2345 for (i = 0; i < 3; i++) 2346 name[i] = '!' + ztest_random('~' - '!' + 1); 2347 for (; i < namelen - 1; i++) 2348 name[i] = '.'; 2349 name[i] = '\0'; 2350 2351 if (ztest_random(2) == 0) 2352 object = ZTEST_MICROZAP_OBJ; 2353 else 2354 object = ZTEST_FATZAP_OBJ; 2355 2356 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2357 wsize = sizeof (txg); 2358 wc = 1; 2359 data = &txg; 2360 } else { 2361 wsize = 1; 2362 wc = namelen; 2363 data = string_value; 2364 } 2365 2366 count = -1ULL; 2367 VERIFY(zap_count(os, object, &count) == 0); 2368 ASSERT(count != -1ULL); 2369 2370 /* 2371 * Select an operation: length, lookup, add, update, remove. 2372 */ 2373 i = ztest_random(5); 2374 2375 if (i >= 2) { 2376 tx = dmu_tx_create(os); 2377 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2378 error = dmu_tx_assign(tx, TXG_WAIT); 2379 if (error) { 2380 ztest_record_enospc("zap parallel"); 2381 dmu_tx_abort(tx); 2382 return; 2383 } 2384 txg = dmu_tx_get_txg(tx); 2385 bcopy(name, string_value, namelen); 2386 } else { 2387 tx = NULL; 2388 txg = 0; 2389 bzero(string_value, namelen); 2390 } 2391 2392 switch (i) { 2393 2394 case 0: 2395 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 2396 if (error == 0) { 2397 ASSERT3U(wsize, ==, zl_wsize); 2398 ASSERT3U(wc, ==, zl_wc); 2399 } else { 2400 ASSERT3U(error, ==, ENOENT); 2401 } 2402 break; 2403 2404 case 1: 2405 error = zap_lookup(os, object, name, wsize, wc, data); 2406 if (error == 0) { 2407 if (data == string_value && 2408 bcmp(name, data, namelen) != 0) 2409 fatal(0, "name '%s' != val '%s' len %d", 2410 name, data, namelen); 2411 } else { 2412 ASSERT3U(error, ==, ENOENT); 2413 } 2414 break; 2415 2416 case 2: 2417 error = zap_add(os, object, name, wsize, wc, data, tx); 2418 ASSERT(error == 0 || error == EEXIST); 2419 break; 2420 2421 case 3: 2422 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 2423 break; 2424 2425 case 4: 2426 error = zap_remove(os, object, name, tx); 2427 ASSERT(error == 0 || error == ENOENT); 2428 break; 2429 } 2430 2431 if (tx != NULL) 2432 dmu_tx_commit(tx); 2433 } 2434 2435 void 2436 ztest_dsl_prop_get_set(ztest_args_t *za) 2437 { 2438 objset_t *os = za->za_os; 2439 int i, inherit; 2440 uint64_t value; 2441 const char *prop, *valname; 2442 char setpoint[MAXPATHLEN]; 2443 char osname[MAXNAMELEN]; 2444 int error; 2445 2446 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2447 2448 dmu_objset_name(os, osname); 2449 2450 for (i = 0; i < 2; i++) { 2451 if (i == 0) { 2452 prop = "checksum"; 2453 value = ztest_random_checksum(); 2454 inherit = (value == ZIO_CHECKSUM_INHERIT); 2455 } else { 2456 prop = "compression"; 2457 value = ztest_random_compress(); 2458 inherit = (value == ZIO_COMPRESS_INHERIT); 2459 } 2460 2461 error = dsl_prop_set(osname, prop, sizeof (value), 2462 !inherit, &value); 2463 2464 if (error == ENOSPC) { 2465 ztest_record_enospc("dsl_prop_set"); 2466 break; 2467 } 2468 2469 ASSERT3U(error, ==, 0); 2470 2471 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 2472 1, &value, setpoint), ==, 0); 2473 2474 if (i == 0) 2475 valname = zio_checksum_table[value].ci_name; 2476 else 2477 valname = zio_compress_table[value].ci_name; 2478 2479 if (zopt_verbose >= 6) { 2480 (void) printf("%s %s = %s for '%s'\n", 2481 osname, prop, valname, setpoint); 2482 } 2483 } 2484 2485 (void) rw_unlock(&ztest_shared->zs_name_lock); 2486 } 2487 2488 /* 2489 * Inject random faults into the on-disk data. 2490 */ 2491 void 2492 ztest_fault_inject(ztest_args_t *za) 2493 { 2494 int fd; 2495 uint64_t offset; 2496 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2497 uint64_t bad = 0x1990c0ffeedecade; 2498 uint64_t top, leaf; 2499 char path0[MAXPATHLEN]; 2500 char pathrand[MAXPATHLEN]; 2501 size_t fsize; 2502 spa_t *spa = za->za_spa; 2503 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 2504 int iters = 1000; 2505 int maxfaults = zopt_maxfaults; 2506 vdev_t *vd0 = NULL; 2507 uint64_t guid0 = 0; 2508 2509 ASSERT(leaves >= 1); 2510 2511 /* 2512 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 2513 */ 2514 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 2515 2516 if (ztest_random(2) == 0) { 2517 /* 2518 * Inject errors on a normal data device. 2519 */ 2520 top = ztest_random(spa->spa_root_vdev->vdev_children); 2521 leaf = ztest_random(leaves); 2522 2523 /* 2524 * Generate paths to the first leaf in this top-level vdev, 2525 * and to the random leaf we selected. We'll induce transient 2526 * write failures and random online/offline activity on leaf 0, 2527 * and we'll write random garbage to the randomly chosen leaf. 2528 */ 2529 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 2530 zopt_dir, zopt_pool, top * leaves + 0); 2531 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 2532 zopt_dir, zopt_pool, top * leaves + leaf); 2533 2534 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 2535 if (vd0 != NULL && maxfaults != 1) { 2536 /* 2537 * Make vd0 explicitly claim to be unreadable, 2538 * or unwriteable, or reach behind its back 2539 * and close the underlying fd. We can do this if 2540 * maxfaults == 0 because we'll fail and reexecute, 2541 * and we can do it if maxfaults >= 2 because we'll 2542 * have enough redundancy. If maxfaults == 1, the 2543 * combination of this with injection of random data 2544 * corruption below exceeds the pool's fault tolerance. 2545 */ 2546 vdev_file_t *vf = vd0->vdev_tsd; 2547 2548 if (vf != NULL && ztest_random(3) == 0) { 2549 (void) close(vf->vf_vnode->v_fd); 2550 vf->vf_vnode->v_fd = -1; 2551 } else if (ztest_random(2) == 0) { 2552 vd0->vdev_cant_read = B_TRUE; 2553 } else { 2554 vd0->vdev_cant_write = B_TRUE; 2555 } 2556 guid0 = vd0->vdev_guid; 2557 } 2558 } else { 2559 /* 2560 * Inject errors on an l2cache device. 2561 */ 2562 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2563 2564 if (sav->sav_count == 0) { 2565 spa_config_exit(spa, SCL_STATE, FTAG); 2566 return; 2567 } 2568 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2569 guid0 = vd0->vdev_guid; 2570 (void) strcpy(path0, vd0->vdev_path); 2571 (void) strcpy(pathrand, vd0->vdev_path); 2572 2573 leaf = 0; 2574 leaves = 1; 2575 maxfaults = INT_MAX; /* no limit on cache devices */ 2576 } 2577 2578 dprintf("damaging %s and %s\n", path0, pathrand); 2579 2580 spa_config_exit(spa, SCL_STATE, FTAG); 2581 2582 if (maxfaults == 0) 2583 return; 2584 2585 /* 2586 * If we can tolerate two or more faults, randomly online/offline vd0. 2587 */ 2588 if (maxfaults >= 2 && guid0 != 0) { 2589 if (ztest_random(10) < 6) 2590 (void) vdev_offline(spa, guid0, B_TRUE); 2591 else 2592 (void) vdev_online(spa, guid0, B_FALSE, NULL); 2593 } 2594 2595 /* 2596 * We have at least single-fault tolerance, so inject data corruption. 2597 */ 2598 fd = open(pathrand, O_RDWR); 2599 2600 if (fd == -1) /* we hit a gap in the device namespace */ 2601 return; 2602 2603 fsize = lseek(fd, 0, SEEK_END); 2604 2605 while (--iters != 0) { 2606 offset = ztest_random(fsize / (leaves << bshift)) * 2607 (leaves << bshift) + (leaf << bshift) + 2608 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 2609 2610 if (offset >= fsize) 2611 continue; 2612 2613 if (zopt_verbose >= 6) 2614 (void) printf("injecting bad word into %s," 2615 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 2616 2617 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 2618 fatal(1, "can't inject bad word at 0x%llx in %s", 2619 offset, pathrand); 2620 } 2621 2622 (void) close(fd); 2623 } 2624 2625 /* 2626 * Scrub the pool. 2627 */ 2628 void 2629 ztest_scrub(ztest_args_t *za) 2630 { 2631 spa_t *spa = za->za_spa; 2632 2633 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 2634 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 2635 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 2636 } 2637 2638 /* 2639 * Rename the pool to a different name and then rename it back. 2640 */ 2641 void 2642 ztest_spa_rename(ztest_args_t *za) 2643 { 2644 char *oldname, *newname; 2645 int error; 2646 spa_t *spa; 2647 2648 (void) rw_wrlock(&ztest_shared->zs_name_lock); 2649 2650 oldname = za->za_pool; 2651 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 2652 (void) strcpy(newname, oldname); 2653 (void) strcat(newname, "_tmp"); 2654 2655 /* 2656 * Do the rename 2657 */ 2658 error = spa_rename(oldname, newname); 2659 if (error) 2660 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 2661 newname, error); 2662 2663 /* 2664 * Try to open it under the old name, which shouldn't exist 2665 */ 2666 error = spa_open(oldname, &spa, FTAG); 2667 if (error != ENOENT) 2668 fatal(0, "spa_open('%s') = %d", oldname, error); 2669 2670 /* 2671 * Open it under the new name and make sure it's still the same spa_t. 2672 */ 2673 error = spa_open(newname, &spa, FTAG); 2674 if (error != 0) 2675 fatal(0, "spa_open('%s') = %d", newname, error); 2676 2677 ASSERT(spa == za->za_spa); 2678 spa_close(spa, FTAG); 2679 2680 /* 2681 * Rename it back to the original 2682 */ 2683 error = spa_rename(newname, oldname); 2684 if (error) 2685 fatal(0, "spa_rename('%s', '%s') = %d", newname, 2686 oldname, error); 2687 2688 /* 2689 * Make sure it can still be opened 2690 */ 2691 error = spa_open(oldname, &spa, FTAG); 2692 if (error != 0) 2693 fatal(0, "spa_open('%s') = %d", oldname, error); 2694 2695 ASSERT(spa == za->za_spa); 2696 spa_close(spa, FTAG); 2697 2698 umem_free(newname, strlen(newname) + 1); 2699 2700 (void) rw_unlock(&ztest_shared->zs_name_lock); 2701 } 2702 2703 2704 /* 2705 * Completely obliterate one disk. 2706 */ 2707 static void 2708 ztest_obliterate_one_disk(uint64_t vdev) 2709 { 2710 int fd; 2711 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 2712 size_t fsize; 2713 2714 if (zopt_maxfaults < 2) 2715 return; 2716 2717 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2718 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 2719 2720 fd = open(dev_name, O_RDWR); 2721 2722 if (fd == -1) 2723 fatal(1, "can't open %s", dev_name); 2724 2725 /* 2726 * Determine the size. 2727 */ 2728 fsize = lseek(fd, 0, SEEK_END); 2729 2730 (void) close(fd); 2731 2732 /* 2733 * Rename the old device to dev_name.old (useful for debugging). 2734 */ 2735 VERIFY(rename(dev_name, copy_name) == 0); 2736 2737 /* 2738 * Create a new one. 2739 */ 2740 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 2741 VERIFY(ftruncate(fd, fsize) == 0); 2742 (void) close(fd); 2743 } 2744 2745 static void 2746 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 2747 { 2748 char dev_name[MAXPATHLEN]; 2749 nvlist_t *root; 2750 int error; 2751 uint64_t guid; 2752 vdev_t *vd; 2753 2754 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2755 2756 /* 2757 * Build the nvlist describing dev_name. 2758 */ 2759 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 2760 2761 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2762 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 2763 guid = 0; 2764 else 2765 guid = vd->vdev_guid; 2766 spa_config_exit(spa, SCL_VDEV, FTAG); 2767 error = spa_vdev_attach(spa, guid, root, B_TRUE); 2768 if (error != 0 && 2769 error != EBUSY && 2770 error != ENOTSUP && 2771 error != ENODEV && 2772 error != EDOM) 2773 fatal(0, "spa_vdev_attach(in-place) = %d", error); 2774 2775 nvlist_free(root); 2776 } 2777 2778 static void 2779 ztest_verify_blocks(char *pool) 2780 { 2781 int status; 2782 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 2783 char zbuf[1024]; 2784 char *bin; 2785 char *ztest; 2786 char *isa; 2787 int isalen; 2788 FILE *fp; 2789 2790 (void) realpath(getexecname(), zdb); 2791 2792 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 2793 bin = strstr(zdb, "/usr/bin/"); 2794 ztest = strstr(bin, "/ztest"); 2795 isa = bin + 8; 2796 isalen = ztest - isa; 2797 isa = strdup(isa); 2798 /* LINTED */ 2799 (void) sprintf(bin, 2800 "/usr/sbin%.*s/zdb -bc%s%s -U /tmp/zpool.cache %s", 2801 isalen, 2802 isa, 2803 zopt_verbose >= 3 ? "s" : "", 2804 zopt_verbose >= 4 ? "v" : "", 2805 pool); 2806 free(isa); 2807 2808 if (zopt_verbose >= 5) 2809 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 2810 2811 fp = popen(zdb, "r"); 2812 2813 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 2814 if (zopt_verbose >= 3) 2815 (void) printf("%s", zbuf); 2816 2817 status = pclose(fp); 2818 2819 if (status == 0) 2820 return; 2821 2822 ztest_dump_core = 0; 2823 if (WIFEXITED(status)) 2824 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 2825 else 2826 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 2827 } 2828 2829 static void 2830 ztest_walk_pool_directory(char *header) 2831 { 2832 spa_t *spa = NULL; 2833 2834 if (zopt_verbose >= 6) 2835 (void) printf("%s\n", header); 2836 2837 mutex_enter(&spa_namespace_lock); 2838 while ((spa = spa_next(spa)) != NULL) 2839 if (zopt_verbose >= 6) 2840 (void) printf("\t%s\n", spa_name(spa)); 2841 mutex_exit(&spa_namespace_lock); 2842 } 2843 2844 static void 2845 ztest_spa_import_export(char *oldname, char *newname) 2846 { 2847 nvlist_t *config; 2848 uint64_t pool_guid; 2849 spa_t *spa; 2850 int error; 2851 2852 if (zopt_verbose >= 4) { 2853 (void) printf("import/export: old = %s, new = %s\n", 2854 oldname, newname); 2855 } 2856 2857 /* 2858 * Clean up from previous runs. 2859 */ 2860 (void) spa_destroy(newname); 2861 2862 /* 2863 * Get the pool's configuration and guid. 2864 */ 2865 error = spa_open(oldname, &spa, FTAG); 2866 if (error) 2867 fatal(0, "spa_open('%s') = %d", oldname, error); 2868 2869 pool_guid = spa_guid(spa); 2870 spa_close(spa, FTAG); 2871 2872 ztest_walk_pool_directory("pools before export"); 2873 2874 /* 2875 * Export it. 2876 */ 2877 error = spa_export(oldname, &config, B_FALSE, B_FALSE); 2878 if (error) 2879 fatal(0, "spa_export('%s') = %d", oldname, error); 2880 2881 ztest_walk_pool_directory("pools after export"); 2882 2883 /* 2884 * Import it under the new name. 2885 */ 2886 error = spa_import(newname, config, NULL); 2887 if (error) 2888 fatal(0, "spa_import('%s') = %d", newname, error); 2889 2890 ztest_walk_pool_directory("pools after import"); 2891 2892 /* 2893 * Try to import it again -- should fail with EEXIST. 2894 */ 2895 error = spa_import(newname, config, NULL); 2896 if (error != EEXIST) 2897 fatal(0, "spa_import('%s') twice", newname); 2898 2899 /* 2900 * Try to import it under a different name -- should fail with EEXIST. 2901 */ 2902 error = spa_import(oldname, config, NULL); 2903 if (error != EEXIST) 2904 fatal(0, "spa_import('%s') under multiple names", newname); 2905 2906 /* 2907 * Verify that the pool is no longer visible under the old name. 2908 */ 2909 error = spa_open(oldname, &spa, FTAG); 2910 if (error != ENOENT) 2911 fatal(0, "spa_open('%s') = %d", newname, error); 2912 2913 /* 2914 * Verify that we can open and close the pool using the new name. 2915 */ 2916 error = spa_open(newname, &spa, FTAG); 2917 if (error) 2918 fatal(0, "spa_open('%s') = %d", newname, error); 2919 ASSERT(pool_guid == spa_guid(spa)); 2920 spa_close(spa, FTAG); 2921 2922 nvlist_free(config); 2923 } 2924 2925 static void * 2926 ztest_resume(void *arg) 2927 { 2928 spa_t *spa = arg; 2929 2930 while (!ztest_exiting) { 2931 (void) poll(NULL, 0, 1000); 2932 2933 if (!spa_suspended(spa)) 2934 continue; 2935 2936 spa_vdev_state_enter(spa); 2937 vdev_clear(spa, NULL); 2938 (void) spa_vdev_state_exit(spa, NULL, 0); 2939 2940 zio_resume(spa); 2941 } 2942 return (NULL); 2943 } 2944 2945 static void * 2946 ztest_thread(void *arg) 2947 { 2948 ztest_args_t *za = arg; 2949 ztest_shared_t *zs = ztest_shared; 2950 hrtime_t now, functime; 2951 ztest_info_t *zi; 2952 int f, i; 2953 2954 while ((now = gethrtime()) < za->za_stop) { 2955 /* 2956 * See if it's time to force a crash. 2957 */ 2958 if (now > za->za_kill) { 2959 zs->zs_alloc = spa_get_alloc(za->za_spa); 2960 zs->zs_space = spa_get_space(za->za_spa); 2961 (void) kill(getpid(), SIGKILL); 2962 } 2963 2964 /* 2965 * Pick a random function. 2966 */ 2967 f = ztest_random(ZTEST_FUNCS); 2968 zi = &zs->zs_info[f]; 2969 2970 /* 2971 * Decide whether to call it, based on the requested frequency. 2972 */ 2973 if (zi->zi_call_target == 0 || 2974 (double)zi->zi_call_total / zi->zi_call_target > 2975 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 2976 continue; 2977 2978 atomic_add_64(&zi->zi_calls, 1); 2979 atomic_add_64(&zi->zi_call_total, 1); 2980 2981 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 2982 ZTEST_DIRSIZE; 2983 za->za_diroff_shared = (1ULL << 63); 2984 2985 for (i = 0; i < zi->zi_iters; i++) 2986 zi->zi_func(za); 2987 2988 functime = gethrtime() - now; 2989 2990 atomic_add_64(&zi->zi_call_time, functime); 2991 2992 if (zopt_verbose >= 4) { 2993 Dl_info dli; 2994 (void) dladdr((void *)zi->zi_func, &dli); 2995 (void) printf("%6.2f sec in %s\n", 2996 (double)functime / NANOSEC, dli.dli_sname); 2997 } 2998 2999 /* 3000 * If we're getting ENOSPC with some regularity, stop. 3001 */ 3002 if (zs->zs_enospc_count > 10) 3003 break; 3004 } 3005 3006 return (NULL); 3007 } 3008 3009 /* 3010 * Kick off threads to run tests on all datasets in parallel. 3011 */ 3012 static void 3013 ztest_run(char *pool) 3014 { 3015 int t, d, error; 3016 ztest_shared_t *zs = ztest_shared; 3017 ztest_args_t *za; 3018 spa_t *spa; 3019 char name[100]; 3020 thread_t resume_tid; 3021 3022 ztest_exiting = B_FALSE; 3023 3024 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 3025 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 3026 3027 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 3028 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 3029 3030 /* 3031 * Destroy one disk before we even start. 3032 * It's mirrored, so everything should work just fine. 3033 * This makes us exercise fault handling very early in spa_load(). 3034 */ 3035 ztest_obliterate_one_disk(0); 3036 3037 /* 3038 * Verify that the sum of the sizes of all blocks in the pool 3039 * equals the SPA's allocated space total. 3040 */ 3041 ztest_verify_blocks(pool); 3042 3043 /* 3044 * Kick off a replacement of the disk we just obliterated. 3045 */ 3046 kernel_init(FREAD | FWRITE); 3047 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3048 ztest_replace_one_disk(spa, 0); 3049 if (zopt_verbose >= 5) 3050 show_pool_stats(spa); 3051 spa_close(spa, FTAG); 3052 kernel_fini(); 3053 3054 kernel_init(FREAD | FWRITE); 3055 3056 /* 3057 * Verify that we can export the pool and reimport it under a 3058 * different name. 3059 */ 3060 if (ztest_random(2) == 0) { 3061 (void) snprintf(name, 100, "%s_import", pool); 3062 ztest_spa_import_export(pool, name); 3063 ztest_spa_import_export(name, pool); 3064 } 3065 3066 /* 3067 * Verify that we can loop over all pools. 3068 */ 3069 mutex_enter(&spa_namespace_lock); 3070 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3071 if (zopt_verbose > 3) { 3072 (void) printf("spa_next: found %s\n", spa_name(spa)); 3073 } 3074 } 3075 mutex_exit(&spa_namespace_lock); 3076 3077 /* 3078 * Open our pool. 3079 */ 3080 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3081 3082 /* 3083 * Create a thread to periodically resume suspended I/O. 3084 */ 3085 VERIFY(thr_create(0, 0, ztest_resume, spa, THR_BOUND, 3086 &resume_tid) == 0); 3087 3088 /* 3089 * Verify that we can safely inquire about about any object, 3090 * whether it's allocated or not. To make it interesting, 3091 * we probe a 5-wide window around each power of two. 3092 * This hits all edge cases, including zero and the max. 3093 */ 3094 for (t = 0; t < 64; t++) { 3095 for (d = -5; d <= 5; d++) { 3096 error = dmu_object_info(spa->spa_meta_objset, 3097 (1ULL << t) + d, NULL); 3098 ASSERT(error == 0 || error == ENOENT || 3099 error == EINVAL); 3100 } 3101 } 3102 3103 /* 3104 * Now kick off all the tests that run in parallel. 3105 */ 3106 zs->zs_enospc_count = 0; 3107 3108 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3109 3110 if (zopt_verbose >= 4) 3111 (void) printf("starting main threads...\n"); 3112 3113 za[0].za_start = gethrtime(); 3114 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3115 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3116 za[0].za_kill = za[0].za_stop; 3117 if (ztest_random(100) < zopt_killrate) 3118 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3119 3120 for (t = 0; t < zopt_threads; t++) { 3121 d = t % zopt_datasets; 3122 3123 (void) strcpy(za[t].za_pool, pool); 3124 za[t].za_os = za[d].za_os; 3125 za[t].za_spa = spa; 3126 za[t].za_zilog = za[d].za_zilog; 3127 za[t].za_instance = t; 3128 za[t].za_random = ztest_random(-1ULL); 3129 za[t].za_start = za[0].za_start; 3130 za[t].za_stop = za[0].za_stop; 3131 za[t].za_kill = za[0].za_kill; 3132 3133 if (t < zopt_datasets) { 3134 int test_future = FALSE; 3135 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3136 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3137 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 3138 ztest_create_cb, NULL); 3139 if (error == EEXIST) { 3140 test_future = TRUE; 3141 } else if (error == ENOSPC) { 3142 zs->zs_enospc_count++; 3143 (void) rw_unlock(&ztest_shared->zs_name_lock); 3144 break; 3145 } else if (error != 0) { 3146 fatal(0, "dmu_objset_create(%s) = %d", 3147 name, error); 3148 } 3149 error = dmu_objset_open(name, DMU_OST_OTHER, 3150 DS_MODE_USER, &za[d].za_os); 3151 if (error) 3152 fatal(0, "dmu_objset_open('%s') = %d", 3153 name, error); 3154 (void) rw_unlock(&ztest_shared->zs_name_lock); 3155 if (test_future) 3156 ztest_dmu_check_future_leak(&za[t]); 3157 zil_replay(za[d].za_os, za[d].za_os, 3158 ztest_replay_vector); 3159 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3160 } 3161 3162 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3163 &za[t].za_thread) == 0); 3164 } 3165 3166 while (--t >= 0) { 3167 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 3168 if (t < zopt_datasets) { 3169 zil_close(za[t].za_zilog); 3170 dmu_objset_close(za[t].za_os); 3171 } 3172 } 3173 3174 if (zopt_verbose >= 3) 3175 show_pool_stats(spa); 3176 3177 txg_wait_synced(spa_get_dsl(spa), 0); 3178 3179 zs->zs_alloc = spa_get_alloc(spa); 3180 zs->zs_space = spa_get_space(spa); 3181 3182 /* 3183 * If we had out-of-space errors, destroy a random objset. 3184 */ 3185 if (zs->zs_enospc_count != 0) { 3186 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3187 d = (int)ztest_random(zopt_datasets); 3188 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3189 if (zopt_verbose >= 3) 3190 (void) printf("Destroying %s to free up space\n", name); 3191 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 3192 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 3193 (void) rw_unlock(&ztest_shared->zs_name_lock); 3194 } 3195 3196 txg_wait_synced(spa_get_dsl(spa), 0); 3197 3198 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3199 3200 /* Kill the resume thread */ 3201 ztest_exiting = B_TRUE; 3202 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 3203 3204 /* 3205 * Right before closing the pool, kick off a bunch of async I/O; 3206 * spa_close() should wait for it to complete. 3207 */ 3208 for (t = 1; t < 50; t++) 3209 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3210 3211 spa_close(spa, FTAG); 3212 3213 kernel_fini(); 3214 } 3215 3216 void 3217 print_time(hrtime_t t, char *timebuf) 3218 { 3219 hrtime_t s = t / NANOSEC; 3220 hrtime_t m = s / 60; 3221 hrtime_t h = m / 60; 3222 hrtime_t d = h / 24; 3223 3224 s -= m * 60; 3225 m -= h * 60; 3226 h -= d * 24; 3227 3228 timebuf[0] = '\0'; 3229 3230 if (d) 3231 (void) sprintf(timebuf, 3232 "%llud%02lluh%02llum%02llus", d, h, m, s); 3233 else if (h) 3234 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3235 else if (m) 3236 (void) sprintf(timebuf, "%llum%02llus", m, s); 3237 else 3238 (void) sprintf(timebuf, "%llus", s); 3239 } 3240 3241 /* 3242 * Create a storage pool with the given name and initial vdev size. 3243 * Then create the specified number of datasets in the pool. 3244 */ 3245 static void 3246 ztest_init(char *pool) 3247 { 3248 spa_t *spa; 3249 int error; 3250 nvlist_t *nvroot; 3251 3252 kernel_init(FREAD | FWRITE); 3253 3254 /* 3255 * Create the storage pool. 3256 */ 3257 (void) spa_destroy(pool); 3258 ztest_shared->zs_vdev_primaries = 0; 3259 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 3260 0, zopt_raidz, zopt_mirrors, 1); 3261 error = spa_create(pool, nvroot, NULL, NULL, NULL); 3262 nvlist_free(nvroot); 3263 3264 if (error) 3265 fatal(0, "spa_create() = %d", error); 3266 error = spa_open(pool, &spa, FTAG); 3267 if (error) 3268 fatal(0, "spa_open() = %d", error); 3269 3270 if (zopt_verbose >= 3) 3271 show_pool_stats(spa); 3272 3273 spa_close(spa, FTAG); 3274 3275 kernel_fini(); 3276 } 3277 3278 int 3279 main(int argc, char **argv) 3280 { 3281 int kills = 0; 3282 int iters = 0; 3283 int i, f; 3284 ztest_shared_t *zs; 3285 ztest_info_t *zi; 3286 char timebuf[100]; 3287 char numbuf[6]; 3288 3289 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3290 3291 /* Override location of zpool.cache */ 3292 spa_config_path = "/tmp/zpool.cache"; 3293 3294 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3295 3296 process_options(argc, argv); 3297 3298 argc -= optind; 3299 argv += optind; 3300 3301 dprintf_setup(&argc, argv); 3302 3303 /* 3304 * Blow away any existing copy of zpool.cache 3305 */ 3306 if (zopt_init != 0) 3307 (void) remove("/tmp/zpool.cache"); 3308 3309 zs = ztest_shared = (void *)mmap(0, 3310 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3311 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3312 3313 if (zopt_verbose >= 1) { 3314 (void) printf("%llu vdevs, %d datasets, %d threads," 3315 " %llu seconds...\n", 3316 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 3317 (u_longlong_t)zopt_time); 3318 } 3319 3320 /* 3321 * Create and initialize our storage pool. 3322 */ 3323 for (i = 1; i <= zopt_init; i++) { 3324 bzero(zs, sizeof (ztest_shared_t)); 3325 if (zopt_verbose >= 3 && zopt_init != 1) 3326 (void) printf("ztest_init(), pass %d\n", i); 3327 ztest_init(zopt_pool); 3328 } 3329 3330 /* 3331 * Initialize the call targets for each function. 3332 */ 3333 for (f = 0; f < ZTEST_FUNCS; f++) { 3334 zi = &zs->zs_info[f]; 3335 3336 *zi = ztest_info[f]; 3337 3338 if (*zi->zi_interval == 0) 3339 zi->zi_call_target = UINT64_MAX; 3340 else 3341 zi->zi_call_target = zopt_time / *zi->zi_interval; 3342 } 3343 3344 zs->zs_start_time = gethrtime(); 3345 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3346 3347 /* 3348 * Run the tests in a loop. These tests include fault injection 3349 * to verify that self-healing data works, and forced crashes 3350 * to verify that we never lose on-disk consistency. 3351 */ 3352 while (gethrtime() < zs->zs_stop_time) { 3353 int status; 3354 pid_t pid; 3355 char *tmp; 3356 3357 /* 3358 * Initialize the workload counters for each function. 3359 */ 3360 for (f = 0; f < ZTEST_FUNCS; f++) { 3361 zi = &zs->zs_info[f]; 3362 zi->zi_calls = 0; 3363 zi->zi_call_time = 0; 3364 } 3365 3366 pid = fork(); 3367 3368 if (pid == -1) 3369 fatal(1, "fork failed"); 3370 3371 if (pid == 0) { /* child */ 3372 struct rlimit rl = { 1024, 1024 }; 3373 (void) setrlimit(RLIMIT_NOFILE, &rl); 3374 (void) enable_extended_FILE_stdio(-1, -1); 3375 ztest_run(zopt_pool); 3376 exit(0); 3377 } 3378 3379 while (waitpid(pid, &status, 0) != pid) 3380 continue; 3381 3382 if (WIFEXITED(status)) { 3383 if (WEXITSTATUS(status) != 0) { 3384 (void) fprintf(stderr, 3385 "child exited with code %d\n", 3386 WEXITSTATUS(status)); 3387 exit(2); 3388 } 3389 } else if (WIFSIGNALED(status)) { 3390 if (WTERMSIG(status) != SIGKILL) { 3391 (void) fprintf(stderr, 3392 "child died with signal %d\n", 3393 WTERMSIG(status)); 3394 exit(3); 3395 } 3396 kills++; 3397 } else { 3398 (void) fprintf(stderr, "something strange happened " 3399 "to child\n"); 3400 exit(4); 3401 } 3402 3403 iters++; 3404 3405 if (zopt_verbose >= 1) { 3406 hrtime_t now = gethrtime(); 3407 3408 now = MIN(now, zs->zs_stop_time); 3409 print_time(zs->zs_stop_time - now, timebuf); 3410 nicenum(zs->zs_space, numbuf); 3411 3412 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 3413 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 3414 iters, 3415 WIFEXITED(status) ? "Complete" : "SIGKILL", 3416 (u_longlong_t)zs->zs_enospc_count, 3417 100.0 * zs->zs_alloc / zs->zs_space, 3418 numbuf, 3419 100.0 * (now - zs->zs_start_time) / 3420 (zopt_time * NANOSEC), timebuf); 3421 } 3422 3423 if (zopt_verbose >= 2) { 3424 (void) printf("\nWorkload summary:\n\n"); 3425 (void) printf("%7s %9s %s\n", 3426 "Calls", "Time", "Function"); 3427 (void) printf("%7s %9s %s\n", 3428 "-----", "----", "--------"); 3429 for (f = 0; f < ZTEST_FUNCS; f++) { 3430 Dl_info dli; 3431 3432 zi = &zs->zs_info[f]; 3433 print_time(zi->zi_call_time, timebuf); 3434 (void) dladdr((void *)zi->zi_func, &dli); 3435 (void) printf("%7llu %9s %s\n", 3436 (u_longlong_t)zi->zi_calls, timebuf, 3437 dli.dli_sname); 3438 } 3439 (void) printf("\n"); 3440 } 3441 3442 /* 3443 * It's possible that we killed a child during a rename test, in 3444 * which case we'll have a 'ztest_tmp' pool lying around instead 3445 * of 'ztest'. Do a blind rename in case this happened. 3446 */ 3447 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 3448 (void) strcpy(tmp, zopt_pool); 3449 (void) strcat(tmp, "_tmp"); 3450 kernel_init(FREAD | FWRITE); 3451 (void) spa_rename(tmp, zopt_pool); 3452 kernel_fini(); 3453 umem_free(tmp, strlen(tmp) + 1); 3454 } 3455 3456 ztest_verify_blocks(zopt_pool); 3457 3458 if (zopt_verbose >= 1) { 3459 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 3460 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 3461 } 3462 3463 return (0); 3464 } 3465