1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 */ 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. If backwards compatibility 56 * testing is enabled ztest will sometimes run the "older" version 57 * of ztest after a SIGKILL. 58 * 59 * (6) To verify that we don't have future leaks or temporal incursions, 60 * many of the functional tests record the transaction group number 61 * as part of their data. When reading old data, they verify that 62 * the transaction group number is less than the current, open txg. 63 * If you add a new test, please do this if applicable. 64 * 65 * When run with no arguments, ztest runs for about five minutes and 66 * produces no output if successful. To get a little bit of information, 67 * specify -V. To get more information, specify -VV, and so on. 68 * 69 * To turn this into an overnight stress test, use -T to specify run time. 70 * 71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 72 * to increase the pool capacity, fanout, and overall stress level. 73 * 74 * Use the -k option to set the desired frequency of kills. 75 * 76 * When ztest invokes itself it passes all relevant information through a 77 * temporary file which is mmap-ed in the child process. This allows shared 78 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 79 * stored at offset 0 of this file and contains information on the size and 80 * number of shared structures in the file. The information stored in this file 81 * must remain backwards compatible with older versions of ztest so that 82 * ztest can invoke them during backwards compatibility testing (-B). 83 */ 84 85 #include <sys/zfs_context.h> 86 #include <sys/spa.h> 87 #include <sys/dmu.h> 88 #include <sys/txg.h> 89 #include <sys/dbuf.h> 90 #include <sys/zap.h> 91 #include <sys/dmu_objset.h> 92 #include <sys/poll.h> 93 #include <sys/stat.h> 94 #include <sys/time.h> 95 #include <sys/wait.h> 96 #include <sys/mman.h> 97 #include <sys/resource.h> 98 #include <sys/zio.h> 99 #include <sys/zil.h> 100 #include <sys/zil_impl.h> 101 #include <sys/vdev_impl.h> 102 #include <sys/vdev_file.h> 103 #include <sys/spa_impl.h> 104 #include <sys/metaslab_impl.h> 105 #include <sys/dsl_prop.h> 106 #include <sys/dsl_dataset.h> 107 #include <sys/dsl_destroy.h> 108 #include <sys/dsl_scan.h> 109 #include <sys/zio_checksum.h> 110 #include <sys/refcount.h> 111 #include <sys/zfeature.h> 112 #include <sys/dsl_userhold.h> 113 #include <stdio.h> 114 #include <stdio_ext.h> 115 #include <stdlib.h> 116 #include <unistd.h> 117 #include <signal.h> 118 #include <umem.h> 119 #include <dlfcn.h> 120 #include <ctype.h> 121 #include <math.h> 122 #include <sys/fs/zfs.h> 123 #include <libnvpair.h> 124 125 static int ztest_fd_data = -1; 126 static int ztest_fd_rand = -1; 127 128 typedef struct ztest_shared_hdr { 129 uint64_t zh_hdr_size; 130 uint64_t zh_opts_size; 131 uint64_t zh_size; 132 uint64_t zh_stats_size; 133 uint64_t zh_stats_count; 134 uint64_t zh_ds_size; 135 uint64_t zh_ds_count; 136 } ztest_shared_hdr_t; 137 138 static ztest_shared_hdr_t *ztest_shared_hdr; 139 140 typedef struct ztest_shared_opts { 141 char zo_pool[MAXNAMELEN]; 142 char zo_dir[MAXNAMELEN]; 143 char zo_alt_ztest[MAXNAMELEN]; 144 char zo_alt_libpath[MAXNAMELEN]; 145 uint64_t zo_vdevs; 146 uint64_t zo_vdevtime; 147 size_t zo_vdev_size; 148 int zo_ashift; 149 int zo_mirrors; 150 int zo_raidz; 151 int zo_raidz_parity; 152 int zo_datasets; 153 int zo_threads; 154 uint64_t zo_passtime; 155 uint64_t zo_killrate; 156 int zo_verbose; 157 int zo_init; 158 uint64_t zo_time; 159 uint64_t zo_maxloops; 160 uint64_t zo_metaslab_gang_bang; 161 } ztest_shared_opts_t; 162 163 static const ztest_shared_opts_t ztest_opts_defaults = { 164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 165 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 166 .zo_alt_ztest = { '\0' }, 167 .zo_alt_libpath = { '\0' }, 168 .zo_vdevs = 5, 169 .zo_ashift = SPA_MINBLOCKSHIFT, 170 .zo_mirrors = 2, 171 .zo_raidz = 4, 172 .zo_raidz_parity = 1, 173 .zo_vdev_size = SPA_MINDEVSIZE, 174 .zo_datasets = 7, 175 .zo_threads = 23, 176 .zo_passtime = 60, /* 60 seconds */ 177 .zo_killrate = 70, /* 70% kill rate */ 178 .zo_verbose = 0, 179 .zo_init = 1, 180 .zo_time = 300, /* 5 minutes */ 181 .zo_maxloops = 50, /* max loops during spa_freeze() */ 182 .zo_metaslab_gang_bang = 32 << 10 183 }; 184 185 extern uint64_t metaslab_gang_bang; 186 extern uint64_t metaslab_df_alloc_threshold; 187 extern uint64_t zfs_deadman_synctime_ms; 188 189 static ztest_shared_opts_t *ztest_shared_opts; 190 static ztest_shared_opts_t ztest_opts; 191 192 typedef struct ztest_shared_ds { 193 uint64_t zd_seq; 194 } ztest_shared_ds_t; 195 196 static ztest_shared_ds_t *ztest_shared_ds; 197 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 198 199 #define BT_MAGIC 0x123456789abcdefULL 200 #define MAXFAULTS() \ 201 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 202 203 enum ztest_io_type { 204 ZTEST_IO_WRITE_TAG, 205 ZTEST_IO_WRITE_PATTERN, 206 ZTEST_IO_WRITE_ZEROES, 207 ZTEST_IO_TRUNCATE, 208 ZTEST_IO_SETATTR, 209 ZTEST_IO_REWRITE, 210 ZTEST_IO_TYPES 211 }; 212 213 typedef struct ztest_block_tag { 214 uint64_t bt_magic; 215 uint64_t bt_objset; 216 uint64_t bt_object; 217 uint64_t bt_offset; 218 uint64_t bt_gen; 219 uint64_t bt_txg; 220 uint64_t bt_crtxg; 221 } ztest_block_tag_t; 222 223 typedef struct bufwad { 224 uint64_t bw_index; 225 uint64_t bw_txg; 226 uint64_t bw_data; 227 } bufwad_t; 228 229 /* 230 * XXX -- fix zfs range locks to be generic so we can use them here. 231 */ 232 typedef enum { 233 RL_READER, 234 RL_WRITER, 235 RL_APPEND 236 } rl_type_t; 237 238 typedef struct rll { 239 void *rll_writer; 240 int rll_readers; 241 mutex_t rll_lock; 242 cond_t rll_cv; 243 } rll_t; 244 245 typedef struct rl { 246 uint64_t rl_object; 247 uint64_t rl_offset; 248 uint64_t rl_size; 249 rll_t *rl_lock; 250 } rl_t; 251 252 #define ZTEST_RANGE_LOCKS 64 253 #define ZTEST_OBJECT_LOCKS 64 254 255 /* 256 * Object descriptor. Used as a template for object lookup/create/remove. 257 */ 258 typedef struct ztest_od { 259 uint64_t od_dir; 260 uint64_t od_object; 261 dmu_object_type_t od_type; 262 dmu_object_type_t od_crtype; 263 uint64_t od_blocksize; 264 uint64_t od_crblocksize; 265 uint64_t od_gen; 266 uint64_t od_crgen; 267 char od_name[MAXNAMELEN]; 268 } ztest_od_t; 269 270 /* 271 * Per-dataset state. 272 */ 273 typedef struct ztest_ds { 274 ztest_shared_ds_t *zd_shared; 275 objset_t *zd_os; 276 rwlock_t zd_zilog_lock; 277 zilog_t *zd_zilog; 278 ztest_od_t *zd_od; /* debugging aid */ 279 char zd_name[MAXNAMELEN]; 280 mutex_t zd_dirobj_lock; 281 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 282 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 283 } ztest_ds_t; 284 285 /* 286 * Per-iteration state. 287 */ 288 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 289 290 typedef struct ztest_info { 291 ztest_func_t *zi_func; /* test function */ 292 uint64_t zi_iters; /* iterations per execution */ 293 uint64_t *zi_interval; /* execute every <interval> seconds */ 294 } ztest_info_t; 295 296 typedef struct ztest_shared_callstate { 297 uint64_t zc_count; /* per-pass count */ 298 uint64_t zc_time; /* per-pass time */ 299 uint64_t zc_next; /* next time to call this function */ 300 } ztest_shared_callstate_t; 301 302 static ztest_shared_callstate_t *ztest_shared_callstate; 303 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 304 305 /* 306 * Note: these aren't static because we want dladdr() to work. 307 */ 308 ztest_func_t ztest_dmu_read_write; 309 ztest_func_t ztest_dmu_write_parallel; 310 ztest_func_t ztest_dmu_object_alloc_free; 311 ztest_func_t ztest_dmu_commit_callbacks; 312 ztest_func_t ztest_zap; 313 ztest_func_t ztest_zap_parallel; 314 ztest_func_t ztest_zil_commit; 315 ztest_func_t ztest_zil_remount; 316 ztest_func_t ztest_dmu_read_write_zcopy; 317 ztest_func_t ztest_dmu_objset_create_destroy; 318 ztest_func_t ztest_dmu_prealloc; 319 ztest_func_t ztest_fzap; 320 ztest_func_t ztest_dmu_snapshot_create_destroy; 321 ztest_func_t ztest_dsl_prop_get_set; 322 ztest_func_t ztest_spa_prop_get_set; 323 ztest_func_t ztest_spa_create_destroy; 324 ztest_func_t ztest_fault_inject; 325 ztest_func_t ztest_ddt_repair; 326 ztest_func_t ztest_dmu_snapshot_hold; 327 ztest_func_t ztest_spa_rename; 328 ztest_func_t ztest_scrub; 329 ztest_func_t ztest_dsl_dataset_promote_busy; 330 ztest_func_t ztest_vdev_attach_detach; 331 ztest_func_t ztest_vdev_LUN_growth; 332 ztest_func_t ztest_vdev_add_remove; 333 ztest_func_t ztest_vdev_aux_add_remove; 334 ztest_func_t ztest_split_pool; 335 ztest_func_t ztest_reguid; 336 ztest_func_t ztest_spa_upgrade; 337 338 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 339 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 340 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 341 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 342 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 343 344 ztest_info_t ztest_info[] = { 345 { ztest_dmu_read_write, 1, &zopt_always }, 346 { ztest_dmu_write_parallel, 10, &zopt_always }, 347 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 348 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 349 { ztest_zap, 30, &zopt_always }, 350 { ztest_zap_parallel, 100, &zopt_always }, 351 { ztest_split_pool, 1, &zopt_always }, 352 { ztest_zil_commit, 1, &zopt_incessant }, 353 { ztest_zil_remount, 1, &zopt_sometimes }, 354 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 355 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 356 { ztest_dsl_prop_get_set, 1, &zopt_often }, 357 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 358 #if 0 359 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 360 #endif 361 { ztest_fzap, 1, &zopt_sometimes }, 362 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 363 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 364 { ztest_fault_inject, 1, &zopt_sometimes }, 365 { ztest_ddt_repair, 1, &zopt_sometimes }, 366 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 367 { ztest_reguid, 1, &zopt_rarely }, 368 { ztest_spa_rename, 1, &zopt_rarely }, 369 { ztest_scrub, 1, &zopt_rarely }, 370 { ztest_spa_upgrade, 1, &zopt_rarely }, 371 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 372 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 373 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 374 { ztest_vdev_add_remove, 1, 375 &ztest_opts.zo_vdevtime }, 376 { ztest_vdev_aux_add_remove, 1, 377 &ztest_opts.zo_vdevtime }, 378 }; 379 380 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 381 382 /* 383 * The following struct is used to hold a list of uncalled commit callbacks. 384 * The callbacks are ordered by txg number. 385 */ 386 typedef struct ztest_cb_list { 387 mutex_t zcl_callbacks_lock; 388 list_t zcl_callbacks; 389 } ztest_cb_list_t; 390 391 /* 392 * Stuff we need to share writably between parent and child. 393 */ 394 typedef struct ztest_shared { 395 boolean_t zs_do_init; 396 hrtime_t zs_proc_start; 397 hrtime_t zs_proc_stop; 398 hrtime_t zs_thread_start; 399 hrtime_t zs_thread_stop; 400 hrtime_t zs_thread_kill; 401 uint64_t zs_enospc_count; 402 uint64_t zs_vdev_next_leaf; 403 uint64_t zs_vdev_aux; 404 uint64_t zs_alloc; 405 uint64_t zs_space; 406 uint64_t zs_splits; 407 uint64_t zs_mirrors; 408 uint64_t zs_metaslab_sz; 409 uint64_t zs_metaslab_df_alloc_threshold; 410 uint64_t zs_guid; 411 } ztest_shared_t; 412 413 #define ID_PARALLEL -1ULL 414 415 static char ztest_dev_template[] = "%s/%s.%llua"; 416 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 417 ztest_shared_t *ztest_shared; 418 419 static spa_t *ztest_spa = NULL; 420 static ztest_ds_t *ztest_ds; 421 422 static mutex_t ztest_vdev_lock; 423 424 /* 425 * The ztest_name_lock protects the pool and dataset namespace used by 426 * the individual tests. To modify the namespace, consumers must grab 427 * this lock as writer. Grabbing the lock as reader will ensure that the 428 * namespace does not change while the lock is held. 429 */ 430 static rwlock_t ztest_name_lock; 431 432 static boolean_t ztest_dump_core = B_TRUE; 433 static boolean_t ztest_exiting; 434 435 /* Global commit callback list */ 436 static ztest_cb_list_t zcl; 437 438 enum ztest_object { 439 ZTEST_META_DNODE = 0, 440 ZTEST_DIROBJ, 441 ZTEST_OBJECTS 442 }; 443 444 static void usage(boolean_t) __NORETURN; 445 446 /* 447 * These libumem hooks provide a reasonable set of defaults for the allocator's 448 * debugging facilities. 449 */ 450 const char * 451 _umem_debug_init() 452 { 453 return ("default,verbose"); /* $UMEM_DEBUG setting */ 454 } 455 456 const char * 457 _umem_logging_init(void) 458 { 459 return ("fail,contents"); /* $UMEM_LOGGING setting */ 460 } 461 462 #define FATAL_MSG_SZ 1024 463 464 char *fatal_msg; 465 466 static void 467 fatal(int do_perror, char *message, ...) 468 { 469 va_list args; 470 int save_errno = errno; 471 char buf[FATAL_MSG_SZ]; 472 473 (void) fflush(stdout); 474 475 va_start(args, message); 476 (void) sprintf(buf, "ztest: "); 477 /* LINTED */ 478 (void) vsprintf(buf + strlen(buf), message, args); 479 va_end(args); 480 if (do_perror) { 481 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 482 ": %s", strerror(save_errno)); 483 } 484 (void) fprintf(stderr, "%s\n", buf); 485 fatal_msg = buf; /* to ease debugging */ 486 if (ztest_dump_core) 487 abort(); 488 exit(3); 489 } 490 491 static int 492 str2shift(const char *buf) 493 { 494 const char *ends = "BKMGTPEZ"; 495 int i; 496 497 if (buf[0] == '\0') 498 return (0); 499 for (i = 0; i < strlen(ends); i++) { 500 if (toupper(buf[0]) == ends[i]) 501 break; 502 } 503 if (i == strlen(ends)) { 504 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 505 buf); 506 usage(B_FALSE); 507 } 508 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 509 return (10*i); 510 } 511 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 512 usage(B_FALSE); 513 /* NOTREACHED */ 514 } 515 516 static uint64_t 517 nicenumtoull(const char *buf) 518 { 519 char *end; 520 uint64_t val; 521 522 val = strtoull(buf, &end, 0); 523 if (end == buf) { 524 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 525 usage(B_FALSE); 526 } else if (end[0] == '.') { 527 double fval = strtod(buf, &end); 528 fval *= pow(2, str2shift(end)); 529 if (fval > UINT64_MAX) { 530 (void) fprintf(stderr, "ztest: value too large: %s\n", 531 buf); 532 usage(B_FALSE); 533 } 534 val = (uint64_t)fval; 535 } else { 536 int shift = str2shift(end); 537 if (shift >= 64 || (val << shift) >> shift != val) { 538 (void) fprintf(stderr, "ztest: value too large: %s\n", 539 buf); 540 usage(B_FALSE); 541 } 542 val <<= shift; 543 } 544 return (val); 545 } 546 547 static void 548 usage(boolean_t requested) 549 { 550 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 551 552 char nice_vdev_size[10]; 553 char nice_gang_bang[10]; 554 FILE *fp = requested ? stdout : stderr; 555 556 nicenum(zo->zo_vdev_size, nice_vdev_size); 557 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 558 559 (void) fprintf(fp, "Usage: %s\n" 560 "\t[-v vdevs (default: %llu)]\n" 561 "\t[-s size_of_each_vdev (default: %s)]\n" 562 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 563 "\t[-m mirror_copies (default: %d)]\n" 564 "\t[-r raidz_disks (default: %d)]\n" 565 "\t[-R raidz_parity (default: %d)]\n" 566 "\t[-d datasets (default: %d)]\n" 567 "\t[-t threads (default: %d)]\n" 568 "\t[-g gang_block_threshold (default: %s)]\n" 569 "\t[-i init_count (default: %d)] initialize pool i times\n" 570 "\t[-k kill_percentage (default: %llu%%)]\n" 571 "\t[-p pool_name (default: %s)]\n" 572 "\t[-f dir (default: %s)] file directory for vdev files\n" 573 "\t[-V] verbose (use multiple times for ever more blather)\n" 574 "\t[-E] use existing pool instead of creating new one\n" 575 "\t[-T time (default: %llu sec)] total run time\n" 576 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 577 "\t[-P passtime (default: %llu sec)] time per pass\n" 578 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 579 "\t[-h] (print help)\n" 580 "", 581 zo->zo_pool, 582 (u_longlong_t)zo->zo_vdevs, /* -v */ 583 nice_vdev_size, /* -s */ 584 zo->zo_ashift, /* -a */ 585 zo->zo_mirrors, /* -m */ 586 zo->zo_raidz, /* -r */ 587 zo->zo_raidz_parity, /* -R */ 588 zo->zo_datasets, /* -d */ 589 zo->zo_threads, /* -t */ 590 nice_gang_bang, /* -g */ 591 zo->zo_init, /* -i */ 592 (u_longlong_t)zo->zo_killrate, /* -k */ 593 zo->zo_pool, /* -p */ 594 zo->zo_dir, /* -f */ 595 (u_longlong_t)zo->zo_time, /* -T */ 596 (u_longlong_t)zo->zo_maxloops, /* -F */ 597 (u_longlong_t)zo->zo_passtime); 598 exit(requested ? 0 : 1); 599 } 600 601 static void 602 process_options(int argc, char **argv) 603 { 604 char *path; 605 ztest_shared_opts_t *zo = &ztest_opts; 606 607 int opt; 608 uint64_t value; 609 char altdir[MAXNAMELEN] = { 0 }; 610 611 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 612 613 while ((opt = getopt(argc, argv, 614 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 615 value = 0; 616 switch (opt) { 617 case 'v': 618 case 's': 619 case 'a': 620 case 'm': 621 case 'r': 622 case 'R': 623 case 'd': 624 case 't': 625 case 'g': 626 case 'i': 627 case 'k': 628 case 'T': 629 case 'P': 630 case 'F': 631 value = nicenumtoull(optarg); 632 } 633 switch (opt) { 634 case 'v': 635 zo->zo_vdevs = value; 636 break; 637 case 's': 638 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 639 break; 640 case 'a': 641 zo->zo_ashift = value; 642 break; 643 case 'm': 644 zo->zo_mirrors = value; 645 break; 646 case 'r': 647 zo->zo_raidz = MAX(1, value); 648 break; 649 case 'R': 650 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 651 break; 652 case 'd': 653 zo->zo_datasets = MAX(1, value); 654 break; 655 case 't': 656 zo->zo_threads = MAX(1, value); 657 break; 658 case 'g': 659 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 660 value); 661 break; 662 case 'i': 663 zo->zo_init = value; 664 break; 665 case 'k': 666 zo->zo_killrate = value; 667 break; 668 case 'p': 669 (void) strlcpy(zo->zo_pool, optarg, 670 sizeof (zo->zo_pool)); 671 break; 672 case 'f': 673 path = realpath(optarg, NULL); 674 if (path == NULL) { 675 (void) fprintf(stderr, "error: %s: %s\n", 676 optarg, strerror(errno)); 677 usage(B_FALSE); 678 } else { 679 (void) strlcpy(zo->zo_dir, path, 680 sizeof (zo->zo_dir)); 681 } 682 break; 683 case 'V': 684 zo->zo_verbose++; 685 break; 686 case 'E': 687 zo->zo_init = 0; 688 break; 689 case 'T': 690 zo->zo_time = value; 691 break; 692 case 'P': 693 zo->zo_passtime = MAX(1, value); 694 break; 695 case 'F': 696 zo->zo_maxloops = MAX(1, value); 697 break; 698 case 'B': 699 (void) strlcpy(altdir, optarg, sizeof (altdir)); 700 break; 701 case 'h': 702 usage(B_TRUE); 703 break; 704 case '?': 705 default: 706 usage(B_FALSE); 707 break; 708 } 709 } 710 711 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 712 713 zo->zo_vdevtime = 714 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 715 UINT64_MAX >> 2); 716 717 if (strlen(altdir) > 0) { 718 char *cmd; 719 char *realaltdir; 720 char *bin; 721 char *ztest; 722 char *isa; 723 int isalen; 724 725 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 726 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 727 728 VERIFY(NULL != realpath(getexecname(), cmd)); 729 if (0 != access(altdir, F_OK)) { 730 ztest_dump_core = B_FALSE; 731 fatal(B_TRUE, "invalid alternate ztest path: %s", 732 altdir); 733 } 734 VERIFY(NULL != realpath(altdir, realaltdir)); 735 736 /* 737 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 738 * We want to extract <isa> to determine if we should use 739 * 32 or 64 bit binaries. 740 */ 741 bin = strstr(cmd, "/usr/bin/"); 742 ztest = strstr(bin, "/ztest"); 743 isa = bin + 9; 744 isalen = ztest - isa; 745 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 746 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 747 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 748 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 749 750 if (0 != access(zo->zo_alt_ztest, X_OK)) { 751 ztest_dump_core = B_FALSE; 752 fatal(B_TRUE, "invalid alternate ztest: %s", 753 zo->zo_alt_ztest); 754 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 755 ztest_dump_core = B_FALSE; 756 fatal(B_TRUE, "invalid alternate lib directory %s", 757 zo->zo_alt_libpath); 758 } 759 760 umem_free(cmd, MAXPATHLEN); 761 umem_free(realaltdir, MAXPATHLEN); 762 } 763 } 764 765 static void 766 ztest_kill(ztest_shared_t *zs) 767 { 768 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 769 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 770 771 /* 772 * Before we kill off ztest, make sure that the config is updated. 773 * See comment above spa_config_sync(). 774 */ 775 mutex_enter(&spa_namespace_lock); 776 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 777 mutex_exit(&spa_namespace_lock); 778 779 zfs_dbgmsg_print(FTAG); 780 (void) kill(getpid(), SIGKILL); 781 } 782 783 static uint64_t 784 ztest_random(uint64_t range) 785 { 786 uint64_t r; 787 788 ASSERT3S(ztest_fd_rand, >=, 0); 789 790 if (range == 0) 791 return (0); 792 793 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 794 fatal(1, "short read from /dev/urandom"); 795 796 return (r % range); 797 } 798 799 /* ARGSUSED */ 800 static void 801 ztest_record_enospc(const char *s) 802 { 803 ztest_shared->zs_enospc_count++; 804 } 805 806 static uint64_t 807 ztest_get_ashift(void) 808 { 809 if (ztest_opts.zo_ashift == 0) 810 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 811 return (ztest_opts.zo_ashift); 812 } 813 814 static nvlist_t * 815 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 816 { 817 char pathbuf[MAXPATHLEN]; 818 uint64_t vdev; 819 nvlist_t *file; 820 821 if (ashift == 0) 822 ashift = ztest_get_ashift(); 823 824 if (path == NULL) { 825 path = pathbuf; 826 827 if (aux != NULL) { 828 vdev = ztest_shared->zs_vdev_aux; 829 (void) snprintf(path, sizeof (pathbuf), 830 ztest_aux_template, ztest_opts.zo_dir, 831 pool == NULL ? ztest_opts.zo_pool : pool, 832 aux, vdev); 833 } else { 834 vdev = ztest_shared->zs_vdev_next_leaf++; 835 (void) snprintf(path, sizeof (pathbuf), 836 ztest_dev_template, ztest_opts.zo_dir, 837 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 838 } 839 } 840 841 if (size != 0) { 842 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 843 if (fd == -1) 844 fatal(1, "can't open %s", path); 845 if (ftruncate(fd, size) != 0) 846 fatal(1, "can't ftruncate %s", path); 847 (void) close(fd); 848 } 849 850 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 851 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 852 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 853 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 854 855 return (file); 856 } 857 858 static nvlist_t * 859 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 860 uint64_t ashift, int r) 861 { 862 nvlist_t *raidz, **child; 863 int c; 864 865 if (r < 2) 866 return (make_vdev_file(path, aux, pool, size, ashift)); 867 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 868 869 for (c = 0; c < r; c++) 870 child[c] = make_vdev_file(path, aux, pool, size, ashift); 871 872 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 873 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 874 VDEV_TYPE_RAIDZ) == 0); 875 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 876 ztest_opts.zo_raidz_parity) == 0); 877 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 878 child, r) == 0); 879 880 for (c = 0; c < r; c++) 881 nvlist_free(child[c]); 882 883 umem_free(child, r * sizeof (nvlist_t *)); 884 885 return (raidz); 886 } 887 888 static nvlist_t * 889 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 890 uint64_t ashift, int r, int m) 891 { 892 nvlist_t *mirror, **child; 893 int c; 894 895 if (m < 1) 896 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 897 898 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 899 900 for (c = 0; c < m; c++) 901 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 902 903 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 904 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 905 VDEV_TYPE_MIRROR) == 0); 906 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 907 child, m) == 0); 908 909 for (c = 0; c < m; c++) 910 nvlist_free(child[c]); 911 912 umem_free(child, m * sizeof (nvlist_t *)); 913 914 return (mirror); 915 } 916 917 static nvlist_t * 918 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 919 int log, int r, int m, int t) 920 { 921 nvlist_t *root, **child; 922 int c; 923 924 ASSERT(t > 0); 925 926 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 927 928 for (c = 0; c < t; c++) { 929 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 930 r, m); 931 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 932 log) == 0); 933 } 934 935 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 936 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 937 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 938 child, t) == 0); 939 940 for (c = 0; c < t; c++) 941 nvlist_free(child[c]); 942 943 umem_free(child, t * sizeof (nvlist_t *)); 944 945 return (root); 946 } 947 948 /* 949 * Find a random spa version. Returns back a random spa version in the 950 * range [initial_version, SPA_VERSION_FEATURES]. 951 */ 952 static uint64_t 953 ztest_random_spa_version(uint64_t initial_version) 954 { 955 uint64_t version = initial_version; 956 957 if (version <= SPA_VERSION_BEFORE_FEATURES) { 958 version = version + 959 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 960 } 961 962 if (version > SPA_VERSION_BEFORE_FEATURES) 963 version = SPA_VERSION_FEATURES; 964 965 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 966 return (version); 967 } 968 969 static int 970 ztest_random_blocksize(void) 971 { 972 return (1 << (SPA_MINBLOCKSHIFT + 973 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 974 } 975 976 static int 977 ztest_random_ibshift(void) 978 { 979 return (DN_MIN_INDBLKSHIFT + 980 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 981 } 982 983 static uint64_t 984 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 985 { 986 uint64_t top; 987 vdev_t *rvd = spa->spa_root_vdev; 988 vdev_t *tvd; 989 990 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 991 992 do { 993 top = ztest_random(rvd->vdev_children); 994 tvd = rvd->vdev_child[top]; 995 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 996 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 997 998 return (top); 999 } 1000 1001 static uint64_t 1002 ztest_random_dsl_prop(zfs_prop_t prop) 1003 { 1004 uint64_t value; 1005 1006 do { 1007 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1008 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1009 1010 return (value); 1011 } 1012 1013 static int 1014 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1015 boolean_t inherit) 1016 { 1017 const char *propname = zfs_prop_to_name(prop); 1018 const char *valname; 1019 char setpoint[MAXPATHLEN]; 1020 uint64_t curval; 1021 int error; 1022 1023 error = dsl_prop_set_int(osname, propname, 1024 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1025 1026 if (error == ENOSPC) { 1027 ztest_record_enospc(FTAG); 1028 return (error); 1029 } 1030 ASSERT0(error); 1031 1032 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1033 1034 if (ztest_opts.zo_verbose >= 6) { 1035 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1036 (void) printf("%s %s = %s at '%s'\n", 1037 osname, propname, valname, setpoint); 1038 } 1039 1040 return (error); 1041 } 1042 1043 static int 1044 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1045 { 1046 spa_t *spa = ztest_spa; 1047 nvlist_t *props = NULL; 1048 int error; 1049 1050 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1051 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1052 1053 error = spa_prop_set(spa, props); 1054 1055 nvlist_free(props); 1056 1057 if (error == ENOSPC) { 1058 ztest_record_enospc(FTAG); 1059 return (error); 1060 } 1061 ASSERT0(error); 1062 1063 return (error); 1064 } 1065 1066 static void 1067 ztest_rll_init(rll_t *rll) 1068 { 1069 rll->rll_writer = NULL; 1070 rll->rll_readers = 0; 1071 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1072 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1073 } 1074 1075 static void 1076 ztest_rll_destroy(rll_t *rll) 1077 { 1078 ASSERT(rll->rll_writer == NULL); 1079 ASSERT(rll->rll_readers == 0); 1080 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1081 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1082 } 1083 1084 static void 1085 ztest_rll_lock(rll_t *rll, rl_type_t type) 1086 { 1087 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1088 1089 if (type == RL_READER) { 1090 while (rll->rll_writer != NULL) 1091 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1092 rll->rll_readers++; 1093 } else { 1094 while (rll->rll_writer != NULL || rll->rll_readers) 1095 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1096 rll->rll_writer = curthread; 1097 } 1098 1099 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1100 } 1101 1102 static void 1103 ztest_rll_unlock(rll_t *rll) 1104 { 1105 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1106 1107 if (rll->rll_writer) { 1108 ASSERT(rll->rll_readers == 0); 1109 rll->rll_writer = NULL; 1110 } else { 1111 ASSERT(rll->rll_readers != 0); 1112 ASSERT(rll->rll_writer == NULL); 1113 rll->rll_readers--; 1114 } 1115 1116 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1117 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1118 1119 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1120 } 1121 1122 static void 1123 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1124 { 1125 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1126 1127 ztest_rll_lock(rll, type); 1128 } 1129 1130 static void 1131 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1132 { 1133 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1134 1135 ztest_rll_unlock(rll); 1136 } 1137 1138 static rl_t * 1139 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1140 uint64_t size, rl_type_t type) 1141 { 1142 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1143 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1144 rl_t *rl; 1145 1146 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1147 rl->rl_object = object; 1148 rl->rl_offset = offset; 1149 rl->rl_size = size; 1150 rl->rl_lock = rll; 1151 1152 ztest_rll_lock(rll, type); 1153 1154 return (rl); 1155 } 1156 1157 static void 1158 ztest_range_unlock(rl_t *rl) 1159 { 1160 rll_t *rll = rl->rl_lock; 1161 1162 ztest_rll_unlock(rll); 1163 1164 umem_free(rl, sizeof (*rl)); 1165 } 1166 1167 static void 1168 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1169 { 1170 zd->zd_os = os; 1171 zd->zd_zilog = dmu_objset_zil(os); 1172 zd->zd_shared = szd; 1173 dmu_objset_name(os, zd->zd_name); 1174 1175 if (zd->zd_shared != NULL) 1176 zd->zd_shared->zd_seq = 0; 1177 1178 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1179 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1180 1181 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1182 ztest_rll_init(&zd->zd_object_lock[l]); 1183 1184 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1185 ztest_rll_init(&zd->zd_range_lock[l]); 1186 } 1187 1188 static void 1189 ztest_zd_fini(ztest_ds_t *zd) 1190 { 1191 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1192 1193 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1194 ztest_rll_destroy(&zd->zd_object_lock[l]); 1195 1196 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1197 ztest_rll_destroy(&zd->zd_range_lock[l]); 1198 } 1199 1200 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1201 1202 static uint64_t 1203 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1204 { 1205 uint64_t txg; 1206 int error; 1207 1208 /* 1209 * Attempt to assign tx to some transaction group. 1210 */ 1211 error = dmu_tx_assign(tx, txg_how); 1212 if (error) { 1213 if (error == ERESTART) { 1214 ASSERT(txg_how == TXG_NOWAIT); 1215 dmu_tx_wait(tx); 1216 } else { 1217 ASSERT3U(error, ==, ENOSPC); 1218 ztest_record_enospc(tag); 1219 } 1220 dmu_tx_abort(tx); 1221 return (0); 1222 } 1223 txg = dmu_tx_get_txg(tx); 1224 ASSERT(txg != 0); 1225 return (txg); 1226 } 1227 1228 static void 1229 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1230 { 1231 uint64_t *ip = buf; 1232 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1233 1234 while (ip < ip_end) 1235 *ip++ = value; 1236 } 1237 1238 static boolean_t 1239 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1240 { 1241 uint64_t *ip = buf; 1242 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1243 uint64_t diff = 0; 1244 1245 while (ip < ip_end) 1246 diff |= (value - *ip++); 1247 1248 return (diff == 0); 1249 } 1250 1251 static void 1252 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1253 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1254 { 1255 bt->bt_magic = BT_MAGIC; 1256 bt->bt_objset = dmu_objset_id(os); 1257 bt->bt_object = object; 1258 bt->bt_offset = offset; 1259 bt->bt_gen = gen; 1260 bt->bt_txg = txg; 1261 bt->bt_crtxg = crtxg; 1262 } 1263 1264 static void 1265 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1266 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1267 { 1268 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1269 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1270 ASSERT3U(bt->bt_object, ==, object); 1271 ASSERT3U(bt->bt_offset, ==, offset); 1272 ASSERT3U(bt->bt_gen, <=, gen); 1273 ASSERT3U(bt->bt_txg, <=, txg); 1274 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1275 } 1276 1277 static ztest_block_tag_t * 1278 ztest_bt_bonus(dmu_buf_t *db) 1279 { 1280 dmu_object_info_t doi; 1281 ztest_block_tag_t *bt; 1282 1283 dmu_object_info_from_db(db, &doi); 1284 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1285 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1286 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1287 1288 return (bt); 1289 } 1290 1291 /* 1292 * ZIL logging ops 1293 */ 1294 1295 #define lrz_type lr_mode 1296 #define lrz_blocksize lr_uid 1297 #define lrz_ibshift lr_gid 1298 #define lrz_bonustype lr_rdev 1299 #define lrz_bonuslen lr_crtime[1] 1300 1301 static void 1302 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1303 { 1304 char *name = (void *)(lr + 1); /* name follows lr */ 1305 size_t namesize = strlen(name) + 1; 1306 itx_t *itx; 1307 1308 if (zil_replaying(zd->zd_zilog, tx)) 1309 return; 1310 1311 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1312 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1313 sizeof (*lr) + namesize - sizeof (lr_t)); 1314 1315 zil_itx_assign(zd->zd_zilog, itx, tx); 1316 } 1317 1318 static void 1319 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1320 { 1321 char *name = (void *)(lr + 1); /* name follows lr */ 1322 size_t namesize = strlen(name) + 1; 1323 itx_t *itx; 1324 1325 if (zil_replaying(zd->zd_zilog, tx)) 1326 return; 1327 1328 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1329 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1330 sizeof (*lr) + namesize - sizeof (lr_t)); 1331 1332 itx->itx_oid = object; 1333 zil_itx_assign(zd->zd_zilog, itx, tx); 1334 } 1335 1336 static void 1337 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1338 { 1339 itx_t *itx; 1340 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1341 1342 if (zil_replaying(zd->zd_zilog, tx)) 1343 return; 1344 1345 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1346 write_state = WR_INDIRECT; 1347 1348 itx = zil_itx_create(TX_WRITE, 1349 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1350 1351 if (write_state == WR_COPIED && 1352 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1353 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1354 zil_itx_destroy(itx); 1355 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1356 write_state = WR_NEED_COPY; 1357 } 1358 itx->itx_private = zd; 1359 itx->itx_wr_state = write_state; 1360 itx->itx_sync = (ztest_random(8) == 0); 1361 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1362 1363 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1364 sizeof (*lr) - sizeof (lr_t)); 1365 1366 zil_itx_assign(zd->zd_zilog, itx, tx); 1367 } 1368 1369 static void 1370 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1371 { 1372 itx_t *itx; 1373 1374 if (zil_replaying(zd->zd_zilog, tx)) 1375 return; 1376 1377 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1378 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1379 sizeof (*lr) - sizeof (lr_t)); 1380 1381 itx->itx_sync = B_FALSE; 1382 zil_itx_assign(zd->zd_zilog, itx, tx); 1383 } 1384 1385 static void 1386 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1387 { 1388 itx_t *itx; 1389 1390 if (zil_replaying(zd->zd_zilog, tx)) 1391 return; 1392 1393 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1394 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1395 sizeof (*lr) - sizeof (lr_t)); 1396 1397 itx->itx_sync = B_FALSE; 1398 zil_itx_assign(zd->zd_zilog, itx, tx); 1399 } 1400 1401 /* 1402 * ZIL replay ops 1403 */ 1404 static int 1405 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1406 { 1407 char *name = (void *)(lr + 1); /* name follows lr */ 1408 objset_t *os = zd->zd_os; 1409 ztest_block_tag_t *bbt; 1410 dmu_buf_t *db; 1411 dmu_tx_t *tx; 1412 uint64_t txg; 1413 int error = 0; 1414 1415 if (byteswap) 1416 byteswap_uint64_array(lr, sizeof (*lr)); 1417 1418 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1419 ASSERT(name[0] != '\0'); 1420 1421 tx = dmu_tx_create(os); 1422 1423 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1424 1425 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1426 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1427 } else { 1428 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1429 } 1430 1431 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1432 if (txg == 0) 1433 return (ENOSPC); 1434 1435 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1436 1437 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1438 if (lr->lr_foid == 0) { 1439 lr->lr_foid = zap_create(os, 1440 lr->lrz_type, lr->lrz_bonustype, 1441 lr->lrz_bonuslen, tx); 1442 } else { 1443 error = zap_create_claim(os, lr->lr_foid, 1444 lr->lrz_type, lr->lrz_bonustype, 1445 lr->lrz_bonuslen, tx); 1446 } 1447 } else { 1448 if (lr->lr_foid == 0) { 1449 lr->lr_foid = dmu_object_alloc(os, 1450 lr->lrz_type, 0, lr->lrz_bonustype, 1451 lr->lrz_bonuslen, tx); 1452 } else { 1453 error = dmu_object_claim(os, lr->lr_foid, 1454 lr->lrz_type, 0, lr->lrz_bonustype, 1455 lr->lrz_bonuslen, tx); 1456 } 1457 } 1458 1459 if (error) { 1460 ASSERT3U(error, ==, EEXIST); 1461 ASSERT(zd->zd_zilog->zl_replay); 1462 dmu_tx_commit(tx); 1463 return (error); 1464 } 1465 1466 ASSERT(lr->lr_foid != 0); 1467 1468 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1469 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1470 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1471 1472 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1473 bbt = ztest_bt_bonus(db); 1474 dmu_buf_will_dirty(db, tx); 1475 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1476 dmu_buf_rele(db, FTAG); 1477 1478 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1479 &lr->lr_foid, tx)); 1480 1481 (void) ztest_log_create(zd, tx, lr); 1482 1483 dmu_tx_commit(tx); 1484 1485 return (0); 1486 } 1487 1488 static int 1489 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1490 { 1491 char *name = (void *)(lr + 1); /* name follows lr */ 1492 objset_t *os = zd->zd_os; 1493 dmu_object_info_t doi; 1494 dmu_tx_t *tx; 1495 uint64_t object, txg; 1496 1497 if (byteswap) 1498 byteswap_uint64_array(lr, sizeof (*lr)); 1499 1500 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1501 ASSERT(name[0] != '\0'); 1502 1503 VERIFY3U(0, ==, 1504 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1505 ASSERT(object != 0); 1506 1507 ztest_object_lock(zd, object, RL_WRITER); 1508 1509 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1510 1511 tx = dmu_tx_create(os); 1512 1513 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1514 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1515 1516 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1517 if (txg == 0) { 1518 ztest_object_unlock(zd, object); 1519 return (ENOSPC); 1520 } 1521 1522 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1523 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1524 } else { 1525 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1526 } 1527 1528 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1529 1530 (void) ztest_log_remove(zd, tx, lr, object); 1531 1532 dmu_tx_commit(tx); 1533 1534 ztest_object_unlock(zd, object); 1535 1536 return (0); 1537 } 1538 1539 static int 1540 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1541 { 1542 objset_t *os = zd->zd_os; 1543 void *data = lr + 1; /* data follows lr */ 1544 uint64_t offset, length; 1545 ztest_block_tag_t *bt = data; 1546 ztest_block_tag_t *bbt; 1547 uint64_t gen, txg, lrtxg, crtxg; 1548 dmu_object_info_t doi; 1549 dmu_tx_t *tx; 1550 dmu_buf_t *db; 1551 arc_buf_t *abuf = NULL; 1552 rl_t *rl; 1553 1554 if (byteswap) 1555 byteswap_uint64_array(lr, sizeof (*lr)); 1556 1557 offset = lr->lr_offset; 1558 length = lr->lr_length; 1559 1560 /* If it's a dmu_sync() block, write the whole block */ 1561 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1562 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1563 if (length < blocksize) { 1564 offset -= offset % blocksize; 1565 length = blocksize; 1566 } 1567 } 1568 1569 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1570 byteswap_uint64_array(bt, sizeof (*bt)); 1571 1572 if (bt->bt_magic != BT_MAGIC) 1573 bt = NULL; 1574 1575 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1576 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1577 1578 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1579 1580 dmu_object_info_from_db(db, &doi); 1581 1582 bbt = ztest_bt_bonus(db); 1583 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1584 gen = bbt->bt_gen; 1585 crtxg = bbt->bt_crtxg; 1586 lrtxg = lr->lr_common.lrc_txg; 1587 1588 tx = dmu_tx_create(os); 1589 1590 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1591 1592 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1593 P2PHASE(offset, length) == 0) 1594 abuf = dmu_request_arcbuf(db, length); 1595 1596 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1597 if (txg == 0) { 1598 if (abuf != NULL) 1599 dmu_return_arcbuf(abuf); 1600 dmu_buf_rele(db, FTAG); 1601 ztest_range_unlock(rl); 1602 ztest_object_unlock(zd, lr->lr_foid); 1603 return (ENOSPC); 1604 } 1605 1606 if (bt != NULL) { 1607 /* 1608 * Usually, verify the old data before writing new data -- 1609 * but not always, because we also want to verify correct 1610 * behavior when the data was not recently read into cache. 1611 */ 1612 ASSERT(offset % doi.doi_data_block_size == 0); 1613 if (ztest_random(4) != 0) { 1614 int prefetch = ztest_random(2) ? 1615 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1616 ztest_block_tag_t rbt; 1617 1618 VERIFY(dmu_read(os, lr->lr_foid, offset, 1619 sizeof (rbt), &rbt, prefetch) == 0); 1620 if (rbt.bt_magic == BT_MAGIC) { 1621 ztest_bt_verify(&rbt, os, lr->lr_foid, 1622 offset, gen, txg, crtxg); 1623 } 1624 } 1625 1626 /* 1627 * Writes can appear to be newer than the bonus buffer because 1628 * the ztest_get_data() callback does a dmu_read() of the 1629 * open-context data, which may be different than the data 1630 * as it was when the write was generated. 1631 */ 1632 if (zd->zd_zilog->zl_replay) { 1633 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1634 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1635 bt->bt_crtxg); 1636 } 1637 1638 /* 1639 * Set the bt's gen/txg to the bonus buffer's gen/txg 1640 * so that all of the usual ASSERTs will work. 1641 */ 1642 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1643 } 1644 1645 if (abuf == NULL) { 1646 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1647 } else { 1648 bcopy(data, abuf->b_data, length); 1649 dmu_assign_arcbuf(db, offset, abuf, tx); 1650 } 1651 1652 (void) ztest_log_write(zd, tx, lr); 1653 1654 dmu_buf_rele(db, FTAG); 1655 1656 dmu_tx_commit(tx); 1657 1658 ztest_range_unlock(rl); 1659 ztest_object_unlock(zd, lr->lr_foid); 1660 1661 return (0); 1662 } 1663 1664 static int 1665 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1666 { 1667 objset_t *os = zd->zd_os; 1668 dmu_tx_t *tx; 1669 uint64_t txg; 1670 rl_t *rl; 1671 1672 if (byteswap) 1673 byteswap_uint64_array(lr, sizeof (*lr)); 1674 1675 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1676 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1677 RL_WRITER); 1678 1679 tx = dmu_tx_create(os); 1680 1681 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1682 1683 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1684 if (txg == 0) { 1685 ztest_range_unlock(rl); 1686 ztest_object_unlock(zd, lr->lr_foid); 1687 return (ENOSPC); 1688 } 1689 1690 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1691 lr->lr_length, tx) == 0); 1692 1693 (void) ztest_log_truncate(zd, tx, lr); 1694 1695 dmu_tx_commit(tx); 1696 1697 ztest_range_unlock(rl); 1698 ztest_object_unlock(zd, lr->lr_foid); 1699 1700 return (0); 1701 } 1702 1703 static int 1704 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1705 { 1706 objset_t *os = zd->zd_os; 1707 dmu_tx_t *tx; 1708 dmu_buf_t *db; 1709 ztest_block_tag_t *bbt; 1710 uint64_t txg, lrtxg, crtxg; 1711 1712 if (byteswap) 1713 byteswap_uint64_array(lr, sizeof (*lr)); 1714 1715 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1716 1717 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1718 1719 tx = dmu_tx_create(os); 1720 dmu_tx_hold_bonus(tx, lr->lr_foid); 1721 1722 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1723 if (txg == 0) { 1724 dmu_buf_rele(db, FTAG); 1725 ztest_object_unlock(zd, lr->lr_foid); 1726 return (ENOSPC); 1727 } 1728 1729 bbt = ztest_bt_bonus(db); 1730 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1731 crtxg = bbt->bt_crtxg; 1732 lrtxg = lr->lr_common.lrc_txg; 1733 1734 if (zd->zd_zilog->zl_replay) { 1735 ASSERT(lr->lr_size != 0); 1736 ASSERT(lr->lr_mode != 0); 1737 ASSERT(lrtxg != 0); 1738 } else { 1739 /* 1740 * Randomly change the size and increment the generation. 1741 */ 1742 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1743 sizeof (*bbt); 1744 lr->lr_mode = bbt->bt_gen + 1; 1745 ASSERT(lrtxg == 0); 1746 } 1747 1748 /* 1749 * Verify that the current bonus buffer is not newer than our txg. 1750 */ 1751 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1752 MAX(txg, lrtxg), crtxg); 1753 1754 dmu_buf_will_dirty(db, tx); 1755 1756 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1757 ASSERT3U(lr->lr_size, <=, db->db_size); 1758 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1759 bbt = ztest_bt_bonus(db); 1760 1761 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1762 1763 dmu_buf_rele(db, FTAG); 1764 1765 (void) ztest_log_setattr(zd, tx, lr); 1766 1767 dmu_tx_commit(tx); 1768 1769 ztest_object_unlock(zd, lr->lr_foid); 1770 1771 return (0); 1772 } 1773 1774 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1775 NULL, /* 0 no such transaction type */ 1776 ztest_replay_create, /* TX_CREATE */ 1777 NULL, /* TX_MKDIR */ 1778 NULL, /* TX_MKXATTR */ 1779 NULL, /* TX_SYMLINK */ 1780 ztest_replay_remove, /* TX_REMOVE */ 1781 NULL, /* TX_RMDIR */ 1782 NULL, /* TX_LINK */ 1783 NULL, /* TX_RENAME */ 1784 ztest_replay_write, /* TX_WRITE */ 1785 ztest_replay_truncate, /* TX_TRUNCATE */ 1786 ztest_replay_setattr, /* TX_SETATTR */ 1787 NULL, /* TX_ACL */ 1788 NULL, /* TX_CREATE_ACL */ 1789 NULL, /* TX_CREATE_ATTR */ 1790 NULL, /* TX_CREATE_ACL_ATTR */ 1791 NULL, /* TX_MKDIR_ACL */ 1792 NULL, /* TX_MKDIR_ATTR */ 1793 NULL, /* TX_MKDIR_ACL_ATTR */ 1794 NULL, /* TX_WRITE2 */ 1795 }; 1796 1797 /* 1798 * ZIL get_data callbacks 1799 */ 1800 1801 static void 1802 ztest_get_done(zgd_t *zgd, int error) 1803 { 1804 ztest_ds_t *zd = zgd->zgd_private; 1805 uint64_t object = zgd->zgd_rl->rl_object; 1806 1807 if (zgd->zgd_db) 1808 dmu_buf_rele(zgd->zgd_db, zgd); 1809 1810 ztest_range_unlock(zgd->zgd_rl); 1811 ztest_object_unlock(zd, object); 1812 1813 if (error == 0 && zgd->zgd_bp) 1814 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1815 1816 umem_free(zgd, sizeof (*zgd)); 1817 } 1818 1819 static int 1820 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1821 { 1822 ztest_ds_t *zd = arg; 1823 objset_t *os = zd->zd_os; 1824 uint64_t object = lr->lr_foid; 1825 uint64_t offset = lr->lr_offset; 1826 uint64_t size = lr->lr_length; 1827 blkptr_t *bp = &lr->lr_blkptr; 1828 uint64_t txg = lr->lr_common.lrc_txg; 1829 uint64_t crtxg; 1830 dmu_object_info_t doi; 1831 dmu_buf_t *db; 1832 zgd_t *zgd; 1833 int error; 1834 1835 ztest_object_lock(zd, object, RL_READER); 1836 error = dmu_bonus_hold(os, object, FTAG, &db); 1837 if (error) { 1838 ztest_object_unlock(zd, object); 1839 return (error); 1840 } 1841 1842 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1843 1844 if (crtxg == 0 || crtxg > txg) { 1845 dmu_buf_rele(db, FTAG); 1846 ztest_object_unlock(zd, object); 1847 return (ENOENT); 1848 } 1849 1850 dmu_object_info_from_db(db, &doi); 1851 dmu_buf_rele(db, FTAG); 1852 db = NULL; 1853 1854 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1855 zgd->zgd_zilog = zd->zd_zilog; 1856 zgd->zgd_private = zd; 1857 1858 if (buf != NULL) { /* immediate write */ 1859 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1860 RL_READER); 1861 1862 error = dmu_read(os, object, offset, size, buf, 1863 DMU_READ_NO_PREFETCH); 1864 ASSERT(error == 0); 1865 } else { 1866 size = doi.doi_data_block_size; 1867 if (ISP2(size)) { 1868 offset = P2ALIGN(offset, size); 1869 } else { 1870 ASSERT(offset < size); 1871 offset = 0; 1872 } 1873 1874 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1875 RL_READER); 1876 1877 error = dmu_buf_hold(os, object, offset, zgd, &db, 1878 DMU_READ_NO_PREFETCH); 1879 1880 if (error == 0) { 1881 blkptr_t *obp = dmu_buf_get_blkptr(db); 1882 if (obp) { 1883 ASSERT(BP_IS_HOLE(bp)); 1884 *bp = *obp; 1885 } 1886 1887 zgd->zgd_db = db; 1888 zgd->zgd_bp = bp; 1889 1890 ASSERT(db->db_offset == offset); 1891 ASSERT(db->db_size == size); 1892 1893 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1894 ztest_get_done, zgd); 1895 1896 if (error == 0) 1897 return (0); 1898 } 1899 } 1900 1901 ztest_get_done(zgd, error); 1902 1903 return (error); 1904 } 1905 1906 static void * 1907 ztest_lr_alloc(size_t lrsize, char *name) 1908 { 1909 char *lr; 1910 size_t namesize = name ? strlen(name) + 1 : 0; 1911 1912 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1913 1914 if (name) 1915 bcopy(name, lr + lrsize, namesize); 1916 1917 return (lr); 1918 } 1919 1920 void 1921 ztest_lr_free(void *lr, size_t lrsize, char *name) 1922 { 1923 size_t namesize = name ? strlen(name) + 1 : 0; 1924 1925 umem_free(lr, lrsize + namesize); 1926 } 1927 1928 /* 1929 * Lookup a bunch of objects. Returns the number of objects not found. 1930 */ 1931 static int 1932 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1933 { 1934 int missing = 0; 1935 int error; 1936 1937 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1938 1939 for (int i = 0; i < count; i++, od++) { 1940 od->od_object = 0; 1941 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1942 sizeof (uint64_t), 1, &od->od_object); 1943 if (error) { 1944 ASSERT(error == ENOENT); 1945 ASSERT(od->od_object == 0); 1946 missing++; 1947 } else { 1948 dmu_buf_t *db; 1949 ztest_block_tag_t *bbt; 1950 dmu_object_info_t doi; 1951 1952 ASSERT(od->od_object != 0); 1953 ASSERT(missing == 0); /* there should be no gaps */ 1954 1955 ztest_object_lock(zd, od->od_object, RL_READER); 1956 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1957 od->od_object, FTAG, &db)); 1958 dmu_object_info_from_db(db, &doi); 1959 bbt = ztest_bt_bonus(db); 1960 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1961 od->od_type = doi.doi_type; 1962 od->od_blocksize = doi.doi_data_block_size; 1963 od->od_gen = bbt->bt_gen; 1964 dmu_buf_rele(db, FTAG); 1965 ztest_object_unlock(zd, od->od_object); 1966 } 1967 } 1968 1969 return (missing); 1970 } 1971 1972 static int 1973 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1974 { 1975 int missing = 0; 1976 1977 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1978 1979 for (int i = 0; i < count; i++, od++) { 1980 if (missing) { 1981 od->od_object = 0; 1982 missing++; 1983 continue; 1984 } 1985 1986 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1987 1988 lr->lr_doid = od->od_dir; 1989 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1990 lr->lrz_type = od->od_crtype; 1991 lr->lrz_blocksize = od->od_crblocksize; 1992 lr->lrz_ibshift = ztest_random_ibshift(); 1993 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1994 lr->lrz_bonuslen = dmu_bonus_max(); 1995 lr->lr_gen = od->od_crgen; 1996 lr->lr_crtime[0] = time(NULL); 1997 1998 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1999 ASSERT(missing == 0); 2000 od->od_object = 0; 2001 missing++; 2002 } else { 2003 od->od_object = lr->lr_foid; 2004 od->od_type = od->od_crtype; 2005 od->od_blocksize = od->od_crblocksize; 2006 od->od_gen = od->od_crgen; 2007 ASSERT(od->od_object != 0); 2008 } 2009 2010 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2011 } 2012 2013 return (missing); 2014 } 2015 2016 static int 2017 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2018 { 2019 int missing = 0; 2020 int error; 2021 2022 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2023 2024 od += count - 1; 2025 2026 for (int i = count - 1; i >= 0; i--, od--) { 2027 if (missing) { 2028 missing++; 2029 continue; 2030 } 2031 2032 /* 2033 * No object was found. 2034 */ 2035 if (od->od_object == 0) 2036 continue; 2037 2038 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2039 2040 lr->lr_doid = od->od_dir; 2041 2042 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2043 ASSERT3U(error, ==, ENOSPC); 2044 missing++; 2045 } else { 2046 od->od_object = 0; 2047 } 2048 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2049 } 2050 2051 return (missing); 2052 } 2053 2054 static int 2055 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2056 void *data) 2057 { 2058 lr_write_t *lr; 2059 int error; 2060 2061 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2062 2063 lr->lr_foid = object; 2064 lr->lr_offset = offset; 2065 lr->lr_length = size; 2066 lr->lr_blkoff = 0; 2067 BP_ZERO(&lr->lr_blkptr); 2068 2069 bcopy(data, lr + 1, size); 2070 2071 error = ztest_replay_write(zd, lr, B_FALSE); 2072 2073 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2074 2075 return (error); 2076 } 2077 2078 static int 2079 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2080 { 2081 lr_truncate_t *lr; 2082 int error; 2083 2084 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2085 2086 lr->lr_foid = object; 2087 lr->lr_offset = offset; 2088 lr->lr_length = size; 2089 2090 error = ztest_replay_truncate(zd, lr, B_FALSE); 2091 2092 ztest_lr_free(lr, sizeof (*lr), NULL); 2093 2094 return (error); 2095 } 2096 2097 static int 2098 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2099 { 2100 lr_setattr_t *lr; 2101 int error; 2102 2103 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2104 2105 lr->lr_foid = object; 2106 lr->lr_size = 0; 2107 lr->lr_mode = 0; 2108 2109 error = ztest_replay_setattr(zd, lr, B_FALSE); 2110 2111 ztest_lr_free(lr, sizeof (*lr), NULL); 2112 2113 return (error); 2114 } 2115 2116 static void 2117 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2118 { 2119 objset_t *os = zd->zd_os; 2120 dmu_tx_t *tx; 2121 uint64_t txg; 2122 rl_t *rl; 2123 2124 txg_wait_synced(dmu_objset_pool(os), 0); 2125 2126 ztest_object_lock(zd, object, RL_READER); 2127 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2128 2129 tx = dmu_tx_create(os); 2130 2131 dmu_tx_hold_write(tx, object, offset, size); 2132 2133 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2134 2135 if (txg != 0) { 2136 dmu_prealloc(os, object, offset, size, tx); 2137 dmu_tx_commit(tx); 2138 txg_wait_synced(dmu_objset_pool(os), txg); 2139 } else { 2140 (void) dmu_free_long_range(os, object, offset, size); 2141 } 2142 2143 ztest_range_unlock(rl); 2144 ztest_object_unlock(zd, object); 2145 } 2146 2147 static void 2148 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2149 { 2150 int err; 2151 ztest_block_tag_t wbt; 2152 dmu_object_info_t doi; 2153 enum ztest_io_type io_type; 2154 uint64_t blocksize; 2155 void *data; 2156 2157 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2158 blocksize = doi.doi_data_block_size; 2159 data = umem_alloc(blocksize, UMEM_NOFAIL); 2160 2161 /* 2162 * Pick an i/o type at random, biased toward writing block tags. 2163 */ 2164 io_type = ztest_random(ZTEST_IO_TYPES); 2165 if (ztest_random(2) == 0) 2166 io_type = ZTEST_IO_WRITE_TAG; 2167 2168 (void) rw_rdlock(&zd->zd_zilog_lock); 2169 2170 switch (io_type) { 2171 2172 case ZTEST_IO_WRITE_TAG: 2173 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2174 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2175 break; 2176 2177 case ZTEST_IO_WRITE_PATTERN: 2178 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2179 if (ztest_random(2) == 0) { 2180 /* 2181 * Induce fletcher2 collisions to ensure that 2182 * zio_ddt_collision() detects and resolves them 2183 * when using fletcher2-verify for deduplication. 2184 */ 2185 ((uint64_t *)data)[0] ^= 1ULL << 63; 2186 ((uint64_t *)data)[4] ^= 1ULL << 63; 2187 } 2188 (void) ztest_write(zd, object, offset, blocksize, data); 2189 break; 2190 2191 case ZTEST_IO_WRITE_ZEROES: 2192 bzero(data, blocksize); 2193 (void) ztest_write(zd, object, offset, blocksize, data); 2194 break; 2195 2196 case ZTEST_IO_TRUNCATE: 2197 (void) ztest_truncate(zd, object, offset, blocksize); 2198 break; 2199 2200 case ZTEST_IO_SETATTR: 2201 (void) ztest_setattr(zd, object); 2202 break; 2203 2204 case ZTEST_IO_REWRITE: 2205 (void) rw_rdlock(&ztest_name_lock); 2206 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2207 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2208 B_FALSE); 2209 VERIFY(err == 0 || err == ENOSPC); 2210 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2211 ZFS_PROP_COMPRESSION, 2212 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2213 B_FALSE); 2214 VERIFY(err == 0 || err == ENOSPC); 2215 (void) rw_unlock(&ztest_name_lock); 2216 2217 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2218 DMU_READ_NO_PREFETCH)); 2219 2220 (void) ztest_write(zd, object, offset, blocksize, data); 2221 break; 2222 } 2223 2224 (void) rw_unlock(&zd->zd_zilog_lock); 2225 2226 umem_free(data, blocksize); 2227 } 2228 2229 /* 2230 * Initialize an object description template. 2231 */ 2232 static void 2233 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2234 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2235 { 2236 od->od_dir = ZTEST_DIROBJ; 2237 od->od_object = 0; 2238 2239 od->od_crtype = type; 2240 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2241 od->od_crgen = gen; 2242 2243 od->od_type = DMU_OT_NONE; 2244 od->od_blocksize = 0; 2245 od->od_gen = 0; 2246 2247 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2248 tag, (int64_t)id, index); 2249 } 2250 2251 /* 2252 * Lookup or create the objects for a test using the od template. 2253 * If the objects do not all exist, or if 'remove' is specified, 2254 * remove any existing objects and create new ones. Otherwise, 2255 * use the existing objects. 2256 */ 2257 static int 2258 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2259 { 2260 int count = size / sizeof (*od); 2261 int rv = 0; 2262 2263 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2264 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2265 (ztest_remove(zd, od, count) != 0 || 2266 ztest_create(zd, od, count) != 0)) 2267 rv = -1; 2268 zd->zd_od = od; 2269 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2270 2271 return (rv); 2272 } 2273 2274 /* ARGSUSED */ 2275 void 2276 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2277 { 2278 zilog_t *zilog = zd->zd_zilog; 2279 2280 (void) rw_rdlock(&zd->zd_zilog_lock); 2281 2282 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2283 2284 /* 2285 * Remember the committed values in zd, which is in parent/child 2286 * shared memory. If we die, the next iteration of ztest_run() 2287 * will verify that the log really does contain this record. 2288 */ 2289 mutex_enter(&zilog->zl_lock); 2290 ASSERT(zd->zd_shared != NULL); 2291 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2292 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2293 mutex_exit(&zilog->zl_lock); 2294 2295 (void) rw_unlock(&zd->zd_zilog_lock); 2296 } 2297 2298 /* 2299 * This function is designed to simulate the operations that occur during a 2300 * mount/unmount operation. We hold the dataset across these operations in an 2301 * attempt to expose any implicit assumptions about ZIL management. 2302 */ 2303 /* ARGSUSED */ 2304 void 2305 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2306 { 2307 objset_t *os = zd->zd_os; 2308 2309 /* 2310 * We grab the zd_dirobj_lock to ensure that no other thread is 2311 * updating the zil (i.e. adding in-memory log records) and the 2312 * zd_zilog_lock to block any I/O. 2313 */ 2314 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2315 (void) rw_wrlock(&zd->zd_zilog_lock); 2316 2317 /* zfsvfs_teardown() */ 2318 zil_close(zd->zd_zilog); 2319 2320 /* zfsvfs_setup() */ 2321 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2322 zil_replay(os, zd, ztest_replay_vector); 2323 2324 (void) rw_unlock(&zd->zd_zilog_lock); 2325 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2326 } 2327 2328 /* 2329 * Verify that we can't destroy an active pool, create an existing pool, 2330 * or create a pool with a bad vdev spec. 2331 */ 2332 /* ARGSUSED */ 2333 void 2334 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2335 { 2336 ztest_shared_opts_t *zo = &ztest_opts; 2337 spa_t *spa; 2338 nvlist_t *nvroot; 2339 2340 /* 2341 * Attempt to create using a bad file. 2342 */ 2343 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2344 VERIFY3U(ENOENT, ==, 2345 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2346 nvlist_free(nvroot); 2347 2348 /* 2349 * Attempt to create using a bad mirror. 2350 */ 2351 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2352 VERIFY3U(ENOENT, ==, 2353 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2354 nvlist_free(nvroot); 2355 2356 /* 2357 * Attempt to create an existing pool. It shouldn't matter 2358 * what's in the nvroot; we should fail with EEXIST. 2359 */ 2360 (void) rw_rdlock(&ztest_name_lock); 2361 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2362 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2363 nvlist_free(nvroot); 2364 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2365 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2366 spa_close(spa, FTAG); 2367 2368 (void) rw_unlock(&ztest_name_lock); 2369 } 2370 2371 /* ARGSUSED */ 2372 void 2373 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2374 { 2375 spa_t *spa; 2376 uint64_t initial_version = SPA_VERSION_INITIAL; 2377 uint64_t version, newversion; 2378 nvlist_t *nvroot, *props; 2379 char *name; 2380 2381 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2382 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2383 2384 /* 2385 * Clean up from previous runs. 2386 */ 2387 (void) spa_destroy(name); 2388 2389 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2390 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2391 2392 /* 2393 * If we're configuring a RAIDZ device then make sure that the 2394 * the initial version is capable of supporting that feature. 2395 */ 2396 switch (ztest_opts.zo_raidz_parity) { 2397 case 0: 2398 case 1: 2399 initial_version = SPA_VERSION_INITIAL; 2400 break; 2401 case 2: 2402 initial_version = SPA_VERSION_RAIDZ2; 2403 break; 2404 case 3: 2405 initial_version = SPA_VERSION_RAIDZ3; 2406 break; 2407 } 2408 2409 /* 2410 * Create a pool with a spa version that can be upgraded. Pick 2411 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2412 */ 2413 do { 2414 version = ztest_random_spa_version(initial_version); 2415 } while (version > SPA_VERSION_BEFORE_FEATURES); 2416 2417 props = fnvlist_alloc(); 2418 fnvlist_add_uint64(props, 2419 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2420 VERIFY0(spa_create(name, nvroot, props, NULL)); 2421 fnvlist_free(nvroot); 2422 fnvlist_free(props); 2423 2424 VERIFY0(spa_open(name, &spa, FTAG)); 2425 VERIFY3U(spa_version(spa), ==, version); 2426 newversion = ztest_random_spa_version(version + 1); 2427 2428 if (ztest_opts.zo_verbose >= 4) { 2429 (void) printf("upgrading spa version from %llu to %llu\n", 2430 (u_longlong_t)version, (u_longlong_t)newversion); 2431 } 2432 2433 spa_upgrade(spa, newversion); 2434 VERIFY3U(spa_version(spa), >, version); 2435 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2436 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2437 spa_close(spa, FTAG); 2438 2439 strfree(name); 2440 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2441 } 2442 2443 static vdev_t * 2444 vdev_lookup_by_path(vdev_t *vd, const char *path) 2445 { 2446 vdev_t *mvd; 2447 2448 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2449 return (vd); 2450 2451 for (int c = 0; c < vd->vdev_children; c++) 2452 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2453 NULL) 2454 return (mvd); 2455 2456 return (NULL); 2457 } 2458 2459 /* 2460 * Find the first available hole which can be used as a top-level. 2461 */ 2462 int 2463 find_vdev_hole(spa_t *spa) 2464 { 2465 vdev_t *rvd = spa->spa_root_vdev; 2466 int c; 2467 2468 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2469 2470 for (c = 0; c < rvd->vdev_children; c++) { 2471 vdev_t *cvd = rvd->vdev_child[c]; 2472 2473 if (cvd->vdev_ishole) 2474 break; 2475 } 2476 return (c); 2477 } 2478 2479 /* 2480 * Verify that vdev_add() works as expected. 2481 */ 2482 /* ARGSUSED */ 2483 void 2484 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2485 { 2486 ztest_shared_t *zs = ztest_shared; 2487 spa_t *spa = ztest_spa; 2488 uint64_t leaves; 2489 uint64_t guid; 2490 nvlist_t *nvroot; 2491 int error; 2492 2493 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2494 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2495 2496 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2497 2498 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2499 2500 /* 2501 * If we have slogs then remove them 1/4 of the time. 2502 */ 2503 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2504 /* 2505 * Grab the guid from the head of the log class rotor. 2506 */ 2507 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2508 2509 spa_config_exit(spa, SCL_VDEV, FTAG); 2510 2511 /* 2512 * We have to grab the zs_name_lock as writer to 2513 * prevent a race between removing a slog (dmu_objset_find) 2514 * and destroying a dataset. Removing the slog will 2515 * grab a reference on the dataset which may cause 2516 * dmu_objset_destroy() to fail with EBUSY thus 2517 * leaving the dataset in an inconsistent state. 2518 */ 2519 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2520 error = spa_vdev_remove(spa, guid, B_FALSE); 2521 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2522 2523 if (error && error != EEXIST) 2524 fatal(0, "spa_vdev_remove() = %d", error); 2525 } else { 2526 spa_config_exit(spa, SCL_VDEV, FTAG); 2527 2528 /* 2529 * Make 1/4 of the devices be log devices. 2530 */ 2531 nvroot = make_vdev_root(NULL, NULL, NULL, 2532 ztest_opts.zo_vdev_size, 0, 2533 ztest_random(4) == 0, ztest_opts.zo_raidz, 2534 zs->zs_mirrors, 1); 2535 2536 error = spa_vdev_add(spa, nvroot); 2537 nvlist_free(nvroot); 2538 2539 if (error == ENOSPC) 2540 ztest_record_enospc("spa_vdev_add"); 2541 else if (error != 0) 2542 fatal(0, "spa_vdev_add() = %d", error); 2543 } 2544 2545 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2546 } 2547 2548 /* 2549 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2550 */ 2551 /* ARGSUSED */ 2552 void 2553 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2554 { 2555 ztest_shared_t *zs = ztest_shared; 2556 spa_t *spa = ztest_spa; 2557 vdev_t *rvd = spa->spa_root_vdev; 2558 spa_aux_vdev_t *sav; 2559 char *aux; 2560 uint64_t guid = 0; 2561 int error; 2562 2563 if (ztest_random(2) == 0) { 2564 sav = &spa->spa_spares; 2565 aux = ZPOOL_CONFIG_SPARES; 2566 } else { 2567 sav = &spa->spa_l2cache; 2568 aux = ZPOOL_CONFIG_L2CACHE; 2569 } 2570 2571 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2572 2573 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2574 2575 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2576 /* 2577 * Pick a random device to remove. 2578 */ 2579 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2580 } else { 2581 /* 2582 * Find an unused device we can add. 2583 */ 2584 zs->zs_vdev_aux = 0; 2585 for (;;) { 2586 char path[MAXPATHLEN]; 2587 int c; 2588 (void) snprintf(path, sizeof (path), ztest_aux_template, 2589 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2590 zs->zs_vdev_aux); 2591 for (c = 0; c < sav->sav_count; c++) 2592 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2593 path) == 0) 2594 break; 2595 if (c == sav->sav_count && 2596 vdev_lookup_by_path(rvd, path) == NULL) 2597 break; 2598 zs->zs_vdev_aux++; 2599 } 2600 } 2601 2602 spa_config_exit(spa, SCL_VDEV, FTAG); 2603 2604 if (guid == 0) { 2605 /* 2606 * Add a new device. 2607 */ 2608 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2609 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2610 error = spa_vdev_add(spa, nvroot); 2611 if (error != 0) 2612 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2613 nvlist_free(nvroot); 2614 } else { 2615 /* 2616 * Remove an existing device. Sometimes, dirty its 2617 * vdev state first to make sure we handle removal 2618 * of devices that have pending state changes. 2619 */ 2620 if (ztest_random(2) == 0) 2621 (void) vdev_online(spa, guid, 0, NULL); 2622 2623 error = spa_vdev_remove(spa, guid, B_FALSE); 2624 if (error != 0 && error != EBUSY) 2625 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2626 } 2627 2628 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2629 } 2630 2631 /* 2632 * split a pool if it has mirror tlvdevs 2633 */ 2634 /* ARGSUSED */ 2635 void 2636 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2637 { 2638 ztest_shared_t *zs = ztest_shared; 2639 spa_t *spa = ztest_spa; 2640 vdev_t *rvd = spa->spa_root_vdev; 2641 nvlist_t *tree, **child, *config, *split, **schild; 2642 uint_t c, children, schildren = 0, lastlogid = 0; 2643 int error = 0; 2644 2645 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2646 2647 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2648 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2649 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2650 return; 2651 } 2652 2653 /* clean up the old pool, if any */ 2654 (void) spa_destroy("splitp"); 2655 2656 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2657 2658 /* generate a config from the existing config */ 2659 mutex_enter(&spa->spa_props_lock); 2660 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2661 &tree) == 0); 2662 mutex_exit(&spa->spa_props_lock); 2663 2664 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2665 &children) == 0); 2666 2667 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2668 for (c = 0; c < children; c++) { 2669 vdev_t *tvd = rvd->vdev_child[c]; 2670 nvlist_t **mchild; 2671 uint_t mchildren; 2672 2673 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2674 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2675 0) == 0); 2676 VERIFY(nvlist_add_string(schild[schildren], 2677 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2678 VERIFY(nvlist_add_uint64(schild[schildren], 2679 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2680 if (lastlogid == 0) 2681 lastlogid = schildren; 2682 ++schildren; 2683 continue; 2684 } 2685 lastlogid = 0; 2686 VERIFY(nvlist_lookup_nvlist_array(child[c], 2687 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2688 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2689 } 2690 2691 /* OK, create a config that can be used to split */ 2692 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2693 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2694 VDEV_TYPE_ROOT) == 0); 2695 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2696 lastlogid != 0 ? lastlogid : schildren) == 0); 2697 2698 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2699 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2700 2701 for (c = 0; c < schildren; c++) 2702 nvlist_free(schild[c]); 2703 free(schild); 2704 nvlist_free(split); 2705 2706 spa_config_exit(spa, SCL_VDEV, FTAG); 2707 2708 (void) rw_wrlock(&ztest_name_lock); 2709 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2710 (void) rw_unlock(&ztest_name_lock); 2711 2712 nvlist_free(config); 2713 2714 if (error == 0) { 2715 (void) printf("successful split - results:\n"); 2716 mutex_enter(&spa_namespace_lock); 2717 show_pool_stats(spa); 2718 show_pool_stats(spa_lookup("splitp")); 2719 mutex_exit(&spa_namespace_lock); 2720 ++zs->zs_splits; 2721 --zs->zs_mirrors; 2722 } 2723 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2724 2725 } 2726 2727 /* 2728 * Verify that we can attach and detach devices. 2729 */ 2730 /* ARGSUSED */ 2731 void 2732 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2733 { 2734 ztest_shared_t *zs = ztest_shared; 2735 spa_t *spa = ztest_spa; 2736 spa_aux_vdev_t *sav = &spa->spa_spares; 2737 vdev_t *rvd = spa->spa_root_vdev; 2738 vdev_t *oldvd, *newvd, *pvd; 2739 nvlist_t *root; 2740 uint64_t leaves; 2741 uint64_t leaf, top; 2742 uint64_t ashift = ztest_get_ashift(); 2743 uint64_t oldguid, pguid; 2744 uint64_t oldsize, newsize; 2745 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2746 int replacing; 2747 int oldvd_has_siblings = B_FALSE; 2748 int newvd_is_spare = B_FALSE; 2749 int oldvd_is_log; 2750 int error, expected_error; 2751 2752 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2753 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2754 2755 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2756 2757 /* 2758 * Decide whether to do an attach or a replace. 2759 */ 2760 replacing = ztest_random(2); 2761 2762 /* 2763 * Pick a random top-level vdev. 2764 */ 2765 top = ztest_random_vdev_top(spa, B_TRUE); 2766 2767 /* 2768 * Pick a random leaf within it. 2769 */ 2770 leaf = ztest_random(leaves); 2771 2772 /* 2773 * Locate this vdev. 2774 */ 2775 oldvd = rvd->vdev_child[top]; 2776 if (zs->zs_mirrors >= 1) { 2777 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2778 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2779 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2780 } 2781 if (ztest_opts.zo_raidz > 1) { 2782 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2783 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2784 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2785 } 2786 2787 /* 2788 * If we're already doing an attach or replace, oldvd may be a 2789 * mirror vdev -- in which case, pick a random child. 2790 */ 2791 while (oldvd->vdev_children != 0) { 2792 oldvd_has_siblings = B_TRUE; 2793 ASSERT(oldvd->vdev_children >= 2); 2794 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2795 } 2796 2797 oldguid = oldvd->vdev_guid; 2798 oldsize = vdev_get_min_asize(oldvd); 2799 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2800 (void) strcpy(oldpath, oldvd->vdev_path); 2801 pvd = oldvd->vdev_parent; 2802 pguid = pvd->vdev_guid; 2803 2804 /* 2805 * If oldvd has siblings, then half of the time, detach it. 2806 */ 2807 if (oldvd_has_siblings && ztest_random(2) == 0) { 2808 spa_config_exit(spa, SCL_VDEV, FTAG); 2809 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2810 if (error != 0 && error != ENODEV && error != EBUSY && 2811 error != ENOTSUP) 2812 fatal(0, "detach (%s) returned %d", oldpath, error); 2813 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2814 return; 2815 } 2816 2817 /* 2818 * For the new vdev, choose with equal probability between the two 2819 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2820 */ 2821 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2822 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2823 newvd_is_spare = B_TRUE; 2824 (void) strcpy(newpath, newvd->vdev_path); 2825 } else { 2826 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2827 ztest_opts.zo_dir, ztest_opts.zo_pool, 2828 top * leaves + leaf); 2829 if (ztest_random(2) == 0) 2830 newpath[strlen(newpath) - 1] = 'b'; 2831 newvd = vdev_lookup_by_path(rvd, newpath); 2832 } 2833 2834 if (newvd) { 2835 newsize = vdev_get_min_asize(newvd); 2836 } else { 2837 /* 2838 * Make newsize a little bigger or smaller than oldsize. 2839 * If it's smaller, the attach should fail. 2840 * If it's larger, and we're doing a replace, 2841 * we should get dynamic LUN growth when we're done. 2842 */ 2843 newsize = 10 * oldsize / (9 + ztest_random(3)); 2844 } 2845 2846 /* 2847 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2848 * unless it's a replace; in that case any non-replacing parent is OK. 2849 * 2850 * If newvd is already part of the pool, it should fail with EBUSY. 2851 * 2852 * If newvd is too small, it should fail with EOVERFLOW. 2853 */ 2854 if (pvd->vdev_ops != &vdev_mirror_ops && 2855 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2856 pvd->vdev_ops == &vdev_replacing_ops || 2857 pvd->vdev_ops == &vdev_spare_ops)) 2858 expected_error = ENOTSUP; 2859 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2860 expected_error = ENOTSUP; 2861 else if (newvd == oldvd) 2862 expected_error = replacing ? 0 : EBUSY; 2863 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2864 expected_error = EBUSY; 2865 else if (newsize < oldsize) 2866 expected_error = EOVERFLOW; 2867 else if (ashift > oldvd->vdev_top->vdev_ashift) 2868 expected_error = EDOM; 2869 else 2870 expected_error = 0; 2871 2872 spa_config_exit(spa, SCL_VDEV, FTAG); 2873 2874 /* 2875 * Build the nvlist describing newpath. 2876 */ 2877 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2878 ashift, 0, 0, 0, 1); 2879 2880 error = spa_vdev_attach(spa, oldguid, root, replacing); 2881 2882 nvlist_free(root); 2883 2884 /* 2885 * If our parent was the replacing vdev, but the replace completed, 2886 * then instead of failing with ENOTSUP we may either succeed, 2887 * fail with ENODEV, or fail with EOVERFLOW. 2888 */ 2889 if (expected_error == ENOTSUP && 2890 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2891 expected_error = error; 2892 2893 /* 2894 * If someone grew the LUN, the replacement may be too small. 2895 */ 2896 if (error == EOVERFLOW || error == EBUSY) 2897 expected_error = error; 2898 2899 /* XXX workaround 6690467 */ 2900 if (error != expected_error && expected_error != EBUSY) { 2901 fatal(0, "attach (%s %llu, %s %llu, %d) " 2902 "returned %d, expected %d", 2903 oldpath, oldsize, newpath, 2904 newsize, replacing, error, expected_error); 2905 } 2906 2907 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2908 } 2909 2910 /* 2911 * Callback function which expands the physical size of the vdev. 2912 */ 2913 vdev_t * 2914 grow_vdev(vdev_t *vd, void *arg) 2915 { 2916 spa_t *spa = vd->vdev_spa; 2917 size_t *newsize = arg; 2918 size_t fsize; 2919 int fd; 2920 2921 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2922 ASSERT(vd->vdev_ops->vdev_op_leaf); 2923 2924 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2925 return (vd); 2926 2927 fsize = lseek(fd, 0, SEEK_END); 2928 (void) ftruncate(fd, *newsize); 2929 2930 if (ztest_opts.zo_verbose >= 6) { 2931 (void) printf("%s grew from %lu to %lu bytes\n", 2932 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2933 } 2934 (void) close(fd); 2935 return (NULL); 2936 } 2937 2938 /* 2939 * Callback function which expands a given vdev by calling vdev_online(). 2940 */ 2941 /* ARGSUSED */ 2942 vdev_t * 2943 online_vdev(vdev_t *vd, void *arg) 2944 { 2945 spa_t *spa = vd->vdev_spa; 2946 vdev_t *tvd = vd->vdev_top; 2947 uint64_t guid = vd->vdev_guid; 2948 uint64_t generation = spa->spa_config_generation + 1; 2949 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2950 int error; 2951 2952 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2953 ASSERT(vd->vdev_ops->vdev_op_leaf); 2954 2955 /* Calling vdev_online will initialize the new metaslabs */ 2956 spa_config_exit(spa, SCL_STATE, spa); 2957 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2958 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2959 2960 /* 2961 * If vdev_online returned an error or the underlying vdev_open 2962 * failed then we abort the expand. The only way to know that 2963 * vdev_open fails is by checking the returned newstate. 2964 */ 2965 if (error || newstate != VDEV_STATE_HEALTHY) { 2966 if (ztest_opts.zo_verbose >= 5) { 2967 (void) printf("Unable to expand vdev, state %llu, " 2968 "error %d\n", (u_longlong_t)newstate, error); 2969 } 2970 return (vd); 2971 } 2972 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2973 2974 /* 2975 * Since we dropped the lock we need to ensure that we're 2976 * still talking to the original vdev. It's possible this 2977 * vdev may have been detached/replaced while we were 2978 * trying to online it. 2979 */ 2980 if (generation != spa->spa_config_generation) { 2981 if (ztest_opts.zo_verbose >= 5) { 2982 (void) printf("vdev configuration has changed, " 2983 "guid %llu, state %llu, expected gen %llu, " 2984 "got gen %llu\n", 2985 (u_longlong_t)guid, 2986 (u_longlong_t)tvd->vdev_state, 2987 (u_longlong_t)generation, 2988 (u_longlong_t)spa->spa_config_generation); 2989 } 2990 return (vd); 2991 } 2992 return (NULL); 2993 } 2994 2995 /* 2996 * Traverse the vdev tree calling the supplied function. 2997 * We continue to walk the tree until we either have walked all 2998 * children or we receive a non-NULL return from the callback. 2999 * If a NULL callback is passed, then we just return back the first 3000 * leaf vdev we encounter. 3001 */ 3002 vdev_t * 3003 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3004 { 3005 if (vd->vdev_ops->vdev_op_leaf) { 3006 if (func == NULL) 3007 return (vd); 3008 else 3009 return (func(vd, arg)); 3010 } 3011 3012 for (uint_t c = 0; c < vd->vdev_children; c++) { 3013 vdev_t *cvd = vd->vdev_child[c]; 3014 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3015 return (cvd); 3016 } 3017 return (NULL); 3018 } 3019 3020 /* 3021 * Verify that dynamic LUN growth works as expected. 3022 */ 3023 /* ARGSUSED */ 3024 void 3025 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3026 { 3027 spa_t *spa = ztest_spa; 3028 vdev_t *vd, *tvd; 3029 metaslab_class_t *mc; 3030 metaslab_group_t *mg; 3031 size_t psize, newsize; 3032 uint64_t top; 3033 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3034 3035 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3036 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3037 3038 top = ztest_random_vdev_top(spa, B_TRUE); 3039 3040 tvd = spa->spa_root_vdev->vdev_child[top]; 3041 mg = tvd->vdev_mg; 3042 mc = mg->mg_class; 3043 old_ms_count = tvd->vdev_ms_count; 3044 old_class_space = metaslab_class_get_space(mc); 3045 3046 /* 3047 * Determine the size of the first leaf vdev associated with 3048 * our top-level device. 3049 */ 3050 vd = vdev_walk_tree(tvd, NULL, NULL); 3051 ASSERT3P(vd, !=, NULL); 3052 ASSERT(vd->vdev_ops->vdev_op_leaf); 3053 3054 psize = vd->vdev_psize; 3055 3056 /* 3057 * We only try to expand the vdev if it's healthy, less than 4x its 3058 * original size, and it has a valid psize. 3059 */ 3060 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3061 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3062 spa_config_exit(spa, SCL_STATE, spa); 3063 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3064 return; 3065 } 3066 ASSERT(psize > 0); 3067 newsize = psize + psize / 8; 3068 ASSERT3U(newsize, >, psize); 3069 3070 if (ztest_opts.zo_verbose >= 6) { 3071 (void) printf("Expanding LUN %s from %lu to %lu\n", 3072 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3073 } 3074 3075 /* 3076 * Growing the vdev is a two step process: 3077 * 1). expand the physical size (i.e. relabel) 3078 * 2). online the vdev to create the new metaslabs 3079 */ 3080 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3081 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3082 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3083 if (ztest_opts.zo_verbose >= 5) { 3084 (void) printf("Could not expand LUN because " 3085 "the vdev configuration changed.\n"); 3086 } 3087 spa_config_exit(spa, SCL_STATE, spa); 3088 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3089 return; 3090 } 3091 3092 spa_config_exit(spa, SCL_STATE, spa); 3093 3094 /* 3095 * Expanding the LUN will update the config asynchronously, 3096 * thus we must wait for the async thread to complete any 3097 * pending tasks before proceeding. 3098 */ 3099 for (;;) { 3100 boolean_t done; 3101 mutex_enter(&spa->spa_async_lock); 3102 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3103 mutex_exit(&spa->spa_async_lock); 3104 if (done) 3105 break; 3106 txg_wait_synced(spa_get_dsl(spa), 0); 3107 (void) poll(NULL, 0, 100); 3108 } 3109 3110 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3111 3112 tvd = spa->spa_root_vdev->vdev_child[top]; 3113 new_ms_count = tvd->vdev_ms_count; 3114 new_class_space = metaslab_class_get_space(mc); 3115 3116 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3117 if (ztest_opts.zo_verbose >= 5) { 3118 (void) printf("Could not verify LUN expansion due to " 3119 "intervening vdev offline or remove.\n"); 3120 } 3121 spa_config_exit(spa, SCL_STATE, spa); 3122 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3123 return; 3124 } 3125 3126 /* 3127 * Make sure we were able to grow the vdev. 3128 */ 3129 if (new_ms_count <= old_ms_count) 3130 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3131 old_ms_count, new_ms_count); 3132 3133 /* 3134 * Make sure we were able to grow the pool. 3135 */ 3136 if (new_class_space <= old_class_space) 3137 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3138 old_class_space, new_class_space); 3139 3140 if (ztest_opts.zo_verbose >= 5) { 3141 char oldnumbuf[6], newnumbuf[6]; 3142 3143 nicenum(old_class_space, oldnumbuf); 3144 nicenum(new_class_space, newnumbuf); 3145 (void) printf("%s grew from %s to %s\n", 3146 spa->spa_name, oldnumbuf, newnumbuf); 3147 } 3148 3149 spa_config_exit(spa, SCL_STATE, spa); 3150 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3151 } 3152 3153 /* 3154 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3155 */ 3156 /* ARGSUSED */ 3157 static void 3158 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3159 { 3160 /* 3161 * Create the objects common to all ztest datasets. 3162 */ 3163 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3164 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3165 } 3166 3167 static int 3168 ztest_dataset_create(char *dsname) 3169 { 3170 uint64_t zilset = ztest_random(100); 3171 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3172 ztest_objset_create_cb, NULL); 3173 3174 if (err || zilset < 80) 3175 return (err); 3176 3177 if (ztest_opts.zo_verbose >= 6) 3178 (void) printf("Setting dataset %s to sync always\n", dsname); 3179 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3180 ZFS_SYNC_ALWAYS, B_FALSE)); 3181 } 3182 3183 /* ARGSUSED */ 3184 static int 3185 ztest_objset_destroy_cb(const char *name, void *arg) 3186 { 3187 objset_t *os; 3188 dmu_object_info_t doi; 3189 int error; 3190 3191 /* 3192 * Verify that the dataset contains a directory object. 3193 */ 3194 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3195 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3196 if (error != ENOENT) { 3197 /* We could have crashed in the middle of destroying it */ 3198 ASSERT0(error); 3199 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3200 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3201 } 3202 dmu_objset_disown(os, FTAG); 3203 3204 /* 3205 * Destroy the dataset. 3206 */ 3207 if (strchr(name, '@') != NULL) { 3208 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3209 } else { 3210 VERIFY0(dsl_destroy_head(name)); 3211 } 3212 return (0); 3213 } 3214 3215 static boolean_t 3216 ztest_snapshot_create(char *osname, uint64_t id) 3217 { 3218 char snapname[MAXNAMELEN]; 3219 int error; 3220 3221 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3222 3223 error = dmu_objset_snapshot_one(osname, snapname); 3224 if (error == ENOSPC) { 3225 ztest_record_enospc(FTAG); 3226 return (B_FALSE); 3227 } 3228 if (error != 0 && error != EEXIST) { 3229 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3230 snapname, error); 3231 } 3232 return (B_TRUE); 3233 } 3234 3235 static boolean_t 3236 ztest_snapshot_destroy(char *osname, uint64_t id) 3237 { 3238 char snapname[MAXNAMELEN]; 3239 int error; 3240 3241 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3242 (u_longlong_t)id); 3243 3244 error = dsl_destroy_snapshot(snapname, B_FALSE); 3245 if (error != 0 && error != ENOENT) 3246 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3247 return (B_TRUE); 3248 } 3249 3250 /* ARGSUSED */ 3251 void 3252 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3253 { 3254 ztest_ds_t zdtmp; 3255 int iters; 3256 int error; 3257 objset_t *os, *os2; 3258 char name[MAXNAMELEN]; 3259 zilog_t *zilog; 3260 3261 (void) rw_rdlock(&ztest_name_lock); 3262 3263 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3264 ztest_opts.zo_pool, (u_longlong_t)id); 3265 3266 /* 3267 * If this dataset exists from a previous run, process its replay log 3268 * half of the time. If we don't replay it, then dmu_objset_destroy() 3269 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3270 */ 3271 if (ztest_random(2) == 0 && 3272 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3273 ztest_zd_init(&zdtmp, NULL, os); 3274 zil_replay(os, &zdtmp, ztest_replay_vector); 3275 ztest_zd_fini(&zdtmp); 3276 dmu_objset_disown(os, FTAG); 3277 } 3278 3279 /* 3280 * There may be an old instance of the dataset we're about to 3281 * create lying around from a previous run. If so, destroy it 3282 * and all of its snapshots. 3283 */ 3284 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3285 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3286 3287 /* 3288 * Verify that the destroyed dataset is no longer in the namespace. 3289 */ 3290 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3291 FTAG, &os)); 3292 3293 /* 3294 * Verify that we can create a new dataset. 3295 */ 3296 error = ztest_dataset_create(name); 3297 if (error) { 3298 if (error == ENOSPC) { 3299 ztest_record_enospc(FTAG); 3300 (void) rw_unlock(&ztest_name_lock); 3301 return; 3302 } 3303 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3304 } 3305 3306 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3307 3308 ztest_zd_init(&zdtmp, NULL, os); 3309 3310 /* 3311 * Open the intent log for it. 3312 */ 3313 zilog = zil_open(os, ztest_get_data); 3314 3315 /* 3316 * Put some objects in there, do a little I/O to them, 3317 * and randomly take a couple of snapshots along the way. 3318 */ 3319 iters = ztest_random(5); 3320 for (int i = 0; i < iters; i++) { 3321 ztest_dmu_object_alloc_free(&zdtmp, id); 3322 if (ztest_random(iters) == 0) 3323 (void) ztest_snapshot_create(name, i); 3324 } 3325 3326 /* 3327 * Verify that we cannot create an existing dataset. 3328 */ 3329 VERIFY3U(EEXIST, ==, 3330 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3331 3332 /* 3333 * Verify that we can hold an objset that is also owned. 3334 */ 3335 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3336 dmu_objset_rele(os2, FTAG); 3337 3338 /* 3339 * Verify that we cannot own an objset that is already owned. 3340 */ 3341 VERIFY3U(EBUSY, ==, 3342 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3343 3344 zil_close(zilog); 3345 dmu_objset_disown(os, FTAG); 3346 ztest_zd_fini(&zdtmp); 3347 3348 (void) rw_unlock(&ztest_name_lock); 3349 } 3350 3351 /* 3352 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3353 */ 3354 void 3355 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3356 { 3357 (void) rw_rdlock(&ztest_name_lock); 3358 (void) ztest_snapshot_destroy(zd->zd_name, id); 3359 (void) ztest_snapshot_create(zd->zd_name, id); 3360 (void) rw_unlock(&ztest_name_lock); 3361 } 3362 3363 /* 3364 * Cleanup non-standard snapshots and clones. 3365 */ 3366 void 3367 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3368 { 3369 char snap1name[MAXNAMELEN]; 3370 char clone1name[MAXNAMELEN]; 3371 char snap2name[MAXNAMELEN]; 3372 char clone2name[MAXNAMELEN]; 3373 char snap3name[MAXNAMELEN]; 3374 int error; 3375 3376 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3377 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3378 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3379 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3380 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3381 3382 error = dsl_destroy_head(clone2name); 3383 if (error && error != ENOENT) 3384 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3385 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3386 if (error && error != ENOENT) 3387 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3388 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3389 if (error && error != ENOENT) 3390 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3391 error = dsl_destroy_head(clone1name); 3392 if (error && error != ENOENT) 3393 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3394 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3395 if (error && error != ENOENT) 3396 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3397 } 3398 3399 /* 3400 * Verify dsl_dataset_promote handles EBUSY 3401 */ 3402 void 3403 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3404 { 3405 objset_t *os; 3406 char snap1name[MAXNAMELEN]; 3407 char clone1name[MAXNAMELEN]; 3408 char snap2name[MAXNAMELEN]; 3409 char clone2name[MAXNAMELEN]; 3410 char snap3name[MAXNAMELEN]; 3411 char *osname = zd->zd_name; 3412 int error; 3413 3414 (void) rw_rdlock(&ztest_name_lock); 3415 3416 ztest_dsl_dataset_cleanup(osname, id); 3417 3418 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3419 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3420 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3421 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3422 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3423 3424 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3425 if (error && error != EEXIST) { 3426 if (error == ENOSPC) { 3427 ztest_record_enospc(FTAG); 3428 goto out; 3429 } 3430 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3431 } 3432 3433 error = dmu_objset_clone(clone1name, snap1name); 3434 if (error) { 3435 if (error == ENOSPC) { 3436 ztest_record_enospc(FTAG); 3437 goto out; 3438 } 3439 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3440 } 3441 3442 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3443 if (error && error != EEXIST) { 3444 if (error == ENOSPC) { 3445 ztest_record_enospc(FTAG); 3446 goto out; 3447 } 3448 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3449 } 3450 3451 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3452 if (error && error != EEXIST) { 3453 if (error == ENOSPC) { 3454 ztest_record_enospc(FTAG); 3455 goto out; 3456 } 3457 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3458 } 3459 3460 error = dmu_objset_clone(clone2name, snap3name); 3461 if (error) { 3462 if (error == ENOSPC) { 3463 ztest_record_enospc(FTAG); 3464 goto out; 3465 } 3466 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3467 } 3468 3469 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3470 if (error) 3471 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3472 error = dsl_dataset_promote(clone2name, NULL); 3473 if (error == ENOSPC) { 3474 dmu_objset_disown(os, FTAG); 3475 ztest_record_enospc(FTAG); 3476 goto out; 3477 } 3478 if (error != EBUSY) 3479 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3480 error); 3481 dmu_objset_disown(os, FTAG); 3482 3483 out: 3484 ztest_dsl_dataset_cleanup(osname, id); 3485 3486 (void) rw_unlock(&ztest_name_lock); 3487 } 3488 3489 /* 3490 * Verify that dmu_object_{alloc,free} work as expected. 3491 */ 3492 void 3493 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3494 { 3495 ztest_od_t od[4]; 3496 int batchsize = sizeof (od) / sizeof (od[0]); 3497 3498 for (int b = 0; b < batchsize; b++) 3499 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3500 3501 /* 3502 * Destroy the previous batch of objects, create a new batch, 3503 * and do some I/O on the new objects. 3504 */ 3505 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3506 return; 3507 3508 while (ztest_random(4 * batchsize) != 0) 3509 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3510 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3511 } 3512 3513 /* 3514 * Verify that dmu_{read,write} work as expected. 3515 */ 3516 void 3517 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3518 { 3519 objset_t *os = zd->zd_os; 3520 ztest_od_t od[2]; 3521 dmu_tx_t *tx; 3522 int i, freeit, error; 3523 uint64_t n, s, txg; 3524 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3525 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3526 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3527 uint64_t regions = 997; 3528 uint64_t stride = 123456789ULL; 3529 uint64_t width = 40; 3530 int free_percent = 5; 3531 3532 /* 3533 * This test uses two objects, packobj and bigobj, that are always 3534 * updated together (i.e. in the same tx) so that their contents are 3535 * in sync and can be compared. Their contents relate to each other 3536 * in a simple way: packobj is a dense array of 'bufwad' structures, 3537 * while bigobj is a sparse array of the same bufwads. Specifically, 3538 * for any index n, there are three bufwads that should be identical: 3539 * 3540 * packobj, at offset n * sizeof (bufwad_t) 3541 * bigobj, at the head of the nth chunk 3542 * bigobj, at the tail of the nth chunk 3543 * 3544 * The chunk size is arbitrary. It doesn't have to be a power of two, 3545 * and it doesn't have any relation to the object blocksize. 3546 * The only requirement is that it can hold at least two bufwads. 3547 * 3548 * Normally, we write the bufwad to each of these locations. 3549 * However, free_percent of the time we instead write zeroes to 3550 * packobj and perform a dmu_free_range() on bigobj. By comparing 3551 * bigobj to packobj, we can verify that the DMU is correctly 3552 * tracking which parts of an object are allocated and free, 3553 * and that the contents of the allocated blocks are correct. 3554 */ 3555 3556 /* 3557 * Read the directory info. If it's the first time, set things up. 3558 */ 3559 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3560 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3561 3562 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3563 return; 3564 3565 bigobj = od[0].od_object; 3566 packobj = od[1].od_object; 3567 chunksize = od[0].od_gen; 3568 ASSERT(chunksize == od[1].od_gen); 3569 3570 /* 3571 * Prefetch a random chunk of the big object. 3572 * Our aim here is to get some async reads in flight 3573 * for blocks that we may free below; the DMU should 3574 * handle this race correctly. 3575 */ 3576 n = ztest_random(regions) * stride + ztest_random(width); 3577 s = 1 + ztest_random(2 * width - 1); 3578 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3579 3580 /* 3581 * Pick a random index and compute the offsets into packobj and bigobj. 3582 */ 3583 n = ztest_random(regions) * stride + ztest_random(width); 3584 s = 1 + ztest_random(width - 1); 3585 3586 packoff = n * sizeof (bufwad_t); 3587 packsize = s * sizeof (bufwad_t); 3588 3589 bigoff = n * chunksize; 3590 bigsize = s * chunksize; 3591 3592 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3593 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3594 3595 /* 3596 * free_percent of the time, free a range of bigobj rather than 3597 * overwriting it. 3598 */ 3599 freeit = (ztest_random(100) < free_percent); 3600 3601 /* 3602 * Read the current contents of our objects. 3603 */ 3604 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3605 DMU_READ_PREFETCH); 3606 ASSERT0(error); 3607 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3608 DMU_READ_PREFETCH); 3609 ASSERT0(error); 3610 3611 /* 3612 * Get a tx for the mods to both packobj and bigobj. 3613 */ 3614 tx = dmu_tx_create(os); 3615 3616 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3617 3618 if (freeit) 3619 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3620 else 3621 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3622 3623 /* This accounts for setting the checksum/compression. */ 3624 dmu_tx_hold_bonus(tx, bigobj); 3625 3626 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3627 if (txg == 0) { 3628 umem_free(packbuf, packsize); 3629 umem_free(bigbuf, bigsize); 3630 return; 3631 } 3632 3633 enum zio_checksum cksum; 3634 do { 3635 cksum = (enum zio_checksum) 3636 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3637 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3638 dmu_object_set_checksum(os, bigobj, cksum, tx); 3639 3640 enum zio_compress comp; 3641 do { 3642 comp = (enum zio_compress) 3643 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3644 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3645 dmu_object_set_compress(os, bigobj, comp, tx); 3646 3647 /* 3648 * For each index from n to n + s, verify that the existing bufwad 3649 * in packobj matches the bufwads at the head and tail of the 3650 * corresponding chunk in bigobj. Then update all three bufwads 3651 * with the new values we want to write out. 3652 */ 3653 for (i = 0; i < s; i++) { 3654 /* LINTED */ 3655 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3656 /* LINTED */ 3657 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3658 /* LINTED */ 3659 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3660 3661 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3662 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3663 3664 if (pack->bw_txg > txg) 3665 fatal(0, "future leak: got %llx, open txg is %llx", 3666 pack->bw_txg, txg); 3667 3668 if (pack->bw_data != 0 && pack->bw_index != n + i) 3669 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3670 pack->bw_index, n, i); 3671 3672 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3673 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3674 3675 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3676 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3677 3678 if (freeit) { 3679 bzero(pack, sizeof (bufwad_t)); 3680 } else { 3681 pack->bw_index = n + i; 3682 pack->bw_txg = txg; 3683 pack->bw_data = 1 + ztest_random(-2ULL); 3684 } 3685 *bigH = *pack; 3686 *bigT = *pack; 3687 } 3688 3689 /* 3690 * We've verified all the old bufwads, and made new ones. 3691 * Now write them out. 3692 */ 3693 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3694 3695 if (freeit) { 3696 if (ztest_opts.zo_verbose >= 7) { 3697 (void) printf("freeing offset %llx size %llx" 3698 " txg %llx\n", 3699 (u_longlong_t)bigoff, 3700 (u_longlong_t)bigsize, 3701 (u_longlong_t)txg); 3702 } 3703 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3704 } else { 3705 if (ztest_opts.zo_verbose >= 7) { 3706 (void) printf("writing offset %llx size %llx" 3707 " txg %llx\n", 3708 (u_longlong_t)bigoff, 3709 (u_longlong_t)bigsize, 3710 (u_longlong_t)txg); 3711 } 3712 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3713 } 3714 3715 dmu_tx_commit(tx); 3716 3717 /* 3718 * Sanity check the stuff we just wrote. 3719 */ 3720 { 3721 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3722 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3723 3724 VERIFY(0 == dmu_read(os, packobj, packoff, 3725 packsize, packcheck, DMU_READ_PREFETCH)); 3726 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3727 bigsize, bigcheck, DMU_READ_PREFETCH)); 3728 3729 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3730 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3731 3732 umem_free(packcheck, packsize); 3733 umem_free(bigcheck, bigsize); 3734 } 3735 3736 umem_free(packbuf, packsize); 3737 umem_free(bigbuf, bigsize); 3738 } 3739 3740 void 3741 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3742 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3743 { 3744 uint64_t i; 3745 bufwad_t *pack; 3746 bufwad_t *bigH; 3747 bufwad_t *bigT; 3748 3749 /* 3750 * For each index from n to n + s, verify that the existing bufwad 3751 * in packobj matches the bufwads at the head and tail of the 3752 * corresponding chunk in bigobj. Then update all three bufwads 3753 * with the new values we want to write out. 3754 */ 3755 for (i = 0; i < s; i++) { 3756 /* LINTED */ 3757 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3758 /* LINTED */ 3759 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3760 /* LINTED */ 3761 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3762 3763 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3764 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3765 3766 if (pack->bw_txg > txg) 3767 fatal(0, "future leak: got %llx, open txg is %llx", 3768 pack->bw_txg, txg); 3769 3770 if (pack->bw_data != 0 && pack->bw_index != n + i) 3771 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3772 pack->bw_index, n, i); 3773 3774 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3775 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3776 3777 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3778 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3779 3780 pack->bw_index = n + i; 3781 pack->bw_txg = txg; 3782 pack->bw_data = 1 + ztest_random(-2ULL); 3783 3784 *bigH = *pack; 3785 *bigT = *pack; 3786 } 3787 } 3788 3789 void 3790 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3791 { 3792 objset_t *os = zd->zd_os; 3793 ztest_od_t od[2]; 3794 dmu_tx_t *tx; 3795 uint64_t i; 3796 int error; 3797 uint64_t n, s, txg; 3798 bufwad_t *packbuf, *bigbuf; 3799 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3800 uint64_t blocksize = ztest_random_blocksize(); 3801 uint64_t chunksize = blocksize; 3802 uint64_t regions = 997; 3803 uint64_t stride = 123456789ULL; 3804 uint64_t width = 9; 3805 dmu_buf_t *bonus_db; 3806 arc_buf_t **bigbuf_arcbufs; 3807 dmu_object_info_t doi; 3808 3809 /* 3810 * This test uses two objects, packobj and bigobj, that are always 3811 * updated together (i.e. in the same tx) so that their contents are 3812 * in sync and can be compared. Their contents relate to each other 3813 * in a simple way: packobj is a dense array of 'bufwad' structures, 3814 * while bigobj is a sparse array of the same bufwads. Specifically, 3815 * for any index n, there are three bufwads that should be identical: 3816 * 3817 * packobj, at offset n * sizeof (bufwad_t) 3818 * bigobj, at the head of the nth chunk 3819 * bigobj, at the tail of the nth chunk 3820 * 3821 * The chunk size is set equal to bigobj block size so that 3822 * dmu_assign_arcbuf() can be tested for object updates. 3823 */ 3824 3825 /* 3826 * Read the directory info. If it's the first time, set things up. 3827 */ 3828 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3829 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3830 3831 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3832 return; 3833 3834 bigobj = od[0].od_object; 3835 packobj = od[1].od_object; 3836 blocksize = od[0].od_blocksize; 3837 chunksize = blocksize; 3838 ASSERT(chunksize == od[1].od_gen); 3839 3840 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3841 VERIFY(ISP2(doi.doi_data_block_size)); 3842 VERIFY(chunksize == doi.doi_data_block_size); 3843 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3844 3845 /* 3846 * Pick a random index and compute the offsets into packobj and bigobj. 3847 */ 3848 n = ztest_random(regions) * stride + ztest_random(width); 3849 s = 1 + ztest_random(width - 1); 3850 3851 packoff = n * sizeof (bufwad_t); 3852 packsize = s * sizeof (bufwad_t); 3853 3854 bigoff = n * chunksize; 3855 bigsize = s * chunksize; 3856 3857 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3858 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3859 3860 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3861 3862 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3863 3864 /* 3865 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3866 * Iteration 1 test zcopy to already referenced dbufs. 3867 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3868 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3869 * Iteration 4 test zcopy when dbuf is no longer dirty. 3870 * Iteration 5 test zcopy when it can't be done. 3871 * Iteration 6 one more zcopy write. 3872 */ 3873 for (i = 0; i < 7; i++) { 3874 uint64_t j; 3875 uint64_t off; 3876 3877 /* 3878 * In iteration 5 (i == 5) use arcbufs 3879 * that don't match bigobj blksz to test 3880 * dmu_assign_arcbuf() when it can't directly 3881 * assign an arcbuf to a dbuf. 3882 */ 3883 for (j = 0; j < s; j++) { 3884 if (i != 5) { 3885 bigbuf_arcbufs[j] = 3886 dmu_request_arcbuf(bonus_db, chunksize); 3887 } else { 3888 bigbuf_arcbufs[2 * j] = 3889 dmu_request_arcbuf(bonus_db, chunksize / 2); 3890 bigbuf_arcbufs[2 * j + 1] = 3891 dmu_request_arcbuf(bonus_db, chunksize / 2); 3892 } 3893 } 3894 3895 /* 3896 * Get a tx for the mods to both packobj and bigobj. 3897 */ 3898 tx = dmu_tx_create(os); 3899 3900 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3901 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3902 3903 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3904 if (txg == 0) { 3905 umem_free(packbuf, packsize); 3906 umem_free(bigbuf, bigsize); 3907 for (j = 0; j < s; j++) { 3908 if (i != 5) { 3909 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3910 } else { 3911 dmu_return_arcbuf( 3912 bigbuf_arcbufs[2 * j]); 3913 dmu_return_arcbuf( 3914 bigbuf_arcbufs[2 * j + 1]); 3915 } 3916 } 3917 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3918 dmu_buf_rele(bonus_db, FTAG); 3919 return; 3920 } 3921 3922 /* 3923 * 50% of the time don't read objects in the 1st iteration to 3924 * test dmu_assign_arcbuf() for the case when there're no 3925 * existing dbufs for the specified offsets. 3926 */ 3927 if (i != 0 || ztest_random(2) != 0) { 3928 error = dmu_read(os, packobj, packoff, 3929 packsize, packbuf, DMU_READ_PREFETCH); 3930 ASSERT0(error); 3931 error = dmu_read(os, bigobj, bigoff, bigsize, 3932 bigbuf, DMU_READ_PREFETCH); 3933 ASSERT0(error); 3934 } 3935 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3936 n, chunksize, txg); 3937 3938 /* 3939 * We've verified all the old bufwads, and made new ones. 3940 * Now write them out. 3941 */ 3942 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3943 if (ztest_opts.zo_verbose >= 7) { 3944 (void) printf("writing offset %llx size %llx" 3945 " txg %llx\n", 3946 (u_longlong_t)bigoff, 3947 (u_longlong_t)bigsize, 3948 (u_longlong_t)txg); 3949 } 3950 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3951 dmu_buf_t *dbt; 3952 if (i != 5) { 3953 bcopy((caddr_t)bigbuf + (off - bigoff), 3954 bigbuf_arcbufs[j]->b_data, chunksize); 3955 } else { 3956 bcopy((caddr_t)bigbuf + (off - bigoff), 3957 bigbuf_arcbufs[2 * j]->b_data, 3958 chunksize / 2); 3959 bcopy((caddr_t)bigbuf + (off - bigoff) + 3960 chunksize / 2, 3961 bigbuf_arcbufs[2 * j + 1]->b_data, 3962 chunksize / 2); 3963 } 3964 3965 if (i == 1) { 3966 VERIFY(dmu_buf_hold(os, bigobj, off, 3967 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3968 } 3969 if (i != 5) { 3970 dmu_assign_arcbuf(bonus_db, off, 3971 bigbuf_arcbufs[j], tx); 3972 } else { 3973 dmu_assign_arcbuf(bonus_db, off, 3974 bigbuf_arcbufs[2 * j], tx); 3975 dmu_assign_arcbuf(bonus_db, 3976 off + chunksize / 2, 3977 bigbuf_arcbufs[2 * j + 1], tx); 3978 } 3979 if (i == 1) { 3980 dmu_buf_rele(dbt, FTAG); 3981 } 3982 } 3983 dmu_tx_commit(tx); 3984 3985 /* 3986 * Sanity check the stuff we just wrote. 3987 */ 3988 { 3989 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3990 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3991 3992 VERIFY(0 == dmu_read(os, packobj, packoff, 3993 packsize, packcheck, DMU_READ_PREFETCH)); 3994 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3995 bigsize, bigcheck, DMU_READ_PREFETCH)); 3996 3997 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3998 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3999 4000 umem_free(packcheck, packsize); 4001 umem_free(bigcheck, bigsize); 4002 } 4003 if (i == 2) { 4004 txg_wait_open(dmu_objset_pool(os), 0); 4005 } else if (i == 3) { 4006 txg_wait_synced(dmu_objset_pool(os), 0); 4007 } 4008 } 4009 4010 dmu_buf_rele(bonus_db, FTAG); 4011 umem_free(packbuf, packsize); 4012 umem_free(bigbuf, bigsize); 4013 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4014 } 4015 4016 /* ARGSUSED */ 4017 void 4018 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4019 { 4020 ztest_od_t od[1]; 4021 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4022 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4023 4024 /* 4025 * Have multiple threads write to large offsets in an object 4026 * to verify that parallel writes to an object -- even to the 4027 * same blocks within the object -- doesn't cause any trouble. 4028 */ 4029 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4030 4031 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4032 return; 4033 4034 while (ztest_random(10) != 0) 4035 ztest_io(zd, od[0].od_object, offset); 4036 } 4037 4038 void 4039 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4040 { 4041 ztest_od_t od[1]; 4042 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4043 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4044 uint64_t count = ztest_random(20) + 1; 4045 uint64_t blocksize = ztest_random_blocksize(); 4046 void *data; 4047 4048 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4049 4050 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4051 return; 4052 4053 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4054 return; 4055 4056 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4057 4058 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4059 4060 while (ztest_random(count) != 0) { 4061 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4062 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4063 data) != 0) 4064 break; 4065 while (ztest_random(4) != 0) 4066 ztest_io(zd, od[0].od_object, randoff); 4067 } 4068 4069 umem_free(data, blocksize); 4070 } 4071 4072 /* 4073 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4074 */ 4075 #define ZTEST_ZAP_MIN_INTS 1 4076 #define ZTEST_ZAP_MAX_INTS 4 4077 #define ZTEST_ZAP_MAX_PROPS 1000 4078 4079 void 4080 ztest_zap(ztest_ds_t *zd, uint64_t id) 4081 { 4082 objset_t *os = zd->zd_os; 4083 ztest_od_t od[1]; 4084 uint64_t object; 4085 uint64_t txg, last_txg; 4086 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4087 uint64_t zl_ints, zl_intsize, prop; 4088 int i, ints; 4089 dmu_tx_t *tx; 4090 char propname[100], txgname[100]; 4091 int error; 4092 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4093 4094 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4095 4096 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4097 return; 4098 4099 object = od[0].od_object; 4100 4101 /* 4102 * Generate a known hash collision, and verify that 4103 * we can lookup and remove both entries. 4104 */ 4105 tx = dmu_tx_create(os); 4106 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4107 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4108 if (txg == 0) 4109 return; 4110 for (i = 0; i < 2; i++) { 4111 value[i] = i; 4112 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4113 1, &value[i], tx)); 4114 } 4115 for (i = 0; i < 2; i++) { 4116 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4117 sizeof (uint64_t), 1, &value[i], tx)); 4118 VERIFY3U(0, ==, 4119 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4120 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4121 ASSERT3U(zl_ints, ==, 1); 4122 } 4123 for (i = 0; i < 2; i++) { 4124 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4125 } 4126 dmu_tx_commit(tx); 4127 4128 /* 4129 * Generate a buch of random entries. 4130 */ 4131 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4132 4133 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4134 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4135 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4136 bzero(value, sizeof (value)); 4137 last_txg = 0; 4138 4139 /* 4140 * If these zap entries already exist, validate their contents. 4141 */ 4142 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4143 if (error == 0) { 4144 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4145 ASSERT3U(zl_ints, ==, 1); 4146 4147 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4148 zl_ints, &last_txg) == 0); 4149 4150 VERIFY(zap_length(os, object, propname, &zl_intsize, 4151 &zl_ints) == 0); 4152 4153 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4154 ASSERT3U(zl_ints, ==, ints); 4155 4156 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4157 zl_ints, value) == 0); 4158 4159 for (i = 0; i < ints; i++) { 4160 ASSERT3U(value[i], ==, last_txg + object + i); 4161 } 4162 } else { 4163 ASSERT3U(error, ==, ENOENT); 4164 } 4165 4166 /* 4167 * Atomically update two entries in our zap object. 4168 * The first is named txg_%llu, and contains the txg 4169 * in which the property was last updated. The second 4170 * is named prop_%llu, and the nth element of its value 4171 * should be txg + object + n. 4172 */ 4173 tx = dmu_tx_create(os); 4174 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4175 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4176 if (txg == 0) 4177 return; 4178 4179 if (last_txg > txg) 4180 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4181 4182 for (i = 0; i < ints; i++) 4183 value[i] = txg + object + i; 4184 4185 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4186 1, &txg, tx)); 4187 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4188 ints, value, tx)); 4189 4190 dmu_tx_commit(tx); 4191 4192 /* 4193 * Remove a random pair of entries. 4194 */ 4195 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4196 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4197 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4198 4199 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4200 4201 if (error == ENOENT) 4202 return; 4203 4204 ASSERT0(error); 4205 4206 tx = dmu_tx_create(os); 4207 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4208 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4209 if (txg == 0) 4210 return; 4211 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4212 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4213 dmu_tx_commit(tx); 4214 } 4215 4216 /* 4217 * Testcase to test the upgrading of a microzap to fatzap. 4218 */ 4219 void 4220 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4221 { 4222 objset_t *os = zd->zd_os; 4223 ztest_od_t od[1]; 4224 uint64_t object, txg; 4225 4226 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4227 4228 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4229 return; 4230 4231 object = od[0].od_object; 4232 4233 /* 4234 * Add entries to this ZAP and make sure it spills over 4235 * and gets upgraded to a fatzap. Also, since we are adding 4236 * 2050 entries we should see ptrtbl growth and leaf-block split. 4237 */ 4238 for (int i = 0; i < 2050; i++) { 4239 char name[MAXNAMELEN]; 4240 uint64_t value = i; 4241 dmu_tx_t *tx; 4242 int error; 4243 4244 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4245 id, value); 4246 4247 tx = dmu_tx_create(os); 4248 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4249 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4250 if (txg == 0) 4251 return; 4252 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4253 &value, tx); 4254 ASSERT(error == 0 || error == EEXIST); 4255 dmu_tx_commit(tx); 4256 } 4257 } 4258 4259 /* ARGSUSED */ 4260 void 4261 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4262 { 4263 objset_t *os = zd->zd_os; 4264 ztest_od_t od[1]; 4265 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4266 dmu_tx_t *tx; 4267 int i, namelen, error; 4268 int micro = ztest_random(2); 4269 char name[20], string_value[20]; 4270 void *data; 4271 4272 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4273 4274 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4275 return; 4276 4277 object = od[0].od_object; 4278 4279 /* 4280 * Generate a random name of the form 'xxx.....' where each 4281 * x is a random printable character and the dots are dots. 4282 * There are 94 such characters, and the name length goes from 4283 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4284 */ 4285 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4286 4287 for (i = 0; i < 3; i++) 4288 name[i] = '!' + ztest_random('~' - '!' + 1); 4289 for (; i < namelen - 1; i++) 4290 name[i] = '.'; 4291 name[i] = '\0'; 4292 4293 if ((namelen & 1) || micro) { 4294 wsize = sizeof (txg); 4295 wc = 1; 4296 data = &txg; 4297 } else { 4298 wsize = 1; 4299 wc = namelen; 4300 data = string_value; 4301 } 4302 4303 count = -1ULL; 4304 VERIFY0(zap_count(os, object, &count)); 4305 ASSERT(count != -1ULL); 4306 4307 /* 4308 * Select an operation: length, lookup, add, update, remove. 4309 */ 4310 i = ztest_random(5); 4311 4312 if (i >= 2) { 4313 tx = dmu_tx_create(os); 4314 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4315 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4316 if (txg == 0) 4317 return; 4318 bcopy(name, string_value, namelen); 4319 } else { 4320 tx = NULL; 4321 txg = 0; 4322 bzero(string_value, namelen); 4323 } 4324 4325 switch (i) { 4326 4327 case 0: 4328 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4329 if (error == 0) { 4330 ASSERT3U(wsize, ==, zl_wsize); 4331 ASSERT3U(wc, ==, zl_wc); 4332 } else { 4333 ASSERT3U(error, ==, ENOENT); 4334 } 4335 break; 4336 4337 case 1: 4338 error = zap_lookup(os, object, name, wsize, wc, data); 4339 if (error == 0) { 4340 if (data == string_value && 4341 bcmp(name, data, namelen) != 0) 4342 fatal(0, "name '%s' != val '%s' len %d", 4343 name, data, namelen); 4344 } else { 4345 ASSERT3U(error, ==, ENOENT); 4346 } 4347 break; 4348 4349 case 2: 4350 error = zap_add(os, object, name, wsize, wc, data, tx); 4351 ASSERT(error == 0 || error == EEXIST); 4352 break; 4353 4354 case 3: 4355 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4356 break; 4357 4358 case 4: 4359 error = zap_remove(os, object, name, tx); 4360 ASSERT(error == 0 || error == ENOENT); 4361 break; 4362 } 4363 4364 if (tx != NULL) 4365 dmu_tx_commit(tx); 4366 } 4367 4368 /* 4369 * Commit callback data. 4370 */ 4371 typedef struct ztest_cb_data { 4372 list_node_t zcd_node; 4373 uint64_t zcd_txg; 4374 int zcd_expected_err; 4375 boolean_t zcd_added; 4376 boolean_t zcd_called; 4377 spa_t *zcd_spa; 4378 } ztest_cb_data_t; 4379 4380 /* This is the actual commit callback function */ 4381 static void 4382 ztest_commit_callback(void *arg, int error) 4383 { 4384 ztest_cb_data_t *data = arg; 4385 uint64_t synced_txg; 4386 4387 VERIFY(data != NULL); 4388 VERIFY3S(data->zcd_expected_err, ==, error); 4389 VERIFY(!data->zcd_called); 4390 4391 synced_txg = spa_last_synced_txg(data->zcd_spa); 4392 if (data->zcd_txg > synced_txg) 4393 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4394 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4395 synced_txg); 4396 4397 data->zcd_called = B_TRUE; 4398 4399 if (error == ECANCELED) { 4400 ASSERT0(data->zcd_txg); 4401 ASSERT(!data->zcd_added); 4402 4403 /* 4404 * The private callback data should be destroyed here, but 4405 * since we are going to check the zcd_called field after 4406 * dmu_tx_abort(), we will destroy it there. 4407 */ 4408 return; 4409 } 4410 4411 /* Was this callback added to the global callback list? */ 4412 if (!data->zcd_added) 4413 goto out; 4414 4415 ASSERT3U(data->zcd_txg, !=, 0); 4416 4417 /* Remove our callback from the list */ 4418 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4419 list_remove(&zcl.zcl_callbacks, data); 4420 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4421 4422 out: 4423 umem_free(data, sizeof (ztest_cb_data_t)); 4424 } 4425 4426 /* Allocate and initialize callback data structure */ 4427 static ztest_cb_data_t * 4428 ztest_create_cb_data(objset_t *os, uint64_t txg) 4429 { 4430 ztest_cb_data_t *cb_data; 4431 4432 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4433 4434 cb_data->zcd_txg = txg; 4435 cb_data->zcd_spa = dmu_objset_spa(os); 4436 4437 return (cb_data); 4438 } 4439 4440 /* 4441 * If a number of txgs equal to this threshold have been created after a commit 4442 * callback has been registered but not called, then we assume there is an 4443 * implementation bug. 4444 */ 4445 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4446 4447 /* 4448 * Commit callback test. 4449 */ 4450 void 4451 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4452 { 4453 objset_t *os = zd->zd_os; 4454 ztest_od_t od[1]; 4455 dmu_tx_t *tx; 4456 ztest_cb_data_t *cb_data[3], *tmp_cb; 4457 uint64_t old_txg, txg; 4458 int i, error; 4459 4460 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4461 4462 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4463 return; 4464 4465 tx = dmu_tx_create(os); 4466 4467 cb_data[0] = ztest_create_cb_data(os, 0); 4468 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4469 4470 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4471 4472 /* Every once in a while, abort the transaction on purpose */ 4473 if (ztest_random(100) == 0) 4474 error = -1; 4475 4476 if (!error) 4477 error = dmu_tx_assign(tx, TXG_NOWAIT); 4478 4479 txg = error ? 0 : dmu_tx_get_txg(tx); 4480 4481 cb_data[0]->zcd_txg = txg; 4482 cb_data[1] = ztest_create_cb_data(os, txg); 4483 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4484 4485 if (error) { 4486 /* 4487 * It's not a strict requirement to call the registered 4488 * callbacks from inside dmu_tx_abort(), but that's what 4489 * it's supposed to happen in the current implementation 4490 * so we will check for that. 4491 */ 4492 for (i = 0; i < 2; i++) { 4493 cb_data[i]->zcd_expected_err = ECANCELED; 4494 VERIFY(!cb_data[i]->zcd_called); 4495 } 4496 4497 dmu_tx_abort(tx); 4498 4499 for (i = 0; i < 2; i++) { 4500 VERIFY(cb_data[i]->zcd_called); 4501 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4502 } 4503 4504 return; 4505 } 4506 4507 cb_data[2] = ztest_create_cb_data(os, txg); 4508 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4509 4510 /* 4511 * Read existing data to make sure there isn't a future leak. 4512 */ 4513 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4514 &old_txg, DMU_READ_PREFETCH)); 4515 4516 if (old_txg > txg) 4517 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4518 old_txg, txg); 4519 4520 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4521 4522 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4523 4524 /* 4525 * Since commit callbacks don't have any ordering requirement and since 4526 * it is theoretically possible for a commit callback to be called 4527 * after an arbitrary amount of time has elapsed since its txg has been 4528 * synced, it is difficult to reliably determine whether a commit 4529 * callback hasn't been called due to high load or due to a flawed 4530 * implementation. 4531 * 4532 * In practice, we will assume that if after a certain number of txgs a 4533 * commit callback hasn't been called, then most likely there's an 4534 * implementation bug.. 4535 */ 4536 tmp_cb = list_head(&zcl.zcl_callbacks); 4537 if (tmp_cb != NULL && 4538 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4539 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4540 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4541 } 4542 4543 /* 4544 * Let's find the place to insert our callbacks. 4545 * 4546 * Even though the list is ordered by txg, it is possible for the 4547 * insertion point to not be the end because our txg may already be 4548 * quiescing at this point and other callbacks in the open txg 4549 * (from other objsets) may have sneaked in. 4550 */ 4551 tmp_cb = list_tail(&zcl.zcl_callbacks); 4552 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4553 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4554 4555 /* Add the 3 callbacks to the list */ 4556 for (i = 0; i < 3; i++) { 4557 if (tmp_cb == NULL) 4558 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4559 else 4560 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4561 cb_data[i]); 4562 4563 cb_data[i]->zcd_added = B_TRUE; 4564 VERIFY(!cb_data[i]->zcd_called); 4565 4566 tmp_cb = cb_data[i]; 4567 } 4568 4569 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4570 4571 dmu_tx_commit(tx); 4572 } 4573 4574 /* ARGSUSED */ 4575 void 4576 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4577 { 4578 zfs_prop_t proplist[] = { 4579 ZFS_PROP_CHECKSUM, 4580 ZFS_PROP_COMPRESSION, 4581 ZFS_PROP_COPIES, 4582 ZFS_PROP_DEDUP 4583 }; 4584 4585 (void) rw_rdlock(&ztest_name_lock); 4586 4587 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4588 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4589 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4590 4591 (void) rw_unlock(&ztest_name_lock); 4592 } 4593 4594 /* ARGSUSED */ 4595 void 4596 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4597 { 4598 nvlist_t *props = NULL; 4599 4600 (void) rw_rdlock(&ztest_name_lock); 4601 4602 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4603 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4604 4605 VERIFY0(spa_prop_get(ztest_spa, &props)); 4606 4607 if (ztest_opts.zo_verbose >= 6) 4608 dump_nvlist(props, 4); 4609 4610 nvlist_free(props); 4611 4612 (void) rw_unlock(&ztest_name_lock); 4613 } 4614 4615 static int 4616 user_release_one(const char *snapname, const char *holdname) 4617 { 4618 nvlist_t *snaps, *holds; 4619 int error; 4620 4621 snaps = fnvlist_alloc(); 4622 holds = fnvlist_alloc(); 4623 fnvlist_add_boolean(holds, holdname); 4624 fnvlist_add_nvlist(snaps, snapname, holds); 4625 fnvlist_free(holds); 4626 error = dsl_dataset_user_release(snaps, NULL); 4627 fnvlist_free(snaps); 4628 return (error); 4629 } 4630 4631 /* 4632 * Test snapshot hold/release and deferred destroy. 4633 */ 4634 void 4635 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4636 { 4637 int error; 4638 objset_t *os = zd->zd_os; 4639 objset_t *origin; 4640 char snapname[100]; 4641 char fullname[100]; 4642 char clonename[100]; 4643 char tag[100]; 4644 char osname[MAXNAMELEN]; 4645 nvlist_t *holds; 4646 4647 (void) rw_rdlock(&ztest_name_lock); 4648 4649 dmu_objset_name(os, osname); 4650 4651 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4652 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4653 (void) snprintf(clonename, sizeof (clonename), 4654 "%s/ch1_%llu", osname, id); 4655 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4656 4657 /* 4658 * Clean up from any previous run. 4659 */ 4660 error = dsl_destroy_head(clonename); 4661 if (error != ENOENT) 4662 ASSERT0(error); 4663 error = user_release_one(fullname, tag); 4664 if (error != ESRCH && error != ENOENT) 4665 ASSERT0(error); 4666 error = dsl_destroy_snapshot(fullname, B_FALSE); 4667 if (error != ENOENT) 4668 ASSERT0(error); 4669 4670 /* 4671 * Create snapshot, clone it, mark snap for deferred destroy, 4672 * destroy clone, verify snap was also destroyed. 4673 */ 4674 error = dmu_objset_snapshot_one(osname, snapname); 4675 if (error) { 4676 if (error == ENOSPC) { 4677 ztest_record_enospc("dmu_objset_snapshot"); 4678 goto out; 4679 } 4680 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4681 } 4682 4683 error = dmu_objset_clone(clonename, fullname); 4684 if (error) { 4685 if (error == ENOSPC) { 4686 ztest_record_enospc("dmu_objset_clone"); 4687 goto out; 4688 } 4689 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4690 } 4691 4692 error = dsl_destroy_snapshot(fullname, B_TRUE); 4693 if (error) { 4694 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4695 fullname, error); 4696 } 4697 4698 error = dsl_destroy_head(clonename); 4699 if (error) 4700 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4701 4702 error = dmu_objset_hold(fullname, FTAG, &origin); 4703 if (error != ENOENT) 4704 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4705 4706 /* 4707 * Create snapshot, add temporary hold, verify that we can't 4708 * destroy a held snapshot, mark for deferred destroy, 4709 * release hold, verify snapshot was destroyed. 4710 */ 4711 error = dmu_objset_snapshot_one(osname, snapname); 4712 if (error) { 4713 if (error == ENOSPC) { 4714 ztest_record_enospc("dmu_objset_snapshot"); 4715 goto out; 4716 } 4717 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4718 } 4719 4720 holds = fnvlist_alloc(); 4721 fnvlist_add_string(holds, fullname, tag); 4722 error = dsl_dataset_user_hold(holds, 0, NULL); 4723 fnvlist_free(holds); 4724 4725 if (error == ENOSPC) { 4726 ztest_record_enospc("dsl_dataset_user_hold"); 4727 goto out; 4728 } else if (error) { 4729 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4730 fullname, tag, error); 4731 } 4732 4733 error = dsl_destroy_snapshot(fullname, B_FALSE); 4734 if (error != EBUSY) { 4735 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4736 fullname, error); 4737 } 4738 4739 error = dsl_destroy_snapshot(fullname, B_TRUE); 4740 if (error) { 4741 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4742 fullname, error); 4743 } 4744 4745 error = user_release_one(fullname, tag); 4746 if (error) 4747 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4748 4749 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4750 4751 out: 4752 (void) rw_unlock(&ztest_name_lock); 4753 } 4754 4755 /* 4756 * Inject random faults into the on-disk data. 4757 */ 4758 /* ARGSUSED */ 4759 void 4760 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4761 { 4762 ztest_shared_t *zs = ztest_shared; 4763 spa_t *spa = ztest_spa; 4764 int fd; 4765 uint64_t offset; 4766 uint64_t leaves; 4767 uint64_t bad = 0x1990c0ffeedecade; 4768 uint64_t top, leaf; 4769 char path0[MAXPATHLEN]; 4770 char pathrand[MAXPATHLEN]; 4771 size_t fsize; 4772 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4773 int iters = 1000; 4774 int maxfaults; 4775 int mirror_save; 4776 vdev_t *vd0 = NULL; 4777 uint64_t guid0 = 0; 4778 boolean_t islog = B_FALSE; 4779 4780 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4781 maxfaults = MAXFAULTS(); 4782 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4783 mirror_save = zs->zs_mirrors; 4784 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4785 4786 ASSERT(leaves >= 1); 4787 4788 /* 4789 * Grab the name lock as reader. There are some operations 4790 * which don't like to have their vdevs changed while 4791 * they are in progress (i.e. spa_change_guid). Those 4792 * operations will have grabbed the name lock as writer. 4793 */ 4794 (void) rw_rdlock(&ztest_name_lock); 4795 4796 /* 4797 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4798 */ 4799 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4800 4801 if (ztest_random(2) == 0) { 4802 /* 4803 * Inject errors on a normal data device or slog device. 4804 */ 4805 top = ztest_random_vdev_top(spa, B_TRUE); 4806 leaf = ztest_random(leaves) + zs->zs_splits; 4807 4808 /* 4809 * Generate paths to the first leaf in this top-level vdev, 4810 * and to the random leaf we selected. We'll induce transient 4811 * write failures and random online/offline activity on leaf 0, 4812 * and we'll write random garbage to the randomly chosen leaf. 4813 */ 4814 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4815 ztest_opts.zo_dir, ztest_opts.zo_pool, 4816 top * leaves + zs->zs_splits); 4817 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4818 ztest_opts.zo_dir, ztest_opts.zo_pool, 4819 top * leaves + leaf); 4820 4821 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4822 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4823 islog = B_TRUE; 4824 4825 /* 4826 * If the top-level vdev needs to be resilvered 4827 * then we only allow faults on the device that is 4828 * resilvering. 4829 */ 4830 if (vd0 != NULL && maxfaults != 1 && 4831 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4832 vd0->vdev_resilver_txg != 0)) { 4833 /* 4834 * Make vd0 explicitly claim to be unreadable, 4835 * or unwriteable, or reach behind its back 4836 * and close the underlying fd. We can do this if 4837 * maxfaults == 0 because we'll fail and reexecute, 4838 * and we can do it if maxfaults >= 2 because we'll 4839 * have enough redundancy. If maxfaults == 1, the 4840 * combination of this with injection of random data 4841 * corruption below exceeds the pool's fault tolerance. 4842 */ 4843 vdev_file_t *vf = vd0->vdev_tsd; 4844 4845 if (vf != NULL && ztest_random(3) == 0) { 4846 (void) close(vf->vf_vnode->v_fd); 4847 vf->vf_vnode->v_fd = -1; 4848 } else if (ztest_random(2) == 0) { 4849 vd0->vdev_cant_read = B_TRUE; 4850 } else { 4851 vd0->vdev_cant_write = B_TRUE; 4852 } 4853 guid0 = vd0->vdev_guid; 4854 } 4855 } else { 4856 /* 4857 * Inject errors on an l2cache device. 4858 */ 4859 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4860 4861 if (sav->sav_count == 0) { 4862 spa_config_exit(spa, SCL_STATE, FTAG); 4863 (void) rw_unlock(&ztest_name_lock); 4864 return; 4865 } 4866 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4867 guid0 = vd0->vdev_guid; 4868 (void) strcpy(path0, vd0->vdev_path); 4869 (void) strcpy(pathrand, vd0->vdev_path); 4870 4871 leaf = 0; 4872 leaves = 1; 4873 maxfaults = INT_MAX; /* no limit on cache devices */ 4874 } 4875 4876 spa_config_exit(spa, SCL_STATE, FTAG); 4877 (void) rw_unlock(&ztest_name_lock); 4878 4879 /* 4880 * If we can tolerate two or more faults, or we're dealing 4881 * with a slog, randomly online/offline vd0. 4882 */ 4883 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4884 if (ztest_random(10) < 6) { 4885 int flags = (ztest_random(2) == 0 ? 4886 ZFS_OFFLINE_TEMPORARY : 0); 4887 4888 /* 4889 * We have to grab the zs_name_lock as writer to 4890 * prevent a race between offlining a slog and 4891 * destroying a dataset. Offlining the slog will 4892 * grab a reference on the dataset which may cause 4893 * dmu_objset_destroy() to fail with EBUSY thus 4894 * leaving the dataset in an inconsistent state. 4895 */ 4896 if (islog) 4897 (void) rw_wrlock(&ztest_name_lock); 4898 4899 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4900 4901 if (islog) 4902 (void) rw_unlock(&ztest_name_lock); 4903 } else { 4904 /* 4905 * Ideally we would like to be able to randomly 4906 * call vdev_[on|off]line without holding locks 4907 * to force unpredictable failures but the side 4908 * effects of vdev_[on|off]line prevent us from 4909 * doing so. We grab the ztest_vdev_lock here to 4910 * prevent a race between injection testing and 4911 * aux_vdev removal. 4912 */ 4913 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4914 (void) vdev_online(spa, guid0, 0, NULL); 4915 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4916 } 4917 } 4918 4919 if (maxfaults == 0) 4920 return; 4921 4922 /* 4923 * We have at least single-fault tolerance, so inject data corruption. 4924 */ 4925 fd = open(pathrand, O_RDWR); 4926 4927 if (fd == -1) /* we hit a gap in the device namespace */ 4928 return; 4929 4930 fsize = lseek(fd, 0, SEEK_END); 4931 4932 while (--iters != 0) { 4933 offset = ztest_random(fsize / (leaves << bshift)) * 4934 (leaves << bshift) + (leaf << bshift) + 4935 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4936 4937 if (offset >= fsize) 4938 continue; 4939 4940 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4941 if (mirror_save != zs->zs_mirrors) { 4942 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4943 (void) close(fd); 4944 return; 4945 } 4946 4947 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4948 fatal(1, "can't inject bad word at 0x%llx in %s", 4949 offset, pathrand); 4950 4951 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4952 4953 if (ztest_opts.zo_verbose >= 7) 4954 (void) printf("injected bad word into %s," 4955 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4956 } 4957 4958 (void) close(fd); 4959 } 4960 4961 /* 4962 * Verify that DDT repair works as expected. 4963 */ 4964 void 4965 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4966 { 4967 ztest_shared_t *zs = ztest_shared; 4968 spa_t *spa = ztest_spa; 4969 objset_t *os = zd->zd_os; 4970 ztest_od_t od[1]; 4971 uint64_t object, blocksize, txg, pattern, psize; 4972 enum zio_checksum checksum = spa_dedup_checksum(spa); 4973 dmu_buf_t *db; 4974 dmu_tx_t *tx; 4975 void *buf; 4976 blkptr_t blk; 4977 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4978 4979 blocksize = ztest_random_blocksize(); 4980 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4981 4982 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4983 4984 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4985 return; 4986 4987 /* 4988 * Take the name lock as writer to prevent anyone else from changing 4989 * the pool and dataset properies we need to maintain during this test. 4990 */ 4991 (void) rw_wrlock(&ztest_name_lock); 4992 4993 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4994 B_FALSE) != 0 || 4995 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4996 B_FALSE) != 0) { 4997 (void) rw_unlock(&ztest_name_lock); 4998 return; 4999 } 5000 5001 object = od[0].od_object; 5002 blocksize = od[0].od_blocksize; 5003 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 5004 5005 ASSERT(object != 0); 5006 5007 tx = dmu_tx_create(os); 5008 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5009 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5010 if (txg == 0) { 5011 (void) rw_unlock(&ztest_name_lock); 5012 return; 5013 } 5014 5015 /* 5016 * Write all the copies of our block. 5017 */ 5018 for (int i = 0; i < copies; i++) { 5019 uint64_t offset = i * blocksize; 5020 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5021 DMU_READ_NO_PREFETCH); 5022 if (error != 0) { 5023 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5024 os, (long long)object, (long long) offset, error); 5025 } 5026 ASSERT(db->db_offset == offset); 5027 ASSERT(db->db_size == blocksize); 5028 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5029 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5030 dmu_buf_will_fill(db, tx); 5031 ztest_pattern_set(db->db_data, db->db_size, pattern); 5032 dmu_buf_rele(db, FTAG); 5033 } 5034 5035 dmu_tx_commit(tx); 5036 txg_wait_synced(spa_get_dsl(spa), txg); 5037 5038 /* 5039 * Find out what block we got. 5040 */ 5041 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5042 DMU_READ_NO_PREFETCH)); 5043 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5044 dmu_buf_rele(db, FTAG); 5045 5046 /* 5047 * Damage the block. Dedup-ditto will save us when we read it later. 5048 */ 5049 psize = BP_GET_PSIZE(&blk); 5050 buf = zio_buf_alloc(psize); 5051 ztest_pattern_set(buf, psize, ~pattern); 5052 5053 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5054 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5055 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5056 5057 zio_buf_free(buf, psize); 5058 5059 (void) rw_unlock(&ztest_name_lock); 5060 } 5061 5062 /* 5063 * Scrub the pool. 5064 */ 5065 /* ARGSUSED */ 5066 void 5067 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5068 { 5069 spa_t *spa = ztest_spa; 5070 5071 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5072 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5073 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5074 } 5075 5076 /* 5077 * Change the guid for the pool. 5078 */ 5079 /* ARGSUSED */ 5080 void 5081 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5082 { 5083 spa_t *spa = ztest_spa; 5084 uint64_t orig, load; 5085 int error; 5086 5087 orig = spa_guid(spa); 5088 load = spa_load_guid(spa); 5089 5090 (void) rw_wrlock(&ztest_name_lock); 5091 error = spa_change_guid(spa); 5092 (void) rw_unlock(&ztest_name_lock); 5093 5094 if (error != 0) 5095 return; 5096 5097 if (ztest_opts.zo_verbose >= 4) { 5098 (void) printf("Changed guid old %llu -> %llu\n", 5099 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5100 } 5101 5102 VERIFY3U(orig, !=, spa_guid(spa)); 5103 VERIFY3U(load, ==, spa_load_guid(spa)); 5104 } 5105 5106 /* 5107 * Rename the pool to a different name and then rename it back. 5108 */ 5109 /* ARGSUSED */ 5110 void 5111 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5112 { 5113 char *oldname, *newname; 5114 spa_t *spa; 5115 5116 (void) rw_wrlock(&ztest_name_lock); 5117 5118 oldname = ztest_opts.zo_pool; 5119 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5120 (void) strcpy(newname, oldname); 5121 (void) strcat(newname, "_tmp"); 5122 5123 /* 5124 * Do the rename 5125 */ 5126 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5127 5128 /* 5129 * Try to open it under the old name, which shouldn't exist 5130 */ 5131 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5132 5133 /* 5134 * Open it under the new name and make sure it's still the same spa_t. 5135 */ 5136 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5137 5138 ASSERT(spa == ztest_spa); 5139 spa_close(spa, FTAG); 5140 5141 /* 5142 * Rename it back to the original 5143 */ 5144 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5145 5146 /* 5147 * Make sure it can still be opened 5148 */ 5149 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5150 5151 ASSERT(spa == ztest_spa); 5152 spa_close(spa, FTAG); 5153 5154 umem_free(newname, strlen(newname) + 1); 5155 5156 (void) rw_unlock(&ztest_name_lock); 5157 } 5158 5159 /* 5160 * Verify pool integrity by running zdb. 5161 */ 5162 static void 5163 ztest_run_zdb(char *pool) 5164 { 5165 int status; 5166 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5167 char zbuf[1024]; 5168 char *bin; 5169 char *ztest; 5170 char *isa; 5171 int isalen; 5172 FILE *fp; 5173 5174 (void) realpath(getexecname(), zdb); 5175 5176 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5177 bin = strstr(zdb, "/usr/bin/"); 5178 ztest = strstr(bin, "/ztest"); 5179 isa = bin + 8; 5180 isalen = ztest - isa; 5181 isa = strdup(isa); 5182 /* LINTED */ 5183 (void) sprintf(bin, 5184 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s", 5185 isalen, 5186 isa, 5187 ztest_opts.zo_verbose >= 3 ? "s" : "", 5188 ztest_opts.zo_verbose >= 4 ? "v" : "", 5189 spa_config_path, 5190 pool); 5191 free(isa); 5192 5193 if (ztest_opts.zo_verbose >= 5) 5194 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5195 5196 fp = popen(zdb, "r"); 5197 5198 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5199 if (ztest_opts.zo_verbose >= 3) 5200 (void) printf("%s", zbuf); 5201 5202 status = pclose(fp); 5203 5204 if (status == 0) 5205 return; 5206 5207 ztest_dump_core = 0; 5208 if (WIFEXITED(status)) 5209 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5210 else 5211 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5212 } 5213 5214 static void 5215 ztest_walk_pool_directory(char *header) 5216 { 5217 spa_t *spa = NULL; 5218 5219 if (ztest_opts.zo_verbose >= 6) 5220 (void) printf("%s\n", header); 5221 5222 mutex_enter(&spa_namespace_lock); 5223 while ((spa = spa_next(spa)) != NULL) 5224 if (ztest_opts.zo_verbose >= 6) 5225 (void) printf("\t%s\n", spa_name(spa)); 5226 mutex_exit(&spa_namespace_lock); 5227 } 5228 5229 static void 5230 ztest_spa_import_export(char *oldname, char *newname) 5231 { 5232 nvlist_t *config, *newconfig; 5233 uint64_t pool_guid; 5234 spa_t *spa; 5235 int error; 5236 5237 if (ztest_opts.zo_verbose >= 4) { 5238 (void) printf("import/export: old = %s, new = %s\n", 5239 oldname, newname); 5240 } 5241 5242 /* 5243 * Clean up from previous runs. 5244 */ 5245 (void) spa_destroy(newname); 5246 5247 /* 5248 * Get the pool's configuration and guid. 5249 */ 5250 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5251 5252 /* 5253 * Kick off a scrub to tickle scrub/export races. 5254 */ 5255 if (ztest_random(2) == 0) 5256 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5257 5258 pool_guid = spa_guid(spa); 5259 spa_close(spa, FTAG); 5260 5261 ztest_walk_pool_directory("pools before export"); 5262 5263 /* 5264 * Export it. 5265 */ 5266 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5267 5268 ztest_walk_pool_directory("pools after export"); 5269 5270 /* 5271 * Try to import it. 5272 */ 5273 newconfig = spa_tryimport(config); 5274 ASSERT(newconfig != NULL); 5275 nvlist_free(newconfig); 5276 5277 /* 5278 * Import it under the new name. 5279 */ 5280 error = spa_import(newname, config, NULL, 0); 5281 if (error != 0) { 5282 dump_nvlist(config, 0); 5283 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5284 oldname, newname, error); 5285 } 5286 5287 ztest_walk_pool_directory("pools after import"); 5288 5289 /* 5290 * Try to import it again -- should fail with EEXIST. 5291 */ 5292 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5293 5294 /* 5295 * Try to import it under a different name -- should fail with EEXIST. 5296 */ 5297 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5298 5299 /* 5300 * Verify that the pool is no longer visible under the old name. 5301 */ 5302 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5303 5304 /* 5305 * Verify that we can open and close the pool using the new name. 5306 */ 5307 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5308 ASSERT(pool_guid == spa_guid(spa)); 5309 spa_close(spa, FTAG); 5310 5311 nvlist_free(config); 5312 } 5313 5314 static void 5315 ztest_resume(spa_t *spa) 5316 { 5317 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5318 (void) printf("resuming from suspended state\n"); 5319 spa_vdev_state_enter(spa, SCL_NONE); 5320 vdev_clear(spa, NULL); 5321 (void) spa_vdev_state_exit(spa, NULL, 0); 5322 (void) zio_resume(spa); 5323 } 5324 5325 static void * 5326 ztest_resume_thread(void *arg) 5327 { 5328 spa_t *spa = arg; 5329 5330 while (!ztest_exiting) { 5331 if (spa_suspended(spa)) 5332 ztest_resume(spa); 5333 (void) poll(NULL, 0, 100); 5334 } 5335 return (NULL); 5336 } 5337 5338 static void * 5339 ztest_deadman_thread(void *arg) 5340 { 5341 ztest_shared_t *zs = arg; 5342 spa_t *spa = ztest_spa; 5343 hrtime_t delta, total = 0; 5344 5345 for (;;) { 5346 delta = zs->zs_thread_stop - zs->zs_thread_start + 5347 MSEC2NSEC(zfs_deadman_synctime_ms); 5348 5349 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5350 5351 /* 5352 * If the pool is suspended then fail immediately. Otherwise, 5353 * check to see if the pool is making any progress. If 5354 * vdev_deadman() discovers that there hasn't been any recent 5355 * I/Os then it will end up aborting the tests. 5356 */ 5357 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5358 fatal(0, "aborting test after %llu seconds because " 5359 "pool has transitioned to a suspended state.", 5360 zfs_deadman_synctime_ms / 1000); 5361 return (NULL); 5362 } 5363 vdev_deadman(spa->spa_root_vdev); 5364 5365 total += zfs_deadman_synctime_ms/1000; 5366 (void) printf("ztest has been running for %lld seconds\n", 5367 total); 5368 } 5369 } 5370 5371 static void 5372 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5373 { 5374 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5375 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5376 hrtime_t functime = gethrtime(); 5377 5378 for (int i = 0; i < zi->zi_iters; i++) 5379 zi->zi_func(zd, id); 5380 5381 functime = gethrtime() - functime; 5382 5383 atomic_add_64(&zc->zc_count, 1); 5384 atomic_add_64(&zc->zc_time, functime); 5385 5386 if (ztest_opts.zo_verbose >= 4) { 5387 Dl_info dli; 5388 (void) dladdr((void *)zi->zi_func, &dli); 5389 (void) printf("%6.2f sec in %s\n", 5390 (double)functime / NANOSEC, dli.dli_sname); 5391 } 5392 } 5393 5394 static void * 5395 ztest_thread(void *arg) 5396 { 5397 int rand; 5398 uint64_t id = (uintptr_t)arg; 5399 ztest_shared_t *zs = ztest_shared; 5400 uint64_t call_next; 5401 hrtime_t now; 5402 ztest_info_t *zi; 5403 ztest_shared_callstate_t *zc; 5404 5405 while ((now = gethrtime()) < zs->zs_thread_stop) { 5406 /* 5407 * See if it's time to force a crash. 5408 */ 5409 if (now > zs->zs_thread_kill) 5410 ztest_kill(zs); 5411 5412 /* 5413 * If we're getting ENOSPC with some regularity, stop. 5414 */ 5415 if (zs->zs_enospc_count > 10) 5416 break; 5417 5418 /* 5419 * Pick a random function to execute. 5420 */ 5421 rand = ztest_random(ZTEST_FUNCS); 5422 zi = &ztest_info[rand]; 5423 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5424 call_next = zc->zc_next; 5425 5426 if (now >= call_next && 5427 atomic_cas_64(&zc->zc_next, call_next, call_next + 5428 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5429 ztest_execute(rand, zi, id); 5430 } 5431 } 5432 5433 return (NULL); 5434 } 5435 5436 static void 5437 ztest_dataset_name(char *dsname, char *pool, int d) 5438 { 5439 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5440 } 5441 5442 static void 5443 ztest_dataset_destroy(int d) 5444 { 5445 char name[MAXNAMELEN]; 5446 5447 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5448 5449 if (ztest_opts.zo_verbose >= 3) 5450 (void) printf("Destroying %s to free up space\n", name); 5451 5452 /* 5453 * Cleanup any non-standard clones and snapshots. In general, 5454 * ztest thread t operates on dataset (t % zopt_datasets), 5455 * so there may be more than one thing to clean up. 5456 */ 5457 for (int t = d; t < ztest_opts.zo_threads; 5458 t += ztest_opts.zo_datasets) { 5459 ztest_dsl_dataset_cleanup(name, t); 5460 } 5461 5462 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5463 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5464 } 5465 5466 static void 5467 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5468 { 5469 uint64_t usedobjs, dirobjs, scratch; 5470 5471 /* 5472 * ZTEST_DIROBJ is the object directory for the entire dataset. 5473 * Therefore, the number of objects in use should equal the 5474 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5475 * If not, we have an object leak. 5476 * 5477 * Note that we can only check this in ztest_dataset_open(), 5478 * when the open-context and syncing-context values agree. 5479 * That's because zap_count() returns the open-context value, 5480 * while dmu_objset_space() returns the rootbp fill count. 5481 */ 5482 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5483 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5484 ASSERT3U(dirobjs + 1, ==, usedobjs); 5485 } 5486 5487 static int 5488 ztest_dataset_open(int d) 5489 { 5490 ztest_ds_t *zd = &ztest_ds[d]; 5491 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5492 objset_t *os; 5493 zilog_t *zilog; 5494 char name[MAXNAMELEN]; 5495 int error; 5496 5497 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5498 5499 (void) rw_rdlock(&ztest_name_lock); 5500 5501 error = ztest_dataset_create(name); 5502 if (error == ENOSPC) { 5503 (void) rw_unlock(&ztest_name_lock); 5504 ztest_record_enospc(FTAG); 5505 return (error); 5506 } 5507 ASSERT(error == 0 || error == EEXIST); 5508 5509 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5510 (void) rw_unlock(&ztest_name_lock); 5511 5512 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5513 5514 zilog = zd->zd_zilog; 5515 5516 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5517 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5518 fatal(0, "missing log records: claimed %llu < committed %llu", 5519 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5520 5521 ztest_dataset_dirobj_verify(zd); 5522 5523 zil_replay(os, zd, ztest_replay_vector); 5524 5525 ztest_dataset_dirobj_verify(zd); 5526 5527 if (ztest_opts.zo_verbose >= 6) 5528 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5529 zd->zd_name, 5530 (u_longlong_t)zilog->zl_parse_blk_count, 5531 (u_longlong_t)zilog->zl_parse_lr_count, 5532 (u_longlong_t)zilog->zl_replaying_seq); 5533 5534 zilog = zil_open(os, ztest_get_data); 5535 5536 if (zilog->zl_replaying_seq != 0 && 5537 zilog->zl_replaying_seq < committed_seq) 5538 fatal(0, "missing log records: replayed %llu < committed %llu", 5539 zilog->zl_replaying_seq, committed_seq); 5540 5541 return (0); 5542 } 5543 5544 static void 5545 ztest_dataset_close(int d) 5546 { 5547 ztest_ds_t *zd = &ztest_ds[d]; 5548 5549 zil_close(zd->zd_zilog); 5550 dmu_objset_disown(zd->zd_os, zd); 5551 5552 ztest_zd_fini(zd); 5553 } 5554 5555 /* 5556 * Kick off threads to run tests on all datasets in parallel. 5557 */ 5558 static void 5559 ztest_run(ztest_shared_t *zs) 5560 { 5561 thread_t *tid; 5562 spa_t *spa; 5563 objset_t *os; 5564 thread_t resume_tid; 5565 int error; 5566 5567 ztest_exiting = B_FALSE; 5568 5569 /* 5570 * Initialize parent/child shared state. 5571 */ 5572 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5573 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5574 5575 zs->zs_thread_start = gethrtime(); 5576 zs->zs_thread_stop = 5577 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5578 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5579 zs->zs_thread_kill = zs->zs_thread_stop; 5580 if (ztest_random(100) < ztest_opts.zo_killrate) { 5581 zs->zs_thread_kill -= 5582 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5583 } 5584 5585 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5586 5587 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5588 offsetof(ztest_cb_data_t, zcd_node)); 5589 5590 /* 5591 * Open our pool. 5592 */ 5593 kernel_init(FREAD | FWRITE); 5594 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5595 spa->spa_debug = B_TRUE; 5596 ztest_spa = spa; 5597 5598 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5599 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5600 zs->zs_guid = dmu_objset_fsid_guid(os); 5601 dmu_objset_disown(os, FTAG); 5602 5603 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5604 5605 /* 5606 * We don't expect the pool to suspend unless maxfaults == 0, 5607 * in which case ztest_fault_inject() temporarily takes away 5608 * the only valid replica. 5609 */ 5610 if (MAXFAULTS() == 0) 5611 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5612 else 5613 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5614 5615 /* 5616 * Create a thread to periodically resume suspended I/O. 5617 */ 5618 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5619 &resume_tid) == 0); 5620 5621 /* 5622 * Create a deadman thread to abort() if we hang. 5623 */ 5624 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5625 NULL) == 0); 5626 5627 /* 5628 * Verify that we can safely inquire about about any object, 5629 * whether it's allocated or not. To make it interesting, 5630 * we probe a 5-wide window around each power of two. 5631 * This hits all edge cases, including zero and the max. 5632 */ 5633 for (int t = 0; t < 64; t++) { 5634 for (int d = -5; d <= 5; d++) { 5635 error = dmu_object_info(spa->spa_meta_objset, 5636 (1ULL << t) + d, NULL); 5637 ASSERT(error == 0 || error == ENOENT || 5638 error == EINVAL); 5639 } 5640 } 5641 5642 /* 5643 * If we got any ENOSPC errors on the previous run, destroy something. 5644 */ 5645 if (zs->zs_enospc_count != 0) { 5646 int d = ztest_random(ztest_opts.zo_datasets); 5647 ztest_dataset_destroy(d); 5648 } 5649 zs->zs_enospc_count = 0; 5650 5651 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5652 UMEM_NOFAIL); 5653 5654 if (ztest_opts.zo_verbose >= 4) 5655 (void) printf("starting main threads...\n"); 5656 5657 /* 5658 * Kick off all the tests that run in parallel. 5659 */ 5660 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5661 if (t < ztest_opts.zo_datasets && 5662 ztest_dataset_open(t) != 0) 5663 return; 5664 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5665 THR_BOUND, &tid[t]) == 0); 5666 } 5667 5668 /* 5669 * Wait for all of the tests to complete. We go in reverse order 5670 * so we don't close datasets while threads are still using them. 5671 */ 5672 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5673 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5674 if (t < ztest_opts.zo_datasets) 5675 ztest_dataset_close(t); 5676 } 5677 5678 txg_wait_synced(spa_get_dsl(spa), 0); 5679 5680 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5681 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5682 zfs_dbgmsg_print(FTAG); 5683 5684 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5685 5686 /* Kill the resume thread */ 5687 ztest_exiting = B_TRUE; 5688 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5689 ztest_resume(spa); 5690 5691 /* 5692 * Right before closing the pool, kick off a bunch of async I/O; 5693 * spa_close() should wait for it to complete. 5694 */ 5695 for (uint64_t object = 1; object < 50; object++) 5696 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5697 5698 spa_close(spa, FTAG); 5699 5700 /* 5701 * Verify that we can loop over all pools. 5702 */ 5703 mutex_enter(&spa_namespace_lock); 5704 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5705 if (ztest_opts.zo_verbose > 3) 5706 (void) printf("spa_next: found %s\n", spa_name(spa)); 5707 mutex_exit(&spa_namespace_lock); 5708 5709 /* 5710 * Verify that we can export the pool and reimport it under a 5711 * different name. 5712 */ 5713 if (ztest_random(2) == 0) { 5714 char name[MAXNAMELEN]; 5715 (void) snprintf(name, MAXNAMELEN, "%s_import", 5716 ztest_opts.zo_pool); 5717 ztest_spa_import_export(ztest_opts.zo_pool, name); 5718 ztest_spa_import_export(name, ztest_opts.zo_pool); 5719 } 5720 5721 kernel_fini(); 5722 5723 list_destroy(&zcl.zcl_callbacks); 5724 5725 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5726 5727 (void) rwlock_destroy(&ztest_name_lock); 5728 (void) _mutex_destroy(&ztest_vdev_lock); 5729 } 5730 5731 static void 5732 ztest_freeze(void) 5733 { 5734 ztest_ds_t *zd = &ztest_ds[0]; 5735 spa_t *spa; 5736 int numloops = 0; 5737 5738 if (ztest_opts.zo_verbose >= 3) 5739 (void) printf("testing spa_freeze()...\n"); 5740 5741 kernel_init(FREAD | FWRITE); 5742 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5743 VERIFY3U(0, ==, ztest_dataset_open(0)); 5744 spa->spa_debug = B_TRUE; 5745 ztest_spa = spa; 5746 5747 /* 5748 * Force the first log block to be transactionally allocated. 5749 * We have to do this before we freeze the pool -- otherwise 5750 * the log chain won't be anchored. 5751 */ 5752 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5753 ztest_dmu_object_alloc_free(zd, 0); 5754 zil_commit(zd->zd_zilog, 0); 5755 } 5756 5757 txg_wait_synced(spa_get_dsl(spa), 0); 5758 5759 /* 5760 * Freeze the pool. This stops spa_sync() from doing anything, 5761 * so that the only way to record changes from now on is the ZIL. 5762 */ 5763 spa_freeze(spa); 5764 5765 /* 5766 * Run tests that generate log records but don't alter the pool config 5767 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5768 * We do a txg_wait_synced() after each iteration to force the txg 5769 * to increase well beyond the last synced value in the uberblock. 5770 * The ZIL should be OK with that. 5771 */ 5772 while (ztest_random(10) != 0 && 5773 numloops++ < ztest_opts.zo_maxloops) { 5774 ztest_dmu_write_parallel(zd, 0); 5775 ztest_dmu_object_alloc_free(zd, 0); 5776 txg_wait_synced(spa_get_dsl(spa), 0); 5777 } 5778 5779 /* 5780 * Commit all of the changes we just generated. 5781 */ 5782 zil_commit(zd->zd_zilog, 0); 5783 txg_wait_synced(spa_get_dsl(spa), 0); 5784 5785 /* 5786 * Close our dataset and close the pool. 5787 */ 5788 ztest_dataset_close(0); 5789 spa_close(spa, FTAG); 5790 kernel_fini(); 5791 5792 /* 5793 * Open and close the pool and dataset to induce log replay. 5794 */ 5795 kernel_init(FREAD | FWRITE); 5796 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5797 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5798 VERIFY3U(0, ==, ztest_dataset_open(0)); 5799 ztest_dataset_close(0); 5800 5801 spa->spa_debug = B_TRUE; 5802 ztest_spa = spa; 5803 txg_wait_synced(spa_get_dsl(spa), 0); 5804 ztest_reguid(NULL, 0); 5805 5806 spa_close(spa, FTAG); 5807 kernel_fini(); 5808 } 5809 5810 void 5811 print_time(hrtime_t t, char *timebuf) 5812 { 5813 hrtime_t s = t / NANOSEC; 5814 hrtime_t m = s / 60; 5815 hrtime_t h = m / 60; 5816 hrtime_t d = h / 24; 5817 5818 s -= m * 60; 5819 m -= h * 60; 5820 h -= d * 24; 5821 5822 timebuf[0] = '\0'; 5823 5824 if (d) 5825 (void) sprintf(timebuf, 5826 "%llud%02lluh%02llum%02llus", d, h, m, s); 5827 else if (h) 5828 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5829 else if (m) 5830 (void) sprintf(timebuf, "%llum%02llus", m, s); 5831 else 5832 (void) sprintf(timebuf, "%llus", s); 5833 } 5834 5835 static nvlist_t * 5836 make_random_props() 5837 { 5838 nvlist_t *props; 5839 5840 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5841 if (ztest_random(2) == 0) 5842 return (props); 5843 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5844 5845 return (props); 5846 } 5847 5848 /* 5849 * Create a storage pool with the given name and initial vdev size. 5850 * Then test spa_freeze() functionality. 5851 */ 5852 static void 5853 ztest_init(ztest_shared_t *zs) 5854 { 5855 spa_t *spa; 5856 nvlist_t *nvroot, *props; 5857 5858 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5859 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5860 5861 kernel_init(FREAD | FWRITE); 5862 5863 /* 5864 * Create the storage pool. 5865 */ 5866 (void) spa_destroy(ztest_opts.zo_pool); 5867 ztest_shared->zs_vdev_next_leaf = 0; 5868 zs->zs_splits = 0; 5869 zs->zs_mirrors = ztest_opts.zo_mirrors; 5870 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5871 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5872 props = make_random_props(); 5873 for (int i = 0; i < SPA_FEATURES; i++) { 5874 char buf[1024]; 5875 (void) snprintf(buf, sizeof (buf), "feature@%s", 5876 spa_feature_table[i].fi_uname); 5877 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5878 } 5879 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5880 nvlist_free(nvroot); 5881 5882 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5883 zs->zs_metaslab_sz = 5884 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5885 5886 spa_close(spa, FTAG); 5887 5888 kernel_fini(); 5889 5890 ztest_run_zdb(ztest_opts.zo_pool); 5891 5892 ztest_freeze(); 5893 5894 ztest_run_zdb(ztest_opts.zo_pool); 5895 5896 (void) rwlock_destroy(&ztest_name_lock); 5897 (void) _mutex_destroy(&ztest_vdev_lock); 5898 } 5899 5900 static void 5901 setup_data_fd(void) 5902 { 5903 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5904 5905 ztest_fd_data = mkstemp(ztest_name_data); 5906 ASSERT3S(ztest_fd_data, >=, 0); 5907 (void) unlink(ztest_name_data); 5908 } 5909 5910 5911 static int 5912 shared_data_size(ztest_shared_hdr_t *hdr) 5913 { 5914 int size; 5915 5916 size = hdr->zh_hdr_size; 5917 size += hdr->zh_opts_size; 5918 size += hdr->zh_size; 5919 size += hdr->zh_stats_size * hdr->zh_stats_count; 5920 size += hdr->zh_ds_size * hdr->zh_ds_count; 5921 5922 return (size); 5923 } 5924 5925 static void 5926 setup_hdr(void) 5927 { 5928 int size; 5929 ztest_shared_hdr_t *hdr; 5930 5931 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5932 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5933 ASSERT(hdr != MAP_FAILED); 5934 5935 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5936 5937 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5938 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5939 hdr->zh_size = sizeof (ztest_shared_t); 5940 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5941 hdr->zh_stats_count = ZTEST_FUNCS; 5942 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5943 hdr->zh_ds_count = ztest_opts.zo_datasets; 5944 5945 size = shared_data_size(hdr); 5946 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5947 5948 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5949 } 5950 5951 static void 5952 setup_data(void) 5953 { 5954 int size, offset; 5955 ztest_shared_hdr_t *hdr; 5956 uint8_t *buf; 5957 5958 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5959 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5960 ASSERT(hdr != MAP_FAILED); 5961 5962 size = shared_data_size(hdr); 5963 5964 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5965 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5966 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5967 ASSERT(hdr != MAP_FAILED); 5968 buf = (uint8_t *)hdr; 5969 5970 offset = hdr->zh_hdr_size; 5971 ztest_shared_opts = (void *)&buf[offset]; 5972 offset += hdr->zh_opts_size; 5973 ztest_shared = (void *)&buf[offset]; 5974 offset += hdr->zh_size; 5975 ztest_shared_callstate = (void *)&buf[offset]; 5976 offset += hdr->zh_stats_size * hdr->zh_stats_count; 5977 ztest_shared_ds = (void *)&buf[offset]; 5978 } 5979 5980 static boolean_t 5981 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 5982 { 5983 pid_t pid; 5984 int status; 5985 char *cmdbuf = NULL; 5986 5987 pid = fork(); 5988 5989 if (cmd == NULL) { 5990 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 5991 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 5992 cmd = cmdbuf; 5993 } 5994 5995 if (pid == -1) 5996 fatal(1, "fork failed"); 5997 5998 if (pid == 0) { /* child */ 5999 char *emptyargv[2] = { cmd, NULL }; 6000 char fd_data_str[12]; 6001 6002 struct rlimit rl = { 1024, 1024 }; 6003 (void) setrlimit(RLIMIT_NOFILE, &rl); 6004 6005 (void) close(ztest_fd_rand); 6006 VERIFY3U(11, >=, 6007 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6008 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6009 6010 (void) enable_extended_FILE_stdio(-1, -1); 6011 if (libpath != NULL) 6012 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6013 (void) execv(cmd, emptyargv); 6014 ztest_dump_core = B_FALSE; 6015 fatal(B_TRUE, "exec failed: %s", cmd); 6016 } 6017 6018 if (cmdbuf != NULL) { 6019 umem_free(cmdbuf, MAXPATHLEN); 6020 cmd = NULL; 6021 } 6022 6023 while (waitpid(pid, &status, 0) != pid) 6024 continue; 6025 if (statusp != NULL) 6026 *statusp = status; 6027 6028 if (WIFEXITED(status)) { 6029 if (WEXITSTATUS(status) != 0) { 6030 (void) fprintf(stderr, "child exited with code %d\n", 6031 WEXITSTATUS(status)); 6032 exit(2); 6033 } 6034 return (B_FALSE); 6035 } else if (WIFSIGNALED(status)) { 6036 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6037 (void) fprintf(stderr, "child died with signal %d\n", 6038 WTERMSIG(status)); 6039 exit(3); 6040 } 6041 return (B_TRUE); 6042 } else { 6043 (void) fprintf(stderr, "something strange happened to child\n"); 6044 exit(4); 6045 /* NOTREACHED */ 6046 } 6047 } 6048 6049 static void 6050 ztest_run_init(void) 6051 { 6052 ztest_shared_t *zs = ztest_shared; 6053 6054 ASSERT(ztest_opts.zo_init != 0); 6055 6056 /* 6057 * Blow away any existing copy of zpool.cache 6058 */ 6059 (void) remove(spa_config_path); 6060 6061 /* 6062 * Create and initialize our storage pool. 6063 */ 6064 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6065 bzero(zs, sizeof (ztest_shared_t)); 6066 if (ztest_opts.zo_verbose >= 3 && 6067 ztest_opts.zo_init != 1) { 6068 (void) printf("ztest_init(), pass %d\n", i); 6069 } 6070 ztest_init(zs); 6071 } 6072 } 6073 6074 int 6075 main(int argc, char **argv) 6076 { 6077 int kills = 0; 6078 int iters = 0; 6079 int older = 0; 6080 int newer = 0; 6081 ztest_shared_t *zs; 6082 ztest_info_t *zi; 6083 ztest_shared_callstate_t *zc; 6084 char timebuf[100]; 6085 char numbuf[6]; 6086 spa_t *spa; 6087 char *cmd; 6088 boolean_t hasalt; 6089 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6090 6091 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6092 6093 dprintf_setup(&argc, argv); 6094 zfs_deadman_synctime_ms = 300000; 6095 6096 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6097 ASSERT3S(ztest_fd_rand, >=, 0); 6098 6099 if (!fd_data_str) { 6100 process_options(argc, argv); 6101 6102 setup_data_fd(); 6103 setup_hdr(); 6104 setup_data(); 6105 bcopy(&ztest_opts, ztest_shared_opts, 6106 sizeof (*ztest_shared_opts)); 6107 } else { 6108 ztest_fd_data = atoi(fd_data_str); 6109 setup_data(); 6110 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6111 } 6112 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6113 6114 /* Override location of zpool.cache */ 6115 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6116 ztest_opts.zo_dir), !=, -1); 6117 6118 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6119 UMEM_NOFAIL); 6120 zs = ztest_shared; 6121 6122 if (fd_data_str) { 6123 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6124 metaslab_df_alloc_threshold = 6125 zs->zs_metaslab_df_alloc_threshold; 6126 6127 if (zs->zs_do_init) 6128 ztest_run_init(); 6129 else 6130 ztest_run(zs); 6131 exit(0); 6132 } 6133 6134 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6135 6136 if (ztest_opts.zo_verbose >= 1) { 6137 (void) printf("%llu vdevs, %d datasets, %d threads," 6138 " %llu seconds...\n", 6139 (u_longlong_t)ztest_opts.zo_vdevs, 6140 ztest_opts.zo_datasets, 6141 ztest_opts.zo_threads, 6142 (u_longlong_t)ztest_opts.zo_time); 6143 } 6144 6145 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6146 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6147 6148 zs->zs_do_init = B_TRUE; 6149 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6150 if (ztest_opts.zo_verbose >= 1) { 6151 (void) printf("Executing older ztest for " 6152 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6153 } 6154 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6155 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6156 } else { 6157 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6158 } 6159 zs->zs_do_init = B_FALSE; 6160 6161 zs->zs_proc_start = gethrtime(); 6162 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6163 6164 for (int f = 0; f < ZTEST_FUNCS; f++) { 6165 zi = &ztest_info[f]; 6166 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6167 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6168 zc->zc_next = UINT64_MAX; 6169 else 6170 zc->zc_next = zs->zs_proc_start + 6171 ztest_random(2 * zi->zi_interval[0] + 1); 6172 } 6173 6174 /* 6175 * Run the tests in a loop. These tests include fault injection 6176 * to verify that self-healing data works, and forced crashes 6177 * to verify that we never lose on-disk consistency. 6178 */ 6179 while (gethrtime() < zs->zs_proc_stop) { 6180 int status; 6181 boolean_t killed; 6182 6183 /* 6184 * Initialize the workload counters for each function. 6185 */ 6186 for (int f = 0; f < ZTEST_FUNCS; f++) { 6187 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6188 zc->zc_count = 0; 6189 zc->zc_time = 0; 6190 } 6191 6192 /* Set the allocation switch size */ 6193 zs->zs_metaslab_df_alloc_threshold = 6194 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6195 6196 if (!hasalt || ztest_random(2) == 0) { 6197 if (hasalt && ztest_opts.zo_verbose >= 1) { 6198 (void) printf("Executing newer ztest: %s\n", 6199 cmd); 6200 } 6201 newer++; 6202 killed = exec_child(cmd, NULL, B_TRUE, &status); 6203 } else { 6204 if (hasalt && ztest_opts.zo_verbose >= 1) { 6205 (void) printf("Executing older ztest: %s\n", 6206 ztest_opts.zo_alt_ztest); 6207 } 6208 older++; 6209 killed = exec_child(ztest_opts.zo_alt_ztest, 6210 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6211 } 6212 6213 if (killed) 6214 kills++; 6215 iters++; 6216 6217 if (ztest_opts.zo_verbose >= 1) { 6218 hrtime_t now = gethrtime(); 6219 6220 now = MIN(now, zs->zs_proc_stop); 6221 print_time(zs->zs_proc_stop - now, timebuf); 6222 nicenum(zs->zs_space, numbuf); 6223 6224 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6225 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6226 iters, 6227 WIFEXITED(status) ? "Complete" : "SIGKILL", 6228 (u_longlong_t)zs->zs_enospc_count, 6229 100.0 * zs->zs_alloc / zs->zs_space, 6230 numbuf, 6231 100.0 * (now - zs->zs_proc_start) / 6232 (ztest_opts.zo_time * NANOSEC), timebuf); 6233 } 6234 6235 if (ztest_opts.zo_verbose >= 2) { 6236 (void) printf("\nWorkload summary:\n\n"); 6237 (void) printf("%7s %9s %s\n", 6238 "Calls", "Time", "Function"); 6239 (void) printf("%7s %9s %s\n", 6240 "-----", "----", "--------"); 6241 for (int f = 0; f < ZTEST_FUNCS; f++) { 6242 Dl_info dli; 6243 6244 zi = &ztest_info[f]; 6245 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6246 print_time(zc->zc_time, timebuf); 6247 (void) dladdr((void *)zi->zi_func, &dli); 6248 (void) printf("%7llu %9s %s\n", 6249 (u_longlong_t)zc->zc_count, timebuf, 6250 dli.dli_sname); 6251 } 6252 (void) printf("\n"); 6253 } 6254 6255 /* 6256 * It's possible that we killed a child during a rename test, 6257 * in which case we'll have a 'ztest_tmp' pool lying around 6258 * instead of 'ztest'. Do a blind rename in case this happened. 6259 */ 6260 kernel_init(FREAD); 6261 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6262 spa_close(spa, FTAG); 6263 } else { 6264 char tmpname[MAXNAMELEN]; 6265 kernel_fini(); 6266 kernel_init(FREAD | FWRITE); 6267 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6268 ztest_opts.zo_pool); 6269 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6270 } 6271 kernel_fini(); 6272 6273 ztest_run_zdb(ztest_opts.zo_pool); 6274 } 6275 6276 if (ztest_opts.zo_verbose >= 1) { 6277 if (hasalt) { 6278 (void) printf("%d runs of older ztest: %s\n", older, 6279 ztest_opts.zo_alt_ztest); 6280 (void) printf("%d runs of newer ztest: %s\n", newer, 6281 cmd); 6282 } 6283 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6284 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6285 } 6286 6287 umem_free(cmd, MAXNAMELEN); 6288 6289 return (0); 6290 } 6291