1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zio_checksum.h> 90 #include <sys/zio_compress.h> 91 #include <sys/zil.h> 92 #include <sys/vdev_impl.h> 93 #include <sys/vdev_file.h> 94 #include <sys/spa_impl.h> 95 #include <sys/dsl_prop.h> 96 #include <sys/dsl_dataset.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 109 static char cmdname[] = "ztest"; 110 static char *zopt_pool = cmdname; 111 112 static uint64_t zopt_vdevs = 5; 113 static uint64_t zopt_vdevtime; 114 static int zopt_ashift = SPA_MINBLOCKSHIFT; 115 static int zopt_mirrors = 2; 116 static int zopt_raidz = 4; 117 static int zopt_raidz_parity = 1; 118 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 119 static int zopt_datasets = 7; 120 static int zopt_threads = 23; 121 static uint64_t zopt_passtime = 60; /* 60 seconds */ 122 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 123 static int zopt_verbose = 0; 124 static int zopt_init = 1; 125 static char *zopt_dir = "/tmp"; 126 static uint64_t zopt_time = 300; /* 5 minutes */ 127 static int zopt_maxfaults; 128 129 typedef struct ztest_block_tag { 130 uint64_t bt_objset; 131 uint64_t bt_object; 132 uint64_t bt_offset; 133 uint64_t bt_txg; 134 uint64_t bt_thread; 135 uint64_t bt_seq; 136 } ztest_block_tag_t; 137 138 typedef struct ztest_args { 139 char za_pool[MAXNAMELEN]; 140 spa_t *za_spa; 141 objset_t *za_os; 142 zilog_t *za_zilog; 143 thread_t za_thread; 144 uint64_t za_instance; 145 uint64_t za_random; 146 uint64_t za_diroff; 147 uint64_t za_diroff_shared; 148 uint64_t za_zil_seq; 149 hrtime_t za_start; 150 hrtime_t za_stop; 151 hrtime_t za_kill; 152 /* 153 * Thread-local variables can go here to aid debugging. 154 */ 155 ztest_block_tag_t za_rbt; 156 ztest_block_tag_t za_wbt; 157 dmu_object_info_t za_doi; 158 dmu_buf_t *za_dbuf; 159 } ztest_args_t; 160 161 typedef void ztest_func_t(ztest_args_t *); 162 163 /* 164 * Note: these aren't static because we want dladdr() to work. 165 */ 166 ztest_func_t ztest_dmu_read_write; 167 ztest_func_t ztest_dmu_read_write_zcopy; 168 ztest_func_t ztest_dmu_write_parallel; 169 ztest_func_t ztest_dmu_object_alloc_free; 170 ztest_func_t ztest_zap; 171 ztest_func_t ztest_zap_parallel; 172 ztest_func_t ztest_traverse; 173 ztest_func_t ztest_dsl_prop_get_set; 174 ztest_func_t ztest_dmu_objset_create_destroy; 175 ztest_func_t ztest_dmu_snapshot_create_destroy; 176 ztest_func_t ztest_dsl_dataset_promote_busy; 177 ztest_func_t ztest_spa_create_destroy; 178 ztest_func_t ztest_fault_inject; 179 ztest_func_t ztest_spa_rename; 180 ztest_func_t ztest_vdev_attach_detach; 181 ztest_func_t ztest_vdev_LUN_growth; 182 ztest_func_t ztest_vdev_add_remove; 183 ztest_func_t ztest_vdev_aux_add_remove; 184 ztest_func_t ztest_scrub; 185 186 typedef struct ztest_info { 187 ztest_func_t *zi_func; /* test function */ 188 uint64_t zi_iters; /* iterations per execution */ 189 uint64_t *zi_interval; /* execute every <interval> seconds */ 190 uint64_t zi_calls; /* per-pass count */ 191 uint64_t zi_call_time; /* per-pass time */ 192 uint64_t zi_call_total; /* cumulative total */ 193 uint64_t zi_call_target; /* target cumulative total */ 194 } ztest_info_t; 195 196 uint64_t zopt_always = 0; /* all the time */ 197 uint64_t zopt_often = 1; /* every second */ 198 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 199 uint64_t zopt_rarely = 60; /* every 60 seconds */ 200 201 ztest_info_t ztest_info[] = { 202 { ztest_dmu_read_write, 1, &zopt_always }, 203 { ztest_dmu_read_write_zcopy, 1, &zopt_always }, 204 { ztest_dmu_write_parallel, 30, &zopt_always }, 205 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 206 { ztest_zap, 30, &zopt_always }, 207 { ztest_zap_parallel, 100, &zopt_always }, 208 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 209 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 210 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 211 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 212 { ztest_fault_inject, 1, &zopt_sometimes }, 213 { ztest_spa_rename, 1, &zopt_rarely }, 214 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 215 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 216 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 217 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 218 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 219 { ztest_scrub, 1, &zopt_vdevtime }, 220 }; 221 222 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 223 224 #define ZTEST_SYNC_LOCKS 16 225 226 /* 227 * Stuff we need to share writably between parent and child. 228 */ 229 typedef struct ztest_shared { 230 mutex_t zs_vdev_lock; 231 rwlock_t zs_name_lock; 232 uint64_t zs_vdev_primaries; 233 uint64_t zs_vdev_aux; 234 uint64_t zs_enospc_count; 235 hrtime_t zs_start_time; 236 hrtime_t zs_stop_time; 237 uint64_t zs_alloc; 238 uint64_t zs_space; 239 ztest_info_t zs_info[ZTEST_FUNCS]; 240 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 241 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 242 } ztest_shared_t; 243 244 static char ztest_dev_template[] = "%s/%s.%llua"; 245 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 246 static ztest_shared_t *ztest_shared; 247 248 static int ztest_random_fd; 249 static int ztest_dump_core = 1; 250 251 static uint64_t metaslab_sz; 252 static boolean_t ztest_exiting; 253 254 extern uint64_t metaslab_gang_bang; 255 extern uint64_t metaslab_df_alloc_threshold; 256 257 #define ZTEST_DIROBJ 1 258 #define ZTEST_MICROZAP_OBJ 2 259 #define ZTEST_FATZAP_OBJ 3 260 261 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 262 #define ZTEST_DIRSIZE 256 263 264 static void usage(boolean_t) __NORETURN; 265 266 /* 267 * These libumem hooks provide a reasonable set of defaults for the allocator's 268 * debugging facilities. 269 */ 270 const char * 271 _umem_debug_init() 272 { 273 return ("default,verbose"); /* $UMEM_DEBUG setting */ 274 } 275 276 const char * 277 _umem_logging_init(void) 278 { 279 return ("fail,contents"); /* $UMEM_LOGGING setting */ 280 } 281 282 #define FATAL_MSG_SZ 1024 283 284 char *fatal_msg; 285 286 static void 287 fatal(int do_perror, char *message, ...) 288 { 289 va_list args; 290 int save_errno = errno; 291 char buf[FATAL_MSG_SZ]; 292 293 (void) fflush(stdout); 294 295 va_start(args, message); 296 (void) sprintf(buf, "ztest: "); 297 /* LINTED */ 298 (void) vsprintf(buf + strlen(buf), message, args); 299 va_end(args); 300 if (do_perror) { 301 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 302 ": %s", strerror(save_errno)); 303 } 304 (void) fprintf(stderr, "%s\n", buf); 305 fatal_msg = buf; /* to ease debugging */ 306 if (ztest_dump_core) 307 abort(); 308 exit(3); 309 } 310 311 static int 312 str2shift(const char *buf) 313 { 314 const char *ends = "BKMGTPEZ"; 315 int i; 316 317 if (buf[0] == '\0') 318 return (0); 319 for (i = 0; i < strlen(ends); i++) { 320 if (toupper(buf[0]) == ends[i]) 321 break; 322 } 323 if (i == strlen(ends)) { 324 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 325 buf); 326 usage(B_FALSE); 327 } 328 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 329 return (10*i); 330 } 331 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 332 usage(B_FALSE); 333 /* NOTREACHED */ 334 } 335 336 static uint64_t 337 nicenumtoull(const char *buf) 338 { 339 char *end; 340 uint64_t val; 341 342 val = strtoull(buf, &end, 0); 343 if (end == buf) { 344 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 345 usage(B_FALSE); 346 } else if (end[0] == '.') { 347 double fval = strtod(buf, &end); 348 fval *= pow(2, str2shift(end)); 349 if (fval > UINT64_MAX) { 350 (void) fprintf(stderr, "ztest: value too large: %s\n", 351 buf); 352 usage(B_FALSE); 353 } 354 val = (uint64_t)fval; 355 } else { 356 int shift = str2shift(end); 357 if (shift >= 64 || (val << shift) >> shift != val) { 358 (void) fprintf(stderr, "ztest: value too large: %s\n", 359 buf); 360 usage(B_FALSE); 361 } 362 val <<= shift; 363 } 364 return (val); 365 } 366 367 static void 368 usage(boolean_t requested) 369 { 370 char nice_vdev_size[10]; 371 char nice_gang_bang[10]; 372 FILE *fp = requested ? stdout : stderr; 373 374 nicenum(zopt_vdev_size, nice_vdev_size); 375 nicenum(metaslab_gang_bang, nice_gang_bang); 376 377 (void) fprintf(fp, "Usage: %s\n" 378 "\t[-v vdevs (default: %llu)]\n" 379 "\t[-s size_of_each_vdev (default: %s)]\n" 380 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 381 "\t[-m mirror_copies (default: %d)]\n" 382 "\t[-r raidz_disks (default: %d)]\n" 383 "\t[-R raidz_parity (default: %d)]\n" 384 "\t[-d datasets (default: %d)]\n" 385 "\t[-t threads (default: %d)]\n" 386 "\t[-g gang_block_threshold (default: %s)]\n" 387 "\t[-i initialize pool i times (default: %d)]\n" 388 "\t[-k kill percentage (default: %llu%%)]\n" 389 "\t[-p pool_name (default: %s)]\n" 390 "\t[-f file directory for vdev files (default: %s)]\n" 391 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 392 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 393 "\t[-T time] total run time (default: %llu sec)\n" 394 "\t[-P passtime] time per pass (default: %llu sec)\n" 395 "\t[-h] (print help)\n" 396 "", 397 cmdname, 398 (u_longlong_t)zopt_vdevs, /* -v */ 399 nice_vdev_size, /* -s */ 400 zopt_ashift, /* -a */ 401 zopt_mirrors, /* -m */ 402 zopt_raidz, /* -r */ 403 zopt_raidz_parity, /* -R */ 404 zopt_datasets, /* -d */ 405 zopt_threads, /* -t */ 406 nice_gang_bang, /* -g */ 407 zopt_init, /* -i */ 408 (u_longlong_t)zopt_killrate, /* -k */ 409 zopt_pool, /* -p */ 410 zopt_dir, /* -f */ 411 (u_longlong_t)zopt_time, /* -T */ 412 (u_longlong_t)zopt_passtime); /* -P */ 413 exit(requested ? 0 : 1); 414 } 415 416 static uint64_t 417 ztest_random(uint64_t range) 418 { 419 uint64_t r; 420 421 if (range == 0) 422 return (0); 423 424 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 425 fatal(1, "short read from /dev/urandom"); 426 427 return (r % range); 428 } 429 430 /* ARGSUSED */ 431 static void 432 ztest_record_enospc(char *s) 433 { 434 ztest_shared->zs_enospc_count++; 435 } 436 437 static void 438 process_options(int argc, char **argv) 439 { 440 int opt; 441 uint64_t value; 442 443 /* By default, test gang blocks for blocks 32K and greater */ 444 metaslab_gang_bang = 32 << 10; 445 446 while ((opt = getopt(argc, argv, 447 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 448 value = 0; 449 switch (opt) { 450 case 'v': 451 case 's': 452 case 'a': 453 case 'm': 454 case 'r': 455 case 'R': 456 case 'd': 457 case 't': 458 case 'g': 459 case 'i': 460 case 'k': 461 case 'T': 462 case 'P': 463 value = nicenumtoull(optarg); 464 } 465 switch (opt) { 466 case 'v': 467 zopt_vdevs = value; 468 break; 469 case 's': 470 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 471 break; 472 case 'a': 473 zopt_ashift = value; 474 break; 475 case 'm': 476 zopt_mirrors = value; 477 break; 478 case 'r': 479 zopt_raidz = MAX(1, value); 480 break; 481 case 'R': 482 zopt_raidz_parity = MIN(MAX(value, 1), 3); 483 break; 484 case 'd': 485 zopt_datasets = MAX(1, value); 486 break; 487 case 't': 488 zopt_threads = MAX(1, value); 489 break; 490 case 'g': 491 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 492 break; 493 case 'i': 494 zopt_init = value; 495 break; 496 case 'k': 497 zopt_killrate = value; 498 break; 499 case 'p': 500 zopt_pool = strdup(optarg); 501 break; 502 case 'f': 503 zopt_dir = strdup(optarg); 504 break; 505 case 'V': 506 zopt_verbose++; 507 break; 508 case 'E': 509 zopt_init = 0; 510 break; 511 case 'T': 512 zopt_time = value; 513 break; 514 case 'P': 515 zopt_passtime = MAX(1, value); 516 break; 517 case 'h': 518 usage(B_TRUE); 519 break; 520 case '?': 521 default: 522 usage(B_FALSE); 523 break; 524 } 525 } 526 527 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 528 529 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 530 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 531 } 532 533 static uint64_t 534 ztest_get_ashift(void) 535 { 536 if (zopt_ashift == 0) 537 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 538 return (zopt_ashift); 539 } 540 541 static nvlist_t * 542 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 543 { 544 char pathbuf[MAXPATHLEN]; 545 uint64_t vdev; 546 nvlist_t *file; 547 548 if (ashift == 0) 549 ashift = ztest_get_ashift(); 550 551 if (path == NULL) { 552 path = pathbuf; 553 554 if (aux != NULL) { 555 vdev = ztest_shared->zs_vdev_aux; 556 (void) sprintf(path, ztest_aux_template, 557 zopt_dir, zopt_pool, aux, vdev); 558 } else { 559 vdev = ztest_shared->zs_vdev_primaries++; 560 (void) sprintf(path, ztest_dev_template, 561 zopt_dir, zopt_pool, vdev); 562 } 563 } 564 565 if (size != 0) { 566 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 567 if (fd == -1) 568 fatal(1, "can't open %s", path); 569 if (ftruncate(fd, size) != 0) 570 fatal(1, "can't ftruncate %s", path); 571 (void) close(fd); 572 } 573 574 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 575 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 576 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 577 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 578 579 return (file); 580 } 581 582 static nvlist_t * 583 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 584 { 585 nvlist_t *raidz, **child; 586 int c; 587 588 if (r < 2) 589 return (make_vdev_file(path, aux, size, ashift)); 590 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 591 592 for (c = 0; c < r; c++) 593 child[c] = make_vdev_file(path, aux, size, ashift); 594 595 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 596 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 597 VDEV_TYPE_RAIDZ) == 0); 598 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 599 zopt_raidz_parity) == 0); 600 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 601 child, r) == 0); 602 603 for (c = 0; c < r; c++) 604 nvlist_free(child[c]); 605 606 umem_free(child, r * sizeof (nvlist_t *)); 607 608 return (raidz); 609 } 610 611 static nvlist_t * 612 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 613 int r, int m) 614 { 615 nvlist_t *mirror, **child; 616 int c; 617 618 if (m < 1) 619 return (make_vdev_raidz(path, aux, size, ashift, r)); 620 621 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 622 623 for (c = 0; c < m; c++) 624 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 625 626 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 627 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 628 VDEV_TYPE_MIRROR) == 0); 629 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 630 child, m) == 0); 631 632 for (c = 0; c < m; c++) 633 nvlist_free(child[c]); 634 635 umem_free(child, m * sizeof (nvlist_t *)); 636 637 return (mirror); 638 } 639 640 static nvlist_t * 641 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 642 int log, int r, int m, int t) 643 { 644 nvlist_t *root, **child; 645 int c; 646 647 ASSERT(t > 0); 648 649 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 650 651 for (c = 0; c < t; c++) { 652 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 653 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 654 log) == 0); 655 } 656 657 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 658 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 659 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 660 child, t) == 0); 661 662 for (c = 0; c < t; c++) 663 nvlist_free(child[c]); 664 665 umem_free(child, t * sizeof (nvlist_t *)); 666 667 return (root); 668 } 669 670 static void 671 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 672 { 673 int bs = SPA_MINBLOCKSHIFT + 674 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 675 int ibs = DN_MIN_INDBLKSHIFT + 676 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 677 int error; 678 679 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 680 if (error) { 681 char osname[300]; 682 dmu_objset_name(os, osname); 683 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 684 osname, object, 1 << bs, ibs, error); 685 } 686 } 687 688 static uint8_t 689 ztest_random_checksum(void) 690 { 691 uint8_t checksum; 692 693 do { 694 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 695 } while (zio_checksum_table[checksum].ci_zbt); 696 697 if (checksum == ZIO_CHECKSUM_OFF) 698 checksum = ZIO_CHECKSUM_ON; 699 700 return (checksum); 701 } 702 703 static uint8_t 704 ztest_random_compress(void) 705 { 706 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 707 } 708 709 static int 710 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap) 711 { 712 dmu_tx_t *tx; 713 int error; 714 715 if (byteswap) 716 byteswap_uint64_array(lr, sizeof (*lr)); 717 718 tx = dmu_tx_create(os); 719 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 720 error = dmu_tx_assign(tx, TXG_WAIT); 721 if (error) { 722 dmu_tx_abort(tx); 723 return (error); 724 } 725 726 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 727 DMU_OT_NONE, 0, tx); 728 ASSERT3U(error, ==, 0); 729 dmu_tx_commit(tx); 730 731 if (zopt_verbose >= 5) { 732 char osname[MAXNAMELEN]; 733 dmu_objset_name(os, osname); 734 (void) printf("replay create of %s object %llu" 735 " in txg %llu = %d\n", 736 osname, (u_longlong_t)lr->lr_doid, 737 (u_longlong_t)dmu_tx_get_txg(tx), error); 738 } 739 740 return (error); 741 } 742 743 static int 744 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap) 745 { 746 dmu_tx_t *tx; 747 int error; 748 749 if (byteswap) 750 byteswap_uint64_array(lr, sizeof (*lr)); 751 752 tx = dmu_tx_create(os); 753 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 754 error = dmu_tx_assign(tx, TXG_WAIT); 755 if (error) { 756 dmu_tx_abort(tx); 757 return (error); 758 } 759 760 error = dmu_object_free(os, lr->lr_doid, tx); 761 dmu_tx_commit(tx); 762 763 return (error); 764 } 765 766 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 767 NULL, /* 0 no such transaction type */ 768 ztest_replay_create, /* TX_CREATE */ 769 NULL, /* TX_MKDIR */ 770 NULL, /* TX_MKXATTR */ 771 NULL, /* TX_SYMLINK */ 772 ztest_replay_remove, /* TX_REMOVE */ 773 NULL, /* TX_RMDIR */ 774 NULL, /* TX_LINK */ 775 NULL, /* TX_RENAME */ 776 NULL, /* TX_WRITE */ 777 NULL, /* TX_TRUNCATE */ 778 NULL, /* TX_SETATTR */ 779 NULL, /* TX_ACL */ 780 }; 781 782 /* 783 * Verify that we can't destroy an active pool, create an existing pool, 784 * or create a pool with a bad vdev spec. 785 */ 786 void 787 ztest_spa_create_destroy(ztest_args_t *za) 788 { 789 int error; 790 spa_t *spa; 791 nvlist_t *nvroot; 792 793 /* 794 * Attempt to create using a bad file. 795 */ 796 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 797 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 798 nvlist_free(nvroot); 799 if (error != ENOENT) 800 fatal(0, "spa_create(bad_file) = %d", error); 801 802 /* 803 * Attempt to create using a bad mirror. 804 */ 805 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 806 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 807 nvlist_free(nvroot); 808 if (error != ENOENT) 809 fatal(0, "spa_create(bad_mirror) = %d", error); 810 811 /* 812 * Attempt to create an existing pool. It shouldn't matter 813 * what's in the nvroot; we should fail with EEXIST. 814 */ 815 (void) rw_rdlock(&ztest_shared->zs_name_lock); 816 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 817 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 818 nvlist_free(nvroot); 819 if (error != EEXIST) 820 fatal(0, "spa_create(whatever) = %d", error); 821 822 error = spa_open(za->za_pool, &spa, FTAG); 823 if (error) 824 fatal(0, "spa_open() = %d", error); 825 826 error = spa_destroy(za->za_pool); 827 if (error != EBUSY) 828 fatal(0, "spa_destroy() = %d", error); 829 830 spa_close(spa, FTAG); 831 (void) rw_unlock(&ztest_shared->zs_name_lock); 832 } 833 834 static vdev_t * 835 vdev_lookup_by_path(vdev_t *vd, const char *path) 836 { 837 vdev_t *mvd; 838 839 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 840 return (vd); 841 842 for (int c = 0; c < vd->vdev_children; c++) 843 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 844 NULL) 845 return (mvd); 846 847 return (NULL); 848 } 849 850 /* 851 * Verify that vdev_add() works as expected. 852 */ 853 void 854 ztest_vdev_add_remove(ztest_args_t *za) 855 { 856 spa_t *spa = za->za_spa; 857 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 858 nvlist_t *nvroot; 859 int error; 860 861 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 862 863 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 864 865 ztest_shared->zs_vdev_primaries = 866 spa->spa_root_vdev->vdev_children * leaves; 867 868 spa_config_exit(spa, SCL_VDEV, FTAG); 869 870 /* 871 * Make 1/4 of the devices be log devices. 872 */ 873 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 874 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 875 876 error = spa_vdev_add(spa, nvroot); 877 nvlist_free(nvroot); 878 879 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 880 881 if (error == ENOSPC) 882 ztest_record_enospc("spa_vdev_add"); 883 else if (error != 0) 884 fatal(0, "spa_vdev_add() = %d", error); 885 } 886 887 /* 888 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 889 */ 890 void 891 ztest_vdev_aux_add_remove(ztest_args_t *za) 892 { 893 spa_t *spa = za->za_spa; 894 vdev_t *rvd = spa->spa_root_vdev; 895 spa_aux_vdev_t *sav; 896 char *aux; 897 uint64_t guid = 0; 898 int error; 899 900 if (ztest_random(2) == 0) { 901 sav = &spa->spa_spares; 902 aux = ZPOOL_CONFIG_SPARES; 903 } else { 904 sav = &spa->spa_l2cache; 905 aux = ZPOOL_CONFIG_L2CACHE; 906 } 907 908 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 909 910 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 911 912 if (sav->sav_count != 0 && ztest_random(4) == 0) { 913 /* 914 * Pick a random device to remove. 915 */ 916 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 917 } else { 918 /* 919 * Find an unused device we can add. 920 */ 921 ztest_shared->zs_vdev_aux = 0; 922 for (;;) { 923 char path[MAXPATHLEN]; 924 int c; 925 (void) sprintf(path, ztest_aux_template, zopt_dir, 926 zopt_pool, aux, ztest_shared->zs_vdev_aux); 927 for (c = 0; c < sav->sav_count; c++) 928 if (strcmp(sav->sav_vdevs[c]->vdev_path, 929 path) == 0) 930 break; 931 if (c == sav->sav_count && 932 vdev_lookup_by_path(rvd, path) == NULL) 933 break; 934 ztest_shared->zs_vdev_aux++; 935 } 936 } 937 938 spa_config_exit(spa, SCL_VDEV, FTAG); 939 940 if (guid == 0) { 941 /* 942 * Add a new device. 943 */ 944 nvlist_t *nvroot = make_vdev_root(NULL, aux, 945 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 946 error = spa_vdev_add(spa, nvroot); 947 if (error != 0) 948 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 949 nvlist_free(nvroot); 950 } else { 951 /* 952 * Remove an existing device. Sometimes, dirty its 953 * vdev state first to make sure we handle removal 954 * of devices that have pending state changes. 955 */ 956 if (ztest_random(2) == 0) 957 (void) vdev_online(spa, guid, 0, NULL); 958 959 error = spa_vdev_remove(spa, guid, B_FALSE); 960 if (error != 0 && error != EBUSY) 961 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 962 } 963 964 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 965 } 966 967 /* 968 * Verify that we can attach and detach devices. 969 */ 970 void 971 ztest_vdev_attach_detach(ztest_args_t *za) 972 { 973 spa_t *spa = za->za_spa; 974 spa_aux_vdev_t *sav = &spa->spa_spares; 975 vdev_t *rvd = spa->spa_root_vdev; 976 vdev_t *oldvd, *newvd, *pvd; 977 nvlist_t *root; 978 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 979 uint64_t leaf, top; 980 uint64_t ashift = ztest_get_ashift(); 981 uint64_t oldguid, pguid; 982 size_t oldsize, newsize; 983 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 984 int replacing; 985 int oldvd_has_siblings = B_FALSE; 986 int newvd_is_spare = B_FALSE; 987 int oldvd_is_log; 988 int error, expected_error; 989 990 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 991 992 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 993 994 /* 995 * Decide whether to do an attach or a replace. 996 */ 997 replacing = ztest_random(2); 998 999 /* 1000 * Pick a random top-level vdev. 1001 */ 1002 top = ztest_random(rvd->vdev_children); 1003 1004 /* 1005 * Pick a random leaf within it. 1006 */ 1007 leaf = ztest_random(leaves); 1008 1009 /* 1010 * Locate this vdev. 1011 */ 1012 oldvd = rvd->vdev_child[top]; 1013 if (zopt_mirrors >= 1) { 1014 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 1015 ASSERT(oldvd->vdev_children >= zopt_mirrors); 1016 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1017 } 1018 if (zopt_raidz > 1) { 1019 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 1020 ASSERT(oldvd->vdev_children == zopt_raidz); 1021 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1022 } 1023 1024 /* 1025 * If we're already doing an attach or replace, oldvd may be a 1026 * mirror vdev -- in which case, pick a random child. 1027 */ 1028 while (oldvd->vdev_children != 0) { 1029 oldvd_has_siblings = B_TRUE; 1030 ASSERT(oldvd->vdev_children >= 2); 1031 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 1032 } 1033 1034 oldguid = oldvd->vdev_guid; 1035 oldsize = vdev_get_min_asize(oldvd); 1036 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1037 (void) strcpy(oldpath, oldvd->vdev_path); 1038 pvd = oldvd->vdev_parent; 1039 pguid = pvd->vdev_guid; 1040 1041 /* 1042 * If oldvd has siblings, then half of the time, detach it. 1043 */ 1044 if (oldvd_has_siblings && ztest_random(2) == 0) { 1045 spa_config_exit(spa, SCL_VDEV, FTAG); 1046 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 1047 if (error != 0 && error != ENODEV && error != EBUSY && 1048 error != ENOTSUP) 1049 fatal(0, "detach (%s) returned %d", oldpath, error); 1050 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1051 return; 1052 } 1053 1054 /* 1055 * For the new vdev, choose with equal probability between the two 1056 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1057 */ 1058 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1059 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1060 newvd_is_spare = B_TRUE; 1061 (void) strcpy(newpath, newvd->vdev_path); 1062 } else { 1063 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1064 zopt_dir, zopt_pool, top * leaves + leaf); 1065 if (ztest_random(2) == 0) 1066 newpath[strlen(newpath) - 1] = 'b'; 1067 newvd = vdev_lookup_by_path(rvd, newpath); 1068 } 1069 1070 if (newvd) { 1071 newsize = vdev_get_min_asize(newvd); 1072 } else { 1073 /* 1074 * Make newsize a little bigger or smaller than oldsize. 1075 * If it's smaller, the attach should fail. 1076 * If it's larger, and we're doing a replace, 1077 * we should get dynamic LUN growth when we're done. 1078 */ 1079 newsize = 10 * oldsize / (9 + ztest_random(3)); 1080 } 1081 1082 /* 1083 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1084 * unless it's a replace; in that case any non-replacing parent is OK. 1085 * 1086 * If newvd is already part of the pool, it should fail with EBUSY. 1087 * 1088 * If newvd is too small, it should fail with EOVERFLOW. 1089 */ 1090 if (pvd->vdev_ops != &vdev_mirror_ops && 1091 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1092 pvd->vdev_ops == &vdev_replacing_ops || 1093 pvd->vdev_ops == &vdev_spare_ops)) 1094 expected_error = ENOTSUP; 1095 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1096 expected_error = ENOTSUP; 1097 else if (newvd == oldvd) 1098 expected_error = replacing ? 0 : EBUSY; 1099 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1100 expected_error = EBUSY; 1101 else if (newsize < oldsize) 1102 expected_error = EOVERFLOW; 1103 else if (ashift > oldvd->vdev_top->vdev_ashift) 1104 expected_error = EDOM; 1105 else 1106 expected_error = 0; 1107 1108 spa_config_exit(spa, SCL_VDEV, FTAG); 1109 1110 /* 1111 * Build the nvlist describing newpath. 1112 */ 1113 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1114 ashift, 0, 0, 0, 1); 1115 1116 error = spa_vdev_attach(spa, oldguid, root, replacing); 1117 1118 nvlist_free(root); 1119 1120 /* 1121 * If our parent was the replacing vdev, but the replace completed, 1122 * then instead of failing with ENOTSUP we may either succeed, 1123 * fail with ENODEV, or fail with EOVERFLOW. 1124 */ 1125 if (expected_error == ENOTSUP && 1126 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1127 expected_error = error; 1128 1129 /* 1130 * If someone grew the LUN, the replacement may be too small. 1131 */ 1132 if (error == EOVERFLOW || error == EBUSY) 1133 expected_error = error; 1134 1135 /* XXX workaround 6690467 */ 1136 if (error != expected_error && expected_error != EBUSY) { 1137 fatal(0, "attach (%s %llu, %s %llu, %d) " 1138 "returned %d, expected %d", 1139 oldpath, (longlong_t)oldsize, newpath, 1140 (longlong_t)newsize, replacing, error, expected_error); 1141 } 1142 1143 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1144 } 1145 1146 /* 1147 * Callback function which expands the physical size of the vdev. 1148 */ 1149 vdev_t * 1150 grow_vdev(vdev_t *vd, void *arg) 1151 { 1152 spa_t *spa = vd->vdev_spa; 1153 size_t *newsize = arg; 1154 size_t fsize; 1155 int fd; 1156 1157 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 1158 ASSERT(vd->vdev_ops->vdev_op_leaf); 1159 1160 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 1161 return (vd); 1162 1163 fsize = lseek(fd, 0, SEEK_END); 1164 (void) ftruncate(fd, *newsize); 1165 1166 if (zopt_verbose >= 6) { 1167 (void) printf("%s grew from %lu to %lu bytes\n", 1168 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 1169 } 1170 (void) close(fd); 1171 return (NULL); 1172 } 1173 1174 /* 1175 * Callback function which expands a given vdev by calling vdev_online(). 1176 */ 1177 /* ARGSUSED */ 1178 vdev_t * 1179 online_vdev(vdev_t *vd, void *arg) 1180 { 1181 spa_t *spa = vd->vdev_spa; 1182 vdev_t *tvd = vd->vdev_top; 1183 vdev_t *pvd = vd->vdev_parent; 1184 uint64_t guid = vd->vdev_guid; 1185 1186 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 1187 ASSERT(vd->vdev_ops->vdev_op_leaf); 1188 1189 /* Calling vdev_online will initialize the new metaslabs */ 1190 spa_config_exit(spa, SCL_STATE, spa); 1191 (void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL); 1192 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1193 1194 /* 1195 * Since we dropped the lock we need to ensure that we're 1196 * still talking to the original vdev. It's possible this 1197 * vdev may have been detached/replaced while we were 1198 * trying to online it. 1199 */ 1200 if (vd != vdev_lookup_by_guid(tvd, guid) || vd->vdev_parent != pvd) { 1201 if (zopt_verbose >= 6) { 1202 (void) printf("vdev %p has disappeared, was " 1203 "guid %llu\n", (void *)vd, (u_longlong_t)guid); 1204 } 1205 return (vd); 1206 } 1207 return (NULL); 1208 } 1209 1210 /* 1211 * Traverse the vdev tree calling the supplied function. 1212 * We continue to walk the tree until we either have walked all 1213 * children or we receive a non-NULL return from the callback. 1214 * If a NULL callback is passed, then we just return back the first 1215 * leaf vdev we encounter. 1216 */ 1217 vdev_t * 1218 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 1219 { 1220 if (vd->vdev_ops->vdev_op_leaf) { 1221 if (func == NULL) 1222 return (vd); 1223 else 1224 return (func(vd, arg)); 1225 } 1226 1227 for (uint_t c = 0; c < vd->vdev_children; c++) { 1228 vdev_t *cvd = vd->vdev_child[c]; 1229 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 1230 return (cvd); 1231 } 1232 return (NULL); 1233 } 1234 1235 /* 1236 * Verify that dynamic LUN growth works as expected. 1237 */ 1238 void 1239 ztest_vdev_LUN_growth(ztest_args_t *za) 1240 { 1241 spa_t *spa = za->za_spa; 1242 vdev_t *vd, *tvd = NULL; 1243 size_t psize, newsize; 1244 uint64_t spa_newsize, spa_cursize, ms_count; 1245 1246 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1247 mutex_enter(&spa_namespace_lock); 1248 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1249 1250 while (tvd == NULL || tvd->vdev_islog) { 1251 uint64_t vdev; 1252 1253 vdev = ztest_random(spa->spa_root_vdev->vdev_children); 1254 tvd = spa->spa_root_vdev->vdev_child[vdev]; 1255 } 1256 1257 /* 1258 * Determine the size of the first leaf vdev associated with 1259 * our top-level device. 1260 */ 1261 vd = vdev_walk_tree(tvd, NULL, NULL); 1262 ASSERT3P(vd, !=, NULL); 1263 ASSERT(vd->vdev_ops->vdev_op_leaf); 1264 1265 psize = vd->vdev_psize; 1266 1267 /* 1268 * We only try to expand the vdev if it's less than 4x its 1269 * original size and it has a valid psize. 1270 */ 1271 if (psize == 0 || psize >= 4 * zopt_vdev_size) { 1272 spa_config_exit(spa, SCL_STATE, spa); 1273 mutex_exit(&spa_namespace_lock); 1274 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1275 return; 1276 } 1277 ASSERT(psize > 0); 1278 newsize = psize + psize / 8; 1279 ASSERT3U(newsize, >, psize); 1280 1281 if (zopt_verbose >= 6) { 1282 (void) printf("Expanding vdev %s from %lu to %lu\n", 1283 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 1284 } 1285 1286 spa_cursize = spa_get_space(spa); 1287 ms_count = tvd->vdev_ms_count; 1288 1289 /* 1290 * Growing the vdev is a two step process: 1291 * 1). expand the physical size (i.e. relabel) 1292 * 2). online the vdev to create the new metaslabs 1293 */ 1294 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 1295 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 1296 tvd->vdev_state != VDEV_STATE_HEALTHY) { 1297 if (zopt_verbose >= 5) { 1298 (void) printf("Could not expand LUN because " 1299 "some vdevs were not healthy\n"); 1300 } 1301 (void) spa_config_exit(spa, SCL_STATE, spa); 1302 mutex_exit(&spa_namespace_lock); 1303 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1304 return; 1305 } 1306 1307 (void) spa_config_exit(spa, SCL_STATE, spa); 1308 mutex_exit(&spa_namespace_lock); 1309 1310 /* 1311 * Expanding the LUN will update the config asynchronously, 1312 * thus we must wait for the async thread to complete any 1313 * pending tasks before proceeding. 1314 */ 1315 mutex_enter(&spa->spa_async_lock); 1316 while (spa->spa_async_thread != NULL || spa->spa_async_tasks) 1317 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 1318 mutex_exit(&spa->spa_async_lock); 1319 1320 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1321 spa_newsize = spa_get_space(spa); 1322 1323 /* 1324 * Make sure we were able to grow the pool. 1325 */ 1326 if (ms_count >= tvd->vdev_ms_count || 1327 spa_cursize >= spa_newsize) { 1328 (void) printf("Top-level vdev metaslab count: " 1329 "before %llu, after %llu\n", 1330 (u_longlong_t)ms_count, 1331 (u_longlong_t)tvd->vdev_ms_count); 1332 fatal(0, "LUN expansion failed: before %llu, " 1333 "after %llu\n", spa_cursize, spa_newsize); 1334 } else if (zopt_verbose >= 5) { 1335 char oldnumbuf[6], newnumbuf[6]; 1336 1337 nicenum(spa_cursize, oldnumbuf); 1338 nicenum(spa_newsize, newnumbuf); 1339 (void) printf("%s grew from %s to %s\n", 1340 spa->spa_name, oldnumbuf, newnumbuf); 1341 } 1342 spa_config_exit(spa, SCL_STATE, spa); 1343 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1344 } 1345 1346 /* ARGSUSED */ 1347 static void 1348 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1349 { 1350 /* 1351 * Create the directory object. 1352 */ 1353 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1354 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1355 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1356 1357 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1358 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1359 1360 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1361 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1362 } 1363 1364 static int 1365 ztest_destroy_cb(char *name, void *arg) 1366 { 1367 ztest_args_t *za = arg; 1368 objset_t *os; 1369 dmu_object_info_t *doi = &za->za_doi; 1370 int error; 1371 1372 /* 1373 * Verify that the dataset contains a directory object. 1374 */ 1375 error = dmu_objset_hold(name, FTAG, &os); 1376 ASSERT3U(error, ==, 0); 1377 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1378 if (error != ENOENT) { 1379 /* We could have crashed in the middle of destroying it */ 1380 ASSERT3U(error, ==, 0); 1381 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1382 ASSERT3S(doi->doi_physical_blks, >=, 0); 1383 } 1384 dmu_objset_rele(os, FTAG); 1385 1386 /* 1387 * Destroy the dataset. 1388 */ 1389 error = dmu_objset_destroy(name, B_FALSE); 1390 if (error) { 1391 (void) dmu_objset_hold(name, FTAG, &os); 1392 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", os, error); 1393 } 1394 return (0); 1395 } 1396 1397 /* 1398 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1399 */ 1400 static uint64_t 1401 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1402 { 1403 itx_t *itx; 1404 lr_create_t *lr; 1405 size_t namesize; 1406 char name[24]; 1407 1408 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1409 namesize = strlen(name) + 1; 1410 1411 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1412 ztest_random(ZIL_MAX_BLKSZ)); 1413 lr = (lr_create_t *)&itx->itx_lr; 1414 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1415 lr->lr_doid = object; 1416 lr->lr_foid = 0; 1417 lr->lr_mode = mode; 1418 lr->lr_uid = 0; 1419 lr->lr_gid = 0; 1420 lr->lr_gen = dmu_tx_get_txg(tx); 1421 lr->lr_crtime[0] = time(NULL); 1422 lr->lr_crtime[1] = 0; 1423 lr->lr_rdev = 0; 1424 bcopy(name, (char *)(lr + 1), namesize); 1425 1426 return (zil_itx_assign(zilog, itx, tx)); 1427 } 1428 1429 void 1430 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1431 { 1432 int error; 1433 objset_t *os, *os2; 1434 char name[100]; 1435 zilog_t *zilog; 1436 uint64_t seq; 1437 uint64_t objects; 1438 1439 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1440 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1441 (u_longlong_t)za->za_instance); 1442 1443 /* 1444 * If this dataset exists from a previous run, process its replay log 1445 * half of the time. If we don't replay it, then dmu_objset_destroy() 1446 * (invoked from ztest_destroy_cb() below) should just throw it away. 1447 */ 1448 if (ztest_random(2) == 0 && 1449 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 1450 zil_replay(os, os, ztest_replay_vector); 1451 dmu_objset_disown(os, FTAG); 1452 } 1453 1454 /* 1455 * There may be an old instance of the dataset we're about to 1456 * create lying around from a previous run. If so, destroy it 1457 * and all of its snapshots. 1458 */ 1459 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1460 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1461 1462 /* 1463 * Verify that the destroyed dataset is no longer in the namespace. 1464 */ 1465 error = dmu_objset_hold(name, FTAG, &os); 1466 if (error != ENOENT) 1467 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1468 name, os); 1469 1470 /* 1471 * Verify that we can create a new dataset. 1472 */ 1473 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 1474 ztest_create_cb, NULL); 1475 if (error) { 1476 if (error == ENOSPC) { 1477 ztest_record_enospc("dmu_objset_create"); 1478 (void) rw_unlock(&ztest_shared->zs_name_lock); 1479 return; 1480 } 1481 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1482 } 1483 1484 error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os); 1485 if (error) { 1486 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1487 } 1488 1489 /* 1490 * Open the intent log for it. 1491 */ 1492 zilog = zil_open(os, NULL); 1493 1494 /* 1495 * Put a random number of objects in there. 1496 */ 1497 objects = ztest_random(20); 1498 seq = 0; 1499 while (objects-- != 0) { 1500 uint64_t object; 1501 dmu_tx_t *tx = dmu_tx_create(os); 1502 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1503 error = dmu_tx_assign(tx, TXG_WAIT); 1504 if (error) { 1505 dmu_tx_abort(tx); 1506 } else { 1507 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1508 DMU_OT_NONE, 0, tx); 1509 ztest_set_random_blocksize(os, object, tx); 1510 seq = ztest_log_create(zilog, tx, object, 1511 DMU_OT_UINT64_OTHER); 1512 dmu_write(os, object, 0, sizeof (name), name, tx); 1513 dmu_tx_commit(tx); 1514 } 1515 if (ztest_random(5) == 0) { 1516 zil_commit(zilog, seq, object); 1517 } 1518 if (ztest_random(100) == 0) { 1519 error = zil_suspend(zilog); 1520 if (error == 0) { 1521 zil_resume(zilog); 1522 } 1523 } 1524 } 1525 1526 /* 1527 * Verify that we cannot create an existing dataset. 1528 */ 1529 error = dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL); 1530 if (error != EEXIST) 1531 fatal(0, "created existing dataset, error = %d", error); 1532 1533 /* 1534 * Verify that we can hold an objset that is also owned. 1535 */ 1536 error = dmu_objset_hold(name, FTAG, &os2); 1537 if (error) 1538 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1539 dmu_objset_rele(os2, FTAG); 1540 1541 /* 1542 * Verify that we can not own an objset that is already owned. 1543 */ 1544 error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2); 1545 if (error != EBUSY) 1546 fatal(0, "dmu_objset_open('%s') = %d, expected EBUSY", 1547 name, error); 1548 1549 zil_close(zilog); 1550 dmu_objset_disown(os, FTAG); 1551 1552 error = dmu_objset_destroy(name, B_FALSE); 1553 if (error) 1554 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1555 1556 (void) rw_unlock(&ztest_shared->zs_name_lock); 1557 } 1558 1559 /* 1560 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1561 */ 1562 void 1563 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1564 { 1565 int error; 1566 objset_t *os = za->za_os; 1567 char snapname[100]; 1568 char osname[MAXNAMELEN]; 1569 1570 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1571 dmu_objset_name(os, osname); 1572 (void) snprintf(snapname, 100, "%s@%llu", osname, 1573 (u_longlong_t)za->za_instance); 1574 1575 error = dmu_objset_destroy(snapname, B_FALSE); 1576 if (error != 0 && error != ENOENT) 1577 fatal(0, "dmu_objset_destroy() = %d", error); 1578 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, 1579 NULL, FALSE); 1580 if (error == ENOSPC) 1581 ztest_record_enospc("dmu_take_snapshot"); 1582 else if (error != 0 && error != EEXIST) 1583 fatal(0, "dmu_take_snapshot() = %d", error); 1584 (void) rw_unlock(&ztest_shared->zs_name_lock); 1585 } 1586 1587 /* 1588 * Cleanup non-standard snapshots and clones. 1589 */ 1590 void 1591 ztest_dsl_dataset_cleanup(char *osname, uint64_t curval) 1592 { 1593 char snap1name[100]; 1594 char clone1name[100]; 1595 char snap2name[100]; 1596 char clone2name[100]; 1597 char snap3name[100]; 1598 int error; 1599 1600 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1601 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1602 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1603 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1604 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1605 1606 error = dmu_objset_destroy(clone2name, B_FALSE); 1607 if (error && error != ENOENT) 1608 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 1609 error = dmu_objset_destroy(snap3name, B_FALSE); 1610 if (error && error != ENOENT) 1611 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 1612 error = dmu_objset_destroy(snap2name, B_FALSE); 1613 if (error && error != ENOENT) 1614 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 1615 error = dmu_objset_destroy(clone1name, B_FALSE); 1616 if (error && error != ENOENT) 1617 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 1618 error = dmu_objset_destroy(snap1name, B_FALSE); 1619 if (error && error != ENOENT) 1620 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 1621 } 1622 1623 /* 1624 * Verify dsl_dataset_promote handles EBUSY 1625 */ 1626 void 1627 ztest_dsl_dataset_promote_busy(ztest_args_t *za) 1628 { 1629 int error; 1630 objset_t *os = za->za_os; 1631 objset_t *clone; 1632 dsl_dataset_t *ds; 1633 char snap1name[100]; 1634 char clone1name[100]; 1635 char snap2name[100]; 1636 char clone2name[100]; 1637 char snap3name[100]; 1638 char osname[MAXNAMELEN]; 1639 uint64_t curval = za->za_instance; 1640 1641 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1642 1643 dmu_objset_name(os, osname); 1644 ztest_dsl_dataset_cleanup(osname, curval); 1645 1646 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1647 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1648 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1649 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1650 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1651 1652 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 1653 NULL, FALSE); 1654 if (error && error != EEXIST) { 1655 if (error == ENOSPC) { 1656 ztest_record_enospc("dmu_take_snapshot"); 1657 goto out; 1658 } 1659 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 1660 } 1661 1662 error = dmu_objset_hold(snap1name, FTAG, &clone); 1663 if (error) 1664 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 1665 1666 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 1667 dmu_objset_rele(clone, FTAG); 1668 if (error) { 1669 if (error == ENOSPC) { 1670 ztest_record_enospc("dmu_objset_create"); 1671 goto out; 1672 } 1673 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 1674 } 1675 1676 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 1677 NULL, FALSE); 1678 if (error && error != EEXIST) { 1679 if (error == ENOSPC) { 1680 ztest_record_enospc("dmu_take_snapshot"); 1681 goto out; 1682 } 1683 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 1684 } 1685 1686 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 1687 NULL, FALSE); 1688 if (error && error != EEXIST) { 1689 if (error == ENOSPC) { 1690 ztest_record_enospc("dmu_take_snapshot"); 1691 goto out; 1692 } 1693 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1694 } 1695 1696 error = dmu_objset_hold(snap3name, FTAG, &clone); 1697 if (error) 1698 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1699 1700 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 1701 dmu_objset_rele(clone, FTAG); 1702 if (error) { 1703 if (error == ENOSPC) { 1704 ztest_record_enospc("dmu_objset_create"); 1705 goto out; 1706 } 1707 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 1708 } 1709 1710 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 1711 if (error) 1712 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 1713 error = dsl_dataset_promote(clone2name); 1714 if (error != EBUSY) 1715 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 1716 error); 1717 dsl_dataset_disown(ds, FTAG); 1718 1719 out: 1720 ztest_dsl_dataset_cleanup(osname, curval); 1721 1722 (void) rw_unlock(&ztest_shared->zs_name_lock); 1723 } 1724 1725 /* 1726 * Verify that dmu_object_{alloc,free} work as expected. 1727 */ 1728 void 1729 ztest_dmu_object_alloc_free(ztest_args_t *za) 1730 { 1731 objset_t *os = za->za_os; 1732 dmu_buf_t *db; 1733 dmu_tx_t *tx; 1734 uint64_t batchobj, object, batchsize, endoff, temp; 1735 int b, c, error, bonuslen; 1736 dmu_object_info_t *doi = &za->za_doi; 1737 char osname[MAXNAMELEN]; 1738 1739 dmu_objset_name(os, osname); 1740 1741 endoff = -8ULL; 1742 batchsize = 2; 1743 1744 /* 1745 * Create a batch object if necessary, and record it in the directory. 1746 */ 1747 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1748 sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH)); 1749 if (batchobj == 0) { 1750 tx = dmu_tx_create(os); 1751 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1752 sizeof (uint64_t)); 1753 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1754 error = dmu_tx_assign(tx, TXG_WAIT); 1755 if (error) { 1756 ztest_record_enospc("create a batch object"); 1757 dmu_tx_abort(tx); 1758 return; 1759 } 1760 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1761 DMU_OT_NONE, 0, tx); 1762 ztest_set_random_blocksize(os, batchobj, tx); 1763 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1764 sizeof (uint64_t), &batchobj, tx); 1765 dmu_tx_commit(tx); 1766 } 1767 1768 /* 1769 * Destroy the previous batch of objects. 1770 */ 1771 for (b = 0; b < batchsize; b++) { 1772 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1773 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 1774 if (object == 0) 1775 continue; 1776 /* 1777 * Read and validate contents. 1778 * We expect the nth byte of the bonus buffer to be n. 1779 */ 1780 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1781 za->za_dbuf = db; 1782 1783 dmu_object_info_from_db(db, doi); 1784 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1785 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1786 ASSERT3S(doi->doi_physical_blks, >=, 0); 1787 1788 bonuslen = doi->doi_bonus_size; 1789 1790 for (c = 0; c < bonuslen; c++) { 1791 if (((uint8_t *)db->db_data)[c] != 1792 (uint8_t)(c + bonuslen)) { 1793 fatal(0, 1794 "bad bonus: %s, obj %llu, off %d: %u != %u", 1795 osname, object, c, 1796 ((uint8_t *)db->db_data)[c], 1797 (uint8_t)(c + bonuslen)); 1798 } 1799 } 1800 1801 dmu_buf_rele(db, FTAG); 1802 za->za_dbuf = NULL; 1803 1804 /* 1805 * We expect the word at endoff to be our object number. 1806 */ 1807 VERIFY(0 == dmu_read(os, object, endoff, 1808 sizeof (uint64_t), &temp, DMU_READ_PREFETCH)); 1809 1810 if (temp != object) { 1811 fatal(0, "bad data in %s, got %llu, expected %llu", 1812 osname, temp, object); 1813 } 1814 1815 /* 1816 * Destroy old object and clear batch entry. 1817 */ 1818 tx = dmu_tx_create(os); 1819 dmu_tx_hold_write(tx, batchobj, 1820 b * sizeof (uint64_t), sizeof (uint64_t)); 1821 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1822 error = dmu_tx_assign(tx, TXG_WAIT); 1823 if (error) { 1824 ztest_record_enospc("free object"); 1825 dmu_tx_abort(tx); 1826 return; 1827 } 1828 error = dmu_object_free(os, object, tx); 1829 if (error) { 1830 fatal(0, "dmu_object_free('%s', %llu) = %d", 1831 osname, object, error); 1832 } 1833 object = 0; 1834 1835 dmu_object_set_checksum(os, batchobj, 1836 ztest_random_checksum(), tx); 1837 dmu_object_set_compress(os, batchobj, 1838 ztest_random_compress(), tx); 1839 1840 dmu_write(os, batchobj, b * sizeof (uint64_t), 1841 sizeof (uint64_t), &object, tx); 1842 1843 dmu_tx_commit(tx); 1844 } 1845 1846 /* 1847 * Before creating the new batch of objects, generate a bunch of churn. 1848 */ 1849 for (b = ztest_random(100); b > 0; b--) { 1850 tx = dmu_tx_create(os); 1851 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1852 error = dmu_tx_assign(tx, TXG_WAIT); 1853 if (error) { 1854 ztest_record_enospc("churn objects"); 1855 dmu_tx_abort(tx); 1856 return; 1857 } 1858 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1859 DMU_OT_NONE, 0, tx); 1860 ztest_set_random_blocksize(os, object, tx); 1861 error = dmu_object_free(os, object, tx); 1862 if (error) { 1863 fatal(0, "dmu_object_free('%s', %llu) = %d", 1864 osname, object, error); 1865 } 1866 dmu_tx_commit(tx); 1867 } 1868 1869 /* 1870 * Create a new batch of objects with randomly chosen 1871 * blocksizes and record them in the batch directory. 1872 */ 1873 for (b = 0; b < batchsize; b++) { 1874 uint32_t va_blksize; 1875 u_longlong_t va_nblocks; 1876 1877 tx = dmu_tx_create(os); 1878 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1879 sizeof (uint64_t)); 1880 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1881 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1882 sizeof (uint64_t)); 1883 error = dmu_tx_assign(tx, TXG_WAIT); 1884 if (error) { 1885 ztest_record_enospc("create batchobj"); 1886 dmu_tx_abort(tx); 1887 return; 1888 } 1889 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1890 1891 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1892 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1893 1894 ztest_set_random_blocksize(os, object, tx); 1895 1896 dmu_object_set_checksum(os, object, 1897 ztest_random_checksum(), tx); 1898 dmu_object_set_compress(os, object, 1899 ztest_random_compress(), tx); 1900 1901 dmu_write(os, batchobj, b * sizeof (uint64_t), 1902 sizeof (uint64_t), &object, tx); 1903 1904 /* 1905 * Write to both the bonus buffer and the regular data. 1906 */ 1907 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1908 za->za_dbuf = db; 1909 ASSERT3U(bonuslen, <=, db->db_size); 1910 1911 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1912 ASSERT3S(va_nblocks, >=, 0); 1913 1914 dmu_buf_will_dirty(db, tx); 1915 1916 /* 1917 * See comments above regarding the contents of 1918 * the bonus buffer and the word at endoff. 1919 */ 1920 for (c = 0; c < bonuslen; c++) 1921 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1922 1923 dmu_buf_rele(db, FTAG); 1924 za->za_dbuf = NULL; 1925 1926 /* 1927 * Write to a large offset to increase indirection. 1928 */ 1929 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1930 1931 dmu_tx_commit(tx); 1932 } 1933 } 1934 1935 /* 1936 * Verify that dmu_{read,write} work as expected. 1937 */ 1938 typedef struct bufwad { 1939 uint64_t bw_index; 1940 uint64_t bw_txg; 1941 uint64_t bw_data; 1942 } bufwad_t; 1943 1944 typedef struct dmu_read_write_dir { 1945 uint64_t dd_packobj; 1946 uint64_t dd_bigobj; 1947 uint64_t dd_chunk; 1948 } dmu_read_write_dir_t; 1949 1950 void 1951 ztest_dmu_read_write(ztest_args_t *za) 1952 { 1953 objset_t *os = za->za_os; 1954 dmu_read_write_dir_t dd; 1955 dmu_tx_t *tx; 1956 int i, freeit, error; 1957 uint64_t n, s, txg; 1958 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1959 uint64_t packoff, packsize, bigoff, bigsize; 1960 uint64_t regions = 997; 1961 uint64_t stride = 123456789ULL; 1962 uint64_t width = 40; 1963 int free_percent = 5; 1964 1965 /* 1966 * This test uses two objects, packobj and bigobj, that are always 1967 * updated together (i.e. in the same tx) so that their contents are 1968 * in sync and can be compared. Their contents relate to each other 1969 * in a simple way: packobj is a dense array of 'bufwad' structures, 1970 * while bigobj is a sparse array of the same bufwads. Specifically, 1971 * for any index n, there are three bufwads that should be identical: 1972 * 1973 * packobj, at offset n * sizeof (bufwad_t) 1974 * bigobj, at the head of the nth chunk 1975 * bigobj, at the tail of the nth chunk 1976 * 1977 * The chunk size is arbitrary. It doesn't have to be a power of two, 1978 * and it doesn't have any relation to the object blocksize. 1979 * The only requirement is that it can hold at least two bufwads. 1980 * 1981 * Normally, we write the bufwad to each of these locations. 1982 * However, free_percent of the time we instead write zeroes to 1983 * packobj and perform a dmu_free_range() on bigobj. By comparing 1984 * bigobj to packobj, we can verify that the DMU is correctly 1985 * tracking which parts of an object are allocated and free, 1986 * and that the contents of the allocated blocks are correct. 1987 */ 1988 1989 /* 1990 * Read the directory info. If it's the first time, set things up. 1991 */ 1992 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1993 sizeof (dd), &dd, DMU_READ_PREFETCH)); 1994 if (dd.dd_chunk == 0) { 1995 ASSERT(dd.dd_packobj == 0); 1996 ASSERT(dd.dd_bigobj == 0); 1997 tx = dmu_tx_create(os); 1998 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1999 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2000 error = dmu_tx_assign(tx, TXG_WAIT); 2001 if (error) { 2002 ztest_record_enospc("create r/w directory"); 2003 dmu_tx_abort(tx); 2004 return; 2005 } 2006 2007 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2008 DMU_OT_NONE, 0, tx); 2009 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2010 DMU_OT_NONE, 0, tx); 2011 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 2012 2013 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2014 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2015 2016 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2017 tx); 2018 dmu_tx_commit(tx); 2019 } 2020 2021 /* 2022 * Prefetch a random chunk of the big object. 2023 * Our aim here is to get some async reads in flight 2024 * for blocks that we may free below; the DMU should 2025 * handle this race correctly. 2026 */ 2027 n = ztest_random(regions) * stride + ztest_random(width); 2028 s = 1 + ztest_random(2 * width - 1); 2029 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 2030 2031 /* 2032 * Pick a random index and compute the offsets into packobj and bigobj. 2033 */ 2034 n = ztest_random(regions) * stride + ztest_random(width); 2035 s = 1 + ztest_random(width - 1); 2036 2037 packoff = n * sizeof (bufwad_t); 2038 packsize = s * sizeof (bufwad_t); 2039 2040 bigoff = n * dd.dd_chunk; 2041 bigsize = s * dd.dd_chunk; 2042 2043 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 2044 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 2045 2046 /* 2047 * free_percent of the time, free a range of bigobj rather than 2048 * overwriting it. 2049 */ 2050 freeit = (ztest_random(100) < free_percent); 2051 2052 /* 2053 * Read the current contents of our objects. 2054 */ 2055 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf, 2056 DMU_READ_PREFETCH); 2057 ASSERT3U(error, ==, 0); 2058 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, 2059 DMU_READ_PREFETCH); 2060 ASSERT3U(error, ==, 0); 2061 2062 /* 2063 * Get a tx for the mods to both packobj and bigobj. 2064 */ 2065 tx = dmu_tx_create(os); 2066 2067 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2068 2069 if (freeit) 2070 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 2071 else 2072 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2073 2074 error = dmu_tx_assign(tx, TXG_WAIT); 2075 2076 if (error) { 2077 ztest_record_enospc("dmu r/w range"); 2078 dmu_tx_abort(tx); 2079 umem_free(packbuf, packsize); 2080 umem_free(bigbuf, bigsize); 2081 return; 2082 } 2083 2084 txg = dmu_tx_get_txg(tx); 2085 2086 /* 2087 * For each index from n to n + s, verify that the existing bufwad 2088 * in packobj matches the bufwads at the head and tail of the 2089 * corresponding chunk in bigobj. Then update all three bufwads 2090 * with the new values we want to write out. 2091 */ 2092 for (i = 0; i < s; i++) { 2093 /* LINTED */ 2094 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2095 /* LINTED */ 2096 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2097 /* LINTED */ 2098 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2099 2100 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2101 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2102 2103 if (pack->bw_txg > txg) 2104 fatal(0, "future leak: got %llx, open txg is %llx", 2105 pack->bw_txg, txg); 2106 2107 if (pack->bw_data != 0 && pack->bw_index != n + i) 2108 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2109 pack->bw_index, n, i); 2110 2111 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2112 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2113 2114 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2115 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2116 2117 if (freeit) { 2118 bzero(pack, sizeof (bufwad_t)); 2119 } else { 2120 pack->bw_index = n + i; 2121 pack->bw_txg = txg; 2122 pack->bw_data = 1 + ztest_random(-2ULL); 2123 } 2124 *bigH = *pack; 2125 *bigT = *pack; 2126 } 2127 2128 /* 2129 * We've verified all the old bufwads, and made new ones. 2130 * Now write them out. 2131 */ 2132 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2133 2134 if (freeit) { 2135 if (zopt_verbose >= 6) { 2136 (void) printf("freeing offset %llx size %llx" 2137 " txg %llx\n", 2138 (u_longlong_t)bigoff, 2139 (u_longlong_t)bigsize, 2140 (u_longlong_t)txg); 2141 } 2142 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 2143 bigsize, tx)); 2144 } else { 2145 if (zopt_verbose >= 6) { 2146 (void) printf("writing offset %llx size %llx" 2147 " txg %llx\n", 2148 (u_longlong_t)bigoff, 2149 (u_longlong_t)bigsize, 2150 (u_longlong_t)txg); 2151 } 2152 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 2153 } 2154 2155 dmu_tx_commit(tx); 2156 2157 /* 2158 * Sanity check the stuff we just wrote. 2159 */ 2160 { 2161 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2162 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2163 2164 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2165 packsize, packcheck, DMU_READ_PREFETCH)); 2166 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2167 bigsize, bigcheck, DMU_READ_PREFETCH)); 2168 2169 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2170 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2171 2172 umem_free(packcheck, packsize); 2173 umem_free(bigcheck, bigsize); 2174 } 2175 2176 umem_free(packbuf, packsize); 2177 umem_free(bigbuf, bigsize); 2178 } 2179 2180 void 2181 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 2182 uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg) 2183 { 2184 uint64_t i; 2185 bufwad_t *pack; 2186 bufwad_t *bigH; 2187 bufwad_t *bigT; 2188 2189 /* 2190 * For each index from n to n + s, verify that the existing bufwad 2191 * in packobj matches the bufwads at the head and tail of the 2192 * corresponding chunk in bigobj. Then update all three bufwads 2193 * with the new values we want to write out. 2194 */ 2195 for (i = 0; i < s; i++) { 2196 /* LINTED */ 2197 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2198 /* LINTED */ 2199 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2200 /* LINTED */ 2201 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2202 2203 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2204 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2205 2206 if (pack->bw_txg > txg) 2207 fatal(0, "future leak: got %llx, open txg is %llx", 2208 pack->bw_txg, txg); 2209 2210 if (pack->bw_data != 0 && pack->bw_index != n + i) 2211 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2212 pack->bw_index, n, i); 2213 2214 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2215 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2216 2217 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2218 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2219 2220 pack->bw_index = n + i; 2221 pack->bw_txg = txg; 2222 pack->bw_data = 1 + ztest_random(-2ULL); 2223 2224 *bigH = *pack; 2225 *bigT = *pack; 2226 } 2227 } 2228 2229 void 2230 ztest_dmu_read_write_zcopy(ztest_args_t *za) 2231 { 2232 objset_t *os = za->za_os; 2233 dmu_read_write_dir_t dd; 2234 dmu_tx_t *tx; 2235 uint64_t i; 2236 int error; 2237 uint64_t n, s, txg; 2238 bufwad_t *packbuf, *bigbuf; 2239 uint64_t packoff, packsize, bigoff, bigsize; 2240 uint64_t regions = 997; 2241 uint64_t stride = 123456789ULL; 2242 uint64_t width = 9; 2243 dmu_buf_t *bonus_db; 2244 arc_buf_t **bigbuf_arcbufs; 2245 dmu_object_info_t *doi = &za->za_doi; 2246 2247 /* 2248 * This test uses two objects, packobj and bigobj, that are always 2249 * updated together (i.e. in the same tx) so that their contents are 2250 * in sync and can be compared. Their contents relate to each other 2251 * in a simple way: packobj is a dense array of 'bufwad' structures, 2252 * while bigobj is a sparse array of the same bufwads. Specifically, 2253 * for any index n, there are three bufwads that should be identical: 2254 * 2255 * packobj, at offset n * sizeof (bufwad_t) 2256 * bigobj, at the head of the nth chunk 2257 * bigobj, at the tail of the nth chunk 2258 * 2259 * The chunk size is set equal to bigobj block size so that 2260 * dmu_assign_arcbuf() can be tested for object updates. 2261 */ 2262 2263 /* 2264 * Read the directory info. If it's the first time, set things up. 2265 */ 2266 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2267 sizeof (dd), &dd, DMU_READ_PREFETCH)); 2268 if (dd.dd_chunk == 0) { 2269 ASSERT(dd.dd_packobj == 0); 2270 ASSERT(dd.dd_bigobj == 0); 2271 tx = dmu_tx_create(os); 2272 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2273 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2274 error = dmu_tx_assign(tx, TXG_WAIT); 2275 if (error) { 2276 ztest_record_enospc("create r/w directory"); 2277 dmu_tx_abort(tx); 2278 return; 2279 } 2280 2281 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2282 DMU_OT_NONE, 0, tx); 2283 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2284 DMU_OT_NONE, 0, tx); 2285 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2286 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2287 2288 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2289 ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t)); 2290 ASSERT(ISP2(doi->doi_data_block_size)); 2291 dd.dd_chunk = doi->doi_data_block_size; 2292 2293 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2294 tx); 2295 dmu_tx_commit(tx); 2296 } else { 2297 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2298 VERIFY(ISP2(doi->doi_data_block_size)); 2299 VERIFY(dd.dd_chunk == doi->doi_data_block_size); 2300 VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t)); 2301 } 2302 2303 /* 2304 * Pick a random index and compute the offsets into packobj and bigobj. 2305 */ 2306 n = ztest_random(regions) * stride + ztest_random(width); 2307 s = 1 + ztest_random(width - 1); 2308 2309 packoff = n * sizeof (bufwad_t); 2310 packsize = s * sizeof (bufwad_t); 2311 2312 bigoff = n * dd.dd_chunk; 2313 bigsize = s * dd.dd_chunk; 2314 2315 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 2316 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 2317 2318 VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0); 2319 2320 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 2321 2322 /* 2323 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 2324 * Iteration 1 test zcopy to already referenced dbufs. 2325 * Iteration 2 test zcopy to dirty dbuf in the same txg. 2326 * Iteration 3 test zcopy to dbuf dirty in previous txg. 2327 * Iteration 4 test zcopy when dbuf is no longer dirty. 2328 * Iteration 5 test zcopy when it can't be done. 2329 * Iteration 6 one more zcopy write. 2330 */ 2331 for (i = 0; i < 7; i++) { 2332 uint64_t j; 2333 uint64_t off; 2334 2335 /* 2336 * In iteration 5 (i == 5) use arcbufs 2337 * that don't match bigobj blksz to test 2338 * dmu_assign_arcbuf() when it can't directly 2339 * assign an arcbuf to a dbuf. 2340 */ 2341 for (j = 0; j < s; j++) { 2342 if (i != 5) { 2343 bigbuf_arcbufs[j] = 2344 dmu_request_arcbuf(bonus_db, 2345 dd.dd_chunk); 2346 } else { 2347 bigbuf_arcbufs[2 * j] = 2348 dmu_request_arcbuf(bonus_db, 2349 dd.dd_chunk / 2); 2350 bigbuf_arcbufs[2 * j + 1] = 2351 dmu_request_arcbuf(bonus_db, 2352 dd.dd_chunk / 2); 2353 } 2354 } 2355 2356 /* 2357 * Get a tx for the mods to both packobj and bigobj. 2358 */ 2359 tx = dmu_tx_create(os); 2360 2361 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2362 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2363 2364 if (ztest_random(100) == 0) { 2365 error = -1; 2366 } else { 2367 error = dmu_tx_assign(tx, TXG_WAIT); 2368 } 2369 2370 if (error) { 2371 if (error != -1) { 2372 ztest_record_enospc("dmu r/w range"); 2373 } 2374 dmu_tx_abort(tx); 2375 umem_free(packbuf, packsize); 2376 umem_free(bigbuf, bigsize); 2377 for (j = 0; j < s; j++) { 2378 if (i != 5) { 2379 dmu_return_arcbuf(bigbuf_arcbufs[j]); 2380 } else { 2381 dmu_return_arcbuf( 2382 bigbuf_arcbufs[2 * j]); 2383 dmu_return_arcbuf( 2384 bigbuf_arcbufs[2 * j + 1]); 2385 } 2386 } 2387 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2388 dmu_buf_rele(bonus_db, FTAG); 2389 return; 2390 } 2391 2392 txg = dmu_tx_get_txg(tx); 2393 2394 /* 2395 * 50% of the time don't read objects in the 1st iteration to 2396 * test dmu_assign_arcbuf() for the case when there're no 2397 * existing dbufs for the specified offsets. 2398 */ 2399 if (i != 0 || ztest_random(2) != 0) { 2400 error = dmu_read(os, dd.dd_packobj, packoff, 2401 packsize, packbuf, DMU_READ_PREFETCH); 2402 ASSERT3U(error, ==, 0); 2403 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, 2404 bigbuf, DMU_READ_PREFETCH); 2405 ASSERT3U(error, ==, 0); 2406 } 2407 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 2408 n, dd, txg); 2409 2410 /* 2411 * We've verified all the old bufwads, and made new ones. 2412 * Now write them out. 2413 */ 2414 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2415 if (zopt_verbose >= 6) { 2416 (void) printf("writing offset %llx size %llx" 2417 " txg %llx\n", 2418 (u_longlong_t)bigoff, 2419 (u_longlong_t)bigsize, 2420 (u_longlong_t)txg); 2421 } 2422 for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) { 2423 dmu_buf_t *dbt; 2424 if (i != 5) { 2425 bcopy((caddr_t)bigbuf + (off - bigoff), 2426 bigbuf_arcbufs[j]->b_data, dd.dd_chunk); 2427 } else { 2428 bcopy((caddr_t)bigbuf + (off - bigoff), 2429 bigbuf_arcbufs[2 * j]->b_data, 2430 dd.dd_chunk / 2); 2431 bcopy((caddr_t)bigbuf + (off - bigoff) + 2432 dd.dd_chunk / 2, 2433 bigbuf_arcbufs[2 * j + 1]->b_data, 2434 dd.dd_chunk / 2); 2435 } 2436 2437 if (i == 1) { 2438 VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off, 2439 FTAG, &dbt) == 0); 2440 } 2441 if (i != 5) { 2442 dmu_assign_arcbuf(bonus_db, off, 2443 bigbuf_arcbufs[j], tx); 2444 } else { 2445 dmu_assign_arcbuf(bonus_db, off, 2446 bigbuf_arcbufs[2 * j], tx); 2447 dmu_assign_arcbuf(bonus_db, 2448 off + dd.dd_chunk / 2, 2449 bigbuf_arcbufs[2 * j + 1], tx); 2450 } 2451 if (i == 1) { 2452 dmu_buf_rele(dbt, FTAG); 2453 } 2454 } 2455 dmu_tx_commit(tx); 2456 2457 /* 2458 * Sanity check the stuff we just wrote. 2459 */ 2460 { 2461 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2462 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2463 2464 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2465 packsize, packcheck, DMU_READ_PREFETCH)); 2466 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2467 bigsize, bigcheck, DMU_READ_PREFETCH)); 2468 2469 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2470 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2471 2472 umem_free(packcheck, packsize); 2473 umem_free(bigcheck, bigsize); 2474 } 2475 if (i == 2) { 2476 txg_wait_open(dmu_objset_pool(os), 0); 2477 } else if (i == 3) { 2478 txg_wait_synced(dmu_objset_pool(os), 0); 2479 } 2480 } 2481 2482 dmu_buf_rele(bonus_db, FTAG); 2483 umem_free(packbuf, packsize); 2484 umem_free(bigbuf, bigsize); 2485 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2486 } 2487 2488 void 2489 ztest_dmu_check_future_leak(ztest_args_t *za) 2490 { 2491 objset_t *os = za->za_os; 2492 dmu_buf_t *db; 2493 ztest_block_tag_t *bt; 2494 dmu_object_info_t *doi = &za->za_doi; 2495 2496 /* 2497 * Make sure that, if there is a write record in the bonus buffer 2498 * of the ZTEST_DIROBJ, that the txg for this record is <= the 2499 * last synced txg of the pool. 2500 */ 2501 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2502 za->za_dbuf = db; 2503 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 2504 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 2505 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2506 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 2507 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 2508 if (bt->bt_objset != 0) { 2509 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 2510 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 2511 ASSERT3U(bt->bt_offset, ==, -1ULL); 2512 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 2513 } 2514 dmu_buf_rele(db, FTAG); 2515 za->za_dbuf = NULL; 2516 } 2517 2518 void 2519 ztest_dmu_write_parallel(ztest_args_t *za) 2520 { 2521 objset_t *os = za->za_os; 2522 ztest_block_tag_t *rbt = &za->za_rbt; 2523 ztest_block_tag_t *wbt = &za->za_wbt; 2524 const size_t btsize = sizeof (ztest_block_tag_t); 2525 dmu_buf_t *db; 2526 int b, error; 2527 int bs = ZTEST_DIROBJ_BLOCKSIZE; 2528 int do_free = 0; 2529 uint64_t off, txg, txg_how; 2530 mutex_t *lp; 2531 char osname[MAXNAMELEN]; 2532 char iobuf[SPA_MAXBLOCKSIZE]; 2533 blkptr_t blk = { 0 }; 2534 uint64_t blkoff; 2535 zbookmark_t zb; 2536 dmu_tx_t *tx = dmu_tx_create(os); 2537 dmu_buf_t *bonus_db; 2538 arc_buf_t *abuf = NULL; 2539 2540 dmu_objset_name(os, osname); 2541 2542 /* 2543 * Have multiple threads write to large offsets in ZTEST_DIROBJ 2544 * to verify that having multiple threads writing to the same object 2545 * in parallel doesn't cause any trouble. 2546 */ 2547 if (ztest_random(4) == 0) { 2548 /* 2549 * Do the bonus buffer instead of a regular block. 2550 * We need a lock to serialize resize vs. others, 2551 * so we hash on the objset ID. 2552 */ 2553 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 2554 off = -1ULL; 2555 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 2556 } else { 2557 b = ztest_random(ZTEST_SYNC_LOCKS); 2558 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 2559 if (ztest_random(4) == 0) { 2560 do_free = 1; 2561 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 2562 } else { 2563 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 2564 } 2565 } 2566 2567 if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free && 2568 ztest_random(8) == 0) { 2569 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0); 2570 abuf = dmu_request_arcbuf(bonus_db, bs); 2571 } 2572 2573 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 2574 error = dmu_tx_assign(tx, txg_how); 2575 if (error) { 2576 if (error == ERESTART) { 2577 ASSERT(txg_how == TXG_NOWAIT); 2578 dmu_tx_wait(tx); 2579 } else { 2580 ztest_record_enospc("dmu write parallel"); 2581 } 2582 dmu_tx_abort(tx); 2583 if (abuf != NULL) { 2584 dmu_return_arcbuf(abuf); 2585 dmu_buf_rele(bonus_db, FTAG); 2586 } 2587 return; 2588 } 2589 txg = dmu_tx_get_txg(tx); 2590 2591 lp = &ztest_shared->zs_sync_lock[b]; 2592 (void) mutex_lock(lp); 2593 2594 wbt->bt_objset = dmu_objset_id(os); 2595 wbt->bt_object = ZTEST_DIROBJ; 2596 wbt->bt_offset = off; 2597 wbt->bt_txg = txg; 2598 wbt->bt_thread = za->za_instance; 2599 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 2600 2601 /* 2602 * Occasionally, write an all-zero block to test the behavior 2603 * of blocks that compress into holes. 2604 */ 2605 if (off != -1ULL && ztest_random(8) == 0) 2606 bzero(wbt, btsize); 2607 2608 if (off == -1ULL) { 2609 dmu_object_info_t *doi = &za->za_doi; 2610 char *dboff; 2611 2612 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2613 za->za_dbuf = db; 2614 dmu_object_info_from_db(db, doi); 2615 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2616 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2617 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2618 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2619 bcopy(dboff, rbt, btsize); 2620 if (rbt->bt_objset != 0) { 2621 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2622 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2623 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2624 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2625 } 2626 if (ztest_random(10) == 0) { 2627 int newsize = (ztest_random(db->db_size / 2628 btsize) + 1) * btsize; 2629 2630 ASSERT3U(newsize, >=, btsize); 2631 ASSERT3U(newsize, <=, db->db_size); 2632 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2633 dboff = (char *)db->db_data + newsize - btsize; 2634 } 2635 dmu_buf_will_dirty(db, tx); 2636 bcopy(wbt, dboff, btsize); 2637 dmu_buf_rele(db, FTAG); 2638 za->za_dbuf = NULL; 2639 } else if (do_free) { 2640 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2641 } else if (abuf == NULL) { 2642 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2643 } else { 2644 bcopy(wbt, abuf->b_data, btsize); 2645 dmu_assign_arcbuf(bonus_db, off, abuf, tx); 2646 dmu_buf_rele(bonus_db, FTAG); 2647 } 2648 2649 (void) mutex_unlock(lp); 2650 2651 if (ztest_random(1000) == 0) 2652 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2653 2654 dmu_tx_commit(tx); 2655 2656 if (ztest_random(10000) == 0) 2657 txg_wait_synced(dmu_objset_pool(os), txg); 2658 2659 if (off == -1ULL || do_free) 2660 return; 2661 2662 if (ztest_random(2) != 0) 2663 return; 2664 2665 /* 2666 * dmu_sync() the block we just wrote. 2667 */ 2668 (void) mutex_lock(lp); 2669 2670 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2671 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2672 za->za_dbuf = db; 2673 if (error) { 2674 (void) mutex_unlock(lp); 2675 return; 2676 } 2677 blkoff = off - blkoff; 2678 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2679 dmu_buf_rele(db, FTAG); 2680 za->za_dbuf = NULL; 2681 2682 if (error) { 2683 (void) mutex_unlock(lp); 2684 return; 2685 } 2686 2687 if (blk.blk_birth == 0) { /* concurrent free */ 2688 (void) mutex_unlock(lp); 2689 return; 2690 } 2691 2692 txg_suspend(dmu_objset_pool(os)); 2693 2694 (void) mutex_unlock(lp); 2695 2696 ASSERT(blk.blk_fill == 1); 2697 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2698 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2699 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2700 2701 /* 2702 * Read the block that dmu_sync() returned to make sure its contents 2703 * match what we wrote. We do this while still txg_suspend()ed 2704 * to ensure that the block can't be reused before we read it. 2705 */ 2706 zb.zb_objset = dmu_objset_id(os); 2707 zb.zb_object = ZTEST_DIROBJ; 2708 zb.zb_level = 0; 2709 zb.zb_blkid = off / bs; 2710 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2711 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2712 ASSERT3U(error, ==, 0); 2713 2714 txg_resume(dmu_objset_pool(os)); 2715 2716 bcopy(&iobuf[blkoff], rbt, btsize); 2717 2718 if (rbt->bt_objset == 0) /* concurrent free */ 2719 return; 2720 2721 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2722 return; 2723 2724 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2725 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2726 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2727 2728 /* 2729 * The semantic of dmu_sync() is that we always push the most recent 2730 * version of the data, so in the face of concurrent updates we may 2731 * see a newer version of the block. That's OK. 2732 */ 2733 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2734 if (rbt->bt_thread == wbt->bt_thread) 2735 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2736 else 2737 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2738 } 2739 2740 /* 2741 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2742 */ 2743 #define ZTEST_ZAP_MIN_INTS 1 2744 #define ZTEST_ZAP_MAX_INTS 4 2745 #define ZTEST_ZAP_MAX_PROPS 1000 2746 2747 void 2748 ztest_zap(ztest_args_t *za) 2749 { 2750 objset_t *os = za->za_os; 2751 uint64_t object; 2752 uint64_t txg, last_txg; 2753 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2754 uint64_t zl_ints, zl_intsize, prop; 2755 int i, ints; 2756 dmu_tx_t *tx; 2757 char propname[100], txgname[100]; 2758 int error; 2759 char osname[MAXNAMELEN]; 2760 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2761 2762 dmu_objset_name(os, osname); 2763 2764 /* 2765 * Create a new object if necessary, and record it in the directory. 2766 */ 2767 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2768 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 2769 2770 if (object == 0) { 2771 tx = dmu_tx_create(os); 2772 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2773 sizeof (uint64_t)); 2774 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2775 error = dmu_tx_assign(tx, TXG_WAIT); 2776 if (error) { 2777 ztest_record_enospc("create zap test obj"); 2778 dmu_tx_abort(tx); 2779 return; 2780 } 2781 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2782 if (error) { 2783 fatal(0, "zap_create('%s', %llu) = %d", 2784 osname, object, error); 2785 } 2786 ASSERT(object != 0); 2787 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2788 sizeof (uint64_t), &object, tx); 2789 /* 2790 * Generate a known hash collision, and verify that 2791 * we can lookup and remove both entries. 2792 */ 2793 for (i = 0; i < 2; i++) { 2794 value[i] = i; 2795 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2796 1, &value[i], tx); 2797 ASSERT3U(error, ==, 0); 2798 } 2799 for (i = 0; i < 2; i++) { 2800 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2801 1, &value[i], tx); 2802 ASSERT3U(error, ==, EEXIST); 2803 error = zap_length(os, object, hc[i], 2804 &zl_intsize, &zl_ints); 2805 ASSERT3U(error, ==, 0); 2806 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2807 ASSERT3U(zl_ints, ==, 1); 2808 } 2809 for (i = 0; i < 2; i++) { 2810 error = zap_remove(os, object, hc[i], tx); 2811 ASSERT3U(error, ==, 0); 2812 } 2813 2814 dmu_tx_commit(tx); 2815 } 2816 2817 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2818 2819 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2820 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2821 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2822 bzero(value, sizeof (value)); 2823 last_txg = 0; 2824 2825 /* 2826 * If these zap entries already exist, validate their contents. 2827 */ 2828 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2829 if (error == 0) { 2830 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2831 ASSERT3U(zl_ints, ==, 1); 2832 2833 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2834 zl_ints, &last_txg) == 0); 2835 2836 VERIFY(zap_length(os, object, propname, &zl_intsize, 2837 &zl_ints) == 0); 2838 2839 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2840 ASSERT3U(zl_ints, ==, ints); 2841 2842 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2843 zl_ints, value) == 0); 2844 2845 for (i = 0; i < ints; i++) { 2846 ASSERT3U(value[i], ==, last_txg + object + i); 2847 } 2848 } else { 2849 ASSERT3U(error, ==, ENOENT); 2850 } 2851 2852 /* 2853 * Atomically update two entries in our zap object. 2854 * The first is named txg_%llu, and contains the txg 2855 * in which the property was last updated. The second 2856 * is named prop_%llu, and the nth element of its value 2857 * should be txg + object + n. 2858 */ 2859 tx = dmu_tx_create(os); 2860 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2861 error = dmu_tx_assign(tx, TXG_WAIT); 2862 if (error) { 2863 ztest_record_enospc("create zap entry"); 2864 dmu_tx_abort(tx); 2865 return; 2866 } 2867 txg = dmu_tx_get_txg(tx); 2868 2869 if (last_txg > txg) 2870 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2871 2872 for (i = 0; i < ints; i++) 2873 value[i] = txg + object + i; 2874 2875 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2876 if (error) 2877 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2878 osname, object, txgname, error); 2879 2880 error = zap_update(os, object, propname, sizeof (uint64_t), 2881 ints, value, tx); 2882 if (error) 2883 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2884 osname, object, propname, error); 2885 2886 dmu_tx_commit(tx); 2887 2888 /* 2889 * Remove a random pair of entries. 2890 */ 2891 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2892 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2893 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2894 2895 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2896 2897 if (error == ENOENT) 2898 return; 2899 2900 ASSERT3U(error, ==, 0); 2901 2902 tx = dmu_tx_create(os); 2903 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2904 error = dmu_tx_assign(tx, TXG_WAIT); 2905 if (error) { 2906 ztest_record_enospc("remove zap entry"); 2907 dmu_tx_abort(tx); 2908 return; 2909 } 2910 error = zap_remove(os, object, txgname, tx); 2911 if (error) 2912 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2913 osname, object, txgname, error); 2914 2915 error = zap_remove(os, object, propname, tx); 2916 if (error) 2917 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2918 osname, object, propname, error); 2919 2920 dmu_tx_commit(tx); 2921 2922 /* 2923 * Once in a while, destroy the object. 2924 */ 2925 if (ztest_random(1000) != 0) 2926 return; 2927 2928 tx = dmu_tx_create(os); 2929 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2930 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2931 error = dmu_tx_assign(tx, TXG_WAIT); 2932 if (error) { 2933 ztest_record_enospc("destroy zap object"); 2934 dmu_tx_abort(tx); 2935 return; 2936 } 2937 error = zap_destroy(os, object, tx); 2938 if (error) 2939 fatal(0, "zap_destroy('%s', %llu) = %d", 2940 osname, object, error); 2941 object = 0; 2942 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2943 &object, tx); 2944 dmu_tx_commit(tx); 2945 } 2946 2947 void 2948 ztest_zap_parallel(ztest_args_t *za) 2949 { 2950 objset_t *os = za->za_os; 2951 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2952 dmu_tx_t *tx; 2953 int i, namelen, error; 2954 char name[20], string_value[20]; 2955 void *data; 2956 2957 /* 2958 * Generate a random name of the form 'xxx.....' where each 2959 * x is a random printable character and the dots are dots. 2960 * There are 94 such characters, and the name length goes from 2961 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2962 */ 2963 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2964 2965 for (i = 0; i < 3; i++) 2966 name[i] = '!' + ztest_random('~' - '!' + 1); 2967 for (; i < namelen - 1; i++) 2968 name[i] = '.'; 2969 name[i] = '\0'; 2970 2971 if (ztest_random(2) == 0) 2972 object = ZTEST_MICROZAP_OBJ; 2973 else 2974 object = ZTEST_FATZAP_OBJ; 2975 2976 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2977 wsize = sizeof (txg); 2978 wc = 1; 2979 data = &txg; 2980 } else { 2981 wsize = 1; 2982 wc = namelen; 2983 data = string_value; 2984 } 2985 2986 count = -1ULL; 2987 VERIFY(zap_count(os, object, &count) == 0); 2988 ASSERT(count != -1ULL); 2989 2990 /* 2991 * Select an operation: length, lookup, add, update, remove. 2992 */ 2993 i = ztest_random(5); 2994 2995 if (i >= 2) { 2996 tx = dmu_tx_create(os); 2997 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2998 error = dmu_tx_assign(tx, TXG_WAIT); 2999 if (error) { 3000 ztest_record_enospc("zap parallel"); 3001 dmu_tx_abort(tx); 3002 return; 3003 } 3004 txg = dmu_tx_get_txg(tx); 3005 bcopy(name, string_value, namelen); 3006 } else { 3007 tx = NULL; 3008 txg = 0; 3009 bzero(string_value, namelen); 3010 } 3011 3012 switch (i) { 3013 3014 case 0: 3015 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3016 if (error == 0) { 3017 ASSERT3U(wsize, ==, zl_wsize); 3018 ASSERT3U(wc, ==, zl_wc); 3019 } else { 3020 ASSERT3U(error, ==, ENOENT); 3021 } 3022 break; 3023 3024 case 1: 3025 error = zap_lookup(os, object, name, wsize, wc, data); 3026 if (error == 0) { 3027 if (data == string_value && 3028 bcmp(name, data, namelen) != 0) 3029 fatal(0, "name '%s' != val '%s' len %d", 3030 name, data, namelen); 3031 } else { 3032 ASSERT3U(error, ==, ENOENT); 3033 } 3034 break; 3035 3036 case 2: 3037 error = zap_add(os, object, name, wsize, wc, data, tx); 3038 ASSERT(error == 0 || error == EEXIST); 3039 break; 3040 3041 case 3: 3042 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 3043 break; 3044 3045 case 4: 3046 error = zap_remove(os, object, name, tx); 3047 ASSERT(error == 0 || error == ENOENT); 3048 break; 3049 } 3050 3051 if (tx != NULL) 3052 dmu_tx_commit(tx); 3053 } 3054 3055 void 3056 ztest_dsl_prop_get_set(ztest_args_t *za) 3057 { 3058 objset_t *os = za->za_os; 3059 int i, inherit; 3060 uint64_t value; 3061 const char *prop, *valname; 3062 char setpoint[MAXPATHLEN]; 3063 char osname[MAXNAMELEN]; 3064 int error; 3065 3066 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3067 3068 dmu_objset_name(os, osname); 3069 3070 for (i = 0; i < 2; i++) { 3071 if (i == 0) { 3072 prop = "checksum"; 3073 value = ztest_random_checksum(); 3074 inherit = (value == ZIO_CHECKSUM_INHERIT); 3075 } else { 3076 prop = "compression"; 3077 value = ztest_random_compress(); 3078 inherit = (value == ZIO_COMPRESS_INHERIT); 3079 } 3080 3081 error = dsl_prop_set(osname, prop, sizeof (value), 3082 !inherit, &value); 3083 3084 if (error == ENOSPC) { 3085 ztest_record_enospc("dsl_prop_set"); 3086 break; 3087 } 3088 3089 ASSERT3U(error, ==, 0); 3090 3091 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 3092 1, &value, setpoint), ==, 0); 3093 3094 if (i == 0) 3095 valname = zio_checksum_table[value].ci_name; 3096 else 3097 valname = zio_compress_table[value].ci_name; 3098 3099 if (zopt_verbose >= 6) { 3100 (void) printf("%s %s = %s for '%s'\n", 3101 osname, prop, valname, setpoint); 3102 } 3103 } 3104 3105 (void) rw_unlock(&ztest_shared->zs_name_lock); 3106 } 3107 3108 /* 3109 * Inject random faults into the on-disk data. 3110 */ 3111 void 3112 ztest_fault_inject(ztest_args_t *za) 3113 { 3114 int fd; 3115 uint64_t offset; 3116 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 3117 uint64_t bad = 0x1990c0ffeedecade; 3118 uint64_t top, leaf; 3119 char path0[MAXPATHLEN]; 3120 char pathrand[MAXPATHLEN]; 3121 size_t fsize; 3122 spa_t *spa = za->za_spa; 3123 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 3124 int iters = 1000; 3125 int maxfaults = zopt_maxfaults; 3126 vdev_t *vd0 = NULL; 3127 uint64_t guid0 = 0; 3128 3129 ASSERT(leaves >= 1); 3130 3131 /* 3132 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 3133 */ 3134 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 3135 3136 if (ztest_random(2) == 0) { 3137 /* 3138 * Inject errors on a normal data device. 3139 */ 3140 top = ztest_random(spa->spa_root_vdev->vdev_children); 3141 leaf = ztest_random(leaves); 3142 3143 /* 3144 * Generate paths to the first leaf in this top-level vdev, 3145 * and to the random leaf we selected. We'll induce transient 3146 * write failures and random online/offline activity on leaf 0, 3147 * and we'll write random garbage to the randomly chosen leaf. 3148 */ 3149 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 3150 zopt_dir, zopt_pool, top * leaves + 0); 3151 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 3152 zopt_dir, zopt_pool, top * leaves + leaf); 3153 3154 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 3155 if (vd0 != NULL && maxfaults != 1) { 3156 /* 3157 * Make vd0 explicitly claim to be unreadable, 3158 * or unwriteable, or reach behind its back 3159 * and close the underlying fd. We can do this if 3160 * maxfaults == 0 because we'll fail and reexecute, 3161 * and we can do it if maxfaults >= 2 because we'll 3162 * have enough redundancy. If maxfaults == 1, the 3163 * combination of this with injection of random data 3164 * corruption below exceeds the pool's fault tolerance. 3165 */ 3166 vdev_file_t *vf = vd0->vdev_tsd; 3167 3168 if (vf != NULL && ztest_random(3) == 0) { 3169 (void) close(vf->vf_vnode->v_fd); 3170 vf->vf_vnode->v_fd = -1; 3171 } else if (ztest_random(2) == 0) { 3172 vd0->vdev_cant_read = B_TRUE; 3173 } else { 3174 vd0->vdev_cant_write = B_TRUE; 3175 } 3176 guid0 = vd0->vdev_guid; 3177 } 3178 } else { 3179 /* 3180 * Inject errors on an l2cache device. 3181 */ 3182 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3183 3184 if (sav->sav_count == 0) { 3185 spa_config_exit(spa, SCL_STATE, FTAG); 3186 return; 3187 } 3188 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3189 guid0 = vd0->vdev_guid; 3190 (void) strcpy(path0, vd0->vdev_path); 3191 (void) strcpy(pathrand, vd0->vdev_path); 3192 3193 leaf = 0; 3194 leaves = 1; 3195 maxfaults = INT_MAX; /* no limit on cache devices */ 3196 } 3197 3198 spa_config_exit(spa, SCL_STATE, FTAG); 3199 3200 if (maxfaults == 0) 3201 return; 3202 3203 /* 3204 * If we can tolerate two or more faults, randomly online/offline vd0. 3205 */ 3206 if (maxfaults >= 2 && guid0 != 0) { 3207 if (ztest_random(10) < 6) { 3208 int flags = (ztest_random(2) == 0 ? 3209 ZFS_OFFLINE_TEMPORARY : 0); 3210 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 3211 } else { 3212 (void) vdev_online(spa, guid0, 0, NULL); 3213 } 3214 } 3215 3216 /* 3217 * We have at least single-fault tolerance, so inject data corruption. 3218 */ 3219 fd = open(pathrand, O_RDWR); 3220 3221 if (fd == -1) /* we hit a gap in the device namespace */ 3222 return; 3223 3224 fsize = lseek(fd, 0, SEEK_END); 3225 3226 while (--iters != 0) { 3227 offset = ztest_random(fsize / (leaves << bshift)) * 3228 (leaves << bshift) + (leaf << bshift) + 3229 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 3230 3231 if (offset >= fsize) 3232 continue; 3233 3234 if (zopt_verbose >= 6) 3235 (void) printf("injecting bad word into %s," 3236 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 3237 3238 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 3239 fatal(1, "can't inject bad word at 0x%llx in %s", 3240 offset, pathrand); 3241 } 3242 3243 (void) close(fd); 3244 } 3245 3246 /* 3247 * Scrub the pool. 3248 */ 3249 void 3250 ztest_scrub(ztest_args_t *za) 3251 { 3252 spa_t *spa = za->za_spa; 3253 3254 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3255 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 3256 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3257 } 3258 3259 /* 3260 * Rename the pool to a different name and then rename it back. 3261 */ 3262 void 3263 ztest_spa_rename(ztest_args_t *za) 3264 { 3265 char *oldname, *newname; 3266 int error; 3267 spa_t *spa; 3268 3269 (void) rw_wrlock(&ztest_shared->zs_name_lock); 3270 3271 oldname = za->za_pool; 3272 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 3273 (void) strcpy(newname, oldname); 3274 (void) strcat(newname, "_tmp"); 3275 3276 /* 3277 * Do the rename 3278 */ 3279 error = spa_rename(oldname, newname); 3280 if (error) 3281 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 3282 newname, error); 3283 3284 /* 3285 * Try to open it under the old name, which shouldn't exist 3286 */ 3287 error = spa_open(oldname, &spa, FTAG); 3288 if (error != ENOENT) 3289 fatal(0, "spa_open('%s') = %d", oldname, error); 3290 3291 /* 3292 * Open it under the new name and make sure it's still the same spa_t. 3293 */ 3294 error = spa_open(newname, &spa, FTAG); 3295 if (error != 0) 3296 fatal(0, "spa_open('%s') = %d", newname, error); 3297 3298 ASSERT(spa == za->za_spa); 3299 spa_close(spa, FTAG); 3300 3301 /* 3302 * Rename it back to the original 3303 */ 3304 error = spa_rename(newname, oldname); 3305 if (error) 3306 fatal(0, "spa_rename('%s', '%s') = %d", newname, 3307 oldname, error); 3308 3309 /* 3310 * Make sure it can still be opened 3311 */ 3312 error = spa_open(oldname, &spa, FTAG); 3313 if (error != 0) 3314 fatal(0, "spa_open('%s') = %d", oldname, error); 3315 3316 ASSERT(spa == za->za_spa); 3317 spa_close(spa, FTAG); 3318 3319 umem_free(newname, strlen(newname) + 1); 3320 3321 (void) rw_unlock(&ztest_shared->zs_name_lock); 3322 } 3323 3324 3325 /* 3326 * Completely obliterate one disk. 3327 */ 3328 static void 3329 ztest_obliterate_one_disk(uint64_t vdev) 3330 { 3331 int fd; 3332 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 3333 size_t fsize; 3334 3335 if (zopt_maxfaults < 2) 3336 return; 3337 3338 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3339 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 3340 3341 fd = open(dev_name, O_RDWR); 3342 3343 if (fd == -1) 3344 fatal(1, "can't open %s", dev_name); 3345 3346 /* 3347 * Determine the size. 3348 */ 3349 fsize = lseek(fd, 0, SEEK_END); 3350 3351 (void) close(fd); 3352 3353 /* 3354 * Rename the old device to dev_name.old (useful for debugging). 3355 */ 3356 VERIFY(rename(dev_name, copy_name) == 0); 3357 3358 /* 3359 * Create a new one. 3360 */ 3361 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 3362 VERIFY(ftruncate(fd, fsize) == 0); 3363 (void) close(fd); 3364 } 3365 3366 static void 3367 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 3368 { 3369 char dev_name[MAXPATHLEN]; 3370 nvlist_t *root; 3371 int error; 3372 uint64_t guid; 3373 vdev_t *vd; 3374 3375 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3376 3377 /* 3378 * Build the nvlist describing dev_name. 3379 */ 3380 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 3381 3382 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3383 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 3384 guid = 0; 3385 else 3386 guid = vd->vdev_guid; 3387 spa_config_exit(spa, SCL_VDEV, FTAG); 3388 error = spa_vdev_attach(spa, guid, root, B_TRUE); 3389 if (error != 0 && 3390 error != EBUSY && 3391 error != ENOTSUP && 3392 error != ENODEV && 3393 error != EDOM) 3394 fatal(0, "spa_vdev_attach(in-place) = %d", error); 3395 3396 nvlist_free(root); 3397 } 3398 3399 static void 3400 ztest_verify_blocks(char *pool) 3401 { 3402 int status; 3403 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 3404 char zbuf[1024]; 3405 char *bin; 3406 char *ztest; 3407 char *isa; 3408 int isalen; 3409 FILE *fp; 3410 3411 (void) realpath(getexecname(), zdb); 3412 3413 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 3414 bin = strstr(zdb, "/usr/bin/"); 3415 ztest = strstr(bin, "/ztest"); 3416 isa = bin + 8; 3417 isalen = ztest - isa; 3418 isa = strdup(isa); 3419 /* LINTED */ 3420 (void) sprintf(bin, 3421 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 3422 isalen, 3423 isa, 3424 zopt_verbose >= 3 ? "s" : "", 3425 zopt_verbose >= 4 ? "v" : "", 3426 pool); 3427 free(isa); 3428 3429 if (zopt_verbose >= 5) 3430 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 3431 3432 fp = popen(zdb, "r"); 3433 3434 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 3435 if (zopt_verbose >= 3) 3436 (void) printf("%s", zbuf); 3437 3438 status = pclose(fp); 3439 3440 if (status == 0) 3441 return; 3442 3443 ztest_dump_core = 0; 3444 if (WIFEXITED(status)) 3445 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 3446 else 3447 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 3448 } 3449 3450 static void 3451 ztest_walk_pool_directory(char *header) 3452 { 3453 spa_t *spa = NULL; 3454 3455 if (zopt_verbose >= 6) 3456 (void) printf("%s\n", header); 3457 3458 mutex_enter(&spa_namespace_lock); 3459 while ((spa = spa_next(spa)) != NULL) 3460 if (zopt_verbose >= 6) 3461 (void) printf("\t%s\n", spa_name(spa)); 3462 mutex_exit(&spa_namespace_lock); 3463 } 3464 3465 static void 3466 ztest_spa_import_export(char *oldname, char *newname) 3467 { 3468 nvlist_t *config, *newconfig; 3469 uint64_t pool_guid; 3470 spa_t *spa; 3471 int error; 3472 3473 if (zopt_verbose >= 4) { 3474 (void) printf("import/export: old = %s, new = %s\n", 3475 oldname, newname); 3476 } 3477 3478 /* 3479 * Clean up from previous runs. 3480 */ 3481 (void) spa_destroy(newname); 3482 3483 /* 3484 * Get the pool's configuration and guid. 3485 */ 3486 error = spa_open(oldname, &spa, FTAG); 3487 if (error) 3488 fatal(0, "spa_open('%s') = %d", oldname, error); 3489 3490 /* 3491 * Kick off a scrub to tickle scrub/export races. 3492 */ 3493 if (ztest_random(2) == 0) 3494 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3495 3496 pool_guid = spa_guid(spa); 3497 spa_close(spa, FTAG); 3498 3499 ztest_walk_pool_directory("pools before export"); 3500 3501 /* 3502 * Export it. 3503 */ 3504 error = spa_export(oldname, &config, B_FALSE, B_FALSE); 3505 if (error) 3506 fatal(0, "spa_export('%s') = %d", oldname, error); 3507 3508 ztest_walk_pool_directory("pools after export"); 3509 3510 /* 3511 * Try to import it. 3512 */ 3513 newconfig = spa_tryimport(config); 3514 ASSERT(newconfig != NULL); 3515 nvlist_free(newconfig); 3516 3517 /* 3518 * Import it under the new name. 3519 */ 3520 error = spa_import(newname, config, NULL); 3521 if (error) 3522 fatal(0, "spa_import('%s') = %d", newname, error); 3523 3524 ztest_walk_pool_directory("pools after import"); 3525 3526 /* 3527 * Try to import it again -- should fail with EEXIST. 3528 */ 3529 error = spa_import(newname, config, NULL); 3530 if (error != EEXIST) 3531 fatal(0, "spa_import('%s') twice", newname); 3532 3533 /* 3534 * Try to import it under a different name -- should fail with EEXIST. 3535 */ 3536 error = spa_import(oldname, config, NULL); 3537 if (error != EEXIST) 3538 fatal(0, "spa_import('%s') under multiple names", newname); 3539 3540 /* 3541 * Verify that the pool is no longer visible under the old name. 3542 */ 3543 error = spa_open(oldname, &spa, FTAG); 3544 if (error != ENOENT) 3545 fatal(0, "spa_open('%s') = %d", newname, error); 3546 3547 /* 3548 * Verify that we can open and close the pool using the new name. 3549 */ 3550 error = spa_open(newname, &spa, FTAG); 3551 if (error) 3552 fatal(0, "spa_open('%s') = %d", newname, error); 3553 ASSERT(pool_guid == spa_guid(spa)); 3554 spa_close(spa, FTAG); 3555 3556 nvlist_free(config); 3557 } 3558 3559 static void 3560 ztest_resume(spa_t *spa) 3561 { 3562 if (spa_suspended(spa)) { 3563 spa_vdev_state_enter(spa); 3564 vdev_clear(spa, NULL); 3565 (void) spa_vdev_state_exit(spa, NULL, 0); 3566 (void) zio_resume(spa); 3567 } 3568 } 3569 3570 static void * 3571 ztest_resume_thread(void *arg) 3572 { 3573 spa_t *spa = arg; 3574 3575 while (!ztest_exiting) { 3576 (void) poll(NULL, 0, 1000); 3577 ztest_resume(spa); 3578 } 3579 return (NULL); 3580 } 3581 3582 static void * 3583 ztest_thread(void *arg) 3584 { 3585 ztest_args_t *za = arg; 3586 ztest_shared_t *zs = ztest_shared; 3587 hrtime_t now, functime; 3588 ztest_info_t *zi; 3589 int f, i; 3590 3591 while ((now = gethrtime()) < za->za_stop) { 3592 /* 3593 * See if it's time to force a crash. 3594 */ 3595 if (now > za->za_kill) { 3596 zs->zs_alloc = spa_get_alloc(za->za_spa); 3597 zs->zs_space = spa_get_space(za->za_spa); 3598 (void) kill(getpid(), SIGKILL); 3599 } 3600 3601 /* 3602 * Pick a random function. 3603 */ 3604 f = ztest_random(ZTEST_FUNCS); 3605 zi = &zs->zs_info[f]; 3606 3607 /* 3608 * Decide whether to call it, based on the requested frequency. 3609 */ 3610 if (zi->zi_call_target == 0 || 3611 (double)zi->zi_call_total / zi->zi_call_target > 3612 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 3613 continue; 3614 3615 atomic_add_64(&zi->zi_calls, 1); 3616 atomic_add_64(&zi->zi_call_total, 1); 3617 3618 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 3619 ZTEST_DIRSIZE; 3620 za->za_diroff_shared = (1ULL << 63); 3621 3622 for (i = 0; i < zi->zi_iters; i++) 3623 zi->zi_func(za); 3624 3625 functime = gethrtime() - now; 3626 3627 atomic_add_64(&zi->zi_call_time, functime); 3628 3629 if (zopt_verbose >= 4) { 3630 Dl_info dli; 3631 (void) dladdr((void *)zi->zi_func, &dli); 3632 (void) printf("%6.2f sec in %s\n", 3633 (double)functime / NANOSEC, dli.dli_sname); 3634 } 3635 3636 /* 3637 * If we're getting ENOSPC with some regularity, stop. 3638 */ 3639 if (zs->zs_enospc_count > 10) 3640 break; 3641 } 3642 3643 return (NULL); 3644 } 3645 3646 /* 3647 * Kick off threads to run tests on all datasets in parallel. 3648 */ 3649 static void 3650 ztest_run(char *pool) 3651 { 3652 int t, d, error; 3653 ztest_shared_t *zs = ztest_shared; 3654 ztest_args_t *za; 3655 spa_t *spa; 3656 char name[100]; 3657 thread_t resume_tid; 3658 3659 ztest_exiting = B_FALSE; 3660 3661 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 3662 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 3663 3664 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 3665 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 3666 3667 /* 3668 * Destroy one disk before we even start. 3669 * It's mirrored, so everything should work just fine. 3670 * This makes us exercise fault handling very early in spa_load(). 3671 */ 3672 ztest_obliterate_one_disk(0); 3673 3674 /* 3675 * Verify that the sum of the sizes of all blocks in the pool 3676 * equals the SPA's allocated space total. 3677 */ 3678 ztest_verify_blocks(pool); 3679 3680 /* 3681 * Kick off a replacement of the disk we just obliterated. 3682 */ 3683 kernel_init(FREAD | FWRITE); 3684 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3685 ztest_replace_one_disk(spa, 0); 3686 if (zopt_verbose >= 5) 3687 show_pool_stats(spa); 3688 spa_close(spa, FTAG); 3689 kernel_fini(); 3690 3691 kernel_init(FREAD | FWRITE); 3692 3693 /* 3694 * Verify that we can export the pool and reimport it under a 3695 * different name. 3696 */ 3697 if (ztest_random(2) == 0) { 3698 (void) snprintf(name, 100, "%s_import", pool); 3699 ztest_spa_import_export(pool, name); 3700 ztest_spa_import_export(name, pool); 3701 } 3702 3703 /* 3704 * Verify that we can loop over all pools. 3705 */ 3706 mutex_enter(&spa_namespace_lock); 3707 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3708 if (zopt_verbose > 3) { 3709 (void) printf("spa_next: found %s\n", spa_name(spa)); 3710 } 3711 } 3712 mutex_exit(&spa_namespace_lock); 3713 3714 /* 3715 * Open our pool. 3716 */ 3717 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3718 3719 /* 3720 * We don't expect the pool to suspend unless maxfaults == 0, 3721 * in which case ztest_fault_inject() temporarily takes away 3722 * the only valid replica. 3723 */ 3724 if (zopt_maxfaults == 0) 3725 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 3726 else 3727 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 3728 3729 /* 3730 * Create a thread to periodically resume suspended I/O. 3731 */ 3732 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 3733 &resume_tid) == 0); 3734 3735 /* 3736 * Verify that we can safely inquire about about any object, 3737 * whether it's allocated or not. To make it interesting, 3738 * we probe a 5-wide window around each power of two. 3739 * This hits all edge cases, including zero and the max. 3740 */ 3741 for (t = 0; t < 64; t++) { 3742 for (d = -5; d <= 5; d++) { 3743 error = dmu_object_info(spa->spa_meta_objset, 3744 (1ULL << t) + d, NULL); 3745 ASSERT(error == 0 || error == ENOENT || 3746 error == EINVAL); 3747 } 3748 } 3749 3750 /* 3751 * Now kick off all the tests that run in parallel. 3752 */ 3753 zs->zs_enospc_count = 0; 3754 3755 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3756 3757 if (zopt_verbose >= 4) 3758 (void) printf("starting main threads...\n"); 3759 3760 za[0].za_start = gethrtime(); 3761 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3762 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3763 za[0].za_kill = za[0].za_stop; 3764 if (ztest_random(100) < zopt_killrate) 3765 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3766 3767 for (t = 0; t < zopt_threads; t++) { 3768 d = t % zopt_datasets; 3769 3770 (void) strcpy(za[t].za_pool, pool); 3771 za[t].za_os = za[d].za_os; 3772 za[t].za_spa = spa; 3773 za[t].za_zilog = za[d].za_zilog; 3774 za[t].za_instance = t; 3775 za[t].za_random = ztest_random(-1ULL); 3776 za[t].za_start = za[0].za_start; 3777 za[t].za_stop = za[0].za_stop; 3778 za[t].za_kill = za[0].za_kill; 3779 3780 if (t < zopt_datasets) { 3781 int test_future = FALSE; 3782 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3783 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3784 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 3785 ztest_create_cb, NULL); 3786 if (error == EEXIST) { 3787 test_future = TRUE; 3788 } else if (error == ENOSPC) { 3789 zs->zs_enospc_count++; 3790 (void) rw_unlock(&ztest_shared->zs_name_lock); 3791 break; 3792 } else if (error != 0) { 3793 fatal(0, "dmu_objset_create(%s) = %d", 3794 name, error); 3795 } 3796 error = dmu_objset_hold(name, FTAG, &za[d].za_os); 3797 if (error) 3798 fatal(0, "dmu_objset_open('%s') = %d", 3799 name, error); 3800 (void) rw_unlock(&ztest_shared->zs_name_lock); 3801 if (test_future) 3802 ztest_dmu_check_future_leak(&za[t]); 3803 zil_replay(za[d].za_os, za[d].za_os, 3804 ztest_replay_vector); 3805 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3806 } 3807 3808 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3809 &za[t].za_thread) == 0); 3810 } 3811 3812 while (--t >= 0) { 3813 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 3814 if (t < zopt_datasets) { 3815 zil_close(za[t].za_zilog); 3816 dmu_objset_rele(za[t].za_os, FTAG); 3817 } 3818 } 3819 3820 if (zopt_verbose >= 3) 3821 show_pool_stats(spa); 3822 3823 txg_wait_synced(spa_get_dsl(spa), 0); 3824 3825 zs->zs_alloc = spa_get_alloc(spa); 3826 zs->zs_space = spa_get_space(spa); 3827 3828 /* 3829 * If we had out-of-space errors, destroy a random objset. 3830 */ 3831 if (zs->zs_enospc_count != 0) { 3832 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3833 d = (int)ztest_random(zopt_datasets); 3834 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3835 if (zopt_verbose >= 3) 3836 (void) printf("Destroying %s to free up space\n", name); 3837 3838 /* Cleanup any non-standard clones and snapshots */ 3839 ztest_dsl_dataset_cleanup(name, za[d].za_instance); 3840 3841 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 3842 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 3843 (void) rw_unlock(&ztest_shared->zs_name_lock); 3844 } 3845 3846 txg_wait_synced(spa_get_dsl(spa), 0); 3847 3848 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3849 3850 /* Kill the resume thread */ 3851 ztest_exiting = B_TRUE; 3852 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 3853 ztest_resume(spa); 3854 3855 /* 3856 * Right before closing the pool, kick off a bunch of async I/O; 3857 * spa_close() should wait for it to complete. 3858 */ 3859 for (t = 1; t < 50; t++) 3860 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3861 3862 spa_close(spa, FTAG); 3863 3864 kernel_fini(); 3865 } 3866 3867 void 3868 print_time(hrtime_t t, char *timebuf) 3869 { 3870 hrtime_t s = t / NANOSEC; 3871 hrtime_t m = s / 60; 3872 hrtime_t h = m / 60; 3873 hrtime_t d = h / 24; 3874 3875 s -= m * 60; 3876 m -= h * 60; 3877 h -= d * 24; 3878 3879 timebuf[0] = '\0'; 3880 3881 if (d) 3882 (void) sprintf(timebuf, 3883 "%llud%02lluh%02llum%02llus", d, h, m, s); 3884 else if (h) 3885 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3886 else if (m) 3887 (void) sprintf(timebuf, "%llum%02llus", m, s); 3888 else 3889 (void) sprintf(timebuf, "%llus", s); 3890 } 3891 3892 /* 3893 * Create a storage pool with the given name and initial vdev size. 3894 * Then create the specified number of datasets in the pool. 3895 */ 3896 static void 3897 ztest_init(char *pool) 3898 { 3899 spa_t *spa; 3900 int error; 3901 nvlist_t *nvroot; 3902 3903 kernel_init(FREAD | FWRITE); 3904 3905 /* 3906 * Create the storage pool. 3907 */ 3908 (void) spa_destroy(pool); 3909 ztest_shared->zs_vdev_primaries = 0; 3910 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 3911 0, zopt_raidz, zopt_mirrors, 1); 3912 error = spa_create(pool, nvroot, NULL, NULL, NULL); 3913 nvlist_free(nvroot); 3914 3915 if (error) 3916 fatal(0, "spa_create() = %d", error); 3917 error = spa_open(pool, &spa, FTAG); 3918 if (error) 3919 fatal(0, "spa_open() = %d", error); 3920 3921 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 3922 3923 if (zopt_verbose >= 3) 3924 show_pool_stats(spa); 3925 3926 spa_close(spa, FTAG); 3927 3928 kernel_fini(); 3929 } 3930 3931 int 3932 main(int argc, char **argv) 3933 { 3934 int kills = 0; 3935 int iters = 0; 3936 int i, f; 3937 ztest_shared_t *zs; 3938 ztest_info_t *zi; 3939 char timebuf[100]; 3940 char numbuf[6]; 3941 3942 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3943 3944 /* Override location of zpool.cache */ 3945 spa_config_path = "/tmp/zpool.cache"; 3946 3947 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3948 3949 process_options(argc, argv); 3950 3951 /* 3952 * Blow away any existing copy of zpool.cache 3953 */ 3954 if (zopt_init != 0) 3955 (void) remove("/tmp/zpool.cache"); 3956 3957 zs = ztest_shared = (void *)mmap(0, 3958 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3959 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3960 3961 if (zopt_verbose >= 1) { 3962 (void) printf("%llu vdevs, %d datasets, %d threads," 3963 " %llu seconds...\n", 3964 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 3965 (u_longlong_t)zopt_time); 3966 } 3967 3968 /* 3969 * Create and initialize our storage pool. 3970 */ 3971 for (i = 1; i <= zopt_init; i++) { 3972 bzero(zs, sizeof (ztest_shared_t)); 3973 if (zopt_verbose >= 3 && zopt_init != 1) 3974 (void) printf("ztest_init(), pass %d\n", i); 3975 ztest_init(zopt_pool); 3976 } 3977 3978 /* 3979 * Initialize the call targets for each function. 3980 */ 3981 for (f = 0; f < ZTEST_FUNCS; f++) { 3982 zi = &zs->zs_info[f]; 3983 3984 *zi = ztest_info[f]; 3985 3986 if (*zi->zi_interval == 0) 3987 zi->zi_call_target = UINT64_MAX; 3988 else 3989 zi->zi_call_target = zopt_time / *zi->zi_interval; 3990 } 3991 3992 zs->zs_start_time = gethrtime(); 3993 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3994 3995 /* 3996 * Run the tests in a loop. These tests include fault injection 3997 * to verify that self-healing data works, and forced crashes 3998 * to verify that we never lose on-disk consistency. 3999 */ 4000 while (gethrtime() < zs->zs_stop_time) { 4001 int status; 4002 pid_t pid; 4003 char *tmp; 4004 4005 /* 4006 * Initialize the workload counters for each function. 4007 */ 4008 for (f = 0; f < ZTEST_FUNCS; f++) { 4009 zi = &zs->zs_info[f]; 4010 zi->zi_calls = 0; 4011 zi->zi_call_time = 0; 4012 } 4013 4014 /* Set the allocation switch size */ 4015 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 4016 4017 pid = fork(); 4018 4019 if (pid == -1) 4020 fatal(1, "fork failed"); 4021 4022 if (pid == 0) { /* child */ 4023 struct rlimit rl = { 1024, 1024 }; 4024 (void) setrlimit(RLIMIT_NOFILE, &rl); 4025 (void) enable_extended_FILE_stdio(-1, -1); 4026 ztest_run(zopt_pool); 4027 exit(0); 4028 } 4029 4030 while (waitpid(pid, &status, 0) != pid) 4031 continue; 4032 4033 if (WIFEXITED(status)) { 4034 if (WEXITSTATUS(status) != 0) { 4035 (void) fprintf(stderr, 4036 "child exited with code %d\n", 4037 WEXITSTATUS(status)); 4038 exit(2); 4039 } 4040 } else if (WIFSIGNALED(status)) { 4041 if (WTERMSIG(status) != SIGKILL) { 4042 (void) fprintf(stderr, 4043 "child died with signal %d\n", 4044 WTERMSIG(status)); 4045 exit(3); 4046 } 4047 kills++; 4048 } else { 4049 (void) fprintf(stderr, "something strange happened " 4050 "to child\n"); 4051 exit(4); 4052 } 4053 4054 iters++; 4055 4056 if (zopt_verbose >= 1) { 4057 hrtime_t now = gethrtime(); 4058 4059 now = MIN(now, zs->zs_stop_time); 4060 print_time(zs->zs_stop_time - now, timebuf); 4061 nicenum(zs->zs_space, numbuf); 4062 4063 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 4064 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 4065 iters, 4066 WIFEXITED(status) ? "Complete" : "SIGKILL", 4067 (u_longlong_t)zs->zs_enospc_count, 4068 100.0 * zs->zs_alloc / zs->zs_space, 4069 numbuf, 4070 100.0 * (now - zs->zs_start_time) / 4071 (zopt_time * NANOSEC), timebuf); 4072 } 4073 4074 if (zopt_verbose >= 2) { 4075 (void) printf("\nWorkload summary:\n\n"); 4076 (void) printf("%7s %9s %s\n", 4077 "Calls", "Time", "Function"); 4078 (void) printf("%7s %9s %s\n", 4079 "-----", "----", "--------"); 4080 for (f = 0; f < ZTEST_FUNCS; f++) { 4081 Dl_info dli; 4082 4083 zi = &zs->zs_info[f]; 4084 print_time(zi->zi_call_time, timebuf); 4085 (void) dladdr((void *)zi->zi_func, &dli); 4086 (void) printf("%7llu %9s %s\n", 4087 (u_longlong_t)zi->zi_calls, timebuf, 4088 dli.dli_sname); 4089 } 4090 (void) printf("\n"); 4091 } 4092 4093 /* 4094 * It's possible that we killed a child during a rename test, in 4095 * which case we'll have a 'ztest_tmp' pool lying around instead 4096 * of 'ztest'. Do a blind rename in case this happened. 4097 */ 4098 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 4099 (void) strcpy(tmp, zopt_pool); 4100 (void) strcat(tmp, "_tmp"); 4101 kernel_init(FREAD | FWRITE); 4102 (void) spa_rename(tmp, zopt_pool); 4103 kernel_fini(); 4104 umem_free(tmp, strlen(tmp) + 1); 4105 } 4106 4107 ztest_verify_blocks(zopt_pool); 4108 4109 if (zopt_verbose >= 1) { 4110 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 4111 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 4112 } 4113 4114 return (0); 4115 } 4116