1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/zap.h> 80 #include <sys/dmu_objset.h> 81 #include <sys/poll.h> 82 #include <sys/stat.h> 83 #include <sys/time.h> 84 #include <sys/wait.h> 85 #include <sys/mman.h> 86 #include <sys/resource.h> 87 #include <sys/zio.h> 88 #include <sys/zio_checksum.h> 89 #include <sys/zio_compress.h> 90 #include <sys/zil.h> 91 #include <sys/vdev_impl.h> 92 #include <sys/vdev_file.h> 93 #include <sys/spa_impl.h> 94 #include <sys/dsl_prop.h> 95 #include <sys/refcount.h> 96 #include <stdio.h> 97 #include <stdio_ext.h> 98 #include <stdlib.h> 99 #include <unistd.h> 100 #include <signal.h> 101 #include <umem.h> 102 #include <dlfcn.h> 103 #include <ctype.h> 104 #include <math.h> 105 #include <sys/fs/zfs.h> 106 107 static char cmdname[] = "ztest"; 108 static char *zopt_pool = cmdname; 109 110 static uint64_t zopt_vdevs = 5; 111 static uint64_t zopt_vdevtime; 112 static int zopt_ashift = SPA_MINBLOCKSHIFT; 113 static int zopt_mirrors = 2; 114 static int zopt_raidz = 4; 115 static int zopt_raidz_parity = 1; 116 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 117 static int zopt_datasets = 7; 118 static int zopt_threads = 23; 119 static uint64_t zopt_passtime = 60; /* 60 seconds */ 120 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 121 static int zopt_verbose = 0; 122 static int zopt_init = 1; 123 static char *zopt_dir = "/tmp"; 124 static uint64_t zopt_time = 300; /* 5 minutes */ 125 static int zopt_maxfaults; 126 127 typedef struct ztest_block_tag { 128 uint64_t bt_objset; 129 uint64_t bt_object; 130 uint64_t bt_offset; 131 uint64_t bt_txg; 132 uint64_t bt_thread; 133 uint64_t bt_seq; 134 } ztest_block_tag_t; 135 136 typedef struct ztest_args { 137 char za_pool[MAXNAMELEN]; 138 spa_t *za_spa; 139 objset_t *za_os; 140 zilog_t *za_zilog; 141 thread_t za_thread; 142 uint64_t za_instance; 143 uint64_t za_random; 144 uint64_t za_diroff; 145 uint64_t za_diroff_shared; 146 uint64_t za_zil_seq; 147 hrtime_t za_start; 148 hrtime_t za_stop; 149 hrtime_t za_kill; 150 /* 151 * Thread-local variables can go here to aid debugging. 152 */ 153 ztest_block_tag_t za_rbt; 154 ztest_block_tag_t za_wbt; 155 dmu_object_info_t za_doi; 156 dmu_buf_t *za_dbuf; 157 } ztest_args_t; 158 159 typedef void ztest_func_t(ztest_args_t *); 160 161 /* 162 * Note: these aren't static because we want dladdr() to work. 163 */ 164 ztest_func_t ztest_dmu_read_write; 165 ztest_func_t ztest_dmu_write_parallel; 166 ztest_func_t ztest_dmu_object_alloc_free; 167 ztest_func_t ztest_zap; 168 ztest_func_t ztest_zap_parallel; 169 ztest_func_t ztest_traverse; 170 ztest_func_t ztest_dsl_prop_get_set; 171 ztest_func_t ztest_dmu_objset_create_destroy; 172 ztest_func_t ztest_dmu_snapshot_create_destroy; 173 ztest_func_t ztest_spa_create_destroy; 174 ztest_func_t ztest_fault_inject; 175 ztest_func_t ztest_spa_rename; 176 ztest_func_t ztest_vdev_attach_detach; 177 ztest_func_t ztest_vdev_LUN_growth; 178 ztest_func_t ztest_vdev_add_remove; 179 ztest_func_t ztest_vdev_aux_add_remove; 180 ztest_func_t ztest_scrub; 181 182 typedef struct ztest_info { 183 ztest_func_t *zi_func; /* test function */ 184 uint64_t zi_iters; /* iterations per execution */ 185 uint64_t *zi_interval; /* execute every <interval> seconds */ 186 uint64_t zi_calls; /* per-pass count */ 187 uint64_t zi_call_time; /* per-pass time */ 188 uint64_t zi_call_total; /* cumulative total */ 189 uint64_t zi_call_target; /* target cumulative total */ 190 } ztest_info_t; 191 192 uint64_t zopt_always = 0; /* all the time */ 193 uint64_t zopt_often = 1; /* every second */ 194 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 195 uint64_t zopt_rarely = 60; /* every 60 seconds */ 196 197 ztest_info_t ztest_info[] = { 198 { ztest_dmu_read_write, 1, &zopt_always }, 199 { ztest_dmu_write_parallel, 30, &zopt_always }, 200 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 201 { ztest_zap, 30, &zopt_always }, 202 { ztest_zap_parallel, 100, &zopt_always }, 203 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 204 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 205 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 206 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 207 { ztest_fault_inject, 1, &zopt_sometimes }, 208 { ztest_spa_rename, 1, &zopt_rarely }, 209 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 210 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 211 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 212 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 213 { ztest_scrub, 1, &zopt_vdevtime }, 214 }; 215 216 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 217 218 #define ZTEST_SYNC_LOCKS 16 219 220 /* 221 * Stuff we need to share writably between parent and child. 222 */ 223 typedef struct ztest_shared { 224 mutex_t zs_vdev_lock; 225 rwlock_t zs_name_lock; 226 uint64_t zs_vdev_primaries; 227 uint64_t zs_vdev_aux; 228 uint64_t zs_enospc_count; 229 hrtime_t zs_start_time; 230 hrtime_t zs_stop_time; 231 uint64_t zs_alloc; 232 uint64_t zs_space; 233 ztest_info_t zs_info[ZTEST_FUNCS]; 234 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 235 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 236 } ztest_shared_t; 237 238 static char ztest_dev_template[] = "%s/%s.%llua"; 239 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 240 static ztest_shared_t *ztest_shared; 241 242 static int ztest_random_fd; 243 static int ztest_dump_core = 1; 244 245 static boolean_t ztest_exiting; 246 247 extern uint64_t metaslab_gang_bang; 248 249 #define ZTEST_DIROBJ 1 250 #define ZTEST_MICROZAP_OBJ 2 251 #define ZTEST_FATZAP_OBJ 3 252 253 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 254 #define ZTEST_DIRSIZE 256 255 256 static void usage(boolean_t) __NORETURN; 257 258 /* 259 * These libumem hooks provide a reasonable set of defaults for the allocator's 260 * debugging facilities. 261 */ 262 const char * 263 _umem_debug_init() 264 { 265 return ("default,verbose"); /* $UMEM_DEBUG setting */ 266 } 267 268 const char * 269 _umem_logging_init(void) 270 { 271 return ("fail,contents"); /* $UMEM_LOGGING setting */ 272 } 273 274 #define FATAL_MSG_SZ 1024 275 276 char *fatal_msg; 277 278 static void 279 fatal(int do_perror, char *message, ...) 280 { 281 va_list args; 282 int save_errno = errno; 283 char buf[FATAL_MSG_SZ]; 284 285 (void) fflush(stdout); 286 287 va_start(args, message); 288 (void) sprintf(buf, "ztest: "); 289 /* LINTED */ 290 (void) vsprintf(buf + strlen(buf), message, args); 291 va_end(args); 292 if (do_perror) { 293 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 294 ": %s", strerror(save_errno)); 295 } 296 (void) fprintf(stderr, "%s\n", buf); 297 fatal_msg = buf; /* to ease debugging */ 298 if (ztest_dump_core) 299 abort(); 300 exit(3); 301 } 302 303 static int 304 str2shift(const char *buf) 305 { 306 const char *ends = "BKMGTPEZ"; 307 int i; 308 309 if (buf[0] == '\0') 310 return (0); 311 for (i = 0; i < strlen(ends); i++) { 312 if (toupper(buf[0]) == ends[i]) 313 break; 314 } 315 if (i == strlen(ends)) { 316 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 317 buf); 318 usage(B_FALSE); 319 } 320 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 321 return (10*i); 322 } 323 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 324 usage(B_FALSE); 325 /* NOTREACHED */ 326 } 327 328 static uint64_t 329 nicenumtoull(const char *buf) 330 { 331 char *end; 332 uint64_t val; 333 334 val = strtoull(buf, &end, 0); 335 if (end == buf) { 336 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 337 usage(B_FALSE); 338 } else if (end[0] == '.') { 339 double fval = strtod(buf, &end); 340 fval *= pow(2, str2shift(end)); 341 if (fval > UINT64_MAX) { 342 (void) fprintf(stderr, "ztest: value too large: %s\n", 343 buf); 344 usage(B_FALSE); 345 } 346 val = (uint64_t)fval; 347 } else { 348 int shift = str2shift(end); 349 if (shift >= 64 || (val << shift) >> shift != val) { 350 (void) fprintf(stderr, "ztest: value too large: %s\n", 351 buf); 352 usage(B_FALSE); 353 } 354 val <<= shift; 355 } 356 return (val); 357 } 358 359 static void 360 usage(boolean_t requested) 361 { 362 char nice_vdev_size[10]; 363 char nice_gang_bang[10]; 364 FILE *fp = requested ? stdout : stderr; 365 366 nicenum(zopt_vdev_size, nice_vdev_size); 367 nicenum(metaslab_gang_bang, nice_gang_bang); 368 369 (void) fprintf(fp, "Usage: %s\n" 370 "\t[-v vdevs (default: %llu)]\n" 371 "\t[-s size_of_each_vdev (default: %s)]\n" 372 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 373 "\t[-m mirror_copies (default: %d)]\n" 374 "\t[-r raidz_disks (default: %d)]\n" 375 "\t[-R raidz_parity (default: %d)]\n" 376 "\t[-d datasets (default: %d)]\n" 377 "\t[-t threads (default: %d)]\n" 378 "\t[-g gang_block_threshold (default: %s)]\n" 379 "\t[-i initialize pool i times (default: %d)]\n" 380 "\t[-k kill percentage (default: %llu%%)]\n" 381 "\t[-p pool_name (default: %s)]\n" 382 "\t[-f file directory for vdev files (default: %s)]\n" 383 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 384 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 385 "\t[-T time] total run time (default: %llu sec)\n" 386 "\t[-P passtime] time per pass (default: %llu sec)\n" 387 "\t[-h] (print help)\n" 388 "", 389 cmdname, 390 (u_longlong_t)zopt_vdevs, /* -v */ 391 nice_vdev_size, /* -s */ 392 zopt_ashift, /* -a */ 393 zopt_mirrors, /* -m */ 394 zopt_raidz, /* -r */ 395 zopt_raidz_parity, /* -R */ 396 zopt_datasets, /* -d */ 397 zopt_threads, /* -t */ 398 nice_gang_bang, /* -g */ 399 zopt_init, /* -i */ 400 (u_longlong_t)zopt_killrate, /* -k */ 401 zopt_pool, /* -p */ 402 zopt_dir, /* -f */ 403 (u_longlong_t)zopt_time, /* -T */ 404 (u_longlong_t)zopt_passtime); /* -P */ 405 exit(requested ? 0 : 1); 406 } 407 408 static uint64_t 409 ztest_random(uint64_t range) 410 { 411 uint64_t r; 412 413 if (range == 0) 414 return (0); 415 416 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 417 fatal(1, "short read from /dev/urandom"); 418 419 return (r % range); 420 } 421 422 static void 423 ztest_record_enospc(char *s) 424 { 425 dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>"); 426 ztest_shared->zs_enospc_count++; 427 } 428 429 static void 430 process_options(int argc, char **argv) 431 { 432 int opt; 433 uint64_t value; 434 435 /* By default, test gang blocks for blocks 32K and greater */ 436 metaslab_gang_bang = 32 << 10; 437 438 while ((opt = getopt(argc, argv, 439 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 440 value = 0; 441 switch (opt) { 442 case 'v': 443 case 's': 444 case 'a': 445 case 'm': 446 case 'r': 447 case 'R': 448 case 'd': 449 case 't': 450 case 'g': 451 case 'i': 452 case 'k': 453 case 'T': 454 case 'P': 455 value = nicenumtoull(optarg); 456 } 457 switch (opt) { 458 case 'v': 459 zopt_vdevs = value; 460 break; 461 case 's': 462 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 463 break; 464 case 'a': 465 zopt_ashift = value; 466 break; 467 case 'm': 468 zopt_mirrors = value; 469 break; 470 case 'r': 471 zopt_raidz = MAX(1, value); 472 break; 473 case 'R': 474 zopt_raidz_parity = MIN(MAX(value, 1), 2); 475 break; 476 case 'd': 477 zopt_datasets = MAX(1, value); 478 break; 479 case 't': 480 zopt_threads = MAX(1, value); 481 break; 482 case 'g': 483 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 484 break; 485 case 'i': 486 zopt_init = value; 487 break; 488 case 'k': 489 zopt_killrate = value; 490 break; 491 case 'p': 492 zopt_pool = strdup(optarg); 493 break; 494 case 'f': 495 zopt_dir = strdup(optarg); 496 break; 497 case 'V': 498 zopt_verbose++; 499 break; 500 case 'E': 501 zopt_init = 0; 502 break; 503 case 'T': 504 zopt_time = value; 505 break; 506 case 'P': 507 zopt_passtime = MAX(1, value); 508 break; 509 case 'h': 510 usage(B_TRUE); 511 break; 512 case '?': 513 default: 514 usage(B_FALSE); 515 break; 516 } 517 } 518 519 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 520 521 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 522 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 523 } 524 525 static uint64_t 526 ztest_get_ashift(void) 527 { 528 if (zopt_ashift == 0) 529 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 530 return (zopt_ashift); 531 } 532 533 static nvlist_t * 534 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 535 { 536 char pathbuf[MAXPATHLEN]; 537 uint64_t vdev; 538 nvlist_t *file; 539 540 if (ashift == 0) 541 ashift = ztest_get_ashift(); 542 543 if (path == NULL) { 544 path = pathbuf; 545 546 if (aux != NULL) { 547 vdev = ztest_shared->zs_vdev_aux; 548 (void) sprintf(path, ztest_aux_template, 549 zopt_dir, zopt_pool, aux, vdev); 550 } else { 551 vdev = ztest_shared->zs_vdev_primaries++; 552 (void) sprintf(path, ztest_dev_template, 553 zopt_dir, zopt_pool, vdev); 554 } 555 } 556 557 if (size != 0) { 558 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 559 if (fd == -1) 560 fatal(1, "can't open %s", path); 561 if (ftruncate(fd, size) != 0) 562 fatal(1, "can't ftruncate %s", path); 563 (void) close(fd); 564 } 565 566 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 567 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 568 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 569 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 570 571 return (file); 572 } 573 574 static nvlist_t * 575 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 576 { 577 nvlist_t *raidz, **child; 578 int c; 579 580 if (r < 2) 581 return (make_vdev_file(path, aux, size, ashift)); 582 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 583 584 for (c = 0; c < r; c++) 585 child[c] = make_vdev_file(path, aux, size, ashift); 586 587 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 588 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 589 VDEV_TYPE_RAIDZ) == 0); 590 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 591 zopt_raidz_parity) == 0); 592 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 593 child, r) == 0); 594 595 for (c = 0; c < r; c++) 596 nvlist_free(child[c]); 597 598 umem_free(child, r * sizeof (nvlist_t *)); 599 600 return (raidz); 601 } 602 603 static nvlist_t * 604 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 605 int r, int m) 606 { 607 nvlist_t *mirror, **child; 608 int c; 609 610 if (m < 1) 611 return (make_vdev_raidz(path, aux, size, ashift, r)); 612 613 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 614 615 for (c = 0; c < m; c++) 616 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 617 618 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 619 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 620 VDEV_TYPE_MIRROR) == 0); 621 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 622 child, m) == 0); 623 624 for (c = 0; c < m; c++) 625 nvlist_free(child[c]); 626 627 umem_free(child, m * sizeof (nvlist_t *)); 628 629 return (mirror); 630 } 631 632 static nvlist_t * 633 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 634 int log, int r, int m, int t) 635 { 636 nvlist_t *root, **child; 637 int c; 638 639 ASSERT(t > 0); 640 641 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 642 643 for (c = 0; c < t; c++) { 644 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 645 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 646 log) == 0); 647 } 648 649 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 650 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 651 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 652 child, t) == 0); 653 654 for (c = 0; c < t; c++) 655 nvlist_free(child[c]); 656 657 umem_free(child, t * sizeof (nvlist_t *)); 658 659 return (root); 660 } 661 662 static void 663 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 664 { 665 int bs = SPA_MINBLOCKSHIFT + 666 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 667 int ibs = DN_MIN_INDBLKSHIFT + 668 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 669 int error; 670 671 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 672 if (error) { 673 char osname[300]; 674 dmu_objset_name(os, osname); 675 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 676 osname, object, 1 << bs, ibs, error); 677 } 678 } 679 680 static uint8_t 681 ztest_random_checksum(void) 682 { 683 uint8_t checksum; 684 685 do { 686 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 687 } while (zio_checksum_table[checksum].ci_zbt); 688 689 if (checksum == ZIO_CHECKSUM_OFF) 690 checksum = ZIO_CHECKSUM_ON; 691 692 return (checksum); 693 } 694 695 static uint8_t 696 ztest_random_compress(void) 697 { 698 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 699 } 700 701 typedef struct ztest_replay { 702 objset_t *zr_os; 703 uint64_t zr_assign; 704 } ztest_replay_t; 705 706 static int 707 ztest_replay_create(ztest_replay_t *zr, lr_create_t *lr, boolean_t byteswap) 708 { 709 objset_t *os = zr->zr_os; 710 dmu_tx_t *tx; 711 int error; 712 713 if (byteswap) 714 byteswap_uint64_array(lr, sizeof (*lr)); 715 716 tx = dmu_tx_create(os); 717 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 718 error = dmu_tx_assign(tx, zr->zr_assign); 719 if (error) { 720 dmu_tx_abort(tx); 721 return (error); 722 } 723 724 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 725 DMU_OT_NONE, 0, tx); 726 ASSERT3U(error, ==, 0); 727 dmu_tx_commit(tx); 728 729 if (zopt_verbose >= 5) { 730 char osname[MAXNAMELEN]; 731 dmu_objset_name(os, osname); 732 (void) printf("replay create of %s object %llu" 733 " in txg %llu = %d\n", 734 osname, (u_longlong_t)lr->lr_doid, 735 (u_longlong_t)zr->zr_assign, error); 736 } 737 738 return (error); 739 } 740 741 static int 742 ztest_replay_remove(ztest_replay_t *zr, lr_remove_t *lr, boolean_t byteswap) 743 { 744 objset_t *os = zr->zr_os; 745 dmu_tx_t *tx; 746 int error; 747 748 if (byteswap) 749 byteswap_uint64_array(lr, sizeof (*lr)); 750 751 tx = dmu_tx_create(os); 752 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 753 error = dmu_tx_assign(tx, zr->zr_assign); 754 if (error) { 755 dmu_tx_abort(tx); 756 return (error); 757 } 758 759 error = dmu_object_free(os, lr->lr_doid, tx); 760 dmu_tx_commit(tx); 761 762 return (error); 763 } 764 765 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 766 NULL, /* 0 no such transaction type */ 767 ztest_replay_create, /* TX_CREATE */ 768 NULL, /* TX_MKDIR */ 769 NULL, /* TX_MKXATTR */ 770 NULL, /* TX_SYMLINK */ 771 ztest_replay_remove, /* TX_REMOVE */ 772 NULL, /* TX_RMDIR */ 773 NULL, /* TX_LINK */ 774 NULL, /* TX_RENAME */ 775 NULL, /* TX_WRITE */ 776 NULL, /* TX_TRUNCATE */ 777 NULL, /* TX_SETATTR */ 778 NULL, /* TX_ACL */ 779 }; 780 781 /* 782 * Verify that we can't destroy an active pool, create an existing pool, 783 * or create a pool with a bad vdev spec. 784 */ 785 void 786 ztest_spa_create_destroy(ztest_args_t *za) 787 { 788 int error; 789 spa_t *spa; 790 nvlist_t *nvroot; 791 792 /* 793 * Attempt to create using a bad file. 794 */ 795 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 796 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 797 nvlist_free(nvroot); 798 if (error != ENOENT) 799 fatal(0, "spa_create(bad_file) = %d", error); 800 801 /* 802 * Attempt to create using a bad mirror. 803 */ 804 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 805 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 806 nvlist_free(nvroot); 807 if (error != ENOENT) 808 fatal(0, "spa_create(bad_mirror) = %d", error); 809 810 /* 811 * Attempt to create an existing pool. It shouldn't matter 812 * what's in the nvroot; we should fail with EEXIST. 813 */ 814 (void) rw_rdlock(&ztest_shared->zs_name_lock); 815 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 816 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 817 nvlist_free(nvroot); 818 if (error != EEXIST) 819 fatal(0, "spa_create(whatever) = %d", error); 820 821 error = spa_open(za->za_pool, &spa, FTAG); 822 if (error) 823 fatal(0, "spa_open() = %d", error); 824 825 error = spa_destroy(za->za_pool); 826 if (error != EBUSY) 827 fatal(0, "spa_destroy() = %d", error); 828 829 spa_close(spa, FTAG); 830 (void) rw_unlock(&ztest_shared->zs_name_lock); 831 } 832 833 static vdev_t * 834 vdev_lookup_by_path(vdev_t *vd, const char *path) 835 { 836 vdev_t *mvd; 837 838 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 839 return (vd); 840 841 for (int c = 0; c < vd->vdev_children; c++) 842 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 843 NULL) 844 return (mvd); 845 846 return (NULL); 847 } 848 849 /* 850 * Verify that vdev_add() works as expected. 851 */ 852 void 853 ztest_vdev_add_remove(ztest_args_t *za) 854 { 855 spa_t *spa = za->za_spa; 856 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 857 nvlist_t *nvroot; 858 int error; 859 860 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 861 862 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 863 864 ztest_shared->zs_vdev_primaries = 865 spa->spa_root_vdev->vdev_children * leaves; 866 867 spa_config_exit(spa, SCL_VDEV, FTAG); 868 869 /* 870 * Make 1/4 of the devices be log devices. 871 */ 872 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 873 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 874 875 error = spa_vdev_add(spa, nvroot); 876 nvlist_free(nvroot); 877 878 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 879 880 if (error == ENOSPC) 881 ztest_record_enospc("spa_vdev_add"); 882 else if (error != 0) 883 fatal(0, "spa_vdev_add() = %d", error); 884 } 885 886 /* 887 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 888 */ 889 void 890 ztest_vdev_aux_add_remove(ztest_args_t *za) 891 { 892 spa_t *spa = za->za_spa; 893 vdev_t *rvd = spa->spa_root_vdev; 894 spa_aux_vdev_t *sav; 895 char *aux; 896 uint64_t guid = 0; 897 int error; 898 899 if (ztest_random(2) == 0) { 900 sav = &spa->spa_spares; 901 aux = ZPOOL_CONFIG_SPARES; 902 } else { 903 sav = &spa->spa_l2cache; 904 aux = ZPOOL_CONFIG_L2CACHE; 905 } 906 907 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 908 909 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 910 911 if (sav->sav_count != 0 && ztest_random(4) == 0) { 912 /* 913 * Pick a random device to remove. 914 */ 915 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 916 } else { 917 /* 918 * Find an unused device we can add. 919 */ 920 ztest_shared->zs_vdev_aux = 0; 921 for (;;) { 922 char path[MAXPATHLEN]; 923 int c; 924 (void) sprintf(path, ztest_aux_template, zopt_dir, 925 zopt_pool, aux, ztest_shared->zs_vdev_aux); 926 for (c = 0; c < sav->sav_count; c++) 927 if (strcmp(sav->sav_vdevs[c]->vdev_path, 928 path) == 0) 929 break; 930 if (c == sav->sav_count && 931 vdev_lookup_by_path(rvd, path) == NULL) 932 break; 933 ztest_shared->zs_vdev_aux++; 934 } 935 } 936 937 spa_config_exit(spa, SCL_VDEV, FTAG); 938 939 if (guid == 0) { 940 /* 941 * Add a new device. 942 */ 943 nvlist_t *nvroot = make_vdev_root(NULL, aux, 944 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 945 error = spa_vdev_add(spa, nvroot); 946 if (error != 0) 947 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 948 nvlist_free(nvroot); 949 } else { 950 /* 951 * Remove an existing device. Sometimes, dirty its 952 * vdev state first to make sure we handle removal 953 * of devices that have pending state changes. 954 */ 955 if (ztest_random(2) == 0) 956 (void) vdev_online(spa, guid, B_FALSE, NULL); 957 958 error = spa_vdev_remove(spa, guid, B_FALSE); 959 if (error != 0 && error != EBUSY) 960 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 961 } 962 963 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 964 } 965 966 /* 967 * Verify that we can attach and detach devices. 968 */ 969 void 970 ztest_vdev_attach_detach(ztest_args_t *za) 971 { 972 spa_t *spa = za->za_spa; 973 spa_aux_vdev_t *sav = &spa->spa_spares; 974 vdev_t *rvd = spa->spa_root_vdev; 975 vdev_t *oldvd, *newvd, *pvd; 976 nvlist_t *root; 977 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 978 uint64_t leaf, top; 979 uint64_t ashift = ztest_get_ashift(); 980 uint64_t oldguid; 981 size_t oldsize, newsize; 982 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 983 int replacing; 984 int oldvd_has_siblings = B_FALSE; 985 int newvd_is_spare = B_FALSE; 986 int oldvd_is_log; 987 int error, expected_error; 988 989 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 990 991 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 992 993 /* 994 * Decide whether to do an attach or a replace. 995 */ 996 replacing = ztest_random(2); 997 998 /* 999 * Pick a random top-level vdev. 1000 */ 1001 top = ztest_random(rvd->vdev_children); 1002 1003 /* 1004 * Pick a random leaf within it. 1005 */ 1006 leaf = ztest_random(leaves); 1007 1008 /* 1009 * Locate this vdev. 1010 */ 1011 oldvd = rvd->vdev_child[top]; 1012 if (zopt_mirrors >= 1) 1013 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1014 if (zopt_raidz > 1) 1015 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1016 1017 /* 1018 * If we're already doing an attach or replace, oldvd may be a 1019 * mirror vdev -- in which case, pick a random child. 1020 */ 1021 while (oldvd->vdev_children != 0) { 1022 oldvd_has_siblings = B_TRUE; 1023 ASSERT(oldvd->vdev_children == 2); 1024 oldvd = oldvd->vdev_child[ztest_random(2)]; 1025 } 1026 1027 oldguid = oldvd->vdev_guid; 1028 oldsize = vdev_get_rsize(oldvd); 1029 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1030 (void) strcpy(oldpath, oldvd->vdev_path); 1031 pvd = oldvd->vdev_parent; 1032 1033 /* 1034 * If oldvd has siblings, then half of the time, detach it. 1035 */ 1036 if (oldvd_has_siblings && ztest_random(2) == 0) { 1037 spa_config_exit(spa, SCL_VDEV, FTAG); 1038 error = spa_vdev_detach(spa, oldguid, B_FALSE); 1039 if (error != 0 && error != ENODEV && error != EBUSY) 1040 fatal(0, "detach (%s) returned %d", 1041 oldpath, error); 1042 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1043 return; 1044 } 1045 1046 /* 1047 * For the new vdev, choose with equal probability between the two 1048 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1049 */ 1050 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1051 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1052 newvd_is_spare = B_TRUE; 1053 (void) strcpy(newpath, newvd->vdev_path); 1054 } else { 1055 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1056 zopt_dir, zopt_pool, top * leaves + leaf); 1057 if (ztest_random(2) == 0) 1058 newpath[strlen(newpath) - 1] = 'b'; 1059 newvd = vdev_lookup_by_path(rvd, newpath); 1060 } 1061 1062 if (newvd) { 1063 newsize = vdev_get_rsize(newvd); 1064 } else { 1065 /* 1066 * Make newsize a little bigger or smaller than oldsize. 1067 * If it's smaller, the attach should fail. 1068 * If it's larger, and we're doing a replace, 1069 * we should get dynamic LUN growth when we're done. 1070 */ 1071 newsize = 10 * oldsize / (9 + ztest_random(3)); 1072 } 1073 1074 /* 1075 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1076 * unless it's a replace; in that case any non-replacing parent is OK. 1077 * 1078 * If newvd is already part of the pool, it should fail with EBUSY. 1079 * 1080 * If newvd is too small, it should fail with EOVERFLOW. 1081 */ 1082 if (pvd->vdev_ops != &vdev_mirror_ops && 1083 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1084 pvd->vdev_ops == &vdev_replacing_ops || 1085 pvd->vdev_ops == &vdev_spare_ops)) 1086 expected_error = ENOTSUP; 1087 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1088 expected_error = ENOTSUP; 1089 else if (newvd == oldvd) 1090 expected_error = replacing ? 0 : EBUSY; 1091 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1092 expected_error = EBUSY; 1093 else if (newsize < oldsize) 1094 expected_error = EOVERFLOW; 1095 else if (ashift > oldvd->vdev_top->vdev_ashift) 1096 expected_error = EDOM; 1097 else 1098 expected_error = 0; 1099 1100 spa_config_exit(spa, SCL_VDEV, FTAG); 1101 1102 /* 1103 * Build the nvlist describing newpath. 1104 */ 1105 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1106 ashift, 0, 0, 0, 1); 1107 1108 error = spa_vdev_attach(spa, oldguid, root, replacing); 1109 1110 nvlist_free(root); 1111 1112 /* 1113 * If our parent was the replacing vdev, but the replace completed, 1114 * then instead of failing with ENOTSUP we may either succeed, 1115 * fail with ENODEV, or fail with EOVERFLOW. 1116 */ 1117 if (expected_error == ENOTSUP && 1118 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1119 expected_error = error; 1120 1121 /* 1122 * If someone grew the LUN, the replacement may be too small. 1123 */ 1124 if (error == EOVERFLOW || error == EBUSY) 1125 expected_error = error; 1126 1127 /* XXX workaround 6690467 */ 1128 if (error != expected_error && expected_error != EBUSY) { 1129 fatal(0, "attach (%s %llu, %s %llu, %d) " 1130 "returned %d, expected %d", 1131 oldpath, (longlong_t)oldsize, newpath, 1132 (longlong_t)newsize, replacing, error, expected_error); 1133 } 1134 1135 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1136 } 1137 1138 /* 1139 * Verify that dynamic LUN growth works as expected. 1140 */ 1141 /* ARGSUSED */ 1142 void 1143 ztest_vdev_LUN_growth(ztest_args_t *za) 1144 { 1145 spa_t *spa = za->za_spa; 1146 char dev_name[MAXPATHLEN]; 1147 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1148 uint64_t vdev; 1149 size_t fsize; 1150 int fd; 1151 1152 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1153 1154 /* 1155 * Pick a random leaf vdev. 1156 */ 1157 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1158 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves); 1159 spa_config_exit(spa, SCL_VDEV, FTAG); 1160 1161 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 1162 1163 if ((fd = open(dev_name, O_RDWR)) != -1) { 1164 /* 1165 * Determine the size. 1166 */ 1167 fsize = lseek(fd, 0, SEEK_END); 1168 1169 /* 1170 * If it's less than 2x the original size, grow by around 3%. 1171 */ 1172 if (fsize < 2 * zopt_vdev_size) { 1173 size_t newsize = fsize + ztest_random(fsize / 32); 1174 (void) ftruncate(fd, newsize); 1175 if (zopt_verbose >= 6) { 1176 (void) printf("%s grew from %lu to %lu bytes\n", 1177 dev_name, (ulong_t)fsize, (ulong_t)newsize); 1178 } 1179 } 1180 (void) close(fd); 1181 } 1182 1183 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1184 } 1185 1186 /* ARGSUSED */ 1187 static void 1188 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1189 { 1190 /* 1191 * Create the directory object. 1192 */ 1193 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1194 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1195 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1196 1197 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1198 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1199 1200 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1201 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1202 } 1203 1204 static int 1205 ztest_destroy_cb(char *name, void *arg) 1206 { 1207 ztest_args_t *za = arg; 1208 objset_t *os; 1209 dmu_object_info_t *doi = &za->za_doi; 1210 int error; 1211 1212 /* 1213 * Verify that the dataset contains a directory object. 1214 */ 1215 error = dmu_objset_open(name, DMU_OST_OTHER, 1216 DS_MODE_USER | DS_MODE_READONLY, &os); 1217 ASSERT3U(error, ==, 0); 1218 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1219 if (error != ENOENT) { 1220 /* We could have crashed in the middle of destroying it */ 1221 ASSERT3U(error, ==, 0); 1222 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1223 ASSERT3S(doi->doi_physical_blks, >=, 0); 1224 } 1225 dmu_objset_close(os); 1226 1227 /* 1228 * Destroy the dataset. 1229 */ 1230 error = dmu_objset_destroy(name); 1231 if (error) { 1232 (void) dmu_objset_open(name, DMU_OST_OTHER, 1233 DS_MODE_USER | DS_MODE_READONLY, &os); 1234 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error); 1235 } 1236 return (0); 1237 } 1238 1239 /* 1240 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1241 */ 1242 static uint64_t 1243 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1244 { 1245 itx_t *itx; 1246 lr_create_t *lr; 1247 size_t namesize; 1248 char name[24]; 1249 1250 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1251 namesize = strlen(name) + 1; 1252 1253 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1254 ztest_random(ZIL_MAX_BLKSZ)); 1255 lr = (lr_create_t *)&itx->itx_lr; 1256 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1257 lr->lr_doid = object; 1258 lr->lr_foid = 0; 1259 lr->lr_mode = mode; 1260 lr->lr_uid = 0; 1261 lr->lr_gid = 0; 1262 lr->lr_gen = dmu_tx_get_txg(tx); 1263 lr->lr_crtime[0] = time(NULL); 1264 lr->lr_crtime[1] = 0; 1265 lr->lr_rdev = 0; 1266 bcopy(name, (char *)(lr + 1), namesize); 1267 1268 return (zil_itx_assign(zilog, itx, tx)); 1269 } 1270 1271 void 1272 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1273 { 1274 int error; 1275 objset_t *os, *os2; 1276 char name[100]; 1277 int basemode, expected_error; 1278 zilog_t *zilog; 1279 uint64_t seq; 1280 uint64_t objects; 1281 ztest_replay_t zr; 1282 1283 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1284 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1285 (u_longlong_t)za->za_instance); 1286 1287 basemode = DS_MODE_TYPE(za->za_instance); 1288 if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER) 1289 basemode = DS_MODE_USER; 1290 1291 /* 1292 * If this dataset exists from a previous run, process its replay log 1293 * half of the time. If we don't replay it, then dmu_objset_destroy() 1294 * (invoked from ztest_destroy_cb() below) should just throw it away. 1295 */ 1296 if (ztest_random(2) == 0 && 1297 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) { 1298 zr.zr_os = os; 1299 zil_replay(os, &zr, &zr.zr_assign, ztest_replay_vector, NULL); 1300 dmu_objset_close(os); 1301 } 1302 1303 /* 1304 * There may be an old instance of the dataset we're about to 1305 * create lying around from a previous run. If so, destroy it 1306 * and all of its snapshots. 1307 */ 1308 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1309 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1310 1311 /* 1312 * Verify that the destroyed dataset is no longer in the namespace. 1313 */ 1314 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1315 if (error != ENOENT) 1316 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1317 name, os); 1318 1319 /* 1320 * Verify that we can create a new dataset. 1321 */ 1322 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 1323 ztest_create_cb, NULL); 1324 if (error) { 1325 if (error == ENOSPC) { 1326 ztest_record_enospc("dmu_objset_create"); 1327 (void) rw_unlock(&ztest_shared->zs_name_lock); 1328 return; 1329 } 1330 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1331 } 1332 1333 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1334 if (error) { 1335 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1336 } 1337 1338 /* 1339 * Open the intent log for it. 1340 */ 1341 zilog = zil_open(os, NULL); 1342 1343 /* 1344 * Put a random number of objects in there. 1345 */ 1346 objects = ztest_random(20); 1347 seq = 0; 1348 while (objects-- != 0) { 1349 uint64_t object; 1350 dmu_tx_t *tx = dmu_tx_create(os); 1351 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1352 error = dmu_tx_assign(tx, TXG_WAIT); 1353 if (error) { 1354 dmu_tx_abort(tx); 1355 } else { 1356 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1357 DMU_OT_NONE, 0, tx); 1358 ztest_set_random_blocksize(os, object, tx); 1359 seq = ztest_log_create(zilog, tx, object, 1360 DMU_OT_UINT64_OTHER); 1361 dmu_write(os, object, 0, sizeof (name), name, tx); 1362 dmu_tx_commit(tx); 1363 } 1364 if (ztest_random(5) == 0) { 1365 zil_commit(zilog, seq, object); 1366 } 1367 if (ztest_random(100) == 0) { 1368 error = zil_suspend(zilog); 1369 if (error == 0) { 1370 zil_resume(zilog); 1371 } 1372 } 1373 } 1374 1375 /* 1376 * Verify that we cannot create an existing dataset. 1377 */ 1378 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL); 1379 if (error != EEXIST) 1380 fatal(0, "created existing dataset, error = %d", error); 1381 1382 /* 1383 * Verify that multiple dataset holds are allowed, but only when 1384 * the new access mode is compatible with the base mode. 1385 */ 1386 if (basemode == DS_MODE_OWNER) { 1387 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER, 1388 &os2); 1389 if (error) 1390 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1391 else 1392 dmu_objset_close(os2); 1393 } 1394 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2); 1395 expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0; 1396 if (error != expected_error) 1397 fatal(0, "dmu_objset_open('%s') = %d, expected %d", 1398 name, error, expected_error); 1399 if (error == 0) 1400 dmu_objset_close(os2); 1401 1402 zil_close(zilog); 1403 dmu_objset_close(os); 1404 1405 error = dmu_objset_destroy(name); 1406 if (error) 1407 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1408 1409 (void) rw_unlock(&ztest_shared->zs_name_lock); 1410 } 1411 1412 /* 1413 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1414 */ 1415 void 1416 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1417 { 1418 int error; 1419 objset_t *os = za->za_os; 1420 char snapname[100]; 1421 char osname[MAXNAMELEN]; 1422 1423 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1424 dmu_objset_name(os, osname); 1425 (void) snprintf(snapname, 100, "%s@%llu", osname, 1426 (u_longlong_t)za->za_instance); 1427 1428 error = dmu_objset_destroy(snapname); 1429 if (error != 0 && error != ENOENT) 1430 fatal(0, "dmu_objset_destroy() = %d", error); 1431 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, FALSE); 1432 if (error == ENOSPC) 1433 ztest_record_enospc("dmu_take_snapshot"); 1434 else if (error != 0 && error != EEXIST) 1435 fatal(0, "dmu_take_snapshot() = %d", error); 1436 (void) rw_unlock(&ztest_shared->zs_name_lock); 1437 } 1438 1439 /* 1440 * Verify that dmu_object_{alloc,free} work as expected. 1441 */ 1442 void 1443 ztest_dmu_object_alloc_free(ztest_args_t *za) 1444 { 1445 objset_t *os = za->za_os; 1446 dmu_buf_t *db; 1447 dmu_tx_t *tx; 1448 uint64_t batchobj, object, batchsize, endoff, temp; 1449 int b, c, error, bonuslen; 1450 dmu_object_info_t *doi = &za->za_doi; 1451 char osname[MAXNAMELEN]; 1452 1453 dmu_objset_name(os, osname); 1454 1455 endoff = -8ULL; 1456 batchsize = 2; 1457 1458 /* 1459 * Create a batch object if necessary, and record it in the directory. 1460 */ 1461 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1462 sizeof (uint64_t), &batchobj)); 1463 if (batchobj == 0) { 1464 tx = dmu_tx_create(os); 1465 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1466 sizeof (uint64_t)); 1467 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1468 error = dmu_tx_assign(tx, TXG_WAIT); 1469 if (error) { 1470 ztest_record_enospc("create a batch object"); 1471 dmu_tx_abort(tx); 1472 return; 1473 } 1474 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1475 DMU_OT_NONE, 0, tx); 1476 ztest_set_random_blocksize(os, batchobj, tx); 1477 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1478 sizeof (uint64_t), &batchobj, tx); 1479 dmu_tx_commit(tx); 1480 } 1481 1482 /* 1483 * Destroy the previous batch of objects. 1484 */ 1485 for (b = 0; b < batchsize; b++) { 1486 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1487 sizeof (uint64_t), &object)); 1488 if (object == 0) 1489 continue; 1490 /* 1491 * Read and validate contents. 1492 * We expect the nth byte of the bonus buffer to be n. 1493 */ 1494 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1495 za->za_dbuf = db; 1496 1497 dmu_object_info_from_db(db, doi); 1498 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1499 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1500 ASSERT3S(doi->doi_physical_blks, >=, 0); 1501 1502 bonuslen = doi->doi_bonus_size; 1503 1504 for (c = 0; c < bonuslen; c++) { 1505 if (((uint8_t *)db->db_data)[c] != 1506 (uint8_t)(c + bonuslen)) { 1507 fatal(0, 1508 "bad bonus: %s, obj %llu, off %d: %u != %u", 1509 osname, object, c, 1510 ((uint8_t *)db->db_data)[c], 1511 (uint8_t)(c + bonuslen)); 1512 } 1513 } 1514 1515 dmu_buf_rele(db, FTAG); 1516 za->za_dbuf = NULL; 1517 1518 /* 1519 * We expect the word at endoff to be our object number. 1520 */ 1521 VERIFY(0 == dmu_read(os, object, endoff, 1522 sizeof (uint64_t), &temp)); 1523 1524 if (temp != object) { 1525 fatal(0, "bad data in %s, got %llu, expected %llu", 1526 osname, temp, object); 1527 } 1528 1529 /* 1530 * Destroy old object and clear batch entry. 1531 */ 1532 tx = dmu_tx_create(os); 1533 dmu_tx_hold_write(tx, batchobj, 1534 b * sizeof (uint64_t), sizeof (uint64_t)); 1535 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1536 error = dmu_tx_assign(tx, TXG_WAIT); 1537 if (error) { 1538 ztest_record_enospc("free object"); 1539 dmu_tx_abort(tx); 1540 return; 1541 } 1542 error = dmu_object_free(os, object, tx); 1543 if (error) { 1544 fatal(0, "dmu_object_free('%s', %llu) = %d", 1545 osname, object, error); 1546 } 1547 object = 0; 1548 1549 dmu_object_set_checksum(os, batchobj, 1550 ztest_random_checksum(), tx); 1551 dmu_object_set_compress(os, batchobj, 1552 ztest_random_compress(), tx); 1553 1554 dmu_write(os, batchobj, b * sizeof (uint64_t), 1555 sizeof (uint64_t), &object, tx); 1556 1557 dmu_tx_commit(tx); 1558 } 1559 1560 /* 1561 * Before creating the new batch of objects, generate a bunch of churn. 1562 */ 1563 for (b = ztest_random(100); b > 0; b--) { 1564 tx = dmu_tx_create(os); 1565 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1566 error = dmu_tx_assign(tx, TXG_WAIT); 1567 if (error) { 1568 ztest_record_enospc("churn objects"); 1569 dmu_tx_abort(tx); 1570 return; 1571 } 1572 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1573 DMU_OT_NONE, 0, tx); 1574 ztest_set_random_blocksize(os, object, tx); 1575 error = dmu_object_free(os, object, tx); 1576 if (error) { 1577 fatal(0, "dmu_object_free('%s', %llu) = %d", 1578 osname, object, error); 1579 } 1580 dmu_tx_commit(tx); 1581 } 1582 1583 /* 1584 * Create a new batch of objects with randomly chosen 1585 * blocksizes and record them in the batch directory. 1586 */ 1587 for (b = 0; b < batchsize; b++) { 1588 uint32_t va_blksize; 1589 u_longlong_t va_nblocks; 1590 1591 tx = dmu_tx_create(os); 1592 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1593 sizeof (uint64_t)); 1594 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1595 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1596 sizeof (uint64_t)); 1597 error = dmu_tx_assign(tx, TXG_WAIT); 1598 if (error) { 1599 ztest_record_enospc("create batchobj"); 1600 dmu_tx_abort(tx); 1601 return; 1602 } 1603 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1604 1605 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1606 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1607 1608 ztest_set_random_blocksize(os, object, tx); 1609 1610 dmu_object_set_checksum(os, object, 1611 ztest_random_checksum(), tx); 1612 dmu_object_set_compress(os, object, 1613 ztest_random_compress(), tx); 1614 1615 dmu_write(os, batchobj, b * sizeof (uint64_t), 1616 sizeof (uint64_t), &object, tx); 1617 1618 /* 1619 * Write to both the bonus buffer and the regular data. 1620 */ 1621 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1622 za->za_dbuf = db; 1623 ASSERT3U(bonuslen, <=, db->db_size); 1624 1625 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1626 ASSERT3S(va_nblocks, >=, 0); 1627 1628 dmu_buf_will_dirty(db, tx); 1629 1630 /* 1631 * See comments above regarding the contents of 1632 * the bonus buffer and the word at endoff. 1633 */ 1634 for (c = 0; c < bonuslen; c++) 1635 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1636 1637 dmu_buf_rele(db, FTAG); 1638 za->za_dbuf = NULL; 1639 1640 /* 1641 * Write to a large offset to increase indirection. 1642 */ 1643 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1644 1645 dmu_tx_commit(tx); 1646 } 1647 } 1648 1649 /* 1650 * Verify that dmu_{read,write} work as expected. 1651 */ 1652 typedef struct bufwad { 1653 uint64_t bw_index; 1654 uint64_t bw_txg; 1655 uint64_t bw_data; 1656 } bufwad_t; 1657 1658 typedef struct dmu_read_write_dir { 1659 uint64_t dd_packobj; 1660 uint64_t dd_bigobj; 1661 uint64_t dd_chunk; 1662 } dmu_read_write_dir_t; 1663 1664 void 1665 ztest_dmu_read_write(ztest_args_t *za) 1666 { 1667 objset_t *os = za->za_os; 1668 dmu_read_write_dir_t dd; 1669 dmu_tx_t *tx; 1670 int i, freeit, error; 1671 uint64_t n, s, txg; 1672 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1673 uint64_t packoff, packsize, bigoff, bigsize; 1674 uint64_t regions = 997; 1675 uint64_t stride = 123456789ULL; 1676 uint64_t width = 40; 1677 int free_percent = 5; 1678 1679 /* 1680 * This test uses two objects, packobj and bigobj, that are always 1681 * updated together (i.e. in the same tx) so that their contents are 1682 * in sync and can be compared. Their contents relate to each other 1683 * in a simple way: packobj is a dense array of 'bufwad' structures, 1684 * while bigobj is a sparse array of the same bufwads. Specifically, 1685 * for any index n, there are three bufwads that should be identical: 1686 * 1687 * packobj, at offset n * sizeof (bufwad_t) 1688 * bigobj, at the head of the nth chunk 1689 * bigobj, at the tail of the nth chunk 1690 * 1691 * The chunk size is arbitrary. It doesn't have to be a power of two, 1692 * and it doesn't have any relation to the object blocksize. 1693 * The only requirement is that it can hold at least two bufwads. 1694 * 1695 * Normally, we write the bufwad to each of these locations. 1696 * However, free_percent of the time we instead write zeroes to 1697 * packobj and perform a dmu_free_range() on bigobj. By comparing 1698 * bigobj to packobj, we can verify that the DMU is correctly 1699 * tracking which parts of an object are allocated and free, 1700 * and that the contents of the allocated blocks are correct. 1701 */ 1702 1703 /* 1704 * Read the directory info. If it's the first time, set things up. 1705 */ 1706 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1707 sizeof (dd), &dd)); 1708 if (dd.dd_chunk == 0) { 1709 ASSERT(dd.dd_packobj == 0); 1710 ASSERT(dd.dd_bigobj == 0); 1711 tx = dmu_tx_create(os); 1712 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1713 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1714 error = dmu_tx_assign(tx, TXG_WAIT); 1715 if (error) { 1716 ztest_record_enospc("create r/w directory"); 1717 dmu_tx_abort(tx); 1718 return; 1719 } 1720 1721 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1722 DMU_OT_NONE, 0, tx); 1723 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1724 DMU_OT_NONE, 0, tx); 1725 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 1726 1727 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 1728 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 1729 1730 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 1731 tx); 1732 dmu_tx_commit(tx); 1733 } 1734 1735 /* 1736 * Prefetch a random chunk of the big object. 1737 * Our aim here is to get some async reads in flight 1738 * for blocks that we may free below; the DMU should 1739 * handle this race correctly. 1740 */ 1741 n = ztest_random(regions) * stride + ztest_random(width); 1742 s = 1 + ztest_random(2 * width - 1); 1743 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 1744 1745 /* 1746 * Pick a random index and compute the offsets into packobj and bigobj. 1747 */ 1748 n = ztest_random(regions) * stride + ztest_random(width); 1749 s = 1 + ztest_random(width - 1); 1750 1751 packoff = n * sizeof (bufwad_t); 1752 packsize = s * sizeof (bufwad_t); 1753 1754 bigoff = n * dd.dd_chunk; 1755 bigsize = s * dd.dd_chunk; 1756 1757 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 1758 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 1759 1760 /* 1761 * free_percent of the time, free a range of bigobj rather than 1762 * overwriting it. 1763 */ 1764 freeit = (ztest_random(100) < free_percent); 1765 1766 /* 1767 * Read the current contents of our objects. 1768 */ 1769 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf); 1770 ASSERT3U(error, ==, 0); 1771 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf); 1772 ASSERT3U(error, ==, 0); 1773 1774 /* 1775 * Get a tx for the mods to both packobj and bigobj. 1776 */ 1777 tx = dmu_tx_create(os); 1778 1779 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 1780 1781 if (freeit) 1782 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 1783 else 1784 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 1785 1786 error = dmu_tx_assign(tx, TXG_WAIT); 1787 1788 if (error) { 1789 ztest_record_enospc("dmu r/w range"); 1790 dmu_tx_abort(tx); 1791 umem_free(packbuf, packsize); 1792 umem_free(bigbuf, bigsize); 1793 return; 1794 } 1795 1796 txg = dmu_tx_get_txg(tx); 1797 1798 /* 1799 * For each index from n to n + s, verify that the existing bufwad 1800 * in packobj matches the bufwads at the head and tail of the 1801 * corresponding chunk in bigobj. Then update all three bufwads 1802 * with the new values we want to write out. 1803 */ 1804 for (i = 0; i < s; i++) { 1805 /* LINTED */ 1806 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 1807 /* LINTED */ 1808 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 1809 /* LINTED */ 1810 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 1811 1812 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 1813 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 1814 1815 if (pack->bw_txg > txg) 1816 fatal(0, "future leak: got %llx, open txg is %llx", 1817 pack->bw_txg, txg); 1818 1819 if (pack->bw_data != 0 && pack->bw_index != n + i) 1820 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 1821 pack->bw_index, n, i); 1822 1823 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 1824 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 1825 1826 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 1827 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 1828 1829 if (freeit) { 1830 bzero(pack, sizeof (bufwad_t)); 1831 } else { 1832 pack->bw_index = n + i; 1833 pack->bw_txg = txg; 1834 pack->bw_data = 1 + ztest_random(-2ULL); 1835 } 1836 *bigH = *pack; 1837 *bigT = *pack; 1838 } 1839 1840 /* 1841 * We've verified all the old bufwads, and made new ones. 1842 * Now write them out. 1843 */ 1844 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 1845 1846 if (freeit) { 1847 if (zopt_verbose >= 6) { 1848 (void) printf("freeing offset %llx size %llx" 1849 " txg %llx\n", 1850 (u_longlong_t)bigoff, 1851 (u_longlong_t)bigsize, 1852 (u_longlong_t)txg); 1853 } 1854 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 1855 bigsize, tx)); 1856 } else { 1857 if (zopt_verbose >= 6) { 1858 (void) printf("writing offset %llx size %llx" 1859 " txg %llx\n", 1860 (u_longlong_t)bigoff, 1861 (u_longlong_t)bigsize, 1862 (u_longlong_t)txg); 1863 } 1864 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 1865 } 1866 1867 dmu_tx_commit(tx); 1868 1869 /* 1870 * Sanity check the stuff we just wrote. 1871 */ 1872 { 1873 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 1874 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 1875 1876 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 1877 packsize, packcheck)); 1878 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 1879 bigsize, bigcheck)); 1880 1881 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 1882 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 1883 1884 umem_free(packcheck, packsize); 1885 umem_free(bigcheck, bigsize); 1886 } 1887 1888 umem_free(packbuf, packsize); 1889 umem_free(bigbuf, bigsize); 1890 } 1891 1892 void 1893 ztest_dmu_check_future_leak(ztest_args_t *za) 1894 { 1895 objset_t *os = za->za_os; 1896 dmu_buf_t *db; 1897 ztest_block_tag_t *bt; 1898 dmu_object_info_t *doi = &za->za_doi; 1899 1900 /* 1901 * Make sure that, if there is a write record in the bonus buffer 1902 * of the ZTEST_DIROBJ, that the txg for this record is <= the 1903 * last synced txg of the pool. 1904 */ 1905 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 1906 za->za_dbuf = db; 1907 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 1908 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 1909 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 1910 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 1911 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 1912 if (bt->bt_objset != 0) { 1913 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1914 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 1915 ASSERT3U(bt->bt_offset, ==, -1ULL); 1916 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 1917 } 1918 dmu_buf_rele(db, FTAG); 1919 za->za_dbuf = NULL; 1920 } 1921 1922 void 1923 ztest_dmu_write_parallel(ztest_args_t *za) 1924 { 1925 objset_t *os = za->za_os; 1926 ztest_block_tag_t *rbt = &za->za_rbt; 1927 ztest_block_tag_t *wbt = &za->za_wbt; 1928 const size_t btsize = sizeof (ztest_block_tag_t); 1929 dmu_buf_t *db; 1930 int b, error; 1931 int bs = ZTEST_DIROBJ_BLOCKSIZE; 1932 int do_free = 0; 1933 uint64_t off, txg, txg_how; 1934 mutex_t *lp; 1935 char osname[MAXNAMELEN]; 1936 char iobuf[SPA_MAXBLOCKSIZE]; 1937 blkptr_t blk = { 0 }; 1938 uint64_t blkoff; 1939 zbookmark_t zb; 1940 dmu_tx_t *tx = dmu_tx_create(os); 1941 1942 dmu_objset_name(os, osname); 1943 1944 /* 1945 * Have multiple threads write to large offsets in ZTEST_DIROBJ 1946 * to verify that having multiple threads writing to the same object 1947 * in parallel doesn't cause any trouble. 1948 */ 1949 if (ztest_random(4) == 0) { 1950 /* 1951 * Do the bonus buffer instead of a regular block. 1952 * We need a lock to serialize resize vs. others, 1953 * so we hash on the objset ID. 1954 */ 1955 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 1956 off = -1ULL; 1957 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 1958 } else { 1959 b = ztest_random(ZTEST_SYNC_LOCKS); 1960 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 1961 if (ztest_random(4) == 0) { 1962 do_free = 1; 1963 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 1964 } else { 1965 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 1966 } 1967 } 1968 1969 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 1970 error = dmu_tx_assign(tx, txg_how); 1971 if (error) { 1972 if (error == ERESTART) { 1973 ASSERT(txg_how == TXG_NOWAIT); 1974 dmu_tx_wait(tx); 1975 } else { 1976 ztest_record_enospc("dmu write parallel"); 1977 } 1978 dmu_tx_abort(tx); 1979 return; 1980 } 1981 txg = dmu_tx_get_txg(tx); 1982 1983 lp = &ztest_shared->zs_sync_lock[b]; 1984 (void) mutex_lock(lp); 1985 1986 wbt->bt_objset = dmu_objset_id(os); 1987 wbt->bt_object = ZTEST_DIROBJ; 1988 wbt->bt_offset = off; 1989 wbt->bt_txg = txg; 1990 wbt->bt_thread = za->za_instance; 1991 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 1992 1993 /* 1994 * Occasionally, write an all-zero block to test the behavior 1995 * of blocks that compress into holes. 1996 */ 1997 if (off != -1ULL && ztest_random(8) == 0) 1998 bzero(wbt, btsize); 1999 2000 if (off == -1ULL) { 2001 dmu_object_info_t *doi = &za->za_doi; 2002 char *dboff; 2003 2004 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2005 za->za_dbuf = db; 2006 dmu_object_info_from_db(db, doi); 2007 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2008 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2009 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2010 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2011 bcopy(dboff, rbt, btsize); 2012 if (rbt->bt_objset != 0) { 2013 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2014 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2015 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2016 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2017 } 2018 if (ztest_random(10) == 0) { 2019 int newsize = (ztest_random(db->db_size / 2020 btsize) + 1) * btsize; 2021 2022 ASSERT3U(newsize, >=, btsize); 2023 ASSERT3U(newsize, <=, db->db_size); 2024 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2025 dboff = (char *)db->db_data + newsize - btsize; 2026 } 2027 dmu_buf_will_dirty(db, tx); 2028 bcopy(wbt, dboff, btsize); 2029 dmu_buf_rele(db, FTAG); 2030 za->za_dbuf = NULL; 2031 } else if (do_free) { 2032 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2033 } else { 2034 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2035 } 2036 2037 (void) mutex_unlock(lp); 2038 2039 if (ztest_random(1000) == 0) 2040 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2041 2042 dmu_tx_commit(tx); 2043 2044 if (ztest_random(10000) == 0) 2045 txg_wait_synced(dmu_objset_pool(os), txg); 2046 2047 if (off == -1ULL || do_free) 2048 return; 2049 2050 if (ztest_random(2) != 0) 2051 return; 2052 2053 /* 2054 * dmu_sync() the block we just wrote. 2055 */ 2056 (void) mutex_lock(lp); 2057 2058 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2059 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2060 za->za_dbuf = db; 2061 if (error) { 2062 dprintf("dmu_buf_hold(%s, %d, %llx) = %d\n", 2063 osname, ZTEST_DIROBJ, blkoff, error); 2064 (void) mutex_unlock(lp); 2065 return; 2066 } 2067 blkoff = off - blkoff; 2068 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2069 dmu_buf_rele(db, FTAG); 2070 za->za_dbuf = NULL; 2071 2072 (void) mutex_unlock(lp); 2073 2074 if (error) { 2075 dprintf("dmu_sync(%s, %d, %llx) = %d\n", 2076 osname, ZTEST_DIROBJ, off, error); 2077 return; 2078 } 2079 2080 if (blk.blk_birth == 0) /* concurrent free */ 2081 return; 2082 2083 txg_suspend(dmu_objset_pool(os)); 2084 2085 ASSERT(blk.blk_fill == 1); 2086 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2087 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2088 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2089 2090 /* 2091 * Read the block that dmu_sync() returned to make sure its contents 2092 * match what we wrote. We do this while still txg_suspend()ed 2093 * to ensure that the block can't be reused before we read it. 2094 */ 2095 zb.zb_objset = dmu_objset_id(os); 2096 zb.zb_object = ZTEST_DIROBJ; 2097 zb.zb_level = 0; 2098 zb.zb_blkid = off / bs; 2099 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2100 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2101 ASSERT3U(error, ==, 0); 2102 2103 txg_resume(dmu_objset_pool(os)); 2104 2105 bcopy(&iobuf[blkoff], rbt, btsize); 2106 2107 if (rbt->bt_objset == 0) /* concurrent free */ 2108 return; 2109 2110 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2111 return; 2112 2113 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2114 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2115 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2116 2117 /* 2118 * The semantic of dmu_sync() is that we always push the most recent 2119 * version of the data, so in the face of concurrent updates we may 2120 * see a newer version of the block. That's OK. 2121 */ 2122 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2123 if (rbt->bt_thread == wbt->bt_thread) 2124 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2125 else 2126 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2127 } 2128 2129 /* 2130 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2131 */ 2132 #define ZTEST_ZAP_MIN_INTS 1 2133 #define ZTEST_ZAP_MAX_INTS 4 2134 #define ZTEST_ZAP_MAX_PROPS 1000 2135 2136 void 2137 ztest_zap(ztest_args_t *za) 2138 { 2139 objset_t *os = za->za_os; 2140 uint64_t object; 2141 uint64_t txg, last_txg; 2142 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2143 uint64_t zl_ints, zl_intsize, prop; 2144 int i, ints; 2145 dmu_tx_t *tx; 2146 char propname[100], txgname[100]; 2147 int error; 2148 char osname[MAXNAMELEN]; 2149 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2150 2151 dmu_objset_name(os, osname); 2152 2153 /* 2154 * Create a new object if necessary, and record it in the directory. 2155 */ 2156 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2157 sizeof (uint64_t), &object)); 2158 2159 if (object == 0) { 2160 tx = dmu_tx_create(os); 2161 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2162 sizeof (uint64_t)); 2163 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2164 error = dmu_tx_assign(tx, TXG_WAIT); 2165 if (error) { 2166 ztest_record_enospc("create zap test obj"); 2167 dmu_tx_abort(tx); 2168 return; 2169 } 2170 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2171 if (error) { 2172 fatal(0, "zap_create('%s', %llu) = %d", 2173 osname, object, error); 2174 } 2175 ASSERT(object != 0); 2176 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2177 sizeof (uint64_t), &object, tx); 2178 /* 2179 * Generate a known hash collision, and verify that 2180 * we can lookup and remove both entries. 2181 */ 2182 for (i = 0; i < 2; i++) { 2183 value[i] = i; 2184 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2185 1, &value[i], tx); 2186 ASSERT3U(error, ==, 0); 2187 } 2188 for (i = 0; i < 2; i++) { 2189 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2190 1, &value[i], tx); 2191 ASSERT3U(error, ==, EEXIST); 2192 error = zap_length(os, object, hc[i], 2193 &zl_intsize, &zl_ints); 2194 ASSERT3U(error, ==, 0); 2195 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2196 ASSERT3U(zl_ints, ==, 1); 2197 } 2198 for (i = 0; i < 2; i++) { 2199 error = zap_remove(os, object, hc[i], tx); 2200 ASSERT3U(error, ==, 0); 2201 } 2202 2203 dmu_tx_commit(tx); 2204 } 2205 2206 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2207 2208 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2209 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2210 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2211 bzero(value, sizeof (value)); 2212 last_txg = 0; 2213 2214 /* 2215 * If these zap entries already exist, validate their contents. 2216 */ 2217 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2218 if (error == 0) { 2219 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2220 ASSERT3U(zl_ints, ==, 1); 2221 2222 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2223 zl_ints, &last_txg) == 0); 2224 2225 VERIFY(zap_length(os, object, propname, &zl_intsize, 2226 &zl_ints) == 0); 2227 2228 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2229 ASSERT3U(zl_ints, ==, ints); 2230 2231 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2232 zl_ints, value) == 0); 2233 2234 for (i = 0; i < ints; i++) { 2235 ASSERT3U(value[i], ==, last_txg + object + i); 2236 } 2237 } else { 2238 ASSERT3U(error, ==, ENOENT); 2239 } 2240 2241 /* 2242 * Atomically update two entries in our zap object. 2243 * The first is named txg_%llu, and contains the txg 2244 * in which the property was last updated. The second 2245 * is named prop_%llu, and the nth element of its value 2246 * should be txg + object + n. 2247 */ 2248 tx = dmu_tx_create(os); 2249 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2250 error = dmu_tx_assign(tx, TXG_WAIT); 2251 if (error) { 2252 ztest_record_enospc("create zap entry"); 2253 dmu_tx_abort(tx); 2254 return; 2255 } 2256 txg = dmu_tx_get_txg(tx); 2257 2258 if (last_txg > txg) 2259 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2260 2261 for (i = 0; i < ints; i++) 2262 value[i] = txg + object + i; 2263 2264 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2265 if (error) 2266 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2267 osname, object, txgname, error); 2268 2269 error = zap_update(os, object, propname, sizeof (uint64_t), 2270 ints, value, tx); 2271 if (error) 2272 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2273 osname, object, propname, error); 2274 2275 dmu_tx_commit(tx); 2276 2277 /* 2278 * Remove a random pair of entries. 2279 */ 2280 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2281 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2282 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2283 2284 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2285 2286 if (error == ENOENT) 2287 return; 2288 2289 ASSERT3U(error, ==, 0); 2290 2291 tx = dmu_tx_create(os); 2292 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2293 error = dmu_tx_assign(tx, TXG_WAIT); 2294 if (error) { 2295 ztest_record_enospc("remove zap entry"); 2296 dmu_tx_abort(tx); 2297 return; 2298 } 2299 error = zap_remove(os, object, txgname, tx); 2300 if (error) 2301 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2302 osname, object, txgname, error); 2303 2304 error = zap_remove(os, object, propname, tx); 2305 if (error) 2306 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2307 osname, object, propname, error); 2308 2309 dmu_tx_commit(tx); 2310 2311 /* 2312 * Once in a while, destroy the object. 2313 */ 2314 if (ztest_random(1000) != 0) 2315 return; 2316 2317 tx = dmu_tx_create(os); 2318 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2319 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2320 error = dmu_tx_assign(tx, TXG_WAIT); 2321 if (error) { 2322 ztest_record_enospc("destroy zap object"); 2323 dmu_tx_abort(tx); 2324 return; 2325 } 2326 error = zap_destroy(os, object, tx); 2327 if (error) 2328 fatal(0, "zap_destroy('%s', %llu) = %d", 2329 osname, object, error); 2330 object = 0; 2331 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2332 &object, tx); 2333 dmu_tx_commit(tx); 2334 } 2335 2336 void 2337 ztest_zap_parallel(ztest_args_t *za) 2338 { 2339 objset_t *os = za->za_os; 2340 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2341 dmu_tx_t *tx; 2342 int i, namelen, error; 2343 char name[20], string_value[20]; 2344 void *data; 2345 2346 /* 2347 * Generate a random name of the form 'xxx.....' where each 2348 * x is a random printable character and the dots are dots. 2349 * There are 94 such characters, and the name length goes from 2350 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2351 */ 2352 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2353 2354 for (i = 0; i < 3; i++) 2355 name[i] = '!' + ztest_random('~' - '!' + 1); 2356 for (; i < namelen - 1; i++) 2357 name[i] = '.'; 2358 name[i] = '\0'; 2359 2360 if (ztest_random(2) == 0) 2361 object = ZTEST_MICROZAP_OBJ; 2362 else 2363 object = ZTEST_FATZAP_OBJ; 2364 2365 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2366 wsize = sizeof (txg); 2367 wc = 1; 2368 data = &txg; 2369 } else { 2370 wsize = 1; 2371 wc = namelen; 2372 data = string_value; 2373 } 2374 2375 count = -1ULL; 2376 VERIFY(zap_count(os, object, &count) == 0); 2377 ASSERT(count != -1ULL); 2378 2379 /* 2380 * Select an operation: length, lookup, add, update, remove. 2381 */ 2382 i = ztest_random(5); 2383 2384 if (i >= 2) { 2385 tx = dmu_tx_create(os); 2386 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2387 error = dmu_tx_assign(tx, TXG_WAIT); 2388 if (error) { 2389 ztest_record_enospc("zap parallel"); 2390 dmu_tx_abort(tx); 2391 return; 2392 } 2393 txg = dmu_tx_get_txg(tx); 2394 bcopy(name, string_value, namelen); 2395 } else { 2396 tx = NULL; 2397 txg = 0; 2398 bzero(string_value, namelen); 2399 } 2400 2401 switch (i) { 2402 2403 case 0: 2404 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 2405 if (error == 0) { 2406 ASSERT3U(wsize, ==, zl_wsize); 2407 ASSERT3U(wc, ==, zl_wc); 2408 } else { 2409 ASSERT3U(error, ==, ENOENT); 2410 } 2411 break; 2412 2413 case 1: 2414 error = zap_lookup(os, object, name, wsize, wc, data); 2415 if (error == 0) { 2416 if (data == string_value && 2417 bcmp(name, data, namelen) != 0) 2418 fatal(0, "name '%s' != val '%s' len %d", 2419 name, data, namelen); 2420 } else { 2421 ASSERT3U(error, ==, ENOENT); 2422 } 2423 break; 2424 2425 case 2: 2426 error = zap_add(os, object, name, wsize, wc, data, tx); 2427 ASSERT(error == 0 || error == EEXIST); 2428 break; 2429 2430 case 3: 2431 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 2432 break; 2433 2434 case 4: 2435 error = zap_remove(os, object, name, tx); 2436 ASSERT(error == 0 || error == ENOENT); 2437 break; 2438 } 2439 2440 if (tx != NULL) 2441 dmu_tx_commit(tx); 2442 } 2443 2444 void 2445 ztest_dsl_prop_get_set(ztest_args_t *za) 2446 { 2447 objset_t *os = za->za_os; 2448 int i, inherit; 2449 uint64_t value; 2450 const char *prop, *valname; 2451 char setpoint[MAXPATHLEN]; 2452 char osname[MAXNAMELEN]; 2453 int error; 2454 2455 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2456 2457 dmu_objset_name(os, osname); 2458 2459 for (i = 0; i < 2; i++) { 2460 if (i == 0) { 2461 prop = "checksum"; 2462 value = ztest_random_checksum(); 2463 inherit = (value == ZIO_CHECKSUM_INHERIT); 2464 } else { 2465 prop = "compression"; 2466 value = ztest_random_compress(); 2467 inherit = (value == ZIO_COMPRESS_INHERIT); 2468 } 2469 2470 error = dsl_prop_set(osname, prop, sizeof (value), 2471 !inherit, &value); 2472 2473 if (error == ENOSPC) { 2474 ztest_record_enospc("dsl_prop_set"); 2475 break; 2476 } 2477 2478 ASSERT3U(error, ==, 0); 2479 2480 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 2481 1, &value, setpoint), ==, 0); 2482 2483 if (i == 0) 2484 valname = zio_checksum_table[value].ci_name; 2485 else 2486 valname = zio_compress_table[value].ci_name; 2487 2488 if (zopt_verbose >= 6) { 2489 (void) printf("%s %s = %s for '%s'\n", 2490 osname, prop, valname, setpoint); 2491 } 2492 } 2493 2494 (void) rw_unlock(&ztest_shared->zs_name_lock); 2495 } 2496 2497 /* 2498 * Inject random faults into the on-disk data. 2499 */ 2500 void 2501 ztest_fault_inject(ztest_args_t *za) 2502 { 2503 int fd; 2504 uint64_t offset; 2505 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2506 uint64_t bad = 0x1990c0ffeedecade; 2507 uint64_t top, leaf; 2508 char path0[MAXPATHLEN]; 2509 char pathrand[MAXPATHLEN]; 2510 size_t fsize; 2511 spa_t *spa = za->za_spa; 2512 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 2513 int iters = 1000; 2514 int maxfaults = zopt_maxfaults; 2515 vdev_t *vd0 = NULL; 2516 uint64_t guid0 = 0; 2517 2518 ASSERT(leaves >= 1); 2519 2520 /* 2521 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 2522 */ 2523 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 2524 2525 if (ztest_random(2) == 0) { 2526 /* 2527 * Inject errors on a normal data device. 2528 */ 2529 top = ztest_random(spa->spa_root_vdev->vdev_children); 2530 leaf = ztest_random(leaves); 2531 2532 /* 2533 * Generate paths to the first leaf in this top-level vdev, 2534 * and to the random leaf we selected. We'll induce transient 2535 * write failures and random online/offline activity on leaf 0, 2536 * and we'll write random garbage to the randomly chosen leaf. 2537 */ 2538 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 2539 zopt_dir, zopt_pool, top * leaves + 0); 2540 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 2541 zopt_dir, zopt_pool, top * leaves + leaf); 2542 2543 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 2544 if (vd0 != NULL && maxfaults != 1) { 2545 /* 2546 * Make vd0 explicitly claim to be unreadable, 2547 * or unwriteable, or reach behind its back 2548 * and close the underlying fd. We can do this if 2549 * maxfaults == 0 because we'll fail and reexecute, 2550 * and we can do it if maxfaults >= 2 because we'll 2551 * have enough redundancy. If maxfaults == 1, the 2552 * combination of this with injection of random data 2553 * corruption below exceeds the pool's fault tolerance. 2554 */ 2555 vdev_file_t *vf = vd0->vdev_tsd; 2556 2557 if (vf != NULL && ztest_random(3) == 0) { 2558 (void) close(vf->vf_vnode->v_fd); 2559 vf->vf_vnode->v_fd = -1; 2560 } else if (ztest_random(2) == 0) { 2561 vd0->vdev_cant_read = B_TRUE; 2562 } else { 2563 vd0->vdev_cant_write = B_TRUE; 2564 } 2565 guid0 = vd0->vdev_guid; 2566 } 2567 } else { 2568 /* 2569 * Inject errors on an l2cache device. 2570 */ 2571 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2572 2573 if (sav->sav_count == 0) { 2574 spa_config_exit(spa, SCL_STATE, FTAG); 2575 return; 2576 } 2577 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2578 guid0 = vd0->vdev_guid; 2579 (void) strcpy(path0, vd0->vdev_path); 2580 (void) strcpy(pathrand, vd0->vdev_path); 2581 2582 leaf = 0; 2583 leaves = 1; 2584 maxfaults = INT_MAX; /* no limit on cache devices */ 2585 } 2586 2587 dprintf("damaging %s and %s\n", path0, pathrand); 2588 2589 spa_config_exit(spa, SCL_STATE, FTAG); 2590 2591 if (maxfaults == 0) 2592 return; 2593 2594 /* 2595 * If we can tolerate two or more faults, randomly online/offline vd0. 2596 */ 2597 if (maxfaults >= 2 && guid0 != 0) { 2598 if (ztest_random(10) < 6) 2599 (void) vdev_offline(spa, guid0, B_TRUE); 2600 else 2601 (void) vdev_online(spa, guid0, B_FALSE, NULL); 2602 } 2603 2604 /* 2605 * We have at least single-fault tolerance, so inject data corruption. 2606 */ 2607 fd = open(pathrand, O_RDWR); 2608 2609 if (fd == -1) /* we hit a gap in the device namespace */ 2610 return; 2611 2612 fsize = lseek(fd, 0, SEEK_END); 2613 2614 while (--iters != 0) { 2615 offset = ztest_random(fsize / (leaves << bshift)) * 2616 (leaves << bshift) + (leaf << bshift) + 2617 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 2618 2619 if (offset >= fsize) 2620 continue; 2621 2622 if (zopt_verbose >= 6) 2623 (void) printf("injecting bad word into %s," 2624 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 2625 2626 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 2627 fatal(1, "can't inject bad word at 0x%llx in %s", 2628 offset, pathrand); 2629 } 2630 2631 (void) close(fd); 2632 } 2633 2634 /* 2635 * Scrub the pool. 2636 */ 2637 void 2638 ztest_scrub(ztest_args_t *za) 2639 { 2640 spa_t *spa = za->za_spa; 2641 2642 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 2643 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 2644 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 2645 } 2646 2647 /* 2648 * Rename the pool to a different name and then rename it back. 2649 */ 2650 void 2651 ztest_spa_rename(ztest_args_t *za) 2652 { 2653 char *oldname, *newname; 2654 int error; 2655 spa_t *spa; 2656 2657 (void) rw_wrlock(&ztest_shared->zs_name_lock); 2658 2659 oldname = za->za_pool; 2660 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 2661 (void) strcpy(newname, oldname); 2662 (void) strcat(newname, "_tmp"); 2663 2664 /* 2665 * Do the rename 2666 */ 2667 error = spa_rename(oldname, newname); 2668 if (error) 2669 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 2670 newname, error); 2671 2672 /* 2673 * Try to open it under the old name, which shouldn't exist 2674 */ 2675 error = spa_open(oldname, &spa, FTAG); 2676 if (error != ENOENT) 2677 fatal(0, "spa_open('%s') = %d", oldname, error); 2678 2679 /* 2680 * Open it under the new name and make sure it's still the same spa_t. 2681 */ 2682 error = spa_open(newname, &spa, FTAG); 2683 if (error != 0) 2684 fatal(0, "spa_open('%s') = %d", newname, error); 2685 2686 ASSERT(spa == za->za_spa); 2687 spa_close(spa, FTAG); 2688 2689 /* 2690 * Rename it back to the original 2691 */ 2692 error = spa_rename(newname, oldname); 2693 if (error) 2694 fatal(0, "spa_rename('%s', '%s') = %d", newname, 2695 oldname, error); 2696 2697 /* 2698 * Make sure it can still be opened 2699 */ 2700 error = spa_open(oldname, &spa, FTAG); 2701 if (error != 0) 2702 fatal(0, "spa_open('%s') = %d", oldname, error); 2703 2704 ASSERT(spa == za->za_spa); 2705 spa_close(spa, FTAG); 2706 2707 umem_free(newname, strlen(newname) + 1); 2708 2709 (void) rw_unlock(&ztest_shared->zs_name_lock); 2710 } 2711 2712 2713 /* 2714 * Completely obliterate one disk. 2715 */ 2716 static void 2717 ztest_obliterate_one_disk(uint64_t vdev) 2718 { 2719 int fd; 2720 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 2721 size_t fsize; 2722 2723 if (zopt_maxfaults < 2) 2724 return; 2725 2726 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2727 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 2728 2729 fd = open(dev_name, O_RDWR); 2730 2731 if (fd == -1) 2732 fatal(1, "can't open %s", dev_name); 2733 2734 /* 2735 * Determine the size. 2736 */ 2737 fsize = lseek(fd, 0, SEEK_END); 2738 2739 (void) close(fd); 2740 2741 /* 2742 * Rename the old device to dev_name.old (useful for debugging). 2743 */ 2744 VERIFY(rename(dev_name, copy_name) == 0); 2745 2746 /* 2747 * Create a new one. 2748 */ 2749 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 2750 VERIFY(ftruncate(fd, fsize) == 0); 2751 (void) close(fd); 2752 } 2753 2754 static void 2755 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 2756 { 2757 char dev_name[MAXPATHLEN]; 2758 nvlist_t *root; 2759 int error; 2760 uint64_t guid; 2761 vdev_t *vd; 2762 2763 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2764 2765 /* 2766 * Build the nvlist describing dev_name. 2767 */ 2768 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 2769 2770 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2771 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 2772 guid = 0; 2773 else 2774 guid = vd->vdev_guid; 2775 spa_config_exit(spa, SCL_VDEV, FTAG); 2776 error = spa_vdev_attach(spa, guid, root, B_TRUE); 2777 if (error != 0 && 2778 error != EBUSY && 2779 error != ENOTSUP && 2780 error != ENODEV && 2781 error != EDOM) 2782 fatal(0, "spa_vdev_attach(in-place) = %d", error); 2783 2784 nvlist_free(root); 2785 } 2786 2787 static void 2788 ztest_verify_blocks(char *pool) 2789 { 2790 int status; 2791 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 2792 char zbuf[1024]; 2793 char *bin; 2794 char *ztest; 2795 char *isa; 2796 int isalen; 2797 FILE *fp; 2798 2799 (void) realpath(getexecname(), zdb); 2800 2801 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 2802 bin = strstr(zdb, "/usr/bin/"); 2803 ztest = strstr(bin, "/ztest"); 2804 isa = bin + 8; 2805 isalen = ztest - isa; 2806 isa = strdup(isa); 2807 /* LINTED */ 2808 (void) sprintf(bin, 2809 "/usr/sbin%.*s/zdb -bc%s%s -U /tmp/zpool.cache %s", 2810 isalen, 2811 isa, 2812 zopt_verbose >= 3 ? "s" : "", 2813 zopt_verbose >= 4 ? "v" : "", 2814 pool); 2815 free(isa); 2816 2817 if (zopt_verbose >= 5) 2818 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 2819 2820 fp = popen(zdb, "r"); 2821 2822 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 2823 if (zopt_verbose >= 3) 2824 (void) printf("%s", zbuf); 2825 2826 status = pclose(fp); 2827 2828 if (status == 0) 2829 return; 2830 2831 ztest_dump_core = 0; 2832 if (WIFEXITED(status)) 2833 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 2834 else 2835 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 2836 } 2837 2838 static void 2839 ztest_walk_pool_directory(char *header) 2840 { 2841 spa_t *spa = NULL; 2842 2843 if (zopt_verbose >= 6) 2844 (void) printf("%s\n", header); 2845 2846 mutex_enter(&spa_namespace_lock); 2847 while ((spa = spa_next(spa)) != NULL) 2848 if (zopt_verbose >= 6) 2849 (void) printf("\t%s\n", spa_name(spa)); 2850 mutex_exit(&spa_namespace_lock); 2851 } 2852 2853 static void 2854 ztest_spa_import_export(char *oldname, char *newname) 2855 { 2856 nvlist_t *config; 2857 uint64_t pool_guid; 2858 spa_t *spa; 2859 int error; 2860 2861 if (zopt_verbose >= 4) { 2862 (void) printf("import/export: old = %s, new = %s\n", 2863 oldname, newname); 2864 } 2865 2866 /* 2867 * Clean up from previous runs. 2868 */ 2869 (void) spa_destroy(newname); 2870 2871 /* 2872 * Get the pool's configuration and guid. 2873 */ 2874 error = spa_open(oldname, &spa, FTAG); 2875 if (error) 2876 fatal(0, "spa_open('%s') = %d", oldname, error); 2877 2878 pool_guid = spa_guid(spa); 2879 spa_close(spa, FTAG); 2880 2881 ztest_walk_pool_directory("pools before export"); 2882 2883 /* 2884 * Export it. 2885 */ 2886 error = spa_export(oldname, &config, B_FALSE); 2887 if (error) 2888 fatal(0, "spa_export('%s') = %d", oldname, error); 2889 2890 ztest_walk_pool_directory("pools after export"); 2891 2892 /* 2893 * Import it under the new name. 2894 */ 2895 error = spa_import(newname, config, NULL); 2896 if (error) 2897 fatal(0, "spa_import('%s') = %d", newname, error); 2898 2899 ztest_walk_pool_directory("pools after import"); 2900 2901 /* 2902 * Try to import it again -- should fail with EEXIST. 2903 */ 2904 error = spa_import(newname, config, NULL); 2905 if (error != EEXIST) 2906 fatal(0, "spa_import('%s') twice", newname); 2907 2908 /* 2909 * Try to import it under a different name -- should fail with EEXIST. 2910 */ 2911 error = spa_import(oldname, config, NULL); 2912 if (error != EEXIST) 2913 fatal(0, "spa_import('%s') under multiple names", newname); 2914 2915 /* 2916 * Verify that the pool is no longer visible under the old name. 2917 */ 2918 error = spa_open(oldname, &spa, FTAG); 2919 if (error != ENOENT) 2920 fatal(0, "spa_open('%s') = %d", newname, error); 2921 2922 /* 2923 * Verify that we can open and close the pool using the new name. 2924 */ 2925 error = spa_open(newname, &spa, FTAG); 2926 if (error) 2927 fatal(0, "spa_open('%s') = %d", newname, error); 2928 ASSERT(pool_guid == spa_guid(spa)); 2929 spa_close(spa, FTAG); 2930 2931 nvlist_free(config); 2932 } 2933 2934 static void * 2935 ztest_resume(void *arg) 2936 { 2937 spa_t *spa = arg; 2938 2939 while (!ztest_exiting) { 2940 (void) poll(NULL, 0, 1000); 2941 2942 if (!spa_suspended(spa)) 2943 continue; 2944 2945 spa_vdev_state_enter(spa); 2946 vdev_clear(spa, NULL); 2947 (void) spa_vdev_state_exit(spa, NULL, 0); 2948 2949 zio_resume(spa); 2950 } 2951 return (NULL); 2952 } 2953 2954 static void * 2955 ztest_thread(void *arg) 2956 { 2957 ztest_args_t *za = arg; 2958 ztest_shared_t *zs = ztest_shared; 2959 hrtime_t now, functime; 2960 ztest_info_t *zi; 2961 int f, i; 2962 2963 while ((now = gethrtime()) < za->za_stop) { 2964 /* 2965 * See if it's time to force a crash. 2966 */ 2967 if (now > za->za_kill) { 2968 zs->zs_alloc = spa_get_alloc(za->za_spa); 2969 zs->zs_space = spa_get_space(za->za_spa); 2970 (void) kill(getpid(), SIGKILL); 2971 } 2972 2973 /* 2974 * Pick a random function. 2975 */ 2976 f = ztest_random(ZTEST_FUNCS); 2977 zi = &zs->zs_info[f]; 2978 2979 /* 2980 * Decide whether to call it, based on the requested frequency. 2981 */ 2982 if (zi->zi_call_target == 0 || 2983 (double)zi->zi_call_total / zi->zi_call_target > 2984 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 2985 continue; 2986 2987 atomic_add_64(&zi->zi_calls, 1); 2988 atomic_add_64(&zi->zi_call_total, 1); 2989 2990 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 2991 ZTEST_DIRSIZE; 2992 za->za_diroff_shared = (1ULL << 63); 2993 2994 for (i = 0; i < zi->zi_iters; i++) 2995 zi->zi_func(za); 2996 2997 functime = gethrtime() - now; 2998 2999 atomic_add_64(&zi->zi_call_time, functime); 3000 3001 if (zopt_verbose >= 4) { 3002 Dl_info dli; 3003 (void) dladdr((void *)zi->zi_func, &dli); 3004 (void) printf("%6.2f sec in %s\n", 3005 (double)functime / NANOSEC, dli.dli_sname); 3006 } 3007 3008 /* 3009 * If we're getting ENOSPC with some regularity, stop. 3010 */ 3011 if (zs->zs_enospc_count > 10) 3012 break; 3013 } 3014 3015 return (NULL); 3016 } 3017 3018 /* 3019 * Kick off threads to run tests on all datasets in parallel. 3020 */ 3021 static void 3022 ztest_run(char *pool) 3023 { 3024 int t, d, error; 3025 ztest_shared_t *zs = ztest_shared; 3026 ztest_args_t *za; 3027 spa_t *spa; 3028 char name[100]; 3029 thread_t resume_tid; 3030 3031 ztest_exiting = B_FALSE; 3032 3033 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 3034 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 3035 3036 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 3037 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 3038 3039 /* 3040 * Destroy one disk before we even start. 3041 * It's mirrored, so everything should work just fine. 3042 * This makes us exercise fault handling very early in spa_load(). 3043 */ 3044 ztest_obliterate_one_disk(0); 3045 3046 /* 3047 * Verify that the sum of the sizes of all blocks in the pool 3048 * equals the SPA's allocated space total. 3049 */ 3050 ztest_verify_blocks(pool); 3051 3052 /* 3053 * Kick off a replacement of the disk we just obliterated. 3054 */ 3055 kernel_init(FREAD | FWRITE); 3056 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3057 ztest_replace_one_disk(spa, 0); 3058 if (zopt_verbose >= 5) 3059 show_pool_stats(spa); 3060 spa_close(spa, FTAG); 3061 kernel_fini(); 3062 3063 kernel_init(FREAD | FWRITE); 3064 3065 /* 3066 * Verify that we can export the pool and reimport it under a 3067 * different name. 3068 */ 3069 if (ztest_random(2) == 0) { 3070 (void) snprintf(name, 100, "%s_import", pool); 3071 ztest_spa_import_export(pool, name); 3072 ztest_spa_import_export(name, pool); 3073 } 3074 3075 /* 3076 * Verify that we can loop over all pools. 3077 */ 3078 mutex_enter(&spa_namespace_lock); 3079 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3080 if (zopt_verbose > 3) { 3081 (void) printf("spa_next: found %s\n", spa_name(spa)); 3082 } 3083 } 3084 mutex_exit(&spa_namespace_lock); 3085 3086 /* 3087 * Open our pool. 3088 */ 3089 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3090 3091 /* 3092 * Create a thread to periodically resume suspended I/O. 3093 */ 3094 VERIFY(thr_create(0, 0, ztest_resume, spa, THR_BOUND, 3095 &resume_tid) == 0); 3096 3097 /* 3098 * Verify that we can safely inquire about about any object, 3099 * whether it's allocated or not. To make it interesting, 3100 * we probe a 5-wide window around each power of two. 3101 * This hits all edge cases, including zero and the max. 3102 */ 3103 for (t = 0; t < 64; t++) { 3104 for (d = -5; d <= 5; d++) { 3105 error = dmu_object_info(spa->spa_meta_objset, 3106 (1ULL << t) + d, NULL); 3107 ASSERT(error == 0 || error == ENOENT || 3108 error == EINVAL); 3109 } 3110 } 3111 3112 /* 3113 * Now kick off all the tests that run in parallel. 3114 */ 3115 zs->zs_enospc_count = 0; 3116 3117 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3118 3119 if (zopt_verbose >= 4) 3120 (void) printf("starting main threads...\n"); 3121 3122 za[0].za_start = gethrtime(); 3123 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3124 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3125 za[0].za_kill = za[0].za_stop; 3126 if (ztest_random(100) < zopt_killrate) 3127 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3128 3129 for (t = 0; t < zopt_threads; t++) { 3130 d = t % zopt_datasets; 3131 3132 (void) strcpy(za[t].za_pool, pool); 3133 za[t].za_os = za[d].za_os; 3134 za[t].za_spa = spa; 3135 za[t].za_zilog = za[d].za_zilog; 3136 za[t].za_instance = t; 3137 za[t].za_random = ztest_random(-1ULL); 3138 za[t].za_start = za[0].za_start; 3139 za[t].za_stop = za[0].za_stop; 3140 za[t].za_kill = za[0].za_kill; 3141 3142 if (t < zopt_datasets) { 3143 ztest_replay_t zr; 3144 int test_future = FALSE; 3145 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3146 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3147 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 3148 ztest_create_cb, NULL); 3149 if (error == EEXIST) { 3150 test_future = TRUE; 3151 } else if (error == ENOSPC) { 3152 zs->zs_enospc_count++; 3153 (void) rw_unlock(&ztest_shared->zs_name_lock); 3154 break; 3155 } else if (error != 0) { 3156 fatal(0, "dmu_objset_create(%s) = %d", 3157 name, error); 3158 } 3159 error = dmu_objset_open(name, DMU_OST_OTHER, 3160 DS_MODE_USER, &za[d].za_os); 3161 if (error) 3162 fatal(0, "dmu_objset_open('%s') = %d", 3163 name, error); 3164 (void) rw_unlock(&ztest_shared->zs_name_lock); 3165 if (test_future) 3166 ztest_dmu_check_future_leak(&za[t]); 3167 zr.zr_os = za[d].za_os; 3168 zil_replay(zr.zr_os, &zr, &zr.zr_assign, 3169 ztest_replay_vector, NULL); 3170 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3171 } 3172 3173 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3174 &za[t].za_thread) == 0); 3175 } 3176 3177 while (--t >= 0) { 3178 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 3179 if (t < zopt_datasets) { 3180 zil_close(za[t].za_zilog); 3181 dmu_objset_close(za[t].za_os); 3182 } 3183 } 3184 3185 if (zopt_verbose >= 3) 3186 show_pool_stats(spa); 3187 3188 txg_wait_synced(spa_get_dsl(spa), 0); 3189 3190 zs->zs_alloc = spa_get_alloc(spa); 3191 zs->zs_space = spa_get_space(spa); 3192 3193 /* 3194 * If we had out-of-space errors, destroy a random objset. 3195 */ 3196 if (zs->zs_enospc_count != 0) { 3197 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3198 d = (int)ztest_random(zopt_datasets); 3199 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3200 if (zopt_verbose >= 3) 3201 (void) printf("Destroying %s to free up space\n", name); 3202 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 3203 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 3204 (void) rw_unlock(&ztest_shared->zs_name_lock); 3205 } 3206 3207 txg_wait_synced(spa_get_dsl(spa), 0); 3208 3209 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3210 3211 /* Kill the resume thread */ 3212 ztest_exiting = B_TRUE; 3213 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 3214 3215 /* 3216 * Right before closing the pool, kick off a bunch of async I/O; 3217 * spa_close() should wait for it to complete. 3218 */ 3219 for (t = 1; t < 50; t++) 3220 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3221 3222 spa_close(spa, FTAG); 3223 3224 kernel_fini(); 3225 } 3226 3227 void 3228 print_time(hrtime_t t, char *timebuf) 3229 { 3230 hrtime_t s = t / NANOSEC; 3231 hrtime_t m = s / 60; 3232 hrtime_t h = m / 60; 3233 hrtime_t d = h / 24; 3234 3235 s -= m * 60; 3236 m -= h * 60; 3237 h -= d * 24; 3238 3239 timebuf[0] = '\0'; 3240 3241 if (d) 3242 (void) sprintf(timebuf, 3243 "%llud%02lluh%02llum%02llus", d, h, m, s); 3244 else if (h) 3245 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3246 else if (m) 3247 (void) sprintf(timebuf, "%llum%02llus", m, s); 3248 else 3249 (void) sprintf(timebuf, "%llus", s); 3250 } 3251 3252 /* 3253 * Create a storage pool with the given name and initial vdev size. 3254 * Then create the specified number of datasets in the pool. 3255 */ 3256 static void 3257 ztest_init(char *pool) 3258 { 3259 spa_t *spa; 3260 int error; 3261 nvlist_t *nvroot; 3262 3263 kernel_init(FREAD | FWRITE); 3264 3265 /* 3266 * Create the storage pool. 3267 */ 3268 (void) spa_destroy(pool); 3269 ztest_shared->zs_vdev_primaries = 0; 3270 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 3271 0, zopt_raidz, zopt_mirrors, 1); 3272 error = spa_create(pool, nvroot, NULL, NULL, NULL); 3273 nvlist_free(nvroot); 3274 3275 if (error) 3276 fatal(0, "spa_create() = %d", error); 3277 error = spa_open(pool, &spa, FTAG); 3278 if (error) 3279 fatal(0, "spa_open() = %d", error); 3280 3281 if (zopt_verbose >= 3) 3282 show_pool_stats(spa); 3283 3284 spa_close(spa, FTAG); 3285 3286 kernel_fini(); 3287 } 3288 3289 int 3290 main(int argc, char **argv) 3291 { 3292 int kills = 0; 3293 int iters = 0; 3294 int i, f; 3295 ztest_shared_t *zs; 3296 ztest_info_t *zi; 3297 char timebuf[100]; 3298 char numbuf[6]; 3299 3300 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3301 3302 /* Override location of zpool.cache */ 3303 spa_config_path = "/tmp/zpool.cache"; 3304 3305 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3306 3307 process_options(argc, argv); 3308 3309 argc -= optind; 3310 argv += optind; 3311 3312 dprintf_setup(&argc, argv); 3313 3314 /* 3315 * Blow away any existing copy of zpool.cache 3316 */ 3317 if (zopt_init != 0) 3318 (void) remove("/tmp/zpool.cache"); 3319 3320 zs = ztest_shared = (void *)mmap(0, 3321 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3322 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3323 3324 if (zopt_verbose >= 1) { 3325 (void) printf("%llu vdevs, %d datasets, %d threads," 3326 " %llu seconds...\n", 3327 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 3328 (u_longlong_t)zopt_time); 3329 } 3330 3331 /* 3332 * Create and initialize our storage pool. 3333 */ 3334 for (i = 1; i <= zopt_init; i++) { 3335 bzero(zs, sizeof (ztest_shared_t)); 3336 if (zopt_verbose >= 3 && zopt_init != 1) 3337 (void) printf("ztest_init(), pass %d\n", i); 3338 ztest_init(zopt_pool); 3339 } 3340 3341 /* 3342 * Initialize the call targets for each function. 3343 */ 3344 for (f = 0; f < ZTEST_FUNCS; f++) { 3345 zi = &zs->zs_info[f]; 3346 3347 *zi = ztest_info[f]; 3348 3349 if (*zi->zi_interval == 0) 3350 zi->zi_call_target = UINT64_MAX; 3351 else 3352 zi->zi_call_target = zopt_time / *zi->zi_interval; 3353 } 3354 3355 zs->zs_start_time = gethrtime(); 3356 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3357 3358 /* 3359 * Run the tests in a loop. These tests include fault injection 3360 * to verify that self-healing data works, and forced crashes 3361 * to verify that we never lose on-disk consistency. 3362 */ 3363 while (gethrtime() < zs->zs_stop_time) { 3364 int status; 3365 pid_t pid; 3366 char *tmp; 3367 3368 /* 3369 * Initialize the workload counters for each function. 3370 */ 3371 for (f = 0; f < ZTEST_FUNCS; f++) { 3372 zi = &zs->zs_info[f]; 3373 zi->zi_calls = 0; 3374 zi->zi_call_time = 0; 3375 } 3376 3377 pid = fork(); 3378 3379 if (pid == -1) 3380 fatal(1, "fork failed"); 3381 3382 if (pid == 0) { /* child */ 3383 struct rlimit rl = { 1024, 1024 }; 3384 (void) setrlimit(RLIMIT_NOFILE, &rl); 3385 (void) enable_extended_FILE_stdio(-1, -1); 3386 ztest_run(zopt_pool); 3387 exit(0); 3388 } 3389 3390 while (waitpid(pid, &status, 0) != pid) 3391 continue; 3392 3393 if (WIFEXITED(status)) { 3394 if (WEXITSTATUS(status) != 0) { 3395 (void) fprintf(stderr, 3396 "child exited with code %d\n", 3397 WEXITSTATUS(status)); 3398 exit(2); 3399 } 3400 } else if (WIFSIGNALED(status)) { 3401 if (WTERMSIG(status) != SIGKILL) { 3402 (void) fprintf(stderr, 3403 "child died with signal %d\n", 3404 WTERMSIG(status)); 3405 exit(3); 3406 } 3407 kills++; 3408 } else { 3409 (void) fprintf(stderr, "something strange happened " 3410 "to child\n"); 3411 exit(4); 3412 } 3413 3414 iters++; 3415 3416 if (zopt_verbose >= 1) { 3417 hrtime_t now = gethrtime(); 3418 3419 now = MIN(now, zs->zs_stop_time); 3420 print_time(zs->zs_stop_time - now, timebuf); 3421 nicenum(zs->zs_space, numbuf); 3422 3423 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 3424 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 3425 iters, 3426 WIFEXITED(status) ? "Complete" : "SIGKILL", 3427 (u_longlong_t)zs->zs_enospc_count, 3428 100.0 * zs->zs_alloc / zs->zs_space, 3429 numbuf, 3430 100.0 * (now - zs->zs_start_time) / 3431 (zopt_time * NANOSEC), timebuf); 3432 } 3433 3434 if (zopt_verbose >= 2) { 3435 (void) printf("\nWorkload summary:\n\n"); 3436 (void) printf("%7s %9s %s\n", 3437 "Calls", "Time", "Function"); 3438 (void) printf("%7s %9s %s\n", 3439 "-----", "----", "--------"); 3440 for (f = 0; f < ZTEST_FUNCS; f++) { 3441 Dl_info dli; 3442 3443 zi = &zs->zs_info[f]; 3444 print_time(zi->zi_call_time, timebuf); 3445 (void) dladdr((void *)zi->zi_func, &dli); 3446 (void) printf("%7llu %9s %s\n", 3447 (u_longlong_t)zi->zi_calls, timebuf, 3448 dli.dli_sname); 3449 } 3450 (void) printf("\n"); 3451 } 3452 3453 /* 3454 * It's possible that we killed a child during a rename test, in 3455 * which case we'll have a 'ztest_tmp' pool lying around instead 3456 * of 'ztest'. Do a blind rename in case this happened. 3457 */ 3458 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 3459 (void) strcpy(tmp, zopt_pool); 3460 (void) strcat(tmp, "_tmp"); 3461 kernel_init(FREAD | FWRITE); 3462 (void) spa_rename(tmp, zopt_pool); 3463 kernel_fini(); 3464 umem_free(tmp, strlen(tmp) + 1); 3465 } 3466 3467 ztest_verify_blocks(zopt_pool); 3468 3469 if (zopt_verbose >= 1) { 3470 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 3471 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 3472 } 3473 3474 return (0); 3475 } 3476