1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zio_checksum.h> 90 #include <sys/zio_compress.h> 91 #include <sys/zil.h> 92 #include <sys/vdev_impl.h> 93 #include <sys/vdev_file.h> 94 #include <sys/spa_impl.h> 95 #include <sys/dsl_prop.h> 96 #include <sys/dsl_dataset.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 109 static char cmdname[] = "ztest"; 110 static char *zopt_pool = cmdname; 111 112 static uint64_t zopt_vdevs = 5; 113 static uint64_t zopt_vdevtime; 114 static int zopt_ashift = SPA_MINBLOCKSHIFT; 115 static int zopt_mirrors = 2; 116 static int zopt_raidz = 4; 117 static int zopt_raidz_parity = 1; 118 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 119 static int zopt_datasets = 7; 120 static int zopt_threads = 23; 121 static uint64_t zopt_passtime = 60; /* 60 seconds */ 122 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 123 static int zopt_verbose = 0; 124 static int zopt_init = 1; 125 static char *zopt_dir = "/tmp"; 126 static uint64_t zopt_time = 300; /* 5 minutes */ 127 static int zopt_maxfaults; 128 129 typedef struct ztest_block_tag { 130 uint64_t bt_objset; 131 uint64_t bt_object; 132 uint64_t bt_offset; 133 uint64_t bt_txg; 134 uint64_t bt_thread; 135 uint64_t bt_seq; 136 } ztest_block_tag_t; 137 138 typedef struct ztest_args { 139 char za_pool[MAXNAMELEN]; 140 spa_t *za_spa; 141 objset_t *za_os; 142 zilog_t *za_zilog; 143 thread_t za_thread; 144 uint64_t za_instance; 145 uint64_t za_random; 146 uint64_t za_diroff; 147 uint64_t za_diroff_shared; 148 uint64_t za_zil_seq; 149 hrtime_t za_start; 150 hrtime_t za_stop; 151 hrtime_t za_kill; 152 /* 153 * Thread-local variables can go here to aid debugging. 154 */ 155 ztest_block_tag_t za_rbt; 156 ztest_block_tag_t za_wbt; 157 dmu_object_info_t za_doi; 158 dmu_buf_t *za_dbuf; 159 } ztest_args_t; 160 161 typedef void ztest_func_t(ztest_args_t *); 162 163 /* 164 * Note: these aren't static because we want dladdr() to work. 165 */ 166 ztest_func_t ztest_dmu_read_write; 167 ztest_func_t ztest_dmu_read_write_zcopy; 168 ztest_func_t ztest_dmu_write_parallel; 169 ztest_func_t ztest_dmu_object_alloc_free; 170 ztest_func_t ztest_zap; 171 ztest_func_t ztest_fzap; 172 ztest_func_t ztest_zap_parallel; 173 ztest_func_t ztest_traverse; 174 ztest_func_t ztest_dsl_prop_get_set; 175 ztest_func_t ztest_dmu_objset_create_destroy; 176 ztest_func_t ztest_dmu_snapshot_create_destroy; 177 ztest_func_t ztest_dsl_dataset_promote_busy; 178 ztest_func_t ztest_spa_create_destroy; 179 ztest_func_t ztest_fault_inject; 180 ztest_func_t ztest_spa_rename; 181 ztest_func_t ztest_vdev_attach_detach; 182 ztest_func_t ztest_vdev_LUN_growth; 183 ztest_func_t ztest_vdev_add_remove; 184 ztest_func_t ztest_vdev_aux_add_remove; 185 ztest_func_t ztest_scrub; 186 187 typedef struct ztest_info { 188 ztest_func_t *zi_func; /* test function */ 189 uint64_t zi_iters; /* iterations per execution */ 190 uint64_t *zi_interval; /* execute every <interval> seconds */ 191 uint64_t zi_calls; /* per-pass count */ 192 uint64_t zi_call_time; /* per-pass time */ 193 uint64_t zi_call_total; /* cumulative total */ 194 uint64_t zi_call_target; /* target cumulative total */ 195 } ztest_info_t; 196 197 uint64_t zopt_always = 0; /* all the time */ 198 uint64_t zopt_often = 1; /* every second */ 199 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 200 uint64_t zopt_rarely = 60; /* every 60 seconds */ 201 202 ztest_info_t ztest_info[] = { 203 { ztest_dmu_read_write, 1, &zopt_always }, 204 { ztest_dmu_read_write_zcopy, 1, &zopt_always }, 205 { ztest_dmu_write_parallel, 30, &zopt_always }, 206 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 207 { ztest_zap, 30, &zopt_always }, 208 { ztest_fzap, 30, &zopt_always }, 209 { ztest_zap_parallel, 100, &zopt_always }, 210 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 211 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 212 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 213 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 214 { ztest_fault_inject, 1, &zopt_sometimes }, 215 { ztest_spa_rename, 1, &zopt_rarely }, 216 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 217 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 218 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 219 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 220 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 221 { ztest_scrub, 1, &zopt_vdevtime }, 222 }; 223 224 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 225 226 #define ZTEST_SYNC_LOCKS 16 227 228 /* 229 * Stuff we need to share writably between parent and child. 230 */ 231 typedef struct ztest_shared { 232 mutex_t zs_vdev_lock; 233 rwlock_t zs_name_lock; 234 uint64_t zs_vdev_primaries; 235 uint64_t zs_vdev_aux; 236 uint64_t zs_enospc_count; 237 hrtime_t zs_start_time; 238 hrtime_t zs_stop_time; 239 uint64_t zs_alloc; 240 uint64_t zs_space; 241 ztest_info_t zs_info[ZTEST_FUNCS]; 242 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 243 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 244 } ztest_shared_t; 245 246 static char ztest_dev_template[] = "%s/%s.%llua"; 247 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 248 static ztest_shared_t *ztest_shared; 249 250 static int ztest_random_fd; 251 static int ztest_dump_core = 1; 252 253 static uint64_t metaslab_sz; 254 static boolean_t ztest_exiting; 255 256 extern uint64_t metaslab_gang_bang; 257 extern uint64_t metaslab_df_alloc_threshold; 258 259 #define ZTEST_DIROBJ 1 260 #define ZTEST_MICROZAP_OBJ 2 261 #define ZTEST_FATZAP_OBJ 3 262 263 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 264 #define ZTEST_DIRSIZE 256 265 266 static void usage(boolean_t) __NORETURN; 267 268 /* 269 * These libumem hooks provide a reasonable set of defaults for the allocator's 270 * debugging facilities. 271 */ 272 const char * 273 _umem_debug_init() 274 { 275 return ("default,verbose"); /* $UMEM_DEBUG setting */ 276 } 277 278 const char * 279 _umem_logging_init(void) 280 { 281 return ("fail,contents"); /* $UMEM_LOGGING setting */ 282 } 283 284 #define FATAL_MSG_SZ 1024 285 286 char *fatal_msg; 287 288 static void 289 fatal(int do_perror, char *message, ...) 290 { 291 va_list args; 292 int save_errno = errno; 293 char buf[FATAL_MSG_SZ]; 294 295 (void) fflush(stdout); 296 297 va_start(args, message); 298 (void) sprintf(buf, "ztest: "); 299 /* LINTED */ 300 (void) vsprintf(buf + strlen(buf), message, args); 301 va_end(args); 302 if (do_perror) { 303 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 304 ": %s", strerror(save_errno)); 305 } 306 (void) fprintf(stderr, "%s\n", buf); 307 fatal_msg = buf; /* to ease debugging */ 308 if (ztest_dump_core) 309 abort(); 310 exit(3); 311 } 312 313 static int 314 str2shift(const char *buf) 315 { 316 const char *ends = "BKMGTPEZ"; 317 int i; 318 319 if (buf[0] == '\0') 320 return (0); 321 for (i = 0; i < strlen(ends); i++) { 322 if (toupper(buf[0]) == ends[i]) 323 break; 324 } 325 if (i == strlen(ends)) { 326 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 327 buf); 328 usage(B_FALSE); 329 } 330 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 331 return (10*i); 332 } 333 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 334 usage(B_FALSE); 335 /* NOTREACHED */ 336 } 337 338 static uint64_t 339 nicenumtoull(const char *buf) 340 { 341 char *end; 342 uint64_t val; 343 344 val = strtoull(buf, &end, 0); 345 if (end == buf) { 346 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 347 usage(B_FALSE); 348 } else if (end[0] == '.') { 349 double fval = strtod(buf, &end); 350 fval *= pow(2, str2shift(end)); 351 if (fval > UINT64_MAX) { 352 (void) fprintf(stderr, "ztest: value too large: %s\n", 353 buf); 354 usage(B_FALSE); 355 } 356 val = (uint64_t)fval; 357 } else { 358 int shift = str2shift(end); 359 if (shift >= 64 || (val << shift) >> shift != val) { 360 (void) fprintf(stderr, "ztest: value too large: %s\n", 361 buf); 362 usage(B_FALSE); 363 } 364 val <<= shift; 365 } 366 return (val); 367 } 368 369 static void 370 usage(boolean_t requested) 371 { 372 char nice_vdev_size[10]; 373 char nice_gang_bang[10]; 374 FILE *fp = requested ? stdout : stderr; 375 376 nicenum(zopt_vdev_size, nice_vdev_size); 377 nicenum(metaslab_gang_bang, nice_gang_bang); 378 379 (void) fprintf(fp, "Usage: %s\n" 380 "\t[-v vdevs (default: %llu)]\n" 381 "\t[-s size_of_each_vdev (default: %s)]\n" 382 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 383 "\t[-m mirror_copies (default: %d)]\n" 384 "\t[-r raidz_disks (default: %d)]\n" 385 "\t[-R raidz_parity (default: %d)]\n" 386 "\t[-d datasets (default: %d)]\n" 387 "\t[-t threads (default: %d)]\n" 388 "\t[-g gang_block_threshold (default: %s)]\n" 389 "\t[-i initialize pool i times (default: %d)]\n" 390 "\t[-k kill percentage (default: %llu%%)]\n" 391 "\t[-p pool_name (default: %s)]\n" 392 "\t[-f file directory for vdev files (default: %s)]\n" 393 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 394 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 395 "\t[-T time] total run time (default: %llu sec)\n" 396 "\t[-P passtime] time per pass (default: %llu sec)\n" 397 "\t[-h] (print help)\n" 398 "", 399 cmdname, 400 (u_longlong_t)zopt_vdevs, /* -v */ 401 nice_vdev_size, /* -s */ 402 zopt_ashift, /* -a */ 403 zopt_mirrors, /* -m */ 404 zopt_raidz, /* -r */ 405 zopt_raidz_parity, /* -R */ 406 zopt_datasets, /* -d */ 407 zopt_threads, /* -t */ 408 nice_gang_bang, /* -g */ 409 zopt_init, /* -i */ 410 (u_longlong_t)zopt_killrate, /* -k */ 411 zopt_pool, /* -p */ 412 zopt_dir, /* -f */ 413 (u_longlong_t)zopt_time, /* -T */ 414 (u_longlong_t)zopt_passtime); /* -P */ 415 exit(requested ? 0 : 1); 416 } 417 418 static uint64_t 419 ztest_random(uint64_t range) 420 { 421 uint64_t r; 422 423 if (range == 0) 424 return (0); 425 426 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 427 fatal(1, "short read from /dev/urandom"); 428 429 return (r % range); 430 } 431 432 /* ARGSUSED */ 433 static void 434 ztest_record_enospc(char *s) 435 { 436 ztest_shared->zs_enospc_count++; 437 } 438 439 static void 440 process_options(int argc, char **argv) 441 { 442 int opt; 443 uint64_t value; 444 445 /* By default, test gang blocks for blocks 32K and greater */ 446 metaslab_gang_bang = 32 << 10; 447 448 while ((opt = getopt(argc, argv, 449 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 450 value = 0; 451 switch (opt) { 452 case 'v': 453 case 's': 454 case 'a': 455 case 'm': 456 case 'r': 457 case 'R': 458 case 'd': 459 case 't': 460 case 'g': 461 case 'i': 462 case 'k': 463 case 'T': 464 case 'P': 465 value = nicenumtoull(optarg); 466 } 467 switch (opt) { 468 case 'v': 469 zopt_vdevs = value; 470 break; 471 case 's': 472 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 473 break; 474 case 'a': 475 zopt_ashift = value; 476 break; 477 case 'm': 478 zopt_mirrors = value; 479 break; 480 case 'r': 481 zopt_raidz = MAX(1, value); 482 break; 483 case 'R': 484 zopt_raidz_parity = MIN(MAX(value, 1), 3); 485 break; 486 case 'd': 487 zopt_datasets = MAX(1, value); 488 break; 489 case 't': 490 zopt_threads = MAX(1, value); 491 break; 492 case 'g': 493 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 494 break; 495 case 'i': 496 zopt_init = value; 497 break; 498 case 'k': 499 zopt_killrate = value; 500 break; 501 case 'p': 502 zopt_pool = strdup(optarg); 503 break; 504 case 'f': 505 zopt_dir = strdup(optarg); 506 break; 507 case 'V': 508 zopt_verbose++; 509 break; 510 case 'E': 511 zopt_init = 0; 512 break; 513 case 'T': 514 zopt_time = value; 515 break; 516 case 'P': 517 zopt_passtime = MAX(1, value); 518 break; 519 case 'h': 520 usage(B_TRUE); 521 break; 522 case '?': 523 default: 524 usage(B_FALSE); 525 break; 526 } 527 } 528 529 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 530 531 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 532 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 533 } 534 535 static uint64_t 536 ztest_get_ashift(void) 537 { 538 if (zopt_ashift == 0) 539 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 540 return (zopt_ashift); 541 } 542 543 static nvlist_t * 544 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 545 { 546 char pathbuf[MAXPATHLEN]; 547 uint64_t vdev; 548 nvlist_t *file; 549 550 if (ashift == 0) 551 ashift = ztest_get_ashift(); 552 553 if (path == NULL) { 554 path = pathbuf; 555 556 if (aux != NULL) { 557 vdev = ztest_shared->zs_vdev_aux; 558 (void) sprintf(path, ztest_aux_template, 559 zopt_dir, zopt_pool, aux, vdev); 560 } else { 561 vdev = ztest_shared->zs_vdev_primaries++; 562 (void) sprintf(path, ztest_dev_template, 563 zopt_dir, zopt_pool, vdev); 564 } 565 } 566 567 if (size != 0) { 568 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 569 if (fd == -1) 570 fatal(1, "can't open %s", path); 571 if (ftruncate(fd, size) != 0) 572 fatal(1, "can't ftruncate %s", path); 573 (void) close(fd); 574 } 575 576 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 577 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 578 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 579 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 580 581 return (file); 582 } 583 584 static nvlist_t * 585 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 586 { 587 nvlist_t *raidz, **child; 588 int c; 589 590 if (r < 2) 591 return (make_vdev_file(path, aux, size, ashift)); 592 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 593 594 for (c = 0; c < r; c++) 595 child[c] = make_vdev_file(path, aux, size, ashift); 596 597 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 598 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 599 VDEV_TYPE_RAIDZ) == 0); 600 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 601 zopt_raidz_parity) == 0); 602 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 603 child, r) == 0); 604 605 for (c = 0; c < r; c++) 606 nvlist_free(child[c]); 607 608 umem_free(child, r * sizeof (nvlist_t *)); 609 610 return (raidz); 611 } 612 613 static nvlist_t * 614 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 615 int r, int m) 616 { 617 nvlist_t *mirror, **child; 618 int c; 619 620 if (m < 1) 621 return (make_vdev_raidz(path, aux, size, ashift, r)); 622 623 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 624 625 for (c = 0; c < m; c++) 626 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 627 628 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 629 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 630 VDEV_TYPE_MIRROR) == 0); 631 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 632 child, m) == 0); 633 634 for (c = 0; c < m; c++) 635 nvlist_free(child[c]); 636 637 umem_free(child, m * sizeof (nvlist_t *)); 638 639 return (mirror); 640 } 641 642 static nvlist_t * 643 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 644 int log, int r, int m, int t) 645 { 646 nvlist_t *root, **child; 647 int c; 648 649 ASSERT(t > 0); 650 651 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 652 653 for (c = 0; c < t; c++) { 654 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 655 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 656 log) == 0); 657 } 658 659 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 660 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 661 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 662 child, t) == 0); 663 664 for (c = 0; c < t; c++) 665 nvlist_free(child[c]); 666 667 umem_free(child, t * sizeof (nvlist_t *)); 668 669 return (root); 670 } 671 672 static void 673 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 674 { 675 int bs = SPA_MINBLOCKSHIFT + 676 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 677 int ibs = DN_MIN_INDBLKSHIFT + 678 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 679 int error; 680 681 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 682 if (error) { 683 char osname[300]; 684 dmu_objset_name(os, osname); 685 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 686 osname, object, 1 << bs, ibs, error); 687 } 688 } 689 690 static uint8_t 691 ztest_random_checksum(void) 692 { 693 uint8_t checksum; 694 695 do { 696 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 697 } while (zio_checksum_table[checksum].ci_zbt); 698 699 if (checksum == ZIO_CHECKSUM_OFF) 700 checksum = ZIO_CHECKSUM_ON; 701 702 return (checksum); 703 } 704 705 static uint8_t 706 ztest_random_compress(void) 707 { 708 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 709 } 710 711 static int 712 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap) 713 { 714 dmu_tx_t *tx; 715 int error; 716 717 if (byteswap) 718 byteswap_uint64_array(lr, sizeof (*lr)); 719 720 tx = dmu_tx_create(os); 721 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 722 error = dmu_tx_assign(tx, TXG_WAIT); 723 if (error) { 724 dmu_tx_abort(tx); 725 return (error); 726 } 727 728 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 729 DMU_OT_NONE, 0, tx); 730 ASSERT3U(error, ==, 0); 731 dmu_tx_commit(tx); 732 733 if (zopt_verbose >= 5) { 734 char osname[MAXNAMELEN]; 735 dmu_objset_name(os, osname); 736 (void) printf("replay create of %s object %llu" 737 " in txg %llu = %d\n", 738 osname, (u_longlong_t)lr->lr_doid, 739 (u_longlong_t)dmu_tx_get_txg(tx), error); 740 } 741 742 return (error); 743 } 744 745 static int 746 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap) 747 { 748 dmu_tx_t *tx; 749 int error; 750 751 if (byteswap) 752 byteswap_uint64_array(lr, sizeof (*lr)); 753 754 tx = dmu_tx_create(os); 755 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 756 error = dmu_tx_assign(tx, TXG_WAIT); 757 if (error) { 758 dmu_tx_abort(tx); 759 return (error); 760 } 761 762 error = dmu_object_free(os, lr->lr_doid, tx); 763 dmu_tx_commit(tx); 764 765 return (error); 766 } 767 768 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 769 NULL, /* 0 no such transaction type */ 770 ztest_replay_create, /* TX_CREATE */ 771 NULL, /* TX_MKDIR */ 772 NULL, /* TX_MKXATTR */ 773 NULL, /* TX_SYMLINK */ 774 ztest_replay_remove, /* TX_REMOVE */ 775 NULL, /* TX_RMDIR */ 776 NULL, /* TX_LINK */ 777 NULL, /* TX_RENAME */ 778 NULL, /* TX_WRITE */ 779 NULL, /* TX_TRUNCATE */ 780 NULL, /* TX_SETATTR */ 781 NULL, /* TX_ACL */ 782 }; 783 784 /* 785 * Verify that we can't destroy an active pool, create an existing pool, 786 * or create a pool with a bad vdev spec. 787 */ 788 void 789 ztest_spa_create_destroy(ztest_args_t *za) 790 { 791 int error; 792 spa_t *spa; 793 nvlist_t *nvroot; 794 795 /* 796 * Attempt to create using a bad file. 797 */ 798 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 799 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 800 nvlist_free(nvroot); 801 if (error != ENOENT) 802 fatal(0, "spa_create(bad_file) = %d", error); 803 804 /* 805 * Attempt to create using a bad mirror. 806 */ 807 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 808 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 809 nvlist_free(nvroot); 810 if (error != ENOENT) 811 fatal(0, "spa_create(bad_mirror) = %d", error); 812 813 /* 814 * Attempt to create an existing pool. It shouldn't matter 815 * what's in the nvroot; we should fail with EEXIST. 816 */ 817 (void) rw_rdlock(&ztest_shared->zs_name_lock); 818 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 819 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 820 nvlist_free(nvroot); 821 if (error != EEXIST) 822 fatal(0, "spa_create(whatever) = %d", error); 823 824 error = spa_open(za->za_pool, &spa, FTAG); 825 if (error) 826 fatal(0, "spa_open() = %d", error); 827 828 error = spa_destroy(za->za_pool); 829 if (error != EBUSY) 830 fatal(0, "spa_destroy() = %d", error); 831 832 spa_close(spa, FTAG); 833 (void) rw_unlock(&ztest_shared->zs_name_lock); 834 } 835 836 static vdev_t * 837 vdev_lookup_by_path(vdev_t *vd, const char *path) 838 { 839 vdev_t *mvd; 840 841 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 842 return (vd); 843 844 for (int c = 0; c < vd->vdev_children; c++) 845 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 846 NULL) 847 return (mvd); 848 849 return (NULL); 850 } 851 852 /* 853 * Verify that vdev_add() works as expected. 854 */ 855 void 856 ztest_vdev_add_remove(ztest_args_t *za) 857 { 858 spa_t *spa = za->za_spa; 859 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 860 nvlist_t *nvroot; 861 int error; 862 863 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 864 865 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 866 867 ztest_shared->zs_vdev_primaries = 868 spa->spa_root_vdev->vdev_children * leaves; 869 870 spa_config_exit(spa, SCL_VDEV, FTAG); 871 872 /* 873 * Make 1/4 of the devices be log devices. 874 */ 875 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 876 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 877 878 error = spa_vdev_add(spa, nvroot); 879 nvlist_free(nvroot); 880 881 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 882 883 if (error == ENOSPC) 884 ztest_record_enospc("spa_vdev_add"); 885 else if (error != 0) 886 fatal(0, "spa_vdev_add() = %d", error); 887 } 888 889 /* 890 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 891 */ 892 void 893 ztest_vdev_aux_add_remove(ztest_args_t *za) 894 { 895 spa_t *spa = za->za_spa; 896 vdev_t *rvd = spa->spa_root_vdev; 897 spa_aux_vdev_t *sav; 898 char *aux; 899 uint64_t guid = 0; 900 int error; 901 902 if (ztest_random(2) == 0) { 903 sav = &spa->spa_spares; 904 aux = ZPOOL_CONFIG_SPARES; 905 } else { 906 sav = &spa->spa_l2cache; 907 aux = ZPOOL_CONFIG_L2CACHE; 908 } 909 910 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 911 912 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 913 914 if (sav->sav_count != 0 && ztest_random(4) == 0) { 915 /* 916 * Pick a random device to remove. 917 */ 918 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 919 } else { 920 /* 921 * Find an unused device we can add. 922 */ 923 ztest_shared->zs_vdev_aux = 0; 924 for (;;) { 925 char path[MAXPATHLEN]; 926 int c; 927 (void) sprintf(path, ztest_aux_template, zopt_dir, 928 zopt_pool, aux, ztest_shared->zs_vdev_aux); 929 for (c = 0; c < sav->sav_count; c++) 930 if (strcmp(sav->sav_vdevs[c]->vdev_path, 931 path) == 0) 932 break; 933 if (c == sav->sav_count && 934 vdev_lookup_by_path(rvd, path) == NULL) 935 break; 936 ztest_shared->zs_vdev_aux++; 937 } 938 } 939 940 spa_config_exit(spa, SCL_VDEV, FTAG); 941 942 if (guid == 0) { 943 /* 944 * Add a new device. 945 */ 946 nvlist_t *nvroot = make_vdev_root(NULL, aux, 947 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 948 error = spa_vdev_add(spa, nvroot); 949 if (error != 0) 950 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 951 nvlist_free(nvroot); 952 } else { 953 /* 954 * Remove an existing device. Sometimes, dirty its 955 * vdev state first to make sure we handle removal 956 * of devices that have pending state changes. 957 */ 958 if (ztest_random(2) == 0) 959 (void) vdev_online(spa, guid, 0, NULL); 960 961 error = spa_vdev_remove(spa, guid, B_FALSE); 962 if (error != 0 && error != EBUSY) 963 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 964 } 965 966 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 967 } 968 969 /* 970 * Verify that we can attach and detach devices. 971 */ 972 void 973 ztest_vdev_attach_detach(ztest_args_t *za) 974 { 975 spa_t *spa = za->za_spa; 976 spa_aux_vdev_t *sav = &spa->spa_spares; 977 vdev_t *rvd = spa->spa_root_vdev; 978 vdev_t *oldvd, *newvd, *pvd; 979 nvlist_t *root; 980 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 981 uint64_t leaf, top; 982 uint64_t ashift = ztest_get_ashift(); 983 uint64_t oldguid, pguid; 984 size_t oldsize, newsize; 985 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 986 int replacing; 987 int oldvd_has_siblings = B_FALSE; 988 int newvd_is_spare = B_FALSE; 989 int oldvd_is_log; 990 int error, expected_error; 991 992 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 993 994 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 995 996 /* 997 * Decide whether to do an attach or a replace. 998 */ 999 replacing = ztest_random(2); 1000 1001 /* 1002 * Pick a random top-level vdev. 1003 */ 1004 top = ztest_random(rvd->vdev_children); 1005 1006 /* 1007 * Pick a random leaf within it. 1008 */ 1009 leaf = ztest_random(leaves); 1010 1011 /* 1012 * Locate this vdev. 1013 */ 1014 oldvd = rvd->vdev_child[top]; 1015 if (zopt_mirrors >= 1) { 1016 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 1017 ASSERT(oldvd->vdev_children >= zopt_mirrors); 1018 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1019 } 1020 if (zopt_raidz > 1) { 1021 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 1022 ASSERT(oldvd->vdev_children == zopt_raidz); 1023 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1024 } 1025 1026 /* 1027 * If we're already doing an attach or replace, oldvd may be a 1028 * mirror vdev -- in which case, pick a random child. 1029 */ 1030 while (oldvd->vdev_children != 0) { 1031 oldvd_has_siblings = B_TRUE; 1032 ASSERT(oldvd->vdev_children >= 2); 1033 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 1034 } 1035 1036 oldguid = oldvd->vdev_guid; 1037 oldsize = vdev_get_min_asize(oldvd); 1038 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1039 (void) strcpy(oldpath, oldvd->vdev_path); 1040 pvd = oldvd->vdev_parent; 1041 pguid = pvd->vdev_guid; 1042 1043 /* 1044 * If oldvd has siblings, then half of the time, detach it. 1045 */ 1046 if (oldvd_has_siblings && ztest_random(2) == 0) { 1047 spa_config_exit(spa, SCL_VDEV, FTAG); 1048 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 1049 if (error != 0 && error != ENODEV && error != EBUSY && 1050 error != ENOTSUP) 1051 fatal(0, "detach (%s) returned %d", oldpath, error); 1052 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1053 return; 1054 } 1055 1056 /* 1057 * For the new vdev, choose with equal probability between the two 1058 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1059 */ 1060 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1061 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1062 newvd_is_spare = B_TRUE; 1063 (void) strcpy(newpath, newvd->vdev_path); 1064 } else { 1065 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1066 zopt_dir, zopt_pool, top * leaves + leaf); 1067 if (ztest_random(2) == 0) 1068 newpath[strlen(newpath) - 1] = 'b'; 1069 newvd = vdev_lookup_by_path(rvd, newpath); 1070 } 1071 1072 if (newvd) { 1073 newsize = vdev_get_min_asize(newvd); 1074 } else { 1075 /* 1076 * Make newsize a little bigger or smaller than oldsize. 1077 * If it's smaller, the attach should fail. 1078 * If it's larger, and we're doing a replace, 1079 * we should get dynamic LUN growth when we're done. 1080 */ 1081 newsize = 10 * oldsize / (9 + ztest_random(3)); 1082 } 1083 1084 /* 1085 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1086 * unless it's a replace; in that case any non-replacing parent is OK. 1087 * 1088 * If newvd is already part of the pool, it should fail with EBUSY. 1089 * 1090 * If newvd is too small, it should fail with EOVERFLOW. 1091 */ 1092 if (pvd->vdev_ops != &vdev_mirror_ops && 1093 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1094 pvd->vdev_ops == &vdev_replacing_ops || 1095 pvd->vdev_ops == &vdev_spare_ops)) 1096 expected_error = ENOTSUP; 1097 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1098 expected_error = ENOTSUP; 1099 else if (newvd == oldvd) 1100 expected_error = replacing ? 0 : EBUSY; 1101 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1102 expected_error = EBUSY; 1103 else if (newsize < oldsize) 1104 expected_error = EOVERFLOW; 1105 else if (ashift > oldvd->vdev_top->vdev_ashift) 1106 expected_error = EDOM; 1107 else 1108 expected_error = 0; 1109 1110 spa_config_exit(spa, SCL_VDEV, FTAG); 1111 1112 /* 1113 * Build the nvlist describing newpath. 1114 */ 1115 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1116 ashift, 0, 0, 0, 1); 1117 1118 error = spa_vdev_attach(spa, oldguid, root, replacing); 1119 1120 nvlist_free(root); 1121 1122 /* 1123 * If our parent was the replacing vdev, but the replace completed, 1124 * then instead of failing with ENOTSUP we may either succeed, 1125 * fail with ENODEV, or fail with EOVERFLOW. 1126 */ 1127 if (expected_error == ENOTSUP && 1128 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1129 expected_error = error; 1130 1131 /* 1132 * If someone grew the LUN, the replacement may be too small. 1133 */ 1134 if (error == EOVERFLOW || error == EBUSY) 1135 expected_error = error; 1136 1137 /* XXX workaround 6690467 */ 1138 if (error != expected_error && expected_error != EBUSY) { 1139 fatal(0, "attach (%s %llu, %s %llu, %d) " 1140 "returned %d, expected %d", 1141 oldpath, (longlong_t)oldsize, newpath, 1142 (longlong_t)newsize, replacing, error, expected_error); 1143 } 1144 1145 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1146 } 1147 1148 /* 1149 * Callback function which expands the physical size of the vdev. 1150 */ 1151 vdev_t * 1152 grow_vdev(vdev_t *vd, void *arg) 1153 { 1154 spa_t *spa = vd->vdev_spa; 1155 size_t *newsize = arg; 1156 size_t fsize; 1157 int fd; 1158 1159 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 1160 ASSERT(vd->vdev_ops->vdev_op_leaf); 1161 1162 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 1163 return (vd); 1164 1165 fsize = lseek(fd, 0, SEEK_END); 1166 (void) ftruncate(fd, *newsize); 1167 1168 if (zopt_verbose >= 6) { 1169 (void) printf("%s grew from %lu to %lu bytes\n", 1170 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 1171 } 1172 (void) close(fd); 1173 return (NULL); 1174 } 1175 1176 /* 1177 * Callback function which expands a given vdev by calling vdev_online(). 1178 */ 1179 /* ARGSUSED */ 1180 vdev_t * 1181 online_vdev(vdev_t *vd, void *arg) 1182 { 1183 spa_t *spa = vd->vdev_spa; 1184 vdev_t *tvd = vd->vdev_top; 1185 vdev_t *pvd = vd->vdev_parent; 1186 uint64_t guid = vd->vdev_guid; 1187 1188 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 1189 ASSERT(vd->vdev_ops->vdev_op_leaf); 1190 1191 /* Calling vdev_online will initialize the new metaslabs */ 1192 spa_config_exit(spa, SCL_STATE, spa); 1193 (void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL); 1194 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1195 1196 /* 1197 * Since we dropped the lock we need to ensure that we're 1198 * still talking to the original vdev. It's possible this 1199 * vdev may have been detached/replaced while we were 1200 * trying to online it. 1201 */ 1202 if (vd != vdev_lookup_by_guid(tvd, guid) || vd->vdev_parent != pvd) { 1203 if (zopt_verbose >= 6) { 1204 (void) printf("vdev %p has disappeared, was " 1205 "guid %llu\n", (void *)vd, (u_longlong_t)guid); 1206 } 1207 return (vd); 1208 } 1209 return (NULL); 1210 } 1211 1212 /* 1213 * Traverse the vdev tree calling the supplied function. 1214 * We continue to walk the tree until we either have walked all 1215 * children or we receive a non-NULL return from the callback. 1216 * If a NULL callback is passed, then we just return back the first 1217 * leaf vdev we encounter. 1218 */ 1219 vdev_t * 1220 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 1221 { 1222 if (vd->vdev_ops->vdev_op_leaf) { 1223 if (func == NULL) 1224 return (vd); 1225 else 1226 return (func(vd, arg)); 1227 } 1228 1229 for (uint_t c = 0; c < vd->vdev_children; c++) { 1230 vdev_t *cvd = vd->vdev_child[c]; 1231 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 1232 return (cvd); 1233 } 1234 return (NULL); 1235 } 1236 1237 /* 1238 * Verify that dynamic LUN growth works as expected. 1239 */ 1240 void 1241 ztest_vdev_LUN_growth(ztest_args_t *za) 1242 { 1243 spa_t *spa = za->za_spa; 1244 vdev_t *vd, *tvd = NULL; 1245 size_t psize, newsize; 1246 uint64_t spa_newsize, spa_cursize, ms_count; 1247 1248 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1249 mutex_enter(&spa_namespace_lock); 1250 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1251 1252 while (tvd == NULL || tvd->vdev_islog) { 1253 uint64_t vdev; 1254 1255 vdev = ztest_random(spa->spa_root_vdev->vdev_children); 1256 tvd = spa->spa_root_vdev->vdev_child[vdev]; 1257 } 1258 1259 /* 1260 * Determine the size of the first leaf vdev associated with 1261 * our top-level device. 1262 */ 1263 vd = vdev_walk_tree(tvd, NULL, NULL); 1264 ASSERT3P(vd, !=, NULL); 1265 ASSERT(vd->vdev_ops->vdev_op_leaf); 1266 1267 psize = vd->vdev_psize; 1268 1269 /* 1270 * We only try to expand the vdev if it's less than 4x its 1271 * original size and it has a valid psize. 1272 */ 1273 if (psize == 0 || psize >= 4 * zopt_vdev_size) { 1274 spa_config_exit(spa, SCL_STATE, spa); 1275 mutex_exit(&spa_namespace_lock); 1276 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1277 return; 1278 } 1279 ASSERT(psize > 0); 1280 newsize = psize + psize / 8; 1281 ASSERT3U(newsize, >, psize); 1282 1283 if (zopt_verbose >= 6) { 1284 (void) printf("Expanding vdev %s from %lu to %lu\n", 1285 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 1286 } 1287 1288 spa_cursize = spa_get_space(spa); 1289 ms_count = tvd->vdev_ms_count; 1290 1291 /* 1292 * Growing the vdev is a two step process: 1293 * 1). expand the physical size (i.e. relabel) 1294 * 2). online the vdev to create the new metaslabs 1295 */ 1296 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 1297 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 1298 tvd->vdev_state != VDEV_STATE_HEALTHY) { 1299 if (zopt_verbose >= 5) { 1300 (void) printf("Could not expand LUN because " 1301 "some vdevs were not healthy\n"); 1302 } 1303 (void) spa_config_exit(spa, SCL_STATE, spa); 1304 mutex_exit(&spa_namespace_lock); 1305 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1306 return; 1307 } 1308 1309 (void) spa_config_exit(spa, SCL_STATE, spa); 1310 mutex_exit(&spa_namespace_lock); 1311 1312 /* 1313 * Expanding the LUN will update the config asynchronously, 1314 * thus we must wait for the async thread to complete any 1315 * pending tasks before proceeding. 1316 */ 1317 mutex_enter(&spa->spa_async_lock); 1318 while (spa->spa_async_thread != NULL || spa->spa_async_tasks) 1319 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 1320 mutex_exit(&spa->spa_async_lock); 1321 1322 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1323 spa_newsize = spa_get_space(spa); 1324 1325 /* 1326 * Make sure we were able to grow the pool. 1327 */ 1328 if (ms_count >= tvd->vdev_ms_count || 1329 spa_cursize >= spa_newsize) { 1330 (void) printf("Top-level vdev metaslab count: " 1331 "before %llu, after %llu\n", 1332 (u_longlong_t)ms_count, 1333 (u_longlong_t)tvd->vdev_ms_count); 1334 fatal(0, "LUN expansion failed: before %llu, " 1335 "after %llu\n", spa_cursize, spa_newsize); 1336 } else if (zopt_verbose >= 5) { 1337 char oldnumbuf[6], newnumbuf[6]; 1338 1339 nicenum(spa_cursize, oldnumbuf); 1340 nicenum(spa_newsize, newnumbuf); 1341 (void) printf("%s grew from %s to %s\n", 1342 spa->spa_name, oldnumbuf, newnumbuf); 1343 } 1344 spa_config_exit(spa, SCL_STATE, spa); 1345 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1346 } 1347 1348 /* ARGSUSED */ 1349 static void 1350 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1351 { 1352 /* 1353 * Create the directory object. 1354 */ 1355 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1356 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1357 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1358 1359 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1360 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1361 1362 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1363 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1364 } 1365 1366 static int 1367 ztest_destroy_cb(char *name, void *arg) 1368 { 1369 ztest_args_t *za = arg; 1370 objset_t *os; 1371 dmu_object_info_t *doi = &za->za_doi; 1372 int error; 1373 1374 /* 1375 * Verify that the dataset contains a directory object. 1376 */ 1377 error = dmu_objset_hold(name, FTAG, &os); 1378 ASSERT3U(error, ==, 0); 1379 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1380 if (error != ENOENT) { 1381 /* We could have crashed in the middle of destroying it */ 1382 ASSERT3U(error, ==, 0); 1383 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1384 ASSERT3S(doi->doi_physical_blks, >=, 0); 1385 } 1386 dmu_objset_rele(os, FTAG); 1387 1388 /* 1389 * Destroy the dataset. 1390 */ 1391 error = dmu_objset_destroy(name, B_FALSE); 1392 if (error) { 1393 (void) dmu_objset_hold(name, FTAG, &os); 1394 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", os, error); 1395 } 1396 return (0); 1397 } 1398 1399 /* 1400 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1401 */ 1402 static uint64_t 1403 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1404 { 1405 itx_t *itx; 1406 lr_create_t *lr; 1407 size_t namesize; 1408 char name[24]; 1409 1410 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1411 namesize = strlen(name) + 1; 1412 1413 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1414 ztest_random(ZIL_MAX_BLKSZ)); 1415 lr = (lr_create_t *)&itx->itx_lr; 1416 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1417 lr->lr_doid = object; 1418 lr->lr_foid = 0; 1419 lr->lr_mode = mode; 1420 lr->lr_uid = 0; 1421 lr->lr_gid = 0; 1422 lr->lr_gen = dmu_tx_get_txg(tx); 1423 lr->lr_crtime[0] = time(NULL); 1424 lr->lr_crtime[1] = 0; 1425 lr->lr_rdev = 0; 1426 bcopy(name, (char *)(lr + 1), namesize); 1427 1428 return (zil_itx_assign(zilog, itx, tx)); 1429 } 1430 1431 void 1432 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1433 { 1434 int error; 1435 objset_t *os, *os2; 1436 char name[100]; 1437 zilog_t *zilog; 1438 uint64_t seq; 1439 uint64_t objects; 1440 1441 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1442 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1443 (u_longlong_t)za->za_instance); 1444 1445 /* 1446 * If this dataset exists from a previous run, process its replay log 1447 * half of the time. If we don't replay it, then dmu_objset_destroy() 1448 * (invoked from ztest_destroy_cb() below) should just throw it away. 1449 */ 1450 if (ztest_random(2) == 0 && 1451 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 1452 zil_replay(os, os, ztest_replay_vector); 1453 dmu_objset_disown(os, FTAG); 1454 } 1455 1456 /* 1457 * There may be an old instance of the dataset we're about to 1458 * create lying around from a previous run. If so, destroy it 1459 * and all of its snapshots. 1460 */ 1461 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1462 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1463 1464 /* 1465 * Verify that the destroyed dataset is no longer in the namespace. 1466 */ 1467 error = dmu_objset_hold(name, FTAG, &os); 1468 if (error != ENOENT) 1469 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1470 name, os); 1471 1472 /* 1473 * Verify that we can create a new dataset. 1474 */ 1475 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 1476 ztest_create_cb, NULL); 1477 if (error) { 1478 if (error == ENOSPC) { 1479 ztest_record_enospc("dmu_objset_create"); 1480 (void) rw_unlock(&ztest_shared->zs_name_lock); 1481 return; 1482 } 1483 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1484 } 1485 1486 error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os); 1487 if (error) { 1488 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1489 } 1490 1491 /* 1492 * Open the intent log for it. 1493 */ 1494 zilog = zil_open(os, NULL); 1495 1496 /* 1497 * Put a random number of objects in there. 1498 */ 1499 objects = ztest_random(20); 1500 seq = 0; 1501 while (objects-- != 0) { 1502 uint64_t object; 1503 dmu_tx_t *tx = dmu_tx_create(os); 1504 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1505 error = dmu_tx_assign(tx, TXG_WAIT); 1506 if (error) { 1507 dmu_tx_abort(tx); 1508 } else { 1509 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1510 DMU_OT_NONE, 0, tx); 1511 ztest_set_random_blocksize(os, object, tx); 1512 seq = ztest_log_create(zilog, tx, object, 1513 DMU_OT_UINT64_OTHER); 1514 dmu_write(os, object, 0, sizeof (name), name, tx); 1515 dmu_tx_commit(tx); 1516 } 1517 if (ztest_random(5) == 0) { 1518 zil_commit(zilog, seq, object); 1519 } 1520 if (ztest_random(100) == 0) { 1521 error = zil_suspend(zilog); 1522 if (error == 0) { 1523 zil_resume(zilog); 1524 } 1525 } 1526 } 1527 1528 /* 1529 * Verify that we cannot create an existing dataset. 1530 */ 1531 error = dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL); 1532 if (error != EEXIST) 1533 fatal(0, "created existing dataset, error = %d", error); 1534 1535 /* 1536 * Verify that we can hold an objset that is also owned. 1537 */ 1538 error = dmu_objset_hold(name, FTAG, &os2); 1539 if (error) 1540 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1541 dmu_objset_rele(os2, FTAG); 1542 1543 /* 1544 * Verify that we can not own an objset that is already owned. 1545 */ 1546 error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2); 1547 if (error != EBUSY) 1548 fatal(0, "dmu_objset_open('%s') = %d, expected EBUSY", 1549 name, error); 1550 1551 zil_close(zilog); 1552 dmu_objset_disown(os, FTAG); 1553 1554 error = dmu_objset_destroy(name, B_FALSE); 1555 if (error) 1556 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1557 1558 (void) rw_unlock(&ztest_shared->zs_name_lock); 1559 } 1560 1561 /* 1562 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1563 */ 1564 void 1565 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1566 { 1567 int error; 1568 objset_t *os = za->za_os; 1569 char snapname[100]; 1570 char osname[MAXNAMELEN]; 1571 1572 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1573 dmu_objset_name(os, osname); 1574 (void) snprintf(snapname, 100, "%s@%llu", osname, 1575 (u_longlong_t)za->za_instance); 1576 1577 error = dmu_objset_destroy(snapname, B_FALSE); 1578 if (error != 0 && error != ENOENT) 1579 fatal(0, "dmu_objset_destroy() = %d", error); 1580 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, 1581 NULL, FALSE); 1582 if (error == ENOSPC) 1583 ztest_record_enospc("dmu_take_snapshot"); 1584 else if (error != 0 && error != EEXIST) 1585 fatal(0, "dmu_take_snapshot() = %d", error); 1586 (void) rw_unlock(&ztest_shared->zs_name_lock); 1587 } 1588 1589 /* 1590 * Cleanup non-standard snapshots and clones. 1591 */ 1592 void 1593 ztest_dsl_dataset_cleanup(char *osname, uint64_t curval) 1594 { 1595 char snap1name[100]; 1596 char clone1name[100]; 1597 char snap2name[100]; 1598 char clone2name[100]; 1599 char snap3name[100]; 1600 int error; 1601 1602 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1603 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1604 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1605 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1606 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1607 1608 error = dmu_objset_destroy(clone2name, B_FALSE); 1609 if (error && error != ENOENT) 1610 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 1611 error = dmu_objset_destroy(snap3name, B_FALSE); 1612 if (error && error != ENOENT) 1613 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 1614 error = dmu_objset_destroy(snap2name, B_FALSE); 1615 if (error && error != ENOENT) 1616 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 1617 error = dmu_objset_destroy(clone1name, B_FALSE); 1618 if (error && error != ENOENT) 1619 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 1620 error = dmu_objset_destroy(snap1name, B_FALSE); 1621 if (error && error != ENOENT) 1622 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 1623 } 1624 1625 /* 1626 * Verify dsl_dataset_promote handles EBUSY 1627 */ 1628 void 1629 ztest_dsl_dataset_promote_busy(ztest_args_t *za) 1630 { 1631 int error; 1632 objset_t *os = za->za_os; 1633 objset_t *clone; 1634 dsl_dataset_t *ds; 1635 char snap1name[100]; 1636 char clone1name[100]; 1637 char snap2name[100]; 1638 char clone2name[100]; 1639 char snap3name[100]; 1640 char osname[MAXNAMELEN]; 1641 uint64_t curval = za->za_instance; 1642 1643 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1644 1645 dmu_objset_name(os, osname); 1646 ztest_dsl_dataset_cleanup(osname, curval); 1647 1648 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1649 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1650 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1651 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1652 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1653 1654 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 1655 NULL, FALSE); 1656 if (error && error != EEXIST) { 1657 if (error == ENOSPC) { 1658 ztest_record_enospc("dmu_take_snapshot"); 1659 goto out; 1660 } 1661 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 1662 } 1663 1664 error = dmu_objset_hold(snap1name, FTAG, &clone); 1665 if (error) 1666 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 1667 1668 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 1669 dmu_objset_rele(clone, FTAG); 1670 if (error) { 1671 if (error == ENOSPC) { 1672 ztest_record_enospc("dmu_objset_create"); 1673 goto out; 1674 } 1675 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 1676 } 1677 1678 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 1679 NULL, FALSE); 1680 if (error && error != EEXIST) { 1681 if (error == ENOSPC) { 1682 ztest_record_enospc("dmu_take_snapshot"); 1683 goto out; 1684 } 1685 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 1686 } 1687 1688 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 1689 NULL, FALSE); 1690 if (error && error != EEXIST) { 1691 if (error == ENOSPC) { 1692 ztest_record_enospc("dmu_take_snapshot"); 1693 goto out; 1694 } 1695 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1696 } 1697 1698 error = dmu_objset_hold(snap3name, FTAG, &clone); 1699 if (error) 1700 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1701 1702 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 1703 dmu_objset_rele(clone, FTAG); 1704 if (error) { 1705 if (error == ENOSPC) { 1706 ztest_record_enospc("dmu_objset_create"); 1707 goto out; 1708 } 1709 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 1710 } 1711 1712 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 1713 if (error) 1714 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 1715 error = dsl_dataset_promote(clone2name); 1716 if (error != EBUSY) 1717 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 1718 error); 1719 dsl_dataset_disown(ds, FTAG); 1720 1721 out: 1722 ztest_dsl_dataset_cleanup(osname, curval); 1723 1724 (void) rw_unlock(&ztest_shared->zs_name_lock); 1725 } 1726 1727 /* 1728 * Verify that dmu_object_{alloc,free} work as expected. 1729 */ 1730 void 1731 ztest_dmu_object_alloc_free(ztest_args_t *za) 1732 { 1733 objset_t *os = za->za_os; 1734 dmu_buf_t *db; 1735 dmu_tx_t *tx; 1736 uint64_t batchobj, object, batchsize, endoff, temp; 1737 int b, c, error, bonuslen; 1738 dmu_object_info_t *doi = &za->za_doi; 1739 char osname[MAXNAMELEN]; 1740 1741 dmu_objset_name(os, osname); 1742 1743 endoff = -8ULL; 1744 batchsize = 2; 1745 1746 /* 1747 * Create a batch object if necessary, and record it in the directory. 1748 */ 1749 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1750 sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH)); 1751 if (batchobj == 0) { 1752 tx = dmu_tx_create(os); 1753 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1754 sizeof (uint64_t)); 1755 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1756 error = dmu_tx_assign(tx, TXG_WAIT); 1757 if (error) { 1758 ztest_record_enospc("create a batch object"); 1759 dmu_tx_abort(tx); 1760 return; 1761 } 1762 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1763 DMU_OT_NONE, 0, tx); 1764 ztest_set_random_blocksize(os, batchobj, tx); 1765 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1766 sizeof (uint64_t), &batchobj, tx); 1767 dmu_tx_commit(tx); 1768 } 1769 1770 /* 1771 * Destroy the previous batch of objects. 1772 */ 1773 for (b = 0; b < batchsize; b++) { 1774 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1775 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 1776 if (object == 0) 1777 continue; 1778 /* 1779 * Read and validate contents. 1780 * We expect the nth byte of the bonus buffer to be n. 1781 */ 1782 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1783 za->za_dbuf = db; 1784 1785 dmu_object_info_from_db(db, doi); 1786 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1787 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1788 ASSERT3S(doi->doi_physical_blks, >=, 0); 1789 1790 bonuslen = doi->doi_bonus_size; 1791 1792 for (c = 0; c < bonuslen; c++) { 1793 if (((uint8_t *)db->db_data)[c] != 1794 (uint8_t)(c + bonuslen)) { 1795 fatal(0, 1796 "bad bonus: %s, obj %llu, off %d: %u != %u", 1797 osname, object, c, 1798 ((uint8_t *)db->db_data)[c], 1799 (uint8_t)(c + bonuslen)); 1800 } 1801 } 1802 1803 dmu_buf_rele(db, FTAG); 1804 za->za_dbuf = NULL; 1805 1806 /* 1807 * We expect the word at endoff to be our object number. 1808 */ 1809 VERIFY(0 == dmu_read(os, object, endoff, 1810 sizeof (uint64_t), &temp, DMU_READ_PREFETCH)); 1811 1812 if (temp != object) { 1813 fatal(0, "bad data in %s, got %llu, expected %llu", 1814 osname, temp, object); 1815 } 1816 1817 /* 1818 * Destroy old object and clear batch entry. 1819 */ 1820 tx = dmu_tx_create(os); 1821 dmu_tx_hold_write(tx, batchobj, 1822 b * sizeof (uint64_t), sizeof (uint64_t)); 1823 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1824 error = dmu_tx_assign(tx, TXG_WAIT); 1825 if (error) { 1826 ztest_record_enospc("free object"); 1827 dmu_tx_abort(tx); 1828 return; 1829 } 1830 error = dmu_object_free(os, object, tx); 1831 if (error) { 1832 fatal(0, "dmu_object_free('%s', %llu) = %d", 1833 osname, object, error); 1834 } 1835 object = 0; 1836 1837 dmu_object_set_checksum(os, batchobj, 1838 ztest_random_checksum(), tx); 1839 dmu_object_set_compress(os, batchobj, 1840 ztest_random_compress(), tx); 1841 1842 dmu_write(os, batchobj, b * sizeof (uint64_t), 1843 sizeof (uint64_t), &object, tx); 1844 1845 dmu_tx_commit(tx); 1846 } 1847 1848 /* 1849 * Before creating the new batch of objects, generate a bunch of churn. 1850 */ 1851 for (b = ztest_random(100); b > 0; b--) { 1852 tx = dmu_tx_create(os); 1853 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1854 error = dmu_tx_assign(tx, TXG_WAIT); 1855 if (error) { 1856 ztest_record_enospc("churn objects"); 1857 dmu_tx_abort(tx); 1858 return; 1859 } 1860 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1861 DMU_OT_NONE, 0, tx); 1862 ztest_set_random_blocksize(os, object, tx); 1863 error = dmu_object_free(os, object, tx); 1864 if (error) { 1865 fatal(0, "dmu_object_free('%s', %llu) = %d", 1866 osname, object, error); 1867 } 1868 dmu_tx_commit(tx); 1869 } 1870 1871 /* 1872 * Create a new batch of objects with randomly chosen 1873 * blocksizes and record them in the batch directory. 1874 */ 1875 for (b = 0; b < batchsize; b++) { 1876 uint32_t va_blksize; 1877 u_longlong_t va_nblocks; 1878 1879 tx = dmu_tx_create(os); 1880 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1881 sizeof (uint64_t)); 1882 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1883 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1884 sizeof (uint64_t)); 1885 error = dmu_tx_assign(tx, TXG_WAIT); 1886 if (error) { 1887 ztest_record_enospc("create batchobj"); 1888 dmu_tx_abort(tx); 1889 return; 1890 } 1891 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1892 1893 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1894 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1895 1896 ztest_set_random_blocksize(os, object, tx); 1897 1898 dmu_object_set_checksum(os, object, 1899 ztest_random_checksum(), tx); 1900 dmu_object_set_compress(os, object, 1901 ztest_random_compress(), tx); 1902 1903 dmu_write(os, batchobj, b * sizeof (uint64_t), 1904 sizeof (uint64_t), &object, tx); 1905 1906 /* 1907 * Write to both the bonus buffer and the regular data. 1908 */ 1909 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1910 za->za_dbuf = db; 1911 ASSERT3U(bonuslen, <=, db->db_size); 1912 1913 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1914 ASSERT3S(va_nblocks, >=, 0); 1915 1916 dmu_buf_will_dirty(db, tx); 1917 1918 /* 1919 * See comments above regarding the contents of 1920 * the bonus buffer and the word at endoff. 1921 */ 1922 for (c = 0; c < bonuslen; c++) 1923 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1924 1925 dmu_buf_rele(db, FTAG); 1926 za->za_dbuf = NULL; 1927 1928 /* 1929 * Write to a large offset to increase indirection. 1930 */ 1931 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1932 1933 dmu_tx_commit(tx); 1934 } 1935 } 1936 1937 /* 1938 * Verify that dmu_{read,write} work as expected. 1939 */ 1940 typedef struct bufwad { 1941 uint64_t bw_index; 1942 uint64_t bw_txg; 1943 uint64_t bw_data; 1944 } bufwad_t; 1945 1946 typedef struct dmu_read_write_dir { 1947 uint64_t dd_packobj; 1948 uint64_t dd_bigobj; 1949 uint64_t dd_chunk; 1950 } dmu_read_write_dir_t; 1951 1952 void 1953 ztest_dmu_read_write(ztest_args_t *za) 1954 { 1955 objset_t *os = za->za_os; 1956 dmu_read_write_dir_t dd; 1957 dmu_tx_t *tx; 1958 int i, freeit, error; 1959 uint64_t n, s, txg; 1960 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1961 uint64_t packoff, packsize, bigoff, bigsize; 1962 uint64_t regions = 997; 1963 uint64_t stride = 123456789ULL; 1964 uint64_t width = 40; 1965 int free_percent = 5; 1966 1967 /* 1968 * This test uses two objects, packobj and bigobj, that are always 1969 * updated together (i.e. in the same tx) so that their contents are 1970 * in sync and can be compared. Their contents relate to each other 1971 * in a simple way: packobj is a dense array of 'bufwad' structures, 1972 * while bigobj is a sparse array of the same bufwads. Specifically, 1973 * for any index n, there are three bufwads that should be identical: 1974 * 1975 * packobj, at offset n * sizeof (bufwad_t) 1976 * bigobj, at the head of the nth chunk 1977 * bigobj, at the tail of the nth chunk 1978 * 1979 * The chunk size is arbitrary. It doesn't have to be a power of two, 1980 * and it doesn't have any relation to the object blocksize. 1981 * The only requirement is that it can hold at least two bufwads. 1982 * 1983 * Normally, we write the bufwad to each of these locations. 1984 * However, free_percent of the time we instead write zeroes to 1985 * packobj and perform a dmu_free_range() on bigobj. By comparing 1986 * bigobj to packobj, we can verify that the DMU is correctly 1987 * tracking which parts of an object are allocated and free, 1988 * and that the contents of the allocated blocks are correct. 1989 */ 1990 1991 /* 1992 * Read the directory info. If it's the first time, set things up. 1993 */ 1994 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1995 sizeof (dd), &dd, DMU_READ_PREFETCH)); 1996 if (dd.dd_chunk == 0) { 1997 ASSERT(dd.dd_packobj == 0); 1998 ASSERT(dd.dd_bigobj == 0); 1999 tx = dmu_tx_create(os); 2000 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2001 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2002 error = dmu_tx_assign(tx, TXG_WAIT); 2003 if (error) { 2004 ztest_record_enospc("create r/w directory"); 2005 dmu_tx_abort(tx); 2006 return; 2007 } 2008 2009 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2010 DMU_OT_NONE, 0, tx); 2011 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2012 DMU_OT_NONE, 0, tx); 2013 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 2014 2015 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2016 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2017 2018 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2019 tx); 2020 dmu_tx_commit(tx); 2021 } 2022 2023 /* 2024 * Prefetch a random chunk of the big object. 2025 * Our aim here is to get some async reads in flight 2026 * for blocks that we may free below; the DMU should 2027 * handle this race correctly. 2028 */ 2029 n = ztest_random(regions) * stride + ztest_random(width); 2030 s = 1 + ztest_random(2 * width - 1); 2031 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 2032 2033 /* 2034 * Pick a random index and compute the offsets into packobj and bigobj. 2035 */ 2036 n = ztest_random(regions) * stride + ztest_random(width); 2037 s = 1 + ztest_random(width - 1); 2038 2039 packoff = n * sizeof (bufwad_t); 2040 packsize = s * sizeof (bufwad_t); 2041 2042 bigoff = n * dd.dd_chunk; 2043 bigsize = s * dd.dd_chunk; 2044 2045 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 2046 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 2047 2048 /* 2049 * free_percent of the time, free a range of bigobj rather than 2050 * overwriting it. 2051 */ 2052 freeit = (ztest_random(100) < free_percent); 2053 2054 /* 2055 * Read the current contents of our objects. 2056 */ 2057 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf, 2058 DMU_READ_PREFETCH); 2059 ASSERT3U(error, ==, 0); 2060 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, 2061 DMU_READ_PREFETCH); 2062 ASSERT3U(error, ==, 0); 2063 2064 /* 2065 * Get a tx for the mods to both packobj and bigobj. 2066 */ 2067 tx = dmu_tx_create(os); 2068 2069 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2070 2071 if (freeit) 2072 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 2073 else 2074 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2075 2076 error = dmu_tx_assign(tx, TXG_WAIT); 2077 2078 if (error) { 2079 ztest_record_enospc("dmu r/w range"); 2080 dmu_tx_abort(tx); 2081 umem_free(packbuf, packsize); 2082 umem_free(bigbuf, bigsize); 2083 return; 2084 } 2085 2086 txg = dmu_tx_get_txg(tx); 2087 2088 /* 2089 * For each index from n to n + s, verify that the existing bufwad 2090 * in packobj matches the bufwads at the head and tail of the 2091 * corresponding chunk in bigobj. Then update all three bufwads 2092 * with the new values we want to write out. 2093 */ 2094 for (i = 0; i < s; i++) { 2095 /* LINTED */ 2096 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2097 /* LINTED */ 2098 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2099 /* LINTED */ 2100 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2101 2102 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2103 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2104 2105 if (pack->bw_txg > txg) 2106 fatal(0, "future leak: got %llx, open txg is %llx", 2107 pack->bw_txg, txg); 2108 2109 if (pack->bw_data != 0 && pack->bw_index != n + i) 2110 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2111 pack->bw_index, n, i); 2112 2113 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2114 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2115 2116 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2117 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2118 2119 if (freeit) { 2120 bzero(pack, sizeof (bufwad_t)); 2121 } else { 2122 pack->bw_index = n + i; 2123 pack->bw_txg = txg; 2124 pack->bw_data = 1 + ztest_random(-2ULL); 2125 } 2126 *bigH = *pack; 2127 *bigT = *pack; 2128 } 2129 2130 /* 2131 * We've verified all the old bufwads, and made new ones. 2132 * Now write them out. 2133 */ 2134 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2135 2136 if (freeit) { 2137 if (zopt_verbose >= 6) { 2138 (void) printf("freeing offset %llx size %llx" 2139 " txg %llx\n", 2140 (u_longlong_t)bigoff, 2141 (u_longlong_t)bigsize, 2142 (u_longlong_t)txg); 2143 } 2144 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 2145 bigsize, tx)); 2146 } else { 2147 if (zopt_verbose >= 6) { 2148 (void) printf("writing offset %llx size %llx" 2149 " txg %llx\n", 2150 (u_longlong_t)bigoff, 2151 (u_longlong_t)bigsize, 2152 (u_longlong_t)txg); 2153 } 2154 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 2155 } 2156 2157 dmu_tx_commit(tx); 2158 2159 /* 2160 * Sanity check the stuff we just wrote. 2161 */ 2162 { 2163 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2164 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2165 2166 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2167 packsize, packcheck, DMU_READ_PREFETCH)); 2168 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2169 bigsize, bigcheck, DMU_READ_PREFETCH)); 2170 2171 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2172 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2173 2174 umem_free(packcheck, packsize); 2175 umem_free(bigcheck, bigsize); 2176 } 2177 2178 umem_free(packbuf, packsize); 2179 umem_free(bigbuf, bigsize); 2180 } 2181 2182 void 2183 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 2184 uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg) 2185 { 2186 uint64_t i; 2187 bufwad_t *pack; 2188 bufwad_t *bigH; 2189 bufwad_t *bigT; 2190 2191 /* 2192 * For each index from n to n + s, verify that the existing bufwad 2193 * in packobj matches the bufwads at the head and tail of the 2194 * corresponding chunk in bigobj. Then update all three bufwads 2195 * with the new values we want to write out. 2196 */ 2197 for (i = 0; i < s; i++) { 2198 /* LINTED */ 2199 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2200 /* LINTED */ 2201 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2202 /* LINTED */ 2203 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2204 2205 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2206 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2207 2208 if (pack->bw_txg > txg) 2209 fatal(0, "future leak: got %llx, open txg is %llx", 2210 pack->bw_txg, txg); 2211 2212 if (pack->bw_data != 0 && pack->bw_index != n + i) 2213 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2214 pack->bw_index, n, i); 2215 2216 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2217 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2218 2219 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2220 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2221 2222 pack->bw_index = n + i; 2223 pack->bw_txg = txg; 2224 pack->bw_data = 1 + ztest_random(-2ULL); 2225 2226 *bigH = *pack; 2227 *bigT = *pack; 2228 } 2229 } 2230 2231 void 2232 ztest_dmu_read_write_zcopy(ztest_args_t *za) 2233 { 2234 objset_t *os = za->za_os; 2235 dmu_read_write_dir_t dd; 2236 dmu_tx_t *tx; 2237 uint64_t i; 2238 int error; 2239 uint64_t n, s, txg; 2240 bufwad_t *packbuf, *bigbuf; 2241 uint64_t packoff, packsize, bigoff, bigsize; 2242 uint64_t regions = 997; 2243 uint64_t stride = 123456789ULL; 2244 uint64_t width = 9; 2245 dmu_buf_t *bonus_db; 2246 arc_buf_t **bigbuf_arcbufs; 2247 dmu_object_info_t *doi = &za->za_doi; 2248 2249 /* 2250 * This test uses two objects, packobj and bigobj, that are always 2251 * updated together (i.e. in the same tx) so that their contents are 2252 * in sync and can be compared. Their contents relate to each other 2253 * in a simple way: packobj is a dense array of 'bufwad' structures, 2254 * while bigobj is a sparse array of the same bufwads. Specifically, 2255 * for any index n, there are three bufwads that should be identical: 2256 * 2257 * packobj, at offset n * sizeof (bufwad_t) 2258 * bigobj, at the head of the nth chunk 2259 * bigobj, at the tail of the nth chunk 2260 * 2261 * The chunk size is set equal to bigobj block size so that 2262 * dmu_assign_arcbuf() can be tested for object updates. 2263 */ 2264 2265 /* 2266 * Read the directory info. If it's the first time, set things up. 2267 */ 2268 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2269 sizeof (dd), &dd, DMU_READ_PREFETCH)); 2270 if (dd.dd_chunk == 0) { 2271 ASSERT(dd.dd_packobj == 0); 2272 ASSERT(dd.dd_bigobj == 0); 2273 tx = dmu_tx_create(os); 2274 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2275 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2276 error = dmu_tx_assign(tx, TXG_WAIT); 2277 if (error) { 2278 ztest_record_enospc("create r/w directory"); 2279 dmu_tx_abort(tx); 2280 return; 2281 } 2282 2283 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2284 DMU_OT_NONE, 0, tx); 2285 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2286 DMU_OT_NONE, 0, tx); 2287 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2288 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2289 2290 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2291 ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t)); 2292 ASSERT(ISP2(doi->doi_data_block_size)); 2293 dd.dd_chunk = doi->doi_data_block_size; 2294 2295 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2296 tx); 2297 dmu_tx_commit(tx); 2298 } else { 2299 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2300 VERIFY(ISP2(doi->doi_data_block_size)); 2301 VERIFY(dd.dd_chunk == doi->doi_data_block_size); 2302 VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t)); 2303 } 2304 2305 /* 2306 * Pick a random index and compute the offsets into packobj and bigobj. 2307 */ 2308 n = ztest_random(regions) * stride + ztest_random(width); 2309 s = 1 + ztest_random(width - 1); 2310 2311 packoff = n * sizeof (bufwad_t); 2312 packsize = s * sizeof (bufwad_t); 2313 2314 bigoff = n * dd.dd_chunk; 2315 bigsize = s * dd.dd_chunk; 2316 2317 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 2318 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 2319 2320 VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0); 2321 2322 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 2323 2324 /* 2325 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 2326 * Iteration 1 test zcopy to already referenced dbufs. 2327 * Iteration 2 test zcopy to dirty dbuf in the same txg. 2328 * Iteration 3 test zcopy to dbuf dirty in previous txg. 2329 * Iteration 4 test zcopy when dbuf is no longer dirty. 2330 * Iteration 5 test zcopy when it can't be done. 2331 * Iteration 6 one more zcopy write. 2332 */ 2333 for (i = 0; i < 7; i++) { 2334 uint64_t j; 2335 uint64_t off; 2336 2337 /* 2338 * In iteration 5 (i == 5) use arcbufs 2339 * that don't match bigobj blksz to test 2340 * dmu_assign_arcbuf() when it can't directly 2341 * assign an arcbuf to a dbuf. 2342 */ 2343 for (j = 0; j < s; j++) { 2344 if (i != 5) { 2345 bigbuf_arcbufs[j] = 2346 dmu_request_arcbuf(bonus_db, 2347 dd.dd_chunk); 2348 } else { 2349 bigbuf_arcbufs[2 * j] = 2350 dmu_request_arcbuf(bonus_db, 2351 dd.dd_chunk / 2); 2352 bigbuf_arcbufs[2 * j + 1] = 2353 dmu_request_arcbuf(bonus_db, 2354 dd.dd_chunk / 2); 2355 } 2356 } 2357 2358 /* 2359 * Get a tx for the mods to both packobj and bigobj. 2360 */ 2361 tx = dmu_tx_create(os); 2362 2363 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2364 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2365 2366 if (ztest_random(100) == 0) { 2367 error = -1; 2368 } else { 2369 error = dmu_tx_assign(tx, TXG_WAIT); 2370 } 2371 2372 if (error) { 2373 if (error != -1) { 2374 ztest_record_enospc("dmu r/w range"); 2375 } 2376 dmu_tx_abort(tx); 2377 umem_free(packbuf, packsize); 2378 umem_free(bigbuf, bigsize); 2379 for (j = 0; j < s; j++) { 2380 if (i != 5) { 2381 dmu_return_arcbuf(bigbuf_arcbufs[j]); 2382 } else { 2383 dmu_return_arcbuf( 2384 bigbuf_arcbufs[2 * j]); 2385 dmu_return_arcbuf( 2386 bigbuf_arcbufs[2 * j + 1]); 2387 } 2388 } 2389 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2390 dmu_buf_rele(bonus_db, FTAG); 2391 return; 2392 } 2393 2394 txg = dmu_tx_get_txg(tx); 2395 2396 /* 2397 * 50% of the time don't read objects in the 1st iteration to 2398 * test dmu_assign_arcbuf() for the case when there're no 2399 * existing dbufs for the specified offsets. 2400 */ 2401 if (i != 0 || ztest_random(2) != 0) { 2402 error = dmu_read(os, dd.dd_packobj, packoff, 2403 packsize, packbuf, DMU_READ_PREFETCH); 2404 ASSERT3U(error, ==, 0); 2405 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, 2406 bigbuf, DMU_READ_PREFETCH); 2407 ASSERT3U(error, ==, 0); 2408 } 2409 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 2410 n, dd, txg); 2411 2412 /* 2413 * We've verified all the old bufwads, and made new ones. 2414 * Now write them out. 2415 */ 2416 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2417 if (zopt_verbose >= 6) { 2418 (void) printf("writing offset %llx size %llx" 2419 " txg %llx\n", 2420 (u_longlong_t)bigoff, 2421 (u_longlong_t)bigsize, 2422 (u_longlong_t)txg); 2423 } 2424 for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) { 2425 dmu_buf_t *dbt; 2426 if (i != 5) { 2427 bcopy((caddr_t)bigbuf + (off - bigoff), 2428 bigbuf_arcbufs[j]->b_data, dd.dd_chunk); 2429 } else { 2430 bcopy((caddr_t)bigbuf + (off - bigoff), 2431 bigbuf_arcbufs[2 * j]->b_data, 2432 dd.dd_chunk / 2); 2433 bcopy((caddr_t)bigbuf + (off - bigoff) + 2434 dd.dd_chunk / 2, 2435 bigbuf_arcbufs[2 * j + 1]->b_data, 2436 dd.dd_chunk / 2); 2437 } 2438 2439 if (i == 1) { 2440 VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off, 2441 FTAG, &dbt) == 0); 2442 } 2443 if (i != 5) { 2444 dmu_assign_arcbuf(bonus_db, off, 2445 bigbuf_arcbufs[j], tx); 2446 } else { 2447 dmu_assign_arcbuf(bonus_db, off, 2448 bigbuf_arcbufs[2 * j], tx); 2449 dmu_assign_arcbuf(bonus_db, 2450 off + dd.dd_chunk / 2, 2451 bigbuf_arcbufs[2 * j + 1], tx); 2452 } 2453 if (i == 1) { 2454 dmu_buf_rele(dbt, FTAG); 2455 } 2456 } 2457 dmu_tx_commit(tx); 2458 2459 /* 2460 * Sanity check the stuff we just wrote. 2461 */ 2462 { 2463 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2464 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2465 2466 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2467 packsize, packcheck, DMU_READ_PREFETCH)); 2468 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2469 bigsize, bigcheck, DMU_READ_PREFETCH)); 2470 2471 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2472 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2473 2474 umem_free(packcheck, packsize); 2475 umem_free(bigcheck, bigsize); 2476 } 2477 if (i == 2) { 2478 txg_wait_open(dmu_objset_pool(os), 0); 2479 } else if (i == 3) { 2480 txg_wait_synced(dmu_objset_pool(os), 0); 2481 } 2482 } 2483 2484 dmu_buf_rele(bonus_db, FTAG); 2485 umem_free(packbuf, packsize); 2486 umem_free(bigbuf, bigsize); 2487 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2488 } 2489 2490 void 2491 ztest_dmu_check_future_leak(ztest_args_t *za) 2492 { 2493 objset_t *os = za->za_os; 2494 dmu_buf_t *db; 2495 ztest_block_tag_t *bt; 2496 dmu_object_info_t *doi = &za->za_doi; 2497 2498 /* 2499 * Make sure that, if there is a write record in the bonus buffer 2500 * of the ZTEST_DIROBJ, that the txg for this record is <= the 2501 * last synced txg of the pool. 2502 */ 2503 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2504 za->za_dbuf = db; 2505 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 2506 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 2507 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2508 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 2509 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 2510 if (bt->bt_objset != 0) { 2511 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 2512 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 2513 ASSERT3U(bt->bt_offset, ==, -1ULL); 2514 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 2515 } 2516 dmu_buf_rele(db, FTAG); 2517 za->za_dbuf = NULL; 2518 } 2519 2520 void 2521 ztest_dmu_write_parallel(ztest_args_t *za) 2522 { 2523 objset_t *os = za->za_os; 2524 ztest_block_tag_t *rbt = &za->za_rbt; 2525 ztest_block_tag_t *wbt = &za->za_wbt; 2526 const size_t btsize = sizeof (ztest_block_tag_t); 2527 dmu_buf_t *db; 2528 int b, error; 2529 int bs = ZTEST_DIROBJ_BLOCKSIZE; 2530 int do_free = 0; 2531 uint64_t off, txg, txg_how; 2532 mutex_t *lp; 2533 char osname[MAXNAMELEN]; 2534 char iobuf[SPA_MAXBLOCKSIZE]; 2535 blkptr_t blk = { 0 }; 2536 uint64_t blkoff; 2537 zbookmark_t zb; 2538 dmu_tx_t *tx = dmu_tx_create(os); 2539 dmu_buf_t *bonus_db; 2540 arc_buf_t *abuf = NULL; 2541 2542 dmu_objset_name(os, osname); 2543 2544 /* 2545 * Have multiple threads write to large offsets in ZTEST_DIROBJ 2546 * to verify that having multiple threads writing to the same object 2547 * in parallel doesn't cause any trouble. 2548 */ 2549 if (ztest_random(4) == 0) { 2550 /* 2551 * Do the bonus buffer instead of a regular block. 2552 * We need a lock to serialize resize vs. others, 2553 * so we hash on the objset ID. 2554 */ 2555 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 2556 off = -1ULL; 2557 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 2558 } else { 2559 b = ztest_random(ZTEST_SYNC_LOCKS); 2560 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 2561 if (ztest_random(4) == 0) { 2562 do_free = 1; 2563 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 2564 } else { 2565 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 2566 } 2567 } 2568 2569 if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free && 2570 ztest_random(8) == 0) { 2571 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0); 2572 abuf = dmu_request_arcbuf(bonus_db, bs); 2573 } 2574 2575 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 2576 error = dmu_tx_assign(tx, txg_how); 2577 if (error) { 2578 if (error == ERESTART) { 2579 ASSERT(txg_how == TXG_NOWAIT); 2580 dmu_tx_wait(tx); 2581 } else { 2582 ztest_record_enospc("dmu write parallel"); 2583 } 2584 dmu_tx_abort(tx); 2585 if (abuf != NULL) { 2586 dmu_return_arcbuf(abuf); 2587 dmu_buf_rele(bonus_db, FTAG); 2588 } 2589 return; 2590 } 2591 txg = dmu_tx_get_txg(tx); 2592 2593 lp = &ztest_shared->zs_sync_lock[b]; 2594 (void) mutex_lock(lp); 2595 2596 wbt->bt_objset = dmu_objset_id(os); 2597 wbt->bt_object = ZTEST_DIROBJ; 2598 wbt->bt_offset = off; 2599 wbt->bt_txg = txg; 2600 wbt->bt_thread = za->za_instance; 2601 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 2602 2603 /* 2604 * Occasionally, write an all-zero block to test the behavior 2605 * of blocks that compress into holes. 2606 */ 2607 if (off != -1ULL && ztest_random(8) == 0) 2608 bzero(wbt, btsize); 2609 2610 if (off == -1ULL) { 2611 dmu_object_info_t *doi = &za->za_doi; 2612 char *dboff; 2613 2614 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2615 za->za_dbuf = db; 2616 dmu_object_info_from_db(db, doi); 2617 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2618 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2619 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2620 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2621 bcopy(dboff, rbt, btsize); 2622 if (rbt->bt_objset != 0) { 2623 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2624 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2625 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2626 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2627 } 2628 if (ztest_random(10) == 0) { 2629 int newsize = (ztest_random(db->db_size / 2630 btsize) + 1) * btsize; 2631 2632 ASSERT3U(newsize, >=, btsize); 2633 ASSERT3U(newsize, <=, db->db_size); 2634 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2635 dboff = (char *)db->db_data + newsize - btsize; 2636 } 2637 dmu_buf_will_dirty(db, tx); 2638 bcopy(wbt, dboff, btsize); 2639 dmu_buf_rele(db, FTAG); 2640 za->za_dbuf = NULL; 2641 } else if (do_free) { 2642 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2643 } else if (abuf == NULL) { 2644 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2645 } else { 2646 bcopy(wbt, abuf->b_data, btsize); 2647 dmu_assign_arcbuf(bonus_db, off, abuf, tx); 2648 dmu_buf_rele(bonus_db, FTAG); 2649 } 2650 2651 (void) mutex_unlock(lp); 2652 2653 if (ztest_random(1000) == 0) 2654 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2655 2656 dmu_tx_commit(tx); 2657 2658 if (ztest_random(10000) == 0) 2659 txg_wait_synced(dmu_objset_pool(os), txg); 2660 2661 if (off == -1ULL || do_free) 2662 return; 2663 2664 if (ztest_random(2) != 0) 2665 return; 2666 2667 /* 2668 * dmu_sync() the block we just wrote. 2669 */ 2670 (void) mutex_lock(lp); 2671 2672 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2673 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2674 za->za_dbuf = db; 2675 if (error) { 2676 (void) mutex_unlock(lp); 2677 return; 2678 } 2679 blkoff = off - blkoff; 2680 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2681 dmu_buf_rele(db, FTAG); 2682 za->za_dbuf = NULL; 2683 2684 if (error) { 2685 (void) mutex_unlock(lp); 2686 return; 2687 } 2688 2689 if (blk.blk_birth == 0) { /* concurrent free */ 2690 (void) mutex_unlock(lp); 2691 return; 2692 } 2693 2694 txg_suspend(dmu_objset_pool(os)); 2695 2696 (void) mutex_unlock(lp); 2697 2698 ASSERT(blk.blk_fill == 1); 2699 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2700 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2701 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2702 2703 /* 2704 * Read the block that dmu_sync() returned to make sure its contents 2705 * match what we wrote. We do this while still txg_suspend()ed 2706 * to ensure that the block can't be reused before we read it. 2707 */ 2708 zb.zb_objset = dmu_objset_id(os); 2709 zb.zb_object = ZTEST_DIROBJ; 2710 zb.zb_level = 0; 2711 zb.zb_blkid = off / bs; 2712 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2713 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2714 ASSERT3U(error, ==, 0); 2715 2716 txg_resume(dmu_objset_pool(os)); 2717 2718 bcopy(&iobuf[blkoff], rbt, btsize); 2719 2720 if (rbt->bt_objset == 0) /* concurrent free */ 2721 return; 2722 2723 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2724 return; 2725 2726 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2727 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2728 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2729 2730 /* 2731 * The semantic of dmu_sync() is that we always push the most recent 2732 * version of the data, so in the face of concurrent updates we may 2733 * see a newer version of the block. That's OK. 2734 */ 2735 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2736 if (rbt->bt_thread == wbt->bt_thread) 2737 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2738 else 2739 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2740 } 2741 2742 /* 2743 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2744 */ 2745 #define ZTEST_ZAP_MIN_INTS 1 2746 #define ZTEST_ZAP_MAX_INTS 4 2747 #define ZTEST_ZAP_MAX_PROPS 1000 2748 2749 void 2750 ztest_zap(ztest_args_t *za) 2751 { 2752 objset_t *os = za->za_os; 2753 uint64_t object; 2754 uint64_t txg, last_txg; 2755 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2756 uint64_t zl_ints, zl_intsize, prop; 2757 int i, ints; 2758 dmu_tx_t *tx; 2759 char propname[100], txgname[100]; 2760 int error; 2761 char osname[MAXNAMELEN]; 2762 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2763 2764 dmu_objset_name(os, osname); 2765 2766 /* 2767 * Create a new object if necessary, and record it in the directory. 2768 */ 2769 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2770 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 2771 2772 if (object == 0) { 2773 tx = dmu_tx_create(os); 2774 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2775 sizeof (uint64_t)); 2776 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2777 error = dmu_tx_assign(tx, TXG_WAIT); 2778 if (error) { 2779 ztest_record_enospc("create zap test obj"); 2780 dmu_tx_abort(tx); 2781 return; 2782 } 2783 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2784 if (error) { 2785 fatal(0, "zap_create('%s', %llu) = %d", 2786 osname, object, error); 2787 } 2788 ASSERT(object != 0); 2789 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2790 sizeof (uint64_t), &object, tx); 2791 /* 2792 * Generate a known hash collision, and verify that 2793 * we can lookup and remove both entries. 2794 */ 2795 for (i = 0; i < 2; i++) { 2796 value[i] = i; 2797 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2798 1, &value[i], tx); 2799 ASSERT3U(error, ==, 0); 2800 } 2801 for (i = 0; i < 2; i++) { 2802 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2803 1, &value[i], tx); 2804 ASSERT3U(error, ==, EEXIST); 2805 error = zap_length(os, object, hc[i], 2806 &zl_intsize, &zl_ints); 2807 ASSERT3U(error, ==, 0); 2808 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2809 ASSERT3U(zl_ints, ==, 1); 2810 } 2811 for (i = 0; i < 2; i++) { 2812 error = zap_remove(os, object, hc[i], tx); 2813 ASSERT3U(error, ==, 0); 2814 } 2815 2816 dmu_tx_commit(tx); 2817 } 2818 2819 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2820 2821 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2822 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2823 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2824 bzero(value, sizeof (value)); 2825 last_txg = 0; 2826 2827 /* 2828 * If these zap entries already exist, validate their contents. 2829 */ 2830 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2831 if (error == 0) { 2832 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2833 ASSERT3U(zl_ints, ==, 1); 2834 2835 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2836 zl_ints, &last_txg) == 0); 2837 2838 VERIFY(zap_length(os, object, propname, &zl_intsize, 2839 &zl_ints) == 0); 2840 2841 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2842 ASSERT3U(zl_ints, ==, ints); 2843 2844 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2845 zl_ints, value) == 0); 2846 2847 for (i = 0; i < ints; i++) { 2848 ASSERT3U(value[i], ==, last_txg + object + i); 2849 } 2850 } else { 2851 ASSERT3U(error, ==, ENOENT); 2852 } 2853 2854 /* 2855 * Atomically update two entries in our zap object. 2856 * The first is named txg_%llu, and contains the txg 2857 * in which the property was last updated. The second 2858 * is named prop_%llu, and the nth element of its value 2859 * should be txg + object + n. 2860 */ 2861 tx = dmu_tx_create(os); 2862 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2863 error = dmu_tx_assign(tx, TXG_WAIT); 2864 if (error) { 2865 ztest_record_enospc("create zap entry"); 2866 dmu_tx_abort(tx); 2867 return; 2868 } 2869 txg = dmu_tx_get_txg(tx); 2870 2871 if (last_txg > txg) 2872 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2873 2874 for (i = 0; i < ints; i++) 2875 value[i] = txg + object + i; 2876 2877 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2878 if (error) 2879 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2880 osname, object, txgname, error); 2881 2882 error = zap_update(os, object, propname, sizeof (uint64_t), 2883 ints, value, tx); 2884 if (error) 2885 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2886 osname, object, propname, error); 2887 2888 dmu_tx_commit(tx); 2889 2890 /* 2891 * Remove a random pair of entries. 2892 */ 2893 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2894 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2895 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2896 2897 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2898 2899 if (error == ENOENT) 2900 return; 2901 2902 ASSERT3U(error, ==, 0); 2903 2904 tx = dmu_tx_create(os); 2905 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2906 error = dmu_tx_assign(tx, TXG_WAIT); 2907 if (error) { 2908 ztest_record_enospc("remove zap entry"); 2909 dmu_tx_abort(tx); 2910 return; 2911 } 2912 error = zap_remove(os, object, txgname, tx); 2913 if (error) 2914 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2915 osname, object, txgname, error); 2916 2917 error = zap_remove(os, object, propname, tx); 2918 if (error) 2919 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2920 osname, object, propname, error); 2921 2922 dmu_tx_commit(tx); 2923 2924 /* 2925 * Once in a while, destroy the object. 2926 */ 2927 if (ztest_random(1000) != 0) 2928 return; 2929 2930 tx = dmu_tx_create(os); 2931 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2932 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2933 error = dmu_tx_assign(tx, TXG_WAIT); 2934 if (error) { 2935 ztest_record_enospc("destroy zap object"); 2936 dmu_tx_abort(tx); 2937 return; 2938 } 2939 error = zap_destroy(os, object, tx); 2940 if (error) 2941 fatal(0, "zap_destroy('%s', %llu) = %d", 2942 osname, object, error); 2943 object = 0; 2944 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2945 &object, tx); 2946 dmu_tx_commit(tx); 2947 } 2948 2949 /* 2950 * Testcase to test the upgrading of a microzap to fatzap. 2951 */ 2952 void 2953 ztest_fzap(ztest_args_t *za) 2954 { 2955 objset_t *os = za->za_os; 2956 uint64_t object; 2957 uint64_t value; 2958 dmu_tx_t *tx; 2959 int i, error; 2960 char osname[MAXNAMELEN]; 2961 char *name = "aaa"; 2962 char entname[20]; 2963 2964 dmu_objset_name(os, osname); 2965 2966 /* 2967 * Create a new object if necessary, and record it in the directory. 2968 */ 2969 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2970 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 2971 2972 if (object == 0) { 2973 tx = dmu_tx_create(os); 2974 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2975 sizeof (uint64_t)); 2976 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2977 error = dmu_tx_assign(tx, TXG_WAIT); 2978 if (error) { 2979 ztest_record_enospc("create zap test obj"); 2980 dmu_tx_abort(tx); 2981 return; 2982 } 2983 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2984 if (error) { 2985 fatal(0, "zap_create('%s', %llu) = %d", 2986 osname, object, error); 2987 } 2988 ASSERT(object != 0); 2989 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2990 sizeof (uint64_t), &object, tx); 2991 dmu_tx_commit(tx); 2992 } 2993 2994 /* 2995 * Add entries to this ZAP amd make sure it spills over 2996 * and gets upgraded to a fatzap. Also, since we are adding 2997 * 2050 entries we should see ptrtbl growth and leaf-block 2998 * split. 2999 */ 3000 for (i = 0; i < 2050; i++) { 3001 (void) sprintf(entname, "%s-%d", name, i); 3002 value = i; 3003 3004 tx = dmu_tx_create(os); 3005 dmu_tx_hold_zap(tx, object, TRUE, entname); 3006 error = dmu_tx_assign(tx, TXG_WAIT); 3007 3008 if (error) { 3009 ztest_record_enospc("create zap entry"); 3010 dmu_tx_abort(tx); 3011 return; 3012 } 3013 error = zap_add(os, object, entname, sizeof (uint64_t), 3014 1, &value, tx); 3015 3016 ASSERT(error == 0 || error == EEXIST); 3017 dmu_tx_commit(tx); 3018 } 3019 3020 /* 3021 * Once in a while, destroy the object. 3022 */ 3023 if (ztest_random(1000) != 0) 3024 return; 3025 3026 tx = dmu_tx_create(os); 3027 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 3028 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 3029 error = dmu_tx_assign(tx, TXG_WAIT); 3030 if (error) { 3031 ztest_record_enospc("destroy zap object"); 3032 dmu_tx_abort(tx); 3033 return; 3034 } 3035 error = zap_destroy(os, object, tx); 3036 if (error) 3037 fatal(0, "zap_destroy('%s', %llu) = %d", 3038 osname, object, error); 3039 object = 0; 3040 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 3041 &object, tx); 3042 dmu_tx_commit(tx); 3043 } 3044 3045 void 3046 ztest_zap_parallel(ztest_args_t *za) 3047 { 3048 objset_t *os = za->za_os; 3049 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3050 dmu_tx_t *tx; 3051 int i, namelen, error; 3052 char name[20], string_value[20]; 3053 void *data; 3054 3055 /* 3056 * Generate a random name of the form 'xxx.....' where each 3057 * x is a random printable character and the dots are dots. 3058 * There are 94 such characters, and the name length goes from 3059 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3060 */ 3061 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3062 3063 for (i = 0; i < 3; i++) 3064 name[i] = '!' + ztest_random('~' - '!' + 1); 3065 for (; i < namelen - 1; i++) 3066 name[i] = '.'; 3067 name[i] = '\0'; 3068 3069 if (ztest_random(2) == 0) 3070 object = ZTEST_MICROZAP_OBJ; 3071 else 3072 object = ZTEST_FATZAP_OBJ; 3073 3074 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 3075 wsize = sizeof (txg); 3076 wc = 1; 3077 data = &txg; 3078 } else { 3079 wsize = 1; 3080 wc = namelen; 3081 data = string_value; 3082 } 3083 3084 count = -1ULL; 3085 VERIFY(zap_count(os, object, &count) == 0); 3086 ASSERT(count != -1ULL); 3087 3088 /* 3089 * Select an operation: length, lookup, add, update, remove. 3090 */ 3091 i = ztest_random(5); 3092 3093 if (i >= 2) { 3094 tx = dmu_tx_create(os); 3095 dmu_tx_hold_zap(tx, object, TRUE, NULL); 3096 error = dmu_tx_assign(tx, TXG_WAIT); 3097 if (error) { 3098 ztest_record_enospc("zap parallel"); 3099 dmu_tx_abort(tx); 3100 return; 3101 } 3102 txg = dmu_tx_get_txg(tx); 3103 bcopy(name, string_value, namelen); 3104 } else { 3105 tx = NULL; 3106 txg = 0; 3107 bzero(string_value, namelen); 3108 } 3109 3110 switch (i) { 3111 3112 case 0: 3113 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3114 if (error == 0) { 3115 ASSERT3U(wsize, ==, zl_wsize); 3116 ASSERT3U(wc, ==, zl_wc); 3117 } else { 3118 ASSERT3U(error, ==, ENOENT); 3119 } 3120 break; 3121 3122 case 1: 3123 error = zap_lookup(os, object, name, wsize, wc, data); 3124 if (error == 0) { 3125 if (data == string_value && 3126 bcmp(name, data, namelen) != 0) 3127 fatal(0, "name '%s' != val '%s' len %d", 3128 name, data, namelen); 3129 } else { 3130 ASSERT3U(error, ==, ENOENT); 3131 } 3132 break; 3133 3134 case 2: 3135 error = zap_add(os, object, name, wsize, wc, data, tx); 3136 ASSERT(error == 0 || error == EEXIST); 3137 break; 3138 3139 case 3: 3140 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 3141 break; 3142 3143 case 4: 3144 error = zap_remove(os, object, name, tx); 3145 ASSERT(error == 0 || error == ENOENT); 3146 break; 3147 } 3148 3149 if (tx != NULL) 3150 dmu_tx_commit(tx); 3151 } 3152 3153 void 3154 ztest_dsl_prop_get_set(ztest_args_t *za) 3155 { 3156 objset_t *os = za->za_os; 3157 int i, inherit; 3158 uint64_t value; 3159 const char *prop, *valname; 3160 char setpoint[MAXPATHLEN]; 3161 char osname[MAXNAMELEN]; 3162 int error; 3163 3164 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3165 3166 dmu_objset_name(os, osname); 3167 3168 for (i = 0; i < 2; i++) { 3169 if (i == 0) { 3170 prop = "checksum"; 3171 value = ztest_random_checksum(); 3172 inherit = (value == ZIO_CHECKSUM_INHERIT); 3173 } else { 3174 prop = "compression"; 3175 value = ztest_random_compress(); 3176 inherit = (value == ZIO_COMPRESS_INHERIT); 3177 } 3178 3179 error = dsl_prop_set(osname, prop, sizeof (value), 3180 !inherit, &value); 3181 3182 if (error == ENOSPC) { 3183 ztest_record_enospc("dsl_prop_set"); 3184 break; 3185 } 3186 3187 ASSERT3U(error, ==, 0); 3188 3189 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 3190 1, &value, setpoint), ==, 0); 3191 3192 if (i == 0) 3193 valname = zio_checksum_table[value].ci_name; 3194 else 3195 valname = zio_compress_table[value].ci_name; 3196 3197 if (zopt_verbose >= 6) { 3198 (void) printf("%s %s = %s for '%s'\n", 3199 osname, prop, valname, setpoint); 3200 } 3201 } 3202 3203 (void) rw_unlock(&ztest_shared->zs_name_lock); 3204 } 3205 3206 /* 3207 * Inject random faults into the on-disk data. 3208 */ 3209 void 3210 ztest_fault_inject(ztest_args_t *za) 3211 { 3212 int fd; 3213 uint64_t offset; 3214 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 3215 uint64_t bad = 0x1990c0ffeedecade; 3216 uint64_t top, leaf; 3217 char path0[MAXPATHLEN]; 3218 char pathrand[MAXPATHLEN]; 3219 size_t fsize; 3220 spa_t *spa = za->za_spa; 3221 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 3222 int iters = 1000; 3223 int maxfaults = zopt_maxfaults; 3224 vdev_t *vd0 = NULL; 3225 uint64_t guid0 = 0; 3226 3227 ASSERT(leaves >= 1); 3228 3229 /* 3230 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 3231 */ 3232 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 3233 3234 if (ztest_random(2) == 0) { 3235 /* 3236 * Inject errors on a normal data device. 3237 */ 3238 top = ztest_random(spa->spa_root_vdev->vdev_children); 3239 leaf = ztest_random(leaves); 3240 3241 /* 3242 * Generate paths to the first leaf in this top-level vdev, 3243 * and to the random leaf we selected. We'll induce transient 3244 * write failures and random online/offline activity on leaf 0, 3245 * and we'll write random garbage to the randomly chosen leaf. 3246 */ 3247 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 3248 zopt_dir, zopt_pool, top * leaves + 0); 3249 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 3250 zopt_dir, zopt_pool, top * leaves + leaf); 3251 3252 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 3253 if (vd0 != NULL && maxfaults != 1) { 3254 /* 3255 * Make vd0 explicitly claim to be unreadable, 3256 * or unwriteable, or reach behind its back 3257 * and close the underlying fd. We can do this if 3258 * maxfaults == 0 because we'll fail and reexecute, 3259 * and we can do it if maxfaults >= 2 because we'll 3260 * have enough redundancy. If maxfaults == 1, the 3261 * combination of this with injection of random data 3262 * corruption below exceeds the pool's fault tolerance. 3263 */ 3264 vdev_file_t *vf = vd0->vdev_tsd; 3265 3266 if (vf != NULL && ztest_random(3) == 0) { 3267 (void) close(vf->vf_vnode->v_fd); 3268 vf->vf_vnode->v_fd = -1; 3269 } else if (ztest_random(2) == 0) { 3270 vd0->vdev_cant_read = B_TRUE; 3271 } else { 3272 vd0->vdev_cant_write = B_TRUE; 3273 } 3274 guid0 = vd0->vdev_guid; 3275 } 3276 } else { 3277 /* 3278 * Inject errors on an l2cache device. 3279 */ 3280 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3281 3282 if (sav->sav_count == 0) { 3283 spa_config_exit(spa, SCL_STATE, FTAG); 3284 return; 3285 } 3286 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3287 guid0 = vd0->vdev_guid; 3288 (void) strcpy(path0, vd0->vdev_path); 3289 (void) strcpy(pathrand, vd0->vdev_path); 3290 3291 leaf = 0; 3292 leaves = 1; 3293 maxfaults = INT_MAX; /* no limit on cache devices */ 3294 } 3295 3296 spa_config_exit(spa, SCL_STATE, FTAG); 3297 3298 if (maxfaults == 0) 3299 return; 3300 3301 /* 3302 * If we can tolerate two or more faults, randomly online/offline vd0. 3303 */ 3304 if (maxfaults >= 2 && guid0 != 0) { 3305 if (ztest_random(10) < 6) { 3306 int flags = (ztest_random(2) == 0 ? 3307 ZFS_OFFLINE_TEMPORARY : 0); 3308 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 3309 } else { 3310 (void) vdev_online(spa, guid0, 0, NULL); 3311 } 3312 } 3313 3314 /* 3315 * We have at least single-fault tolerance, so inject data corruption. 3316 */ 3317 fd = open(pathrand, O_RDWR); 3318 3319 if (fd == -1) /* we hit a gap in the device namespace */ 3320 return; 3321 3322 fsize = lseek(fd, 0, SEEK_END); 3323 3324 while (--iters != 0) { 3325 offset = ztest_random(fsize / (leaves << bshift)) * 3326 (leaves << bshift) + (leaf << bshift) + 3327 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 3328 3329 if (offset >= fsize) 3330 continue; 3331 3332 if (zopt_verbose >= 6) 3333 (void) printf("injecting bad word into %s," 3334 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 3335 3336 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 3337 fatal(1, "can't inject bad word at 0x%llx in %s", 3338 offset, pathrand); 3339 } 3340 3341 (void) close(fd); 3342 } 3343 3344 /* 3345 * Scrub the pool. 3346 */ 3347 void 3348 ztest_scrub(ztest_args_t *za) 3349 { 3350 spa_t *spa = za->za_spa; 3351 3352 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3353 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 3354 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3355 } 3356 3357 /* 3358 * Rename the pool to a different name and then rename it back. 3359 */ 3360 void 3361 ztest_spa_rename(ztest_args_t *za) 3362 { 3363 char *oldname, *newname; 3364 int error; 3365 spa_t *spa; 3366 3367 (void) rw_wrlock(&ztest_shared->zs_name_lock); 3368 3369 oldname = za->za_pool; 3370 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 3371 (void) strcpy(newname, oldname); 3372 (void) strcat(newname, "_tmp"); 3373 3374 /* 3375 * Do the rename 3376 */ 3377 error = spa_rename(oldname, newname); 3378 if (error) 3379 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 3380 newname, error); 3381 3382 /* 3383 * Try to open it under the old name, which shouldn't exist 3384 */ 3385 error = spa_open(oldname, &spa, FTAG); 3386 if (error != ENOENT) 3387 fatal(0, "spa_open('%s') = %d", oldname, error); 3388 3389 /* 3390 * Open it under the new name and make sure it's still the same spa_t. 3391 */ 3392 error = spa_open(newname, &spa, FTAG); 3393 if (error != 0) 3394 fatal(0, "spa_open('%s') = %d", newname, error); 3395 3396 ASSERT(spa == za->za_spa); 3397 spa_close(spa, FTAG); 3398 3399 /* 3400 * Rename it back to the original 3401 */ 3402 error = spa_rename(newname, oldname); 3403 if (error) 3404 fatal(0, "spa_rename('%s', '%s') = %d", newname, 3405 oldname, error); 3406 3407 /* 3408 * Make sure it can still be opened 3409 */ 3410 error = spa_open(oldname, &spa, FTAG); 3411 if (error != 0) 3412 fatal(0, "spa_open('%s') = %d", oldname, error); 3413 3414 ASSERT(spa == za->za_spa); 3415 spa_close(spa, FTAG); 3416 3417 umem_free(newname, strlen(newname) + 1); 3418 3419 (void) rw_unlock(&ztest_shared->zs_name_lock); 3420 } 3421 3422 3423 /* 3424 * Completely obliterate one disk. 3425 */ 3426 static void 3427 ztest_obliterate_one_disk(uint64_t vdev) 3428 { 3429 int fd; 3430 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 3431 size_t fsize; 3432 3433 if (zopt_maxfaults < 2) 3434 return; 3435 3436 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3437 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 3438 3439 fd = open(dev_name, O_RDWR); 3440 3441 if (fd == -1) 3442 fatal(1, "can't open %s", dev_name); 3443 3444 /* 3445 * Determine the size. 3446 */ 3447 fsize = lseek(fd, 0, SEEK_END); 3448 3449 (void) close(fd); 3450 3451 /* 3452 * Rename the old device to dev_name.old (useful for debugging). 3453 */ 3454 VERIFY(rename(dev_name, copy_name) == 0); 3455 3456 /* 3457 * Create a new one. 3458 */ 3459 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 3460 VERIFY(ftruncate(fd, fsize) == 0); 3461 (void) close(fd); 3462 } 3463 3464 static void 3465 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 3466 { 3467 char dev_name[MAXPATHLEN]; 3468 nvlist_t *root; 3469 int error; 3470 uint64_t guid; 3471 vdev_t *vd; 3472 3473 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3474 3475 /* 3476 * Build the nvlist describing dev_name. 3477 */ 3478 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 3479 3480 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3481 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 3482 guid = 0; 3483 else 3484 guid = vd->vdev_guid; 3485 spa_config_exit(spa, SCL_VDEV, FTAG); 3486 error = spa_vdev_attach(spa, guid, root, B_TRUE); 3487 if (error != 0 && 3488 error != EBUSY && 3489 error != ENOTSUP && 3490 error != ENODEV && 3491 error != EDOM) 3492 fatal(0, "spa_vdev_attach(in-place) = %d", error); 3493 3494 nvlist_free(root); 3495 } 3496 3497 static void 3498 ztest_verify_blocks(char *pool) 3499 { 3500 int status; 3501 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 3502 char zbuf[1024]; 3503 char *bin; 3504 char *ztest; 3505 char *isa; 3506 int isalen; 3507 FILE *fp; 3508 3509 (void) realpath(getexecname(), zdb); 3510 3511 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 3512 bin = strstr(zdb, "/usr/bin/"); 3513 ztest = strstr(bin, "/ztest"); 3514 isa = bin + 8; 3515 isalen = ztest - isa; 3516 isa = strdup(isa); 3517 /* LINTED */ 3518 (void) sprintf(bin, 3519 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 3520 isalen, 3521 isa, 3522 zopt_verbose >= 3 ? "s" : "", 3523 zopt_verbose >= 4 ? "v" : "", 3524 pool); 3525 free(isa); 3526 3527 if (zopt_verbose >= 5) 3528 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 3529 3530 fp = popen(zdb, "r"); 3531 3532 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 3533 if (zopt_verbose >= 3) 3534 (void) printf("%s", zbuf); 3535 3536 status = pclose(fp); 3537 3538 if (status == 0) 3539 return; 3540 3541 ztest_dump_core = 0; 3542 if (WIFEXITED(status)) 3543 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 3544 else 3545 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 3546 } 3547 3548 static void 3549 ztest_walk_pool_directory(char *header) 3550 { 3551 spa_t *spa = NULL; 3552 3553 if (zopt_verbose >= 6) 3554 (void) printf("%s\n", header); 3555 3556 mutex_enter(&spa_namespace_lock); 3557 while ((spa = spa_next(spa)) != NULL) 3558 if (zopt_verbose >= 6) 3559 (void) printf("\t%s\n", spa_name(spa)); 3560 mutex_exit(&spa_namespace_lock); 3561 } 3562 3563 static void 3564 ztest_spa_import_export(char *oldname, char *newname) 3565 { 3566 nvlist_t *config, *newconfig; 3567 uint64_t pool_guid; 3568 spa_t *spa; 3569 int error; 3570 3571 if (zopt_verbose >= 4) { 3572 (void) printf("import/export: old = %s, new = %s\n", 3573 oldname, newname); 3574 } 3575 3576 /* 3577 * Clean up from previous runs. 3578 */ 3579 (void) spa_destroy(newname); 3580 3581 /* 3582 * Get the pool's configuration and guid. 3583 */ 3584 error = spa_open(oldname, &spa, FTAG); 3585 if (error) 3586 fatal(0, "spa_open('%s') = %d", oldname, error); 3587 3588 /* 3589 * Kick off a scrub to tickle scrub/export races. 3590 */ 3591 if (ztest_random(2) == 0) 3592 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3593 3594 pool_guid = spa_guid(spa); 3595 spa_close(spa, FTAG); 3596 3597 ztest_walk_pool_directory("pools before export"); 3598 3599 /* 3600 * Export it. 3601 */ 3602 error = spa_export(oldname, &config, B_FALSE, B_FALSE); 3603 if (error) 3604 fatal(0, "spa_export('%s') = %d", oldname, error); 3605 3606 ztest_walk_pool_directory("pools after export"); 3607 3608 /* 3609 * Try to import it. 3610 */ 3611 newconfig = spa_tryimport(config); 3612 ASSERT(newconfig != NULL); 3613 nvlist_free(newconfig); 3614 3615 /* 3616 * Import it under the new name. 3617 */ 3618 error = spa_import(newname, config, NULL); 3619 if (error) 3620 fatal(0, "spa_import('%s') = %d", newname, error); 3621 3622 ztest_walk_pool_directory("pools after import"); 3623 3624 /* 3625 * Try to import it again -- should fail with EEXIST. 3626 */ 3627 error = spa_import(newname, config, NULL); 3628 if (error != EEXIST) 3629 fatal(0, "spa_import('%s') twice", newname); 3630 3631 /* 3632 * Try to import it under a different name -- should fail with EEXIST. 3633 */ 3634 error = spa_import(oldname, config, NULL); 3635 if (error != EEXIST) 3636 fatal(0, "spa_import('%s') under multiple names", newname); 3637 3638 /* 3639 * Verify that the pool is no longer visible under the old name. 3640 */ 3641 error = spa_open(oldname, &spa, FTAG); 3642 if (error != ENOENT) 3643 fatal(0, "spa_open('%s') = %d", newname, error); 3644 3645 /* 3646 * Verify that we can open and close the pool using the new name. 3647 */ 3648 error = spa_open(newname, &spa, FTAG); 3649 if (error) 3650 fatal(0, "spa_open('%s') = %d", newname, error); 3651 ASSERT(pool_guid == spa_guid(spa)); 3652 spa_close(spa, FTAG); 3653 3654 nvlist_free(config); 3655 } 3656 3657 static void 3658 ztest_resume(spa_t *spa) 3659 { 3660 if (spa_suspended(spa)) { 3661 spa_vdev_state_enter(spa); 3662 vdev_clear(spa, NULL); 3663 (void) spa_vdev_state_exit(spa, NULL, 0); 3664 (void) zio_resume(spa); 3665 } 3666 } 3667 3668 static void * 3669 ztest_resume_thread(void *arg) 3670 { 3671 spa_t *spa = arg; 3672 3673 while (!ztest_exiting) { 3674 (void) poll(NULL, 0, 1000); 3675 ztest_resume(spa); 3676 } 3677 return (NULL); 3678 } 3679 3680 static void * 3681 ztest_thread(void *arg) 3682 { 3683 ztest_args_t *za = arg; 3684 ztest_shared_t *zs = ztest_shared; 3685 hrtime_t now, functime; 3686 ztest_info_t *zi; 3687 int f, i; 3688 3689 while ((now = gethrtime()) < za->za_stop) { 3690 /* 3691 * See if it's time to force a crash. 3692 */ 3693 if (now > za->za_kill) { 3694 zs->zs_alloc = spa_get_alloc(za->za_spa); 3695 zs->zs_space = spa_get_space(za->za_spa); 3696 (void) kill(getpid(), SIGKILL); 3697 } 3698 3699 /* 3700 * Pick a random function. 3701 */ 3702 f = ztest_random(ZTEST_FUNCS); 3703 zi = &zs->zs_info[f]; 3704 3705 /* 3706 * Decide whether to call it, based on the requested frequency. 3707 */ 3708 if (zi->zi_call_target == 0 || 3709 (double)zi->zi_call_total / zi->zi_call_target > 3710 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 3711 continue; 3712 3713 atomic_add_64(&zi->zi_calls, 1); 3714 atomic_add_64(&zi->zi_call_total, 1); 3715 3716 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 3717 ZTEST_DIRSIZE; 3718 za->za_diroff_shared = (1ULL << 63); 3719 3720 for (i = 0; i < zi->zi_iters; i++) 3721 zi->zi_func(za); 3722 3723 functime = gethrtime() - now; 3724 3725 atomic_add_64(&zi->zi_call_time, functime); 3726 3727 if (zopt_verbose >= 4) { 3728 Dl_info dli; 3729 (void) dladdr((void *)zi->zi_func, &dli); 3730 (void) printf("%6.2f sec in %s\n", 3731 (double)functime / NANOSEC, dli.dli_sname); 3732 } 3733 3734 /* 3735 * If we're getting ENOSPC with some regularity, stop. 3736 */ 3737 if (zs->zs_enospc_count > 10) 3738 break; 3739 } 3740 3741 return (NULL); 3742 } 3743 3744 /* 3745 * Kick off threads to run tests on all datasets in parallel. 3746 */ 3747 static void 3748 ztest_run(char *pool) 3749 { 3750 int t, d, error; 3751 ztest_shared_t *zs = ztest_shared; 3752 ztest_args_t *za; 3753 spa_t *spa; 3754 char name[100]; 3755 thread_t resume_tid; 3756 3757 ztest_exiting = B_FALSE; 3758 3759 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 3760 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 3761 3762 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 3763 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 3764 3765 /* 3766 * Destroy one disk before we even start. 3767 * It's mirrored, so everything should work just fine. 3768 * This makes us exercise fault handling very early in spa_load(). 3769 */ 3770 ztest_obliterate_one_disk(0); 3771 3772 /* 3773 * Verify that the sum of the sizes of all blocks in the pool 3774 * equals the SPA's allocated space total. 3775 */ 3776 ztest_verify_blocks(pool); 3777 3778 /* 3779 * Kick off a replacement of the disk we just obliterated. 3780 */ 3781 kernel_init(FREAD | FWRITE); 3782 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3783 ztest_replace_one_disk(spa, 0); 3784 if (zopt_verbose >= 5) 3785 show_pool_stats(spa); 3786 spa_close(spa, FTAG); 3787 kernel_fini(); 3788 3789 kernel_init(FREAD | FWRITE); 3790 3791 /* 3792 * Verify that we can export the pool and reimport it under a 3793 * different name. 3794 */ 3795 if (ztest_random(2) == 0) { 3796 (void) snprintf(name, 100, "%s_import", pool); 3797 ztest_spa_import_export(pool, name); 3798 ztest_spa_import_export(name, pool); 3799 } 3800 3801 /* 3802 * Verify that we can loop over all pools. 3803 */ 3804 mutex_enter(&spa_namespace_lock); 3805 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3806 if (zopt_verbose > 3) { 3807 (void) printf("spa_next: found %s\n", spa_name(spa)); 3808 } 3809 } 3810 mutex_exit(&spa_namespace_lock); 3811 3812 /* 3813 * Open our pool. 3814 */ 3815 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3816 3817 /* 3818 * We don't expect the pool to suspend unless maxfaults == 0, 3819 * in which case ztest_fault_inject() temporarily takes away 3820 * the only valid replica. 3821 */ 3822 if (zopt_maxfaults == 0) 3823 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 3824 else 3825 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 3826 3827 /* 3828 * Create a thread to periodically resume suspended I/O. 3829 */ 3830 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 3831 &resume_tid) == 0); 3832 3833 /* 3834 * Verify that we can safely inquire about about any object, 3835 * whether it's allocated or not. To make it interesting, 3836 * we probe a 5-wide window around each power of two. 3837 * This hits all edge cases, including zero and the max. 3838 */ 3839 for (t = 0; t < 64; t++) { 3840 for (d = -5; d <= 5; d++) { 3841 error = dmu_object_info(spa->spa_meta_objset, 3842 (1ULL << t) + d, NULL); 3843 ASSERT(error == 0 || error == ENOENT || 3844 error == EINVAL); 3845 } 3846 } 3847 3848 /* 3849 * Now kick off all the tests that run in parallel. 3850 */ 3851 zs->zs_enospc_count = 0; 3852 3853 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3854 3855 if (zopt_verbose >= 4) 3856 (void) printf("starting main threads...\n"); 3857 3858 za[0].za_start = gethrtime(); 3859 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3860 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3861 za[0].za_kill = za[0].za_stop; 3862 if (ztest_random(100) < zopt_killrate) 3863 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3864 3865 for (t = 0; t < zopt_threads; t++) { 3866 d = t % zopt_datasets; 3867 3868 (void) strcpy(za[t].za_pool, pool); 3869 za[t].za_os = za[d].za_os; 3870 za[t].za_spa = spa; 3871 za[t].za_zilog = za[d].za_zilog; 3872 za[t].za_instance = t; 3873 za[t].za_random = ztest_random(-1ULL); 3874 za[t].za_start = za[0].za_start; 3875 za[t].za_stop = za[0].za_stop; 3876 za[t].za_kill = za[0].za_kill; 3877 3878 if (t < zopt_datasets) { 3879 int test_future = FALSE; 3880 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3881 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3882 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 3883 ztest_create_cb, NULL); 3884 if (error == EEXIST) { 3885 test_future = TRUE; 3886 } else if (error == ENOSPC) { 3887 zs->zs_enospc_count++; 3888 (void) rw_unlock(&ztest_shared->zs_name_lock); 3889 break; 3890 } else if (error != 0) { 3891 fatal(0, "dmu_objset_create(%s) = %d", 3892 name, error); 3893 } 3894 error = dmu_objset_hold(name, FTAG, &za[d].za_os); 3895 if (error) 3896 fatal(0, "dmu_objset_open('%s') = %d", 3897 name, error); 3898 (void) rw_unlock(&ztest_shared->zs_name_lock); 3899 if (test_future) 3900 ztest_dmu_check_future_leak(&za[t]); 3901 zil_replay(za[d].za_os, za[d].za_os, 3902 ztest_replay_vector); 3903 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3904 } 3905 3906 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3907 &za[t].za_thread) == 0); 3908 } 3909 3910 while (--t >= 0) { 3911 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 3912 if (t < zopt_datasets) { 3913 zil_close(za[t].za_zilog); 3914 dmu_objset_rele(za[t].za_os, FTAG); 3915 } 3916 } 3917 3918 if (zopt_verbose >= 3) 3919 show_pool_stats(spa); 3920 3921 txg_wait_synced(spa_get_dsl(spa), 0); 3922 3923 zs->zs_alloc = spa_get_alloc(spa); 3924 zs->zs_space = spa_get_space(spa); 3925 3926 /* 3927 * If we had out-of-space errors, destroy a random objset. 3928 */ 3929 if (zs->zs_enospc_count != 0) { 3930 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3931 d = (int)ztest_random(zopt_datasets); 3932 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3933 if (zopt_verbose >= 3) 3934 (void) printf("Destroying %s to free up space\n", name); 3935 3936 /* Cleanup any non-standard clones and snapshots */ 3937 ztest_dsl_dataset_cleanup(name, za[d].za_instance); 3938 3939 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 3940 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 3941 (void) rw_unlock(&ztest_shared->zs_name_lock); 3942 } 3943 3944 txg_wait_synced(spa_get_dsl(spa), 0); 3945 3946 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3947 3948 /* Kill the resume thread */ 3949 ztest_exiting = B_TRUE; 3950 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 3951 ztest_resume(spa); 3952 3953 /* 3954 * Right before closing the pool, kick off a bunch of async I/O; 3955 * spa_close() should wait for it to complete. 3956 */ 3957 for (t = 1; t < 50; t++) 3958 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3959 3960 spa_close(spa, FTAG); 3961 3962 kernel_fini(); 3963 } 3964 3965 void 3966 print_time(hrtime_t t, char *timebuf) 3967 { 3968 hrtime_t s = t / NANOSEC; 3969 hrtime_t m = s / 60; 3970 hrtime_t h = m / 60; 3971 hrtime_t d = h / 24; 3972 3973 s -= m * 60; 3974 m -= h * 60; 3975 h -= d * 24; 3976 3977 timebuf[0] = '\0'; 3978 3979 if (d) 3980 (void) sprintf(timebuf, 3981 "%llud%02lluh%02llum%02llus", d, h, m, s); 3982 else if (h) 3983 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3984 else if (m) 3985 (void) sprintf(timebuf, "%llum%02llus", m, s); 3986 else 3987 (void) sprintf(timebuf, "%llus", s); 3988 } 3989 3990 /* 3991 * Create a storage pool with the given name and initial vdev size. 3992 * Then create the specified number of datasets in the pool. 3993 */ 3994 static void 3995 ztest_init(char *pool) 3996 { 3997 spa_t *spa; 3998 int error; 3999 nvlist_t *nvroot; 4000 4001 kernel_init(FREAD | FWRITE); 4002 4003 /* 4004 * Create the storage pool. 4005 */ 4006 (void) spa_destroy(pool); 4007 ztest_shared->zs_vdev_primaries = 0; 4008 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 4009 0, zopt_raidz, zopt_mirrors, 1); 4010 error = spa_create(pool, nvroot, NULL, NULL, NULL); 4011 nvlist_free(nvroot); 4012 4013 if (error) 4014 fatal(0, "spa_create() = %d", error); 4015 error = spa_open(pool, &spa, FTAG); 4016 if (error) 4017 fatal(0, "spa_open() = %d", error); 4018 4019 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 4020 4021 if (zopt_verbose >= 3) 4022 show_pool_stats(spa); 4023 4024 spa_close(spa, FTAG); 4025 4026 kernel_fini(); 4027 } 4028 4029 int 4030 main(int argc, char **argv) 4031 { 4032 int kills = 0; 4033 int iters = 0; 4034 int i, f; 4035 ztest_shared_t *zs; 4036 ztest_info_t *zi; 4037 char timebuf[100]; 4038 char numbuf[6]; 4039 4040 (void) setvbuf(stdout, NULL, _IOLBF, 0); 4041 4042 /* Override location of zpool.cache */ 4043 spa_config_path = "/tmp/zpool.cache"; 4044 4045 ztest_random_fd = open("/dev/urandom", O_RDONLY); 4046 4047 process_options(argc, argv); 4048 4049 /* 4050 * Blow away any existing copy of zpool.cache 4051 */ 4052 if (zopt_init != 0) 4053 (void) remove("/tmp/zpool.cache"); 4054 4055 zs = ztest_shared = (void *)mmap(0, 4056 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 4057 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 4058 4059 if (zopt_verbose >= 1) { 4060 (void) printf("%llu vdevs, %d datasets, %d threads," 4061 " %llu seconds...\n", 4062 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 4063 (u_longlong_t)zopt_time); 4064 } 4065 4066 /* 4067 * Create and initialize our storage pool. 4068 */ 4069 for (i = 1; i <= zopt_init; i++) { 4070 bzero(zs, sizeof (ztest_shared_t)); 4071 if (zopt_verbose >= 3 && zopt_init != 1) 4072 (void) printf("ztest_init(), pass %d\n", i); 4073 ztest_init(zopt_pool); 4074 } 4075 4076 /* 4077 * Initialize the call targets for each function. 4078 */ 4079 for (f = 0; f < ZTEST_FUNCS; f++) { 4080 zi = &zs->zs_info[f]; 4081 4082 *zi = ztest_info[f]; 4083 4084 if (*zi->zi_interval == 0) 4085 zi->zi_call_target = UINT64_MAX; 4086 else 4087 zi->zi_call_target = zopt_time / *zi->zi_interval; 4088 } 4089 4090 zs->zs_start_time = gethrtime(); 4091 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 4092 4093 /* 4094 * Run the tests in a loop. These tests include fault injection 4095 * to verify that self-healing data works, and forced crashes 4096 * to verify that we never lose on-disk consistency. 4097 */ 4098 while (gethrtime() < zs->zs_stop_time) { 4099 int status; 4100 pid_t pid; 4101 char *tmp; 4102 4103 /* 4104 * Initialize the workload counters for each function. 4105 */ 4106 for (f = 0; f < ZTEST_FUNCS; f++) { 4107 zi = &zs->zs_info[f]; 4108 zi->zi_calls = 0; 4109 zi->zi_call_time = 0; 4110 } 4111 4112 /* Set the allocation switch size */ 4113 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 4114 4115 pid = fork(); 4116 4117 if (pid == -1) 4118 fatal(1, "fork failed"); 4119 4120 if (pid == 0) { /* child */ 4121 struct rlimit rl = { 1024, 1024 }; 4122 (void) setrlimit(RLIMIT_NOFILE, &rl); 4123 (void) enable_extended_FILE_stdio(-1, -1); 4124 ztest_run(zopt_pool); 4125 exit(0); 4126 } 4127 4128 while (waitpid(pid, &status, 0) != pid) 4129 continue; 4130 4131 if (WIFEXITED(status)) { 4132 if (WEXITSTATUS(status) != 0) { 4133 (void) fprintf(stderr, 4134 "child exited with code %d\n", 4135 WEXITSTATUS(status)); 4136 exit(2); 4137 } 4138 } else if (WIFSIGNALED(status)) { 4139 if (WTERMSIG(status) != SIGKILL) { 4140 (void) fprintf(stderr, 4141 "child died with signal %d\n", 4142 WTERMSIG(status)); 4143 exit(3); 4144 } 4145 kills++; 4146 } else { 4147 (void) fprintf(stderr, "something strange happened " 4148 "to child\n"); 4149 exit(4); 4150 } 4151 4152 iters++; 4153 4154 if (zopt_verbose >= 1) { 4155 hrtime_t now = gethrtime(); 4156 4157 now = MIN(now, zs->zs_stop_time); 4158 print_time(zs->zs_stop_time - now, timebuf); 4159 nicenum(zs->zs_space, numbuf); 4160 4161 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 4162 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 4163 iters, 4164 WIFEXITED(status) ? "Complete" : "SIGKILL", 4165 (u_longlong_t)zs->zs_enospc_count, 4166 100.0 * zs->zs_alloc / zs->zs_space, 4167 numbuf, 4168 100.0 * (now - zs->zs_start_time) / 4169 (zopt_time * NANOSEC), timebuf); 4170 } 4171 4172 if (zopt_verbose >= 2) { 4173 (void) printf("\nWorkload summary:\n\n"); 4174 (void) printf("%7s %9s %s\n", 4175 "Calls", "Time", "Function"); 4176 (void) printf("%7s %9s %s\n", 4177 "-----", "----", "--------"); 4178 for (f = 0; f < ZTEST_FUNCS; f++) { 4179 Dl_info dli; 4180 4181 zi = &zs->zs_info[f]; 4182 print_time(zi->zi_call_time, timebuf); 4183 (void) dladdr((void *)zi->zi_func, &dli); 4184 (void) printf("%7llu %9s %s\n", 4185 (u_longlong_t)zi->zi_calls, timebuf, 4186 dli.dli_sname); 4187 } 4188 (void) printf("\n"); 4189 } 4190 4191 /* 4192 * It's possible that we killed a child during a rename test, in 4193 * which case we'll have a 'ztest_tmp' pool lying around instead 4194 * of 'ztest'. Do a blind rename in case this happened. 4195 */ 4196 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 4197 (void) strcpy(tmp, zopt_pool); 4198 (void) strcat(tmp, "_tmp"); 4199 kernel_init(FREAD | FWRITE); 4200 (void) spa_rename(tmp, zopt_pool); 4201 kernel_fini(); 4202 umem_free(tmp, strlen(tmp) + 1); 4203 } 4204 4205 ztest_verify_blocks(zopt_pool); 4206 4207 if (zopt_verbose >= 1) { 4208 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 4209 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 4210 } 4211 4212 return (0); 4213 } 4214