1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zio_checksum.h> 90 #include <sys/zio_compress.h> 91 #include <sys/zil.h> 92 #include <sys/vdev_impl.h> 93 #include <sys/vdev_file.h> 94 #include <sys/spa_impl.h> 95 #include <sys/dsl_prop.h> 96 #include <sys/dsl_dataset.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 109 static char cmdname[] = "ztest"; 110 static char *zopt_pool = cmdname; 111 112 static uint64_t zopt_vdevs = 5; 113 static uint64_t zopt_vdevtime; 114 static int zopt_ashift = SPA_MINBLOCKSHIFT; 115 static int zopt_mirrors = 2; 116 static int zopt_raidz = 4; 117 static int zopt_raidz_parity = 1; 118 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 119 static int zopt_datasets = 7; 120 static int zopt_threads = 23; 121 static uint64_t zopt_passtime = 60; /* 60 seconds */ 122 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 123 static int zopt_verbose = 0; 124 static int zopt_init = 1; 125 static char *zopt_dir = "/tmp"; 126 static uint64_t zopt_time = 300; /* 5 minutes */ 127 static int zopt_maxfaults; 128 129 typedef struct ztest_block_tag { 130 uint64_t bt_objset; 131 uint64_t bt_object; 132 uint64_t bt_offset; 133 uint64_t bt_txg; 134 uint64_t bt_thread; 135 uint64_t bt_seq; 136 } ztest_block_tag_t; 137 138 typedef struct ztest_args { 139 char za_pool[MAXNAMELEN]; 140 spa_t *za_spa; 141 objset_t *za_os; 142 zilog_t *za_zilog; 143 thread_t za_thread; 144 uint64_t za_instance; 145 uint64_t za_random; 146 uint64_t za_diroff; 147 uint64_t za_diroff_shared; 148 uint64_t za_zil_seq; 149 hrtime_t za_start; 150 hrtime_t za_stop; 151 hrtime_t za_kill; 152 /* 153 * Thread-local variables can go here to aid debugging. 154 */ 155 ztest_block_tag_t za_rbt; 156 ztest_block_tag_t za_wbt; 157 dmu_object_info_t za_doi; 158 dmu_buf_t *za_dbuf; 159 } ztest_args_t; 160 161 typedef void ztest_func_t(ztest_args_t *); 162 163 /* 164 * Note: these aren't static because we want dladdr() to work. 165 */ 166 ztest_func_t ztest_dmu_read_write; 167 ztest_func_t ztest_dmu_read_write_zcopy; 168 ztest_func_t ztest_dmu_write_parallel; 169 ztest_func_t ztest_dmu_object_alloc_free; 170 ztest_func_t ztest_zap; 171 ztest_func_t ztest_zap_parallel; 172 ztest_func_t ztest_traverse; 173 ztest_func_t ztest_dsl_prop_get_set; 174 ztest_func_t ztest_dmu_objset_create_destroy; 175 ztest_func_t ztest_dmu_snapshot_create_destroy; 176 ztest_func_t ztest_dsl_dataset_promote_busy; 177 ztest_func_t ztest_spa_create_destroy; 178 ztest_func_t ztest_fault_inject; 179 ztest_func_t ztest_spa_rename; 180 ztest_func_t ztest_vdev_attach_detach; 181 ztest_func_t ztest_vdev_LUN_growth; 182 ztest_func_t ztest_vdev_add_remove; 183 ztest_func_t ztest_vdev_aux_add_remove; 184 ztest_func_t ztest_scrub; 185 186 typedef struct ztest_info { 187 ztest_func_t *zi_func; /* test function */ 188 uint64_t zi_iters; /* iterations per execution */ 189 uint64_t *zi_interval; /* execute every <interval> seconds */ 190 uint64_t zi_calls; /* per-pass count */ 191 uint64_t zi_call_time; /* per-pass time */ 192 uint64_t zi_call_total; /* cumulative total */ 193 uint64_t zi_call_target; /* target cumulative total */ 194 } ztest_info_t; 195 196 uint64_t zopt_always = 0; /* all the time */ 197 uint64_t zopt_often = 1; /* every second */ 198 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 199 uint64_t zopt_rarely = 60; /* every 60 seconds */ 200 201 ztest_info_t ztest_info[] = { 202 { ztest_dmu_read_write, 1, &zopt_always }, 203 { ztest_dmu_read_write_zcopy, 1, &zopt_always }, 204 { ztest_dmu_write_parallel, 30, &zopt_always }, 205 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 206 { ztest_zap, 30, &zopt_always }, 207 { ztest_zap_parallel, 100, &zopt_always }, 208 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 209 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 210 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 211 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 212 { ztest_fault_inject, 1, &zopt_sometimes }, 213 { ztest_spa_rename, 1, &zopt_rarely }, 214 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 215 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 216 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 217 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 218 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 219 { ztest_scrub, 1, &zopt_vdevtime }, 220 }; 221 222 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 223 224 #define ZTEST_SYNC_LOCKS 16 225 226 /* 227 * Stuff we need to share writably between parent and child. 228 */ 229 typedef struct ztest_shared { 230 mutex_t zs_vdev_lock; 231 rwlock_t zs_name_lock; 232 uint64_t zs_vdev_primaries; 233 uint64_t zs_vdev_aux; 234 uint64_t zs_enospc_count; 235 hrtime_t zs_start_time; 236 hrtime_t zs_stop_time; 237 uint64_t zs_alloc; 238 uint64_t zs_space; 239 ztest_info_t zs_info[ZTEST_FUNCS]; 240 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 241 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 242 } ztest_shared_t; 243 244 static char ztest_dev_template[] = "%s/%s.%llua"; 245 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 246 static ztest_shared_t *ztest_shared; 247 248 static int ztest_random_fd; 249 static int ztest_dump_core = 1; 250 251 static boolean_t ztest_exiting; 252 253 extern uint64_t metaslab_gang_bang; 254 255 #define ZTEST_DIROBJ 1 256 #define ZTEST_MICROZAP_OBJ 2 257 #define ZTEST_FATZAP_OBJ 3 258 259 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 260 #define ZTEST_DIRSIZE 256 261 262 static void usage(boolean_t) __NORETURN; 263 264 /* 265 * These libumem hooks provide a reasonable set of defaults for the allocator's 266 * debugging facilities. 267 */ 268 const char * 269 _umem_debug_init() 270 { 271 return ("default,verbose"); /* $UMEM_DEBUG setting */ 272 } 273 274 const char * 275 _umem_logging_init(void) 276 { 277 return ("fail,contents"); /* $UMEM_LOGGING setting */ 278 } 279 280 #define FATAL_MSG_SZ 1024 281 282 char *fatal_msg; 283 284 static void 285 fatal(int do_perror, char *message, ...) 286 { 287 va_list args; 288 int save_errno = errno; 289 char buf[FATAL_MSG_SZ]; 290 291 (void) fflush(stdout); 292 293 va_start(args, message); 294 (void) sprintf(buf, "ztest: "); 295 /* LINTED */ 296 (void) vsprintf(buf + strlen(buf), message, args); 297 va_end(args); 298 if (do_perror) { 299 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 300 ": %s", strerror(save_errno)); 301 } 302 (void) fprintf(stderr, "%s\n", buf); 303 fatal_msg = buf; /* to ease debugging */ 304 if (ztest_dump_core) 305 abort(); 306 exit(3); 307 } 308 309 static int 310 str2shift(const char *buf) 311 { 312 const char *ends = "BKMGTPEZ"; 313 int i; 314 315 if (buf[0] == '\0') 316 return (0); 317 for (i = 0; i < strlen(ends); i++) { 318 if (toupper(buf[0]) == ends[i]) 319 break; 320 } 321 if (i == strlen(ends)) { 322 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 323 buf); 324 usage(B_FALSE); 325 } 326 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 327 return (10*i); 328 } 329 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 330 usage(B_FALSE); 331 /* NOTREACHED */ 332 } 333 334 static uint64_t 335 nicenumtoull(const char *buf) 336 { 337 char *end; 338 uint64_t val; 339 340 val = strtoull(buf, &end, 0); 341 if (end == buf) { 342 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 343 usage(B_FALSE); 344 } else if (end[0] == '.') { 345 double fval = strtod(buf, &end); 346 fval *= pow(2, str2shift(end)); 347 if (fval > UINT64_MAX) { 348 (void) fprintf(stderr, "ztest: value too large: %s\n", 349 buf); 350 usage(B_FALSE); 351 } 352 val = (uint64_t)fval; 353 } else { 354 int shift = str2shift(end); 355 if (shift >= 64 || (val << shift) >> shift != val) { 356 (void) fprintf(stderr, "ztest: value too large: %s\n", 357 buf); 358 usage(B_FALSE); 359 } 360 val <<= shift; 361 } 362 return (val); 363 } 364 365 static void 366 usage(boolean_t requested) 367 { 368 char nice_vdev_size[10]; 369 char nice_gang_bang[10]; 370 FILE *fp = requested ? stdout : stderr; 371 372 nicenum(zopt_vdev_size, nice_vdev_size); 373 nicenum(metaslab_gang_bang, nice_gang_bang); 374 375 (void) fprintf(fp, "Usage: %s\n" 376 "\t[-v vdevs (default: %llu)]\n" 377 "\t[-s size_of_each_vdev (default: %s)]\n" 378 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 379 "\t[-m mirror_copies (default: %d)]\n" 380 "\t[-r raidz_disks (default: %d)]\n" 381 "\t[-R raidz_parity (default: %d)]\n" 382 "\t[-d datasets (default: %d)]\n" 383 "\t[-t threads (default: %d)]\n" 384 "\t[-g gang_block_threshold (default: %s)]\n" 385 "\t[-i initialize pool i times (default: %d)]\n" 386 "\t[-k kill percentage (default: %llu%%)]\n" 387 "\t[-p pool_name (default: %s)]\n" 388 "\t[-f file directory for vdev files (default: %s)]\n" 389 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 390 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 391 "\t[-T time] total run time (default: %llu sec)\n" 392 "\t[-P passtime] time per pass (default: %llu sec)\n" 393 "\t[-h] (print help)\n" 394 "", 395 cmdname, 396 (u_longlong_t)zopt_vdevs, /* -v */ 397 nice_vdev_size, /* -s */ 398 zopt_ashift, /* -a */ 399 zopt_mirrors, /* -m */ 400 zopt_raidz, /* -r */ 401 zopt_raidz_parity, /* -R */ 402 zopt_datasets, /* -d */ 403 zopt_threads, /* -t */ 404 nice_gang_bang, /* -g */ 405 zopt_init, /* -i */ 406 (u_longlong_t)zopt_killrate, /* -k */ 407 zopt_pool, /* -p */ 408 zopt_dir, /* -f */ 409 (u_longlong_t)zopt_time, /* -T */ 410 (u_longlong_t)zopt_passtime); /* -P */ 411 exit(requested ? 0 : 1); 412 } 413 414 static uint64_t 415 ztest_random(uint64_t range) 416 { 417 uint64_t r; 418 419 if (range == 0) 420 return (0); 421 422 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 423 fatal(1, "short read from /dev/urandom"); 424 425 return (r % range); 426 } 427 428 /* ARGSUSED */ 429 static void 430 ztest_record_enospc(char *s) 431 { 432 ztest_shared->zs_enospc_count++; 433 } 434 435 static void 436 process_options(int argc, char **argv) 437 { 438 int opt; 439 uint64_t value; 440 441 /* By default, test gang blocks for blocks 32K and greater */ 442 metaslab_gang_bang = 32 << 10; 443 444 while ((opt = getopt(argc, argv, 445 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 446 value = 0; 447 switch (opt) { 448 case 'v': 449 case 's': 450 case 'a': 451 case 'm': 452 case 'r': 453 case 'R': 454 case 'd': 455 case 't': 456 case 'g': 457 case 'i': 458 case 'k': 459 case 'T': 460 case 'P': 461 value = nicenumtoull(optarg); 462 } 463 switch (opt) { 464 case 'v': 465 zopt_vdevs = value; 466 break; 467 case 's': 468 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 469 break; 470 case 'a': 471 zopt_ashift = value; 472 break; 473 case 'm': 474 zopt_mirrors = value; 475 break; 476 case 'r': 477 zopt_raidz = MAX(1, value); 478 break; 479 case 'R': 480 zopt_raidz_parity = MIN(MAX(value, 1), 2); 481 break; 482 case 'd': 483 zopt_datasets = MAX(1, value); 484 break; 485 case 't': 486 zopt_threads = MAX(1, value); 487 break; 488 case 'g': 489 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 490 break; 491 case 'i': 492 zopt_init = value; 493 break; 494 case 'k': 495 zopt_killrate = value; 496 break; 497 case 'p': 498 zopt_pool = strdup(optarg); 499 break; 500 case 'f': 501 zopt_dir = strdup(optarg); 502 break; 503 case 'V': 504 zopt_verbose++; 505 break; 506 case 'E': 507 zopt_init = 0; 508 break; 509 case 'T': 510 zopt_time = value; 511 break; 512 case 'P': 513 zopt_passtime = MAX(1, value); 514 break; 515 case 'h': 516 usage(B_TRUE); 517 break; 518 case '?': 519 default: 520 usage(B_FALSE); 521 break; 522 } 523 } 524 525 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 526 527 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 528 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 529 } 530 531 static uint64_t 532 ztest_get_ashift(void) 533 { 534 if (zopt_ashift == 0) 535 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 536 return (zopt_ashift); 537 } 538 539 static nvlist_t * 540 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 541 { 542 char pathbuf[MAXPATHLEN]; 543 uint64_t vdev; 544 nvlist_t *file; 545 546 if (ashift == 0) 547 ashift = ztest_get_ashift(); 548 549 if (path == NULL) { 550 path = pathbuf; 551 552 if (aux != NULL) { 553 vdev = ztest_shared->zs_vdev_aux; 554 (void) sprintf(path, ztest_aux_template, 555 zopt_dir, zopt_pool, aux, vdev); 556 } else { 557 vdev = ztest_shared->zs_vdev_primaries++; 558 (void) sprintf(path, ztest_dev_template, 559 zopt_dir, zopt_pool, vdev); 560 } 561 } 562 563 if (size != 0) { 564 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 565 if (fd == -1) 566 fatal(1, "can't open %s", path); 567 if (ftruncate(fd, size) != 0) 568 fatal(1, "can't ftruncate %s", path); 569 (void) close(fd); 570 } 571 572 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 573 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 574 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 575 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 576 577 return (file); 578 } 579 580 static nvlist_t * 581 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 582 { 583 nvlist_t *raidz, **child; 584 int c; 585 586 if (r < 2) 587 return (make_vdev_file(path, aux, size, ashift)); 588 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 589 590 for (c = 0; c < r; c++) 591 child[c] = make_vdev_file(path, aux, size, ashift); 592 593 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 594 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 595 VDEV_TYPE_RAIDZ) == 0); 596 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 597 zopt_raidz_parity) == 0); 598 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 599 child, r) == 0); 600 601 for (c = 0; c < r; c++) 602 nvlist_free(child[c]); 603 604 umem_free(child, r * sizeof (nvlist_t *)); 605 606 return (raidz); 607 } 608 609 static nvlist_t * 610 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 611 int r, int m) 612 { 613 nvlist_t *mirror, **child; 614 int c; 615 616 if (m < 1) 617 return (make_vdev_raidz(path, aux, size, ashift, r)); 618 619 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 620 621 for (c = 0; c < m; c++) 622 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 623 624 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 625 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 626 VDEV_TYPE_MIRROR) == 0); 627 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 628 child, m) == 0); 629 630 for (c = 0; c < m; c++) 631 nvlist_free(child[c]); 632 633 umem_free(child, m * sizeof (nvlist_t *)); 634 635 return (mirror); 636 } 637 638 static nvlist_t * 639 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 640 int log, int r, int m, int t) 641 { 642 nvlist_t *root, **child; 643 int c; 644 645 ASSERT(t > 0); 646 647 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 648 649 for (c = 0; c < t; c++) { 650 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 651 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 652 log) == 0); 653 } 654 655 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 656 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 657 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 658 child, t) == 0); 659 660 for (c = 0; c < t; c++) 661 nvlist_free(child[c]); 662 663 umem_free(child, t * sizeof (nvlist_t *)); 664 665 return (root); 666 } 667 668 static void 669 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 670 { 671 int bs = SPA_MINBLOCKSHIFT + 672 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 673 int ibs = DN_MIN_INDBLKSHIFT + 674 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 675 int error; 676 677 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 678 if (error) { 679 char osname[300]; 680 dmu_objset_name(os, osname); 681 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 682 osname, object, 1 << bs, ibs, error); 683 } 684 } 685 686 static uint8_t 687 ztest_random_checksum(void) 688 { 689 uint8_t checksum; 690 691 do { 692 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 693 } while (zio_checksum_table[checksum].ci_zbt); 694 695 if (checksum == ZIO_CHECKSUM_OFF) 696 checksum = ZIO_CHECKSUM_ON; 697 698 return (checksum); 699 } 700 701 static uint8_t 702 ztest_random_compress(void) 703 { 704 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 705 } 706 707 static int 708 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap) 709 { 710 dmu_tx_t *tx; 711 int error; 712 713 if (byteswap) 714 byteswap_uint64_array(lr, sizeof (*lr)); 715 716 tx = dmu_tx_create(os); 717 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 718 error = dmu_tx_assign(tx, TXG_WAIT); 719 if (error) { 720 dmu_tx_abort(tx); 721 return (error); 722 } 723 724 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 725 DMU_OT_NONE, 0, tx); 726 ASSERT3U(error, ==, 0); 727 dmu_tx_commit(tx); 728 729 if (zopt_verbose >= 5) { 730 char osname[MAXNAMELEN]; 731 dmu_objset_name(os, osname); 732 (void) printf("replay create of %s object %llu" 733 " in txg %llu = %d\n", 734 osname, (u_longlong_t)lr->lr_doid, 735 (u_longlong_t)dmu_tx_get_txg(tx), error); 736 } 737 738 return (error); 739 } 740 741 static int 742 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap) 743 { 744 dmu_tx_t *tx; 745 int error; 746 747 if (byteswap) 748 byteswap_uint64_array(lr, sizeof (*lr)); 749 750 tx = dmu_tx_create(os); 751 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 752 error = dmu_tx_assign(tx, TXG_WAIT); 753 if (error) { 754 dmu_tx_abort(tx); 755 return (error); 756 } 757 758 error = dmu_object_free(os, lr->lr_doid, tx); 759 dmu_tx_commit(tx); 760 761 return (error); 762 } 763 764 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 765 NULL, /* 0 no such transaction type */ 766 ztest_replay_create, /* TX_CREATE */ 767 NULL, /* TX_MKDIR */ 768 NULL, /* TX_MKXATTR */ 769 NULL, /* TX_SYMLINK */ 770 ztest_replay_remove, /* TX_REMOVE */ 771 NULL, /* TX_RMDIR */ 772 NULL, /* TX_LINK */ 773 NULL, /* TX_RENAME */ 774 NULL, /* TX_WRITE */ 775 NULL, /* TX_TRUNCATE */ 776 NULL, /* TX_SETATTR */ 777 NULL, /* TX_ACL */ 778 }; 779 780 /* 781 * Verify that we can't destroy an active pool, create an existing pool, 782 * or create a pool with a bad vdev spec. 783 */ 784 void 785 ztest_spa_create_destroy(ztest_args_t *za) 786 { 787 int error; 788 spa_t *spa; 789 nvlist_t *nvroot; 790 791 /* 792 * Attempt to create using a bad file. 793 */ 794 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 795 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 796 nvlist_free(nvroot); 797 if (error != ENOENT) 798 fatal(0, "spa_create(bad_file) = %d", error); 799 800 /* 801 * Attempt to create using a bad mirror. 802 */ 803 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 804 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 805 nvlist_free(nvroot); 806 if (error != ENOENT) 807 fatal(0, "spa_create(bad_mirror) = %d", error); 808 809 /* 810 * Attempt to create an existing pool. It shouldn't matter 811 * what's in the nvroot; we should fail with EEXIST. 812 */ 813 (void) rw_rdlock(&ztest_shared->zs_name_lock); 814 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 815 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 816 nvlist_free(nvroot); 817 if (error != EEXIST) 818 fatal(0, "spa_create(whatever) = %d", error); 819 820 error = spa_open(za->za_pool, &spa, FTAG); 821 if (error) 822 fatal(0, "spa_open() = %d", error); 823 824 error = spa_destroy(za->za_pool); 825 if (error != EBUSY) 826 fatal(0, "spa_destroy() = %d", error); 827 828 spa_close(spa, FTAG); 829 (void) rw_unlock(&ztest_shared->zs_name_lock); 830 } 831 832 static vdev_t * 833 vdev_lookup_by_path(vdev_t *vd, const char *path) 834 { 835 vdev_t *mvd; 836 837 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 838 return (vd); 839 840 for (int c = 0; c < vd->vdev_children; c++) 841 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 842 NULL) 843 return (mvd); 844 845 return (NULL); 846 } 847 848 /* 849 * Verify that vdev_add() works as expected. 850 */ 851 void 852 ztest_vdev_add_remove(ztest_args_t *za) 853 { 854 spa_t *spa = za->za_spa; 855 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 856 nvlist_t *nvroot; 857 int error; 858 859 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 860 861 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 862 863 ztest_shared->zs_vdev_primaries = 864 spa->spa_root_vdev->vdev_children * leaves; 865 866 spa_config_exit(spa, SCL_VDEV, FTAG); 867 868 /* 869 * Make 1/4 of the devices be log devices. 870 */ 871 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 872 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 873 874 error = spa_vdev_add(spa, nvroot); 875 nvlist_free(nvroot); 876 877 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 878 879 if (error == ENOSPC) 880 ztest_record_enospc("spa_vdev_add"); 881 else if (error != 0) 882 fatal(0, "spa_vdev_add() = %d", error); 883 } 884 885 /* 886 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 887 */ 888 void 889 ztest_vdev_aux_add_remove(ztest_args_t *za) 890 { 891 spa_t *spa = za->za_spa; 892 vdev_t *rvd = spa->spa_root_vdev; 893 spa_aux_vdev_t *sav; 894 char *aux; 895 uint64_t guid = 0; 896 int error; 897 898 if (ztest_random(2) == 0) { 899 sav = &spa->spa_spares; 900 aux = ZPOOL_CONFIG_SPARES; 901 } else { 902 sav = &spa->spa_l2cache; 903 aux = ZPOOL_CONFIG_L2CACHE; 904 } 905 906 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 907 908 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 909 910 if (sav->sav_count != 0 && ztest_random(4) == 0) { 911 /* 912 * Pick a random device to remove. 913 */ 914 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 915 } else { 916 /* 917 * Find an unused device we can add. 918 */ 919 ztest_shared->zs_vdev_aux = 0; 920 for (;;) { 921 char path[MAXPATHLEN]; 922 int c; 923 (void) sprintf(path, ztest_aux_template, zopt_dir, 924 zopt_pool, aux, ztest_shared->zs_vdev_aux); 925 for (c = 0; c < sav->sav_count; c++) 926 if (strcmp(sav->sav_vdevs[c]->vdev_path, 927 path) == 0) 928 break; 929 if (c == sav->sav_count && 930 vdev_lookup_by_path(rvd, path) == NULL) 931 break; 932 ztest_shared->zs_vdev_aux++; 933 } 934 } 935 936 spa_config_exit(spa, SCL_VDEV, FTAG); 937 938 if (guid == 0) { 939 /* 940 * Add a new device. 941 */ 942 nvlist_t *nvroot = make_vdev_root(NULL, aux, 943 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 944 error = spa_vdev_add(spa, nvroot); 945 if (error != 0) 946 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 947 nvlist_free(nvroot); 948 } else { 949 /* 950 * Remove an existing device. Sometimes, dirty its 951 * vdev state first to make sure we handle removal 952 * of devices that have pending state changes. 953 */ 954 if (ztest_random(2) == 0) 955 (void) vdev_online(spa, guid, B_FALSE, NULL); 956 957 error = spa_vdev_remove(spa, guid, B_FALSE); 958 if (error != 0 && error != EBUSY) 959 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 960 } 961 962 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 963 } 964 965 /* 966 * Verify that we can attach and detach devices. 967 */ 968 void 969 ztest_vdev_attach_detach(ztest_args_t *za) 970 { 971 spa_t *spa = za->za_spa; 972 spa_aux_vdev_t *sav = &spa->spa_spares; 973 vdev_t *rvd = spa->spa_root_vdev; 974 vdev_t *oldvd, *newvd, *pvd; 975 nvlist_t *root; 976 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 977 uint64_t leaf, top; 978 uint64_t ashift = ztest_get_ashift(); 979 uint64_t oldguid, pguid; 980 size_t oldsize, newsize; 981 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 982 int replacing; 983 int oldvd_has_siblings = B_FALSE; 984 int newvd_is_spare = B_FALSE; 985 int oldvd_is_log; 986 int error, expected_error; 987 988 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 989 990 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 991 992 /* 993 * Decide whether to do an attach or a replace. 994 */ 995 replacing = ztest_random(2); 996 997 /* 998 * Pick a random top-level vdev. 999 */ 1000 top = ztest_random(rvd->vdev_children); 1001 1002 /* 1003 * Pick a random leaf within it. 1004 */ 1005 leaf = ztest_random(leaves); 1006 1007 /* 1008 * Locate this vdev. 1009 */ 1010 oldvd = rvd->vdev_child[top]; 1011 if (zopt_mirrors >= 1) { 1012 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 1013 ASSERT(oldvd->vdev_children >= zopt_mirrors); 1014 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1015 } 1016 if (zopt_raidz > 1) { 1017 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 1018 ASSERT(oldvd->vdev_children == zopt_raidz); 1019 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1020 } 1021 1022 /* 1023 * If we're already doing an attach or replace, oldvd may be a 1024 * mirror vdev -- in which case, pick a random child. 1025 */ 1026 while (oldvd->vdev_children != 0) { 1027 oldvd_has_siblings = B_TRUE; 1028 ASSERT(oldvd->vdev_children >= 2); 1029 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 1030 } 1031 1032 oldguid = oldvd->vdev_guid; 1033 oldsize = vdev_get_rsize(oldvd); 1034 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1035 (void) strcpy(oldpath, oldvd->vdev_path); 1036 pvd = oldvd->vdev_parent; 1037 pguid = pvd->vdev_guid; 1038 1039 /* 1040 * If oldvd has siblings, then half of the time, detach it. 1041 */ 1042 if (oldvd_has_siblings && ztest_random(2) == 0) { 1043 spa_config_exit(spa, SCL_VDEV, FTAG); 1044 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 1045 if (error != 0 && error != ENODEV && error != EBUSY && 1046 error != ENOTSUP) 1047 fatal(0, "detach (%s) returned %d", oldpath, error); 1048 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1049 return; 1050 } 1051 1052 /* 1053 * For the new vdev, choose with equal probability between the two 1054 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1055 */ 1056 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1057 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1058 newvd_is_spare = B_TRUE; 1059 (void) strcpy(newpath, newvd->vdev_path); 1060 } else { 1061 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1062 zopt_dir, zopt_pool, top * leaves + leaf); 1063 if (ztest_random(2) == 0) 1064 newpath[strlen(newpath) - 1] = 'b'; 1065 newvd = vdev_lookup_by_path(rvd, newpath); 1066 } 1067 1068 if (newvd) { 1069 newsize = vdev_get_rsize(newvd); 1070 } else { 1071 /* 1072 * Make newsize a little bigger or smaller than oldsize. 1073 * If it's smaller, the attach should fail. 1074 * If it's larger, and we're doing a replace, 1075 * we should get dynamic LUN growth when we're done. 1076 */ 1077 newsize = 10 * oldsize / (9 + ztest_random(3)); 1078 } 1079 1080 /* 1081 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1082 * unless it's a replace; in that case any non-replacing parent is OK. 1083 * 1084 * If newvd is already part of the pool, it should fail with EBUSY. 1085 * 1086 * If newvd is too small, it should fail with EOVERFLOW. 1087 */ 1088 if (pvd->vdev_ops != &vdev_mirror_ops && 1089 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1090 pvd->vdev_ops == &vdev_replacing_ops || 1091 pvd->vdev_ops == &vdev_spare_ops)) 1092 expected_error = ENOTSUP; 1093 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1094 expected_error = ENOTSUP; 1095 else if (newvd == oldvd) 1096 expected_error = replacing ? 0 : EBUSY; 1097 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1098 expected_error = EBUSY; 1099 else if (newsize < oldsize) 1100 expected_error = EOVERFLOW; 1101 else if (ashift > oldvd->vdev_top->vdev_ashift) 1102 expected_error = EDOM; 1103 else 1104 expected_error = 0; 1105 1106 spa_config_exit(spa, SCL_VDEV, FTAG); 1107 1108 /* 1109 * Build the nvlist describing newpath. 1110 */ 1111 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1112 ashift, 0, 0, 0, 1); 1113 1114 error = spa_vdev_attach(spa, oldguid, root, replacing); 1115 1116 nvlist_free(root); 1117 1118 /* 1119 * If our parent was the replacing vdev, but the replace completed, 1120 * then instead of failing with ENOTSUP we may either succeed, 1121 * fail with ENODEV, or fail with EOVERFLOW. 1122 */ 1123 if (expected_error == ENOTSUP && 1124 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1125 expected_error = error; 1126 1127 /* 1128 * If someone grew the LUN, the replacement may be too small. 1129 */ 1130 if (error == EOVERFLOW || error == EBUSY) 1131 expected_error = error; 1132 1133 /* XXX workaround 6690467 */ 1134 if (error != expected_error && expected_error != EBUSY) { 1135 fatal(0, "attach (%s %llu, %s %llu, %d) " 1136 "returned %d, expected %d", 1137 oldpath, (longlong_t)oldsize, newpath, 1138 (longlong_t)newsize, replacing, error, expected_error); 1139 } 1140 1141 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1142 } 1143 1144 /* 1145 * Verify that dynamic LUN growth works as expected. 1146 */ 1147 void 1148 ztest_vdev_LUN_growth(ztest_args_t *za) 1149 { 1150 spa_t *spa = za->za_spa; 1151 char dev_name[MAXPATHLEN]; 1152 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1153 uint64_t vdev; 1154 size_t fsize; 1155 int fd; 1156 1157 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1158 1159 /* 1160 * Pick a random leaf vdev. 1161 */ 1162 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1163 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves); 1164 spa_config_exit(spa, SCL_VDEV, FTAG); 1165 1166 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 1167 1168 if ((fd = open(dev_name, O_RDWR)) != -1) { 1169 /* 1170 * Determine the size. 1171 */ 1172 fsize = lseek(fd, 0, SEEK_END); 1173 1174 /* 1175 * If it's less than 2x the original size, grow by around 3%. 1176 */ 1177 if (fsize < 2 * zopt_vdev_size) { 1178 size_t newsize = fsize + ztest_random(fsize / 32); 1179 (void) ftruncate(fd, newsize); 1180 if (zopt_verbose >= 6) { 1181 (void) printf("%s grew from %lu to %lu bytes\n", 1182 dev_name, (ulong_t)fsize, (ulong_t)newsize); 1183 } 1184 } 1185 (void) close(fd); 1186 } 1187 1188 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1189 } 1190 1191 /* ARGSUSED */ 1192 static void 1193 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1194 { 1195 /* 1196 * Create the directory object. 1197 */ 1198 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1199 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1200 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1201 1202 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1203 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1204 1205 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1206 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1207 } 1208 1209 static int 1210 ztest_destroy_cb(char *name, void *arg) 1211 { 1212 ztest_args_t *za = arg; 1213 objset_t *os; 1214 dmu_object_info_t *doi = &za->za_doi; 1215 int error; 1216 1217 /* 1218 * Verify that the dataset contains a directory object. 1219 */ 1220 error = dmu_objset_open(name, DMU_OST_OTHER, 1221 DS_MODE_USER | DS_MODE_READONLY, &os); 1222 ASSERT3U(error, ==, 0); 1223 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1224 if (error != ENOENT) { 1225 /* We could have crashed in the middle of destroying it */ 1226 ASSERT3U(error, ==, 0); 1227 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1228 ASSERT3S(doi->doi_physical_blks, >=, 0); 1229 } 1230 dmu_objset_close(os); 1231 1232 /* 1233 * Destroy the dataset. 1234 */ 1235 error = dmu_objset_destroy(name); 1236 if (error) { 1237 (void) dmu_objset_open(name, DMU_OST_OTHER, 1238 DS_MODE_USER | DS_MODE_READONLY, &os); 1239 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error); 1240 } 1241 return (0); 1242 } 1243 1244 /* 1245 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1246 */ 1247 static uint64_t 1248 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1249 { 1250 itx_t *itx; 1251 lr_create_t *lr; 1252 size_t namesize; 1253 char name[24]; 1254 1255 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1256 namesize = strlen(name) + 1; 1257 1258 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1259 ztest_random(ZIL_MAX_BLKSZ)); 1260 lr = (lr_create_t *)&itx->itx_lr; 1261 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1262 lr->lr_doid = object; 1263 lr->lr_foid = 0; 1264 lr->lr_mode = mode; 1265 lr->lr_uid = 0; 1266 lr->lr_gid = 0; 1267 lr->lr_gen = dmu_tx_get_txg(tx); 1268 lr->lr_crtime[0] = time(NULL); 1269 lr->lr_crtime[1] = 0; 1270 lr->lr_rdev = 0; 1271 bcopy(name, (char *)(lr + 1), namesize); 1272 1273 return (zil_itx_assign(zilog, itx, tx)); 1274 } 1275 1276 void 1277 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1278 { 1279 int error; 1280 objset_t *os, *os2; 1281 char name[100]; 1282 int basemode, expected_error; 1283 zilog_t *zilog; 1284 uint64_t seq; 1285 uint64_t objects; 1286 1287 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1288 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1289 (u_longlong_t)za->za_instance); 1290 1291 basemode = DS_MODE_TYPE(za->za_instance); 1292 if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER) 1293 basemode = DS_MODE_USER; 1294 1295 /* 1296 * If this dataset exists from a previous run, process its replay log 1297 * half of the time. If we don't replay it, then dmu_objset_destroy() 1298 * (invoked from ztest_destroy_cb() below) should just throw it away. 1299 */ 1300 if (ztest_random(2) == 0 && 1301 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) { 1302 zil_replay(os, os, ztest_replay_vector); 1303 dmu_objset_close(os); 1304 } 1305 1306 /* 1307 * There may be an old instance of the dataset we're about to 1308 * create lying around from a previous run. If so, destroy it 1309 * and all of its snapshots. 1310 */ 1311 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1312 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1313 1314 /* 1315 * Verify that the destroyed dataset is no longer in the namespace. 1316 */ 1317 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1318 if (error != ENOENT) 1319 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1320 name, os); 1321 1322 /* 1323 * Verify that we can create a new dataset. 1324 */ 1325 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 1326 ztest_create_cb, NULL); 1327 if (error) { 1328 if (error == ENOSPC) { 1329 ztest_record_enospc("dmu_objset_create"); 1330 (void) rw_unlock(&ztest_shared->zs_name_lock); 1331 return; 1332 } 1333 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1334 } 1335 1336 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1337 if (error) { 1338 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1339 } 1340 1341 /* 1342 * Open the intent log for it. 1343 */ 1344 zilog = zil_open(os, NULL); 1345 1346 /* 1347 * Put a random number of objects in there. 1348 */ 1349 objects = ztest_random(20); 1350 seq = 0; 1351 while (objects-- != 0) { 1352 uint64_t object; 1353 dmu_tx_t *tx = dmu_tx_create(os); 1354 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1355 error = dmu_tx_assign(tx, TXG_WAIT); 1356 if (error) { 1357 dmu_tx_abort(tx); 1358 } else { 1359 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1360 DMU_OT_NONE, 0, tx); 1361 ztest_set_random_blocksize(os, object, tx); 1362 seq = ztest_log_create(zilog, tx, object, 1363 DMU_OT_UINT64_OTHER); 1364 dmu_write(os, object, 0, sizeof (name), name, tx); 1365 dmu_tx_commit(tx); 1366 } 1367 if (ztest_random(5) == 0) { 1368 zil_commit(zilog, seq, object); 1369 } 1370 if (ztest_random(100) == 0) { 1371 error = zil_suspend(zilog); 1372 if (error == 0) { 1373 zil_resume(zilog); 1374 } 1375 } 1376 } 1377 1378 /* 1379 * Verify that we cannot create an existing dataset. 1380 */ 1381 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL); 1382 if (error != EEXIST) 1383 fatal(0, "created existing dataset, error = %d", error); 1384 1385 /* 1386 * Verify that multiple dataset holds are allowed, but only when 1387 * the new access mode is compatible with the base mode. 1388 */ 1389 if (basemode == DS_MODE_OWNER) { 1390 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER, 1391 &os2); 1392 if (error) 1393 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1394 else 1395 dmu_objset_close(os2); 1396 } 1397 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2); 1398 expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0; 1399 if (error != expected_error) 1400 fatal(0, "dmu_objset_open('%s') = %d, expected %d", 1401 name, error, expected_error); 1402 if (error == 0) 1403 dmu_objset_close(os2); 1404 1405 zil_close(zilog); 1406 dmu_objset_close(os); 1407 1408 error = dmu_objset_destroy(name); 1409 if (error) 1410 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1411 1412 (void) rw_unlock(&ztest_shared->zs_name_lock); 1413 } 1414 1415 /* 1416 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1417 */ 1418 void 1419 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1420 { 1421 int error; 1422 objset_t *os = za->za_os; 1423 char snapname[100]; 1424 char osname[MAXNAMELEN]; 1425 1426 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1427 dmu_objset_name(os, osname); 1428 (void) snprintf(snapname, 100, "%s@%llu", osname, 1429 (u_longlong_t)za->za_instance); 1430 1431 error = dmu_objset_destroy(snapname); 1432 if (error != 0 && error != ENOENT) 1433 fatal(0, "dmu_objset_destroy() = %d", error); 1434 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, 1435 NULL, FALSE); 1436 if (error == ENOSPC) 1437 ztest_record_enospc("dmu_take_snapshot"); 1438 else if (error != 0 && error != EEXIST) 1439 fatal(0, "dmu_take_snapshot() = %d", error); 1440 (void) rw_unlock(&ztest_shared->zs_name_lock); 1441 } 1442 1443 /* 1444 * Verify dsl_dataset_promote handles EBUSY 1445 */ 1446 void 1447 ztest_dsl_dataset_promote_busy(ztest_args_t *za) 1448 { 1449 int error; 1450 objset_t *os = za->za_os; 1451 objset_t *clone; 1452 dsl_dataset_t *ds; 1453 char snap1name[100]; 1454 char clone1name[100]; 1455 char snap2name[100]; 1456 char clone2name[100]; 1457 char snap3name[100]; 1458 char osname[MAXNAMELEN]; 1459 uint64_t curval; 1460 1461 curval = za->za_instance; 1462 1463 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1464 1465 dmu_objset_name(os, osname); 1466 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1467 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1468 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1469 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1470 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1471 1472 error = dmu_objset_destroy(clone2name); 1473 if (error != 0 && error != ENOENT) 1474 fatal(0, "dmu_objset_destroy() = %d", error); 1475 error = dmu_objset_destroy(snap3name); 1476 if (error != 0 && error != ENOENT) 1477 fatal(0, "dmu_objset_destroy() = %d", error); 1478 error = dmu_objset_destroy(snap2name); 1479 if (error != 0 && error != ENOENT) 1480 fatal(0, "dmu_objset_destroy() = %d", error); 1481 error = dmu_objset_destroy(clone1name); 1482 if (error != 0 && error != ENOENT) 1483 fatal(0, "dmu_objset_destroy() = %d", error); 1484 error = dmu_objset_destroy(snap1name); 1485 if (error != 0 && error != ENOENT) 1486 fatal(0, "dmu_objset_destroy() = %d", error); 1487 1488 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 1489 NULL, FALSE); 1490 if (error && error != EEXIST) { 1491 if (error == ENOSPC) { 1492 ztest_record_enospc("dmu_take_snapshot"); 1493 goto out; 1494 } 1495 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 1496 } 1497 1498 error = dmu_objset_open(snap1name, DMU_OST_OTHER, 1499 DS_MODE_USER | DS_MODE_READONLY, &clone); 1500 if (error) 1501 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 1502 1503 error = dmu_objset_create(clone1name, DMU_OST_OTHER, clone, 0, 1504 NULL, NULL); 1505 dmu_objset_close(clone); 1506 if (error) { 1507 if (error == ENOSPC) { 1508 ztest_record_enospc("dmu_objset_create"); 1509 goto out; 1510 } 1511 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 1512 } 1513 1514 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 1515 NULL, FALSE); 1516 if (error && error != EEXIST) { 1517 if (error == ENOSPC) { 1518 ztest_record_enospc("dmu_take_snapshot"); 1519 goto out; 1520 } 1521 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 1522 } 1523 1524 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 1525 NULL, FALSE); 1526 if (error && error != EEXIST) { 1527 if (error == ENOSPC) { 1528 ztest_record_enospc("dmu_take_snapshot"); 1529 goto out; 1530 } 1531 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1532 } 1533 1534 error = dmu_objset_open(snap3name, DMU_OST_OTHER, 1535 DS_MODE_USER | DS_MODE_READONLY, &clone); 1536 if (error) 1537 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1538 1539 error = dmu_objset_create(clone2name, DMU_OST_OTHER, clone, 0, 1540 NULL, NULL); 1541 dmu_objset_close(clone); 1542 if (error) { 1543 if (error == ENOSPC) { 1544 ztest_record_enospc("dmu_objset_create"); 1545 goto out; 1546 } 1547 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 1548 } 1549 1550 error = dsl_dataset_own(snap1name, DS_MODE_READONLY, FTAG, &ds); 1551 if (error) 1552 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 1553 error = dsl_dataset_promote(clone2name); 1554 if (error != EBUSY) 1555 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 1556 error); 1557 dsl_dataset_disown(ds, FTAG); 1558 1559 out: 1560 error = dmu_objset_destroy(clone2name); 1561 if (error && error != ENOENT) 1562 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 1563 error = dmu_objset_destroy(snap3name); 1564 if (error && error != ENOENT) 1565 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 1566 error = dmu_objset_destroy(snap2name); 1567 if (error && error != ENOENT) 1568 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 1569 error = dmu_objset_destroy(clone1name); 1570 if (error && error != ENOENT) 1571 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 1572 error = dmu_objset_destroy(snap1name); 1573 if (error && error != ENOENT) 1574 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 1575 1576 (void) rw_unlock(&ztest_shared->zs_name_lock); 1577 } 1578 1579 /* 1580 * Verify that dmu_object_{alloc,free} work as expected. 1581 */ 1582 void 1583 ztest_dmu_object_alloc_free(ztest_args_t *za) 1584 { 1585 objset_t *os = za->za_os; 1586 dmu_buf_t *db; 1587 dmu_tx_t *tx; 1588 uint64_t batchobj, object, batchsize, endoff, temp; 1589 int b, c, error, bonuslen; 1590 dmu_object_info_t *doi = &za->za_doi; 1591 char osname[MAXNAMELEN]; 1592 1593 dmu_objset_name(os, osname); 1594 1595 endoff = -8ULL; 1596 batchsize = 2; 1597 1598 /* 1599 * Create a batch object if necessary, and record it in the directory. 1600 */ 1601 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1602 sizeof (uint64_t), &batchobj)); 1603 if (batchobj == 0) { 1604 tx = dmu_tx_create(os); 1605 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1606 sizeof (uint64_t)); 1607 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1608 error = dmu_tx_assign(tx, TXG_WAIT); 1609 if (error) { 1610 ztest_record_enospc("create a batch object"); 1611 dmu_tx_abort(tx); 1612 return; 1613 } 1614 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1615 DMU_OT_NONE, 0, tx); 1616 ztest_set_random_blocksize(os, batchobj, tx); 1617 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1618 sizeof (uint64_t), &batchobj, tx); 1619 dmu_tx_commit(tx); 1620 } 1621 1622 /* 1623 * Destroy the previous batch of objects. 1624 */ 1625 for (b = 0; b < batchsize; b++) { 1626 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1627 sizeof (uint64_t), &object)); 1628 if (object == 0) 1629 continue; 1630 /* 1631 * Read and validate contents. 1632 * We expect the nth byte of the bonus buffer to be n. 1633 */ 1634 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1635 za->za_dbuf = db; 1636 1637 dmu_object_info_from_db(db, doi); 1638 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1639 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1640 ASSERT3S(doi->doi_physical_blks, >=, 0); 1641 1642 bonuslen = doi->doi_bonus_size; 1643 1644 for (c = 0; c < bonuslen; c++) { 1645 if (((uint8_t *)db->db_data)[c] != 1646 (uint8_t)(c + bonuslen)) { 1647 fatal(0, 1648 "bad bonus: %s, obj %llu, off %d: %u != %u", 1649 osname, object, c, 1650 ((uint8_t *)db->db_data)[c], 1651 (uint8_t)(c + bonuslen)); 1652 } 1653 } 1654 1655 dmu_buf_rele(db, FTAG); 1656 za->za_dbuf = NULL; 1657 1658 /* 1659 * We expect the word at endoff to be our object number. 1660 */ 1661 VERIFY(0 == dmu_read(os, object, endoff, 1662 sizeof (uint64_t), &temp)); 1663 1664 if (temp != object) { 1665 fatal(0, "bad data in %s, got %llu, expected %llu", 1666 osname, temp, object); 1667 } 1668 1669 /* 1670 * Destroy old object and clear batch entry. 1671 */ 1672 tx = dmu_tx_create(os); 1673 dmu_tx_hold_write(tx, batchobj, 1674 b * sizeof (uint64_t), sizeof (uint64_t)); 1675 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1676 error = dmu_tx_assign(tx, TXG_WAIT); 1677 if (error) { 1678 ztest_record_enospc("free object"); 1679 dmu_tx_abort(tx); 1680 return; 1681 } 1682 error = dmu_object_free(os, object, tx); 1683 if (error) { 1684 fatal(0, "dmu_object_free('%s', %llu) = %d", 1685 osname, object, error); 1686 } 1687 object = 0; 1688 1689 dmu_object_set_checksum(os, batchobj, 1690 ztest_random_checksum(), tx); 1691 dmu_object_set_compress(os, batchobj, 1692 ztest_random_compress(), tx); 1693 1694 dmu_write(os, batchobj, b * sizeof (uint64_t), 1695 sizeof (uint64_t), &object, tx); 1696 1697 dmu_tx_commit(tx); 1698 } 1699 1700 /* 1701 * Before creating the new batch of objects, generate a bunch of churn. 1702 */ 1703 for (b = ztest_random(100); b > 0; b--) { 1704 tx = dmu_tx_create(os); 1705 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1706 error = dmu_tx_assign(tx, TXG_WAIT); 1707 if (error) { 1708 ztest_record_enospc("churn objects"); 1709 dmu_tx_abort(tx); 1710 return; 1711 } 1712 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1713 DMU_OT_NONE, 0, tx); 1714 ztest_set_random_blocksize(os, object, tx); 1715 error = dmu_object_free(os, object, tx); 1716 if (error) { 1717 fatal(0, "dmu_object_free('%s', %llu) = %d", 1718 osname, object, error); 1719 } 1720 dmu_tx_commit(tx); 1721 } 1722 1723 /* 1724 * Create a new batch of objects with randomly chosen 1725 * blocksizes and record them in the batch directory. 1726 */ 1727 for (b = 0; b < batchsize; b++) { 1728 uint32_t va_blksize; 1729 u_longlong_t va_nblocks; 1730 1731 tx = dmu_tx_create(os); 1732 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1733 sizeof (uint64_t)); 1734 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1735 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1736 sizeof (uint64_t)); 1737 error = dmu_tx_assign(tx, TXG_WAIT); 1738 if (error) { 1739 ztest_record_enospc("create batchobj"); 1740 dmu_tx_abort(tx); 1741 return; 1742 } 1743 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1744 1745 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1746 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1747 1748 ztest_set_random_blocksize(os, object, tx); 1749 1750 dmu_object_set_checksum(os, object, 1751 ztest_random_checksum(), tx); 1752 dmu_object_set_compress(os, object, 1753 ztest_random_compress(), tx); 1754 1755 dmu_write(os, batchobj, b * sizeof (uint64_t), 1756 sizeof (uint64_t), &object, tx); 1757 1758 /* 1759 * Write to both the bonus buffer and the regular data. 1760 */ 1761 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1762 za->za_dbuf = db; 1763 ASSERT3U(bonuslen, <=, db->db_size); 1764 1765 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1766 ASSERT3S(va_nblocks, >=, 0); 1767 1768 dmu_buf_will_dirty(db, tx); 1769 1770 /* 1771 * See comments above regarding the contents of 1772 * the bonus buffer and the word at endoff. 1773 */ 1774 for (c = 0; c < bonuslen; c++) 1775 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1776 1777 dmu_buf_rele(db, FTAG); 1778 za->za_dbuf = NULL; 1779 1780 /* 1781 * Write to a large offset to increase indirection. 1782 */ 1783 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1784 1785 dmu_tx_commit(tx); 1786 } 1787 } 1788 1789 /* 1790 * Verify that dmu_{read,write} work as expected. 1791 */ 1792 typedef struct bufwad { 1793 uint64_t bw_index; 1794 uint64_t bw_txg; 1795 uint64_t bw_data; 1796 } bufwad_t; 1797 1798 typedef struct dmu_read_write_dir { 1799 uint64_t dd_packobj; 1800 uint64_t dd_bigobj; 1801 uint64_t dd_chunk; 1802 } dmu_read_write_dir_t; 1803 1804 void 1805 ztest_dmu_read_write(ztest_args_t *za) 1806 { 1807 objset_t *os = za->za_os; 1808 dmu_read_write_dir_t dd; 1809 dmu_tx_t *tx; 1810 int i, freeit, error; 1811 uint64_t n, s, txg; 1812 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1813 uint64_t packoff, packsize, bigoff, bigsize; 1814 uint64_t regions = 997; 1815 uint64_t stride = 123456789ULL; 1816 uint64_t width = 40; 1817 int free_percent = 5; 1818 1819 /* 1820 * This test uses two objects, packobj and bigobj, that are always 1821 * updated together (i.e. in the same tx) so that their contents are 1822 * in sync and can be compared. Their contents relate to each other 1823 * in a simple way: packobj is a dense array of 'bufwad' structures, 1824 * while bigobj is a sparse array of the same bufwads. Specifically, 1825 * for any index n, there are three bufwads that should be identical: 1826 * 1827 * packobj, at offset n * sizeof (bufwad_t) 1828 * bigobj, at the head of the nth chunk 1829 * bigobj, at the tail of the nth chunk 1830 * 1831 * The chunk size is arbitrary. It doesn't have to be a power of two, 1832 * and it doesn't have any relation to the object blocksize. 1833 * The only requirement is that it can hold at least two bufwads. 1834 * 1835 * Normally, we write the bufwad to each of these locations. 1836 * However, free_percent of the time we instead write zeroes to 1837 * packobj and perform a dmu_free_range() on bigobj. By comparing 1838 * bigobj to packobj, we can verify that the DMU is correctly 1839 * tracking which parts of an object are allocated and free, 1840 * and that the contents of the allocated blocks are correct. 1841 */ 1842 1843 /* 1844 * Read the directory info. If it's the first time, set things up. 1845 */ 1846 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1847 sizeof (dd), &dd)); 1848 if (dd.dd_chunk == 0) { 1849 ASSERT(dd.dd_packobj == 0); 1850 ASSERT(dd.dd_bigobj == 0); 1851 tx = dmu_tx_create(os); 1852 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1853 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1854 error = dmu_tx_assign(tx, TXG_WAIT); 1855 if (error) { 1856 ztest_record_enospc("create r/w directory"); 1857 dmu_tx_abort(tx); 1858 return; 1859 } 1860 1861 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1862 DMU_OT_NONE, 0, tx); 1863 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1864 DMU_OT_NONE, 0, tx); 1865 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 1866 1867 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 1868 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 1869 1870 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 1871 tx); 1872 dmu_tx_commit(tx); 1873 } 1874 1875 /* 1876 * Prefetch a random chunk of the big object. 1877 * Our aim here is to get some async reads in flight 1878 * for blocks that we may free below; the DMU should 1879 * handle this race correctly. 1880 */ 1881 n = ztest_random(regions) * stride + ztest_random(width); 1882 s = 1 + ztest_random(2 * width - 1); 1883 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 1884 1885 /* 1886 * Pick a random index and compute the offsets into packobj and bigobj. 1887 */ 1888 n = ztest_random(regions) * stride + ztest_random(width); 1889 s = 1 + ztest_random(width - 1); 1890 1891 packoff = n * sizeof (bufwad_t); 1892 packsize = s * sizeof (bufwad_t); 1893 1894 bigoff = n * dd.dd_chunk; 1895 bigsize = s * dd.dd_chunk; 1896 1897 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 1898 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 1899 1900 /* 1901 * free_percent of the time, free a range of bigobj rather than 1902 * overwriting it. 1903 */ 1904 freeit = (ztest_random(100) < free_percent); 1905 1906 /* 1907 * Read the current contents of our objects. 1908 */ 1909 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf); 1910 ASSERT3U(error, ==, 0); 1911 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf); 1912 ASSERT3U(error, ==, 0); 1913 1914 /* 1915 * Get a tx for the mods to both packobj and bigobj. 1916 */ 1917 tx = dmu_tx_create(os); 1918 1919 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 1920 1921 if (freeit) 1922 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 1923 else 1924 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 1925 1926 error = dmu_tx_assign(tx, TXG_WAIT); 1927 1928 if (error) { 1929 ztest_record_enospc("dmu r/w range"); 1930 dmu_tx_abort(tx); 1931 umem_free(packbuf, packsize); 1932 umem_free(bigbuf, bigsize); 1933 return; 1934 } 1935 1936 txg = dmu_tx_get_txg(tx); 1937 1938 /* 1939 * For each index from n to n + s, verify that the existing bufwad 1940 * in packobj matches the bufwads at the head and tail of the 1941 * corresponding chunk in bigobj. Then update all three bufwads 1942 * with the new values we want to write out. 1943 */ 1944 for (i = 0; i < s; i++) { 1945 /* LINTED */ 1946 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 1947 /* LINTED */ 1948 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 1949 /* LINTED */ 1950 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 1951 1952 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 1953 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 1954 1955 if (pack->bw_txg > txg) 1956 fatal(0, "future leak: got %llx, open txg is %llx", 1957 pack->bw_txg, txg); 1958 1959 if (pack->bw_data != 0 && pack->bw_index != n + i) 1960 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 1961 pack->bw_index, n, i); 1962 1963 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 1964 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 1965 1966 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 1967 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 1968 1969 if (freeit) { 1970 bzero(pack, sizeof (bufwad_t)); 1971 } else { 1972 pack->bw_index = n + i; 1973 pack->bw_txg = txg; 1974 pack->bw_data = 1 + ztest_random(-2ULL); 1975 } 1976 *bigH = *pack; 1977 *bigT = *pack; 1978 } 1979 1980 /* 1981 * We've verified all the old bufwads, and made new ones. 1982 * Now write them out. 1983 */ 1984 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 1985 1986 if (freeit) { 1987 if (zopt_verbose >= 6) { 1988 (void) printf("freeing offset %llx size %llx" 1989 " txg %llx\n", 1990 (u_longlong_t)bigoff, 1991 (u_longlong_t)bigsize, 1992 (u_longlong_t)txg); 1993 } 1994 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 1995 bigsize, tx)); 1996 } else { 1997 if (zopt_verbose >= 6) { 1998 (void) printf("writing offset %llx size %llx" 1999 " txg %llx\n", 2000 (u_longlong_t)bigoff, 2001 (u_longlong_t)bigsize, 2002 (u_longlong_t)txg); 2003 } 2004 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 2005 } 2006 2007 dmu_tx_commit(tx); 2008 2009 /* 2010 * Sanity check the stuff we just wrote. 2011 */ 2012 { 2013 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2014 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2015 2016 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2017 packsize, packcheck)); 2018 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2019 bigsize, bigcheck)); 2020 2021 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2022 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2023 2024 umem_free(packcheck, packsize); 2025 umem_free(bigcheck, bigsize); 2026 } 2027 2028 umem_free(packbuf, packsize); 2029 umem_free(bigbuf, bigsize); 2030 } 2031 2032 void 2033 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 2034 uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg) 2035 { 2036 uint64_t i; 2037 bufwad_t *pack; 2038 bufwad_t *bigH; 2039 bufwad_t *bigT; 2040 2041 /* 2042 * For each index from n to n + s, verify that the existing bufwad 2043 * in packobj matches the bufwads at the head and tail of the 2044 * corresponding chunk in bigobj. Then update all three bufwads 2045 * with the new values we want to write out. 2046 */ 2047 for (i = 0; i < s; i++) { 2048 /* LINTED */ 2049 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2050 /* LINTED */ 2051 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2052 /* LINTED */ 2053 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2054 2055 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2056 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2057 2058 if (pack->bw_txg > txg) 2059 fatal(0, "future leak: got %llx, open txg is %llx", 2060 pack->bw_txg, txg); 2061 2062 if (pack->bw_data != 0 && pack->bw_index != n + i) 2063 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2064 pack->bw_index, n, i); 2065 2066 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2067 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2068 2069 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2070 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2071 2072 pack->bw_index = n + i; 2073 pack->bw_txg = txg; 2074 pack->bw_data = 1 + ztest_random(-2ULL); 2075 2076 *bigH = *pack; 2077 *bigT = *pack; 2078 } 2079 } 2080 2081 void 2082 ztest_dmu_read_write_zcopy(ztest_args_t *za) 2083 { 2084 objset_t *os = za->za_os; 2085 dmu_read_write_dir_t dd; 2086 dmu_tx_t *tx; 2087 uint64_t i; 2088 int error; 2089 uint64_t n, s, txg; 2090 bufwad_t *packbuf, *bigbuf; 2091 uint64_t packoff, packsize, bigoff, bigsize; 2092 uint64_t regions = 997; 2093 uint64_t stride = 123456789ULL; 2094 uint64_t width = 9; 2095 dmu_buf_t *bonus_db; 2096 arc_buf_t **bigbuf_arcbufs; 2097 dmu_object_info_t *doi = &za->za_doi; 2098 2099 /* 2100 * This test uses two objects, packobj and bigobj, that are always 2101 * updated together (i.e. in the same tx) so that their contents are 2102 * in sync and can be compared. Their contents relate to each other 2103 * in a simple way: packobj is a dense array of 'bufwad' structures, 2104 * while bigobj is a sparse array of the same bufwads. Specifically, 2105 * for any index n, there are three bufwads that should be identical: 2106 * 2107 * packobj, at offset n * sizeof (bufwad_t) 2108 * bigobj, at the head of the nth chunk 2109 * bigobj, at the tail of the nth chunk 2110 * 2111 * The chunk size is set equal to bigobj block size so that 2112 * dmu_assign_arcbuf() can be tested for object updates. 2113 */ 2114 2115 /* 2116 * Read the directory info. If it's the first time, set things up. 2117 */ 2118 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2119 sizeof (dd), &dd)); 2120 if (dd.dd_chunk == 0) { 2121 ASSERT(dd.dd_packobj == 0); 2122 ASSERT(dd.dd_bigobj == 0); 2123 tx = dmu_tx_create(os); 2124 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2125 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2126 error = dmu_tx_assign(tx, TXG_WAIT); 2127 if (error) { 2128 ztest_record_enospc("create r/w directory"); 2129 dmu_tx_abort(tx); 2130 return; 2131 } 2132 2133 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2134 DMU_OT_NONE, 0, tx); 2135 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2136 DMU_OT_NONE, 0, tx); 2137 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2138 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2139 2140 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2141 ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t)); 2142 ASSERT(ISP2(doi->doi_data_block_size)); 2143 dd.dd_chunk = doi->doi_data_block_size; 2144 2145 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2146 tx); 2147 dmu_tx_commit(tx); 2148 } else { 2149 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2150 VERIFY(ISP2(doi->doi_data_block_size)); 2151 VERIFY(dd.dd_chunk == doi->doi_data_block_size); 2152 VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t)); 2153 } 2154 2155 /* 2156 * Pick a random index and compute the offsets into packobj and bigobj. 2157 */ 2158 n = ztest_random(regions) * stride + ztest_random(width); 2159 s = 1 + ztest_random(width - 1); 2160 2161 packoff = n * sizeof (bufwad_t); 2162 packsize = s * sizeof (bufwad_t); 2163 2164 bigoff = n * dd.dd_chunk; 2165 bigsize = s * dd.dd_chunk; 2166 2167 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 2168 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 2169 2170 VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0); 2171 2172 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 2173 2174 /* 2175 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 2176 * Iteration 1 test zcopy to already referenced dbufs. 2177 * Iteration 2 test zcopy to dirty dbuf in the same txg. 2178 * Iteration 3 test zcopy to dbuf dirty in previous txg. 2179 * Iteration 4 test zcopy when dbuf is no longer dirty. 2180 * Iteration 5 test zcopy when it can't be done. 2181 * Iteration 6 one more zcopy write. 2182 */ 2183 for (i = 0; i < 7; i++) { 2184 uint64_t j; 2185 uint64_t off; 2186 2187 /* 2188 * In iteration 5 (i == 5) use arcbufs 2189 * that don't match bigobj blksz to test 2190 * dmu_assign_arcbuf() when it can't directly 2191 * assign an arcbuf to a dbuf. 2192 */ 2193 for (j = 0; j < s; j++) { 2194 if (i != 5) { 2195 bigbuf_arcbufs[j] = 2196 dmu_request_arcbuf(bonus_db, 2197 dd.dd_chunk); 2198 } else { 2199 bigbuf_arcbufs[2 * j] = 2200 dmu_request_arcbuf(bonus_db, 2201 dd.dd_chunk / 2); 2202 bigbuf_arcbufs[2 * j + 1] = 2203 dmu_request_arcbuf(bonus_db, 2204 dd.dd_chunk / 2); 2205 } 2206 } 2207 2208 /* 2209 * Get a tx for the mods to both packobj and bigobj. 2210 */ 2211 tx = dmu_tx_create(os); 2212 2213 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2214 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2215 2216 if (ztest_random(100) == 0) { 2217 error = -1; 2218 } else { 2219 error = dmu_tx_assign(tx, TXG_WAIT); 2220 } 2221 2222 if (error) { 2223 if (error != -1) { 2224 ztest_record_enospc("dmu r/w range"); 2225 } 2226 dmu_tx_abort(tx); 2227 umem_free(packbuf, packsize); 2228 umem_free(bigbuf, bigsize); 2229 for (j = 0; j < s; j++) { 2230 if (i != 5) { 2231 dmu_return_arcbuf(bigbuf_arcbufs[j]); 2232 } else { 2233 dmu_return_arcbuf( 2234 bigbuf_arcbufs[2 * j]); 2235 dmu_return_arcbuf( 2236 bigbuf_arcbufs[2 * j + 1]); 2237 } 2238 } 2239 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2240 dmu_buf_rele(bonus_db, FTAG); 2241 return; 2242 } 2243 2244 txg = dmu_tx_get_txg(tx); 2245 2246 /* 2247 * 50% of the time don't read objects in the 1st iteration to 2248 * test dmu_assign_arcbuf() for the case when there're no 2249 * existing dbufs for the specified offsets. 2250 */ 2251 if (i != 0 || ztest_random(2) != 0) { 2252 error = dmu_read(os, dd.dd_packobj, packoff, 2253 packsize, packbuf); 2254 ASSERT3U(error, ==, 0); 2255 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, 2256 bigbuf); 2257 ASSERT3U(error, ==, 0); 2258 } 2259 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 2260 n, dd, txg); 2261 2262 /* 2263 * We've verified all the old bufwads, and made new ones. 2264 * Now write them out. 2265 */ 2266 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2267 if (zopt_verbose >= 6) { 2268 (void) printf("writing offset %llx size %llx" 2269 " txg %llx\n", 2270 (u_longlong_t)bigoff, 2271 (u_longlong_t)bigsize, 2272 (u_longlong_t)txg); 2273 } 2274 for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) { 2275 dmu_buf_t *dbt; 2276 if (i != 5) { 2277 bcopy((caddr_t)bigbuf + (off - bigoff), 2278 bigbuf_arcbufs[j]->b_data, dd.dd_chunk); 2279 } else { 2280 bcopy((caddr_t)bigbuf + (off - bigoff), 2281 bigbuf_arcbufs[2 * j]->b_data, 2282 dd.dd_chunk / 2); 2283 bcopy((caddr_t)bigbuf + (off - bigoff) + 2284 dd.dd_chunk / 2, 2285 bigbuf_arcbufs[2 * j + 1]->b_data, 2286 dd.dd_chunk / 2); 2287 } 2288 2289 if (i == 1) { 2290 VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off, 2291 FTAG, &dbt) == 0); 2292 } 2293 if (i != 5) { 2294 dmu_assign_arcbuf(bonus_db, off, 2295 bigbuf_arcbufs[j], tx); 2296 } else { 2297 dmu_assign_arcbuf(bonus_db, off, 2298 bigbuf_arcbufs[2 * j], tx); 2299 dmu_assign_arcbuf(bonus_db, 2300 off + dd.dd_chunk / 2, 2301 bigbuf_arcbufs[2 * j + 1], tx); 2302 } 2303 if (i == 1) { 2304 dmu_buf_rele(dbt, FTAG); 2305 } 2306 } 2307 dmu_tx_commit(tx); 2308 2309 /* 2310 * Sanity check the stuff we just wrote. 2311 */ 2312 { 2313 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2314 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2315 2316 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2317 packsize, packcheck)); 2318 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2319 bigsize, bigcheck)); 2320 2321 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2322 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2323 2324 umem_free(packcheck, packsize); 2325 umem_free(bigcheck, bigsize); 2326 } 2327 if (i == 2) { 2328 txg_wait_open(dmu_objset_pool(os), 0); 2329 } else if (i == 3) { 2330 txg_wait_synced(dmu_objset_pool(os), 0); 2331 } 2332 } 2333 2334 dmu_buf_rele(bonus_db, FTAG); 2335 umem_free(packbuf, packsize); 2336 umem_free(bigbuf, bigsize); 2337 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2338 } 2339 2340 void 2341 ztest_dmu_check_future_leak(ztest_args_t *za) 2342 { 2343 objset_t *os = za->za_os; 2344 dmu_buf_t *db; 2345 ztest_block_tag_t *bt; 2346 dmu_object_info_t *doi = &za->za_doi; 2347 2348 /* 2349 * Make sure that, if there is a write record in the bonus buffer 2350 * of the ZTEST_DIROBJ, that the txg for this record is <= the 2351 * last synced txg of the pool. 2352 */ 2353 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2354 za->za_dbuf = db; 2355 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 2356 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 2357 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2358 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 2359 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 2360 if (bt->bt_objset != 0) { 2361 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 2362 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 2363 ASSERT3U(bt->bt_offset, ==, -1ULL); 2364 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 2365 } 2366 dmu_buf_rele(db, FTAG); 2367 za->za_dbuf = NULL; 2368 } 2369 2370 void 2371 ztest_dmu_write_parallel(ztest_args_t *za) 2372 { 2373 objset_t *os = za->za_os; 2374 ztest_block_tag_t *rbt = &za->za_rbt; 2375 ztest_block_tag_t *wbt = &za->za_wbt; 2376 const size_t btsize = sizeof (ztest_block_tag_t); 2377 dmu_buf_t *db; 2378 int b, error; 2379 int bs = ZTEST_DIROBJ_BLOCKSIZE; 2380 int do_free = 0; 2381 uint64_t off, txg, txg_how; 2382 mutex_t *lp; 2383 char osname[MAXNAMELEN]; 2384 char iobuf[SPA_MAXBLOCKSIZE]; 2385 blkptr_t blk = { 0 }; 2386 uint64_t blkoff; 2387 zbookmark_t zb; 2388 dmu_tx_t *tx = dmu_tx_create(os); 2389 dmu_buf_t *bonus_db; 2390 arc_buf_t *abuf = NULL; 2391 2392 dmu_objset_name(os, osname); 2393 2394 /* 2395 * Have multiple threads write to large offsets in ZTEST_DIROBJ 2396 * to verify that having multiple threads writing to the same object 2397 * in parallel doesn't cause any trouble. 2398 */ 2399 if (ztest_random(4) == 0) { 2400 /* 2401 * Do the bonus buffer instead of a regular block. 2402 * We need a lock to serialize resize vs. others, 2403 * so we hash on the objset ID. 2404 */ 2405 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 2406 off = -1ULL; 2407 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 2408 } else { 2409 b = ztest_random(ZTEST_SYNC_LOCKS); 2410 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 2411 if (ztest_random(4) == 0) { 2412 do_free = 1; 2413 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 2414 } else { 2415 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 2416 } 2417 } 2418 2419 if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free && 2420 ztest_random(8) == 0) { 2421 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0); 2422 abuf = dmu_request_arcbuf(bonus_db, bs); 2423 } 2424 2425 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 2426 error = dmu_tx_assign(tx, txg_how); 2427 if (error) { 2428 if (error == ERESTART) { 2429 ASSERT(txg_how == TXG_NOWAIT); 2430 dmu_tx_wait(tx); 2431 } else { 2432 ztest_record_enospc("dmu write parallel"); 2433 } 2434 dmu_tx_abort(tx); 2435 if (abuf != NULL) { 2436 dmu_return_arcbuf(abuf); 2437 dmu_buf_rele(bonus_db, FTAG); 2438 } 2439 return; 2440 } 2441 txg = dmu_tx_get_txg(tx); 2442 2443 lp = &ztest_shared->zs_sync_lock[b]; 2444 (void) mutex_lock(lp); 2445 2446 wbt->bt_objset = dmu_objset_id(os); 2447 wbt->bt_object = ZTEST_DIROBJ; 2448 wbt->bt_offset = off; 2449 wbt->bt_txg = txg; 2450 wbt->bt_thread = za->za_instance; 2451 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 2452 2453 /* 2454 * Occasionally, write an all-zero block to test the behavior 2455 * of blocks that compress into holes. 2456 */ 2457 if (off != -1ULL && ztest_random(8) == 0) 2458 bzero(wbt, btsize); 2459 2460 if (off == -1ULL) { 2461 dmu_object_info_t *doi = &za->za_doi; 2462 char *dboff; 2463 2464 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2465 za->za_dbuf = db; 2466 dmu_object_info_from_db(db, doi); 2467 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2468 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2469 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2470 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2471 bcopy(dboff, rbt, btsize); 2472 if (rbt->bt_objset != 0) { 2473 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2474 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2475 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2476 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2477 } 2478 if (ztest_random(10) == 0) { 2479 int newsize = (ztest_random(db->db_size / 2480 btsize) + 1) * btsize; 2481 2482 ASSERT3U(newsize, >=, btsize); 2483 ASSERT3U(newsize, <=, db->db_size); 2484 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2485 dboff = (char *)db->db_data + newsize - btsize; 2486 } 2487 dmu_buf_will_dirty(db, tx); 2488 bcopy(wbt, dboff, btsize); 2489 dmu_buf_rele(db, FTAG); 2490 za->za_dbuf = NULL; 2491 } else if (do_free) { 2492 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2493 } else if (abuf == NULL) { 2494 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2495 } else { 2496 bcopy(wbt, abuf->b_data, btsize); 2497 dmu_assign_arcbuf(bonus_db, off, abuf, tx); 2498 dmu_buf_rele(bonus_db, FTAG); 2499 } 2500 2501 (void) mutex_unlock(lp); 2502 2503 if (ztest_random(1000) == 0) 2504 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2505 2506 dmu_tx_commit(tx); 2507 2508 if (ztest_random(10000) == 0) 2509 txg_wait_synced(dmu_objset_pool(os), txg); 2510 2511 if (off == -1ULL || do_free) 2512 return; 2513 2514 if (ztest_random(2) != 0) 2515 return; 2516 2517 /* 2518 * dmu_sync() the block we just wrote. 2519 */ 2520 (void) mutex_lock(lp); 2521 2522 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2523 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2524 za->za_dbuf = db; 2525 if (error) { 2526 (void) mutex_unlock(lp); 2527 return; 2528 } 2529 blkoff = off - blkoff; 2530 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2531 dmu_buf_rele(db, FTAG); 2532 za->za_dbuf = NULL; 2533 2534 if (error) { 2535 (void) mutex_unlock(lp); 2536 return; 2537 } 2538 2539 if (blk.blk_birth == 0) { /* concurrent free */ 2540 (void) mutex_unlock(lp); 2541 return; 2542 } 2543 2544 txg_suspend(dmu_objset_pool(os)); 2545 2546 (void) mutex_unlock(lp); 2547 2548 ASSERT(blk.blk_fill == 1); 2549 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2550 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2551 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2552 2553 /* 2554 * Read the block that dmu_sync() returned to make sure its contents 2555 * match what we wrote. We do this while still txg_suspend()ed 2556 * to ensure that the block can't be reused before we read it. 2557 */ 2558 zb.zb_objset = dmu_objset_id(os); 2559 zb.zb_object = ZTEST_DIROBJ; 2560 zb.zb_level = 0; 2561 zb.zb_blkid = off / bs; 2562 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2563 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2564 ASSERT3U(error, ==, 0); 2565 2566 txg_resume(dmu_objset_pool(os)); 2567 2568 bcopy(&iobuf[blkoff], rbt, btsize); 2569 2570 if (rbt->bt_objset == 0) /* concurrent free */ 2571 return; 2572 2573 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2574 return; 2575 2576 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2577 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2578 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2579 2580 /* 2581 * The semantic of dmu_sync() is that we always push the most recent 2582 * version of the data, so in the face of concurrent updates we may 2583 * see a newer version of the block. That's OK. 2584 */ 2585 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2586 if (rbt->bt_thread == wbt->bt_thread) 2587 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2588 else 2589 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2590 } 2591 2592 /* 2593 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2594 */ 2595 #define ZTEST_ZAP_MIN_INTS 1 2596 #define ZTEST_ZAP_MAX_INTS 4 2597 #define ZTEST_ZAP_MAX_PROPS 1000 2598 2599 void 2600 ztest_zap(ztest_args_t *za) 2601 { 2602 objset_t *os = za->za_os; 2603 uint64_t object; 2604 uint64_t txg, last_txg; 2605 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2606 uint64_t zl_ints, zl_intsize, prop; 2607 int i, ints; 2608 dmu_tx_t *tx; 2609 char propname[100], txgname[100]; 2610 int error; 2611 char osname[MAXNAMELEN]; 2612 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2613 2614 dmu_objset_name(os, osname); 2615 2616 /* 2617 * Create a new object if necessary, and record it in the directory. 2618 */ 2619 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2620 sizeof (uint64_t), &object)); 2621 2622 if (object == 0) { 2623 tx = dmu_tx_create(os); 2624 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2625 sizeof (uint64_t)); 2626 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2627 error = dmu_tx_assign(tx, TXG_WAIT); 2628 if (error) { 2629 ztest_record_enospc("create zap test obj"); 2630 dmu_tx_abort(tx); 2631 return; 2632 } 2633 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2634 if (error) { 2635 fatal(0, "zap_create('%s', %llu) = %d", 2636 osname, object, error); 2637 } 2638 ASSERT(object != 0); 2639 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2640 sizeof (uint64_t), &object, tx); 2641 /* 2642 * Generate a known hash collision, and verify that 2643 * we can lookup and remove both entries. 2644 */ 2645 for (i = 0; i < 2; i++) { 2646 value[i] = i; 2647 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2648 1, &value[i], tx); 2649 ASSERT3U(error, ==, 0); 2650 } 2651 for (i = 0; i < 2; i++) { 2652 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2653 1, &value[i], tx); 2654 ASSERT3U(error, ==, EEXIST); 2655 error = zap_length(os, object, hc[i], 2656 &zl_intsize, &zl_ints); 2657 ASSERT3U(error, ==, 0); 2658 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2659 ASSERT3U(zl_ints, ==, 1); 2660 } 2661 for (i = 0; i < 2; i++) { 2662 error = zap_remove(os, object, hc[i], tx); 2663 ASSERT3U(error, ==, 0); 2664 } 2665 2666 dmu_tx_commit(tx); 2667 } 2668 2669 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2670 2671 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2672 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2673 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2674 bzero(value, sizeof (value)); 2675 last_txg = 0; 2676 2677 /* 2678 * If these zap entries already exist, validate their contents. 2679 */ 2680 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2681 if (error == 0) { 2682 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2683 ASSERT3U(zl_ints, ==, 1); 2684 2685 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2686 zl_ints, &last_txg) == 0); 2687 2688 VERIFY(zap_length(os, object, propname, &zl_intsize, 2689 &zl_ints) == 0); 2690 2691 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2692 ASSERT3U(zl_ints, ==, ints); 2693 2694 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2695 zl_ints, value) == 0); 2696 2697 for (i = 0; i < ints; i++) { 2698 ASSERT3U(value[i], ==, last_txg + object + i); 2699 } 2700 } else { 2701 ASSERT3U(error, ==, ENOENT); 2702 } 2703 2704 /* 2705 * Atomically update two entries in our zap object. 2706 * The first is named txg_%llu, and contains the txg 2707 * in which the property was last updated. The second 2708 * is named prop_%llu, and the nth element of its value 2709 * should be txg + object + n. 2710 */ 2711 tx = dmu_tx_create(os); 2712 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2713 error = dmu_tx_assign(tx, TXG_WAIT); 2714 if (error) { 2715 ztest_record_enospc("create zap entry"); 2716 dmu_tx_abort(tx); 2717 return; 2718 } 2719 txg = dmu_tx_get_txg(tx); 2720 2721 if (last_txg > txg) 2722 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2723 2724 for (i = 0; i < ints; i++) 2725 value[i] = txg + object + i; 2726 2727 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2728 if (error) 2729 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2730 osname, object, txgname, error); 2731 2732 error = zap_update(os, object, propname, sizeof (uint64_t), 2733 ints, value, tx); 2734 if (error) 2735 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2736 osname, object, propname, error); 2737 2738 dmu_tx_commit(tx); 2739 2740 /* 2741 * Remove a random pair of entries. 2742 */ 2743 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2744 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2745 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2746 2747 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2748 2749 if (error == ENOENT) 2750 return; 2751 2752 ASSERT3U(error, ==, 0); 2753 2754 tx = dmu_tx_create(os); 2755 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2756 error = dmu_tx_assign(tx, TXG_WAIT); 2757 if (error) { 2758 ztest_record_enospc("remove zap entry"); 2759 dmu_tx_abort(tx); 2760 return; 2761 } 2762 error = zap_remove(os, object, txgname, tx); 2763 if (error) 2764 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2765 osname, object, txgname, error); 2766 2767 error = zap_remove(os, object, propname, tx); 2768 if (error) 2769 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2770 osname, object, propname, error); 2771 2772 dmu_tx_commit(tx); 2773 2774 /* 2775 * Once in a while, destroy the object. 2776 */ 2777 if (ztest_random(1000) != 0) 2778 return; 2779 2780 tx = dmu_tx_create(os); 2781 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2782 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2783 error = dmu_tx_assign(tx, TXG_WAIT); 2784 if (error) { 2785 ztest_record_enospc("destroy zap object"); 2786 dmu_tx_abort(tx); 2787 return; 2788 } 2789 error = zap_destroy(os, object, tx); 2790 if (error) 2791 fatal(0, "zap_destroy('%s', %llu) = %d", 2792 osname, object, error); 2793 object = 0; 2794 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2795 &object, tx); 2796 dmu_tx_commit(tx); 2797 } 2798 2799 void 2800 ztest_zap_parallel(ztest_args_t *za) 2801 { 2802 objset_t *os = za->za_os; 2803 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2804 dmu_tx_t *tx; 2805 int i, namelen, error; 2806 char name[20], string_value[20]; 2807 void *data; 2808 2809 /* 2810 * Generate a random name of the form 'xxx.....' where each 2811 * x is a random printable character and the dots are dots. 2812 * There are 94 such characters, and the name length goes from 2813 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2814 */ 2815 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2816 2817 for (i = 0; i < 3; i++) 2818 name[i] = '!' + ztest_random('~' - '!' + 1); 2819 for (; i < namelen - 1; i++) 2820 name[i] = '.'; 2821 name[i] = '\0'; 2822 2823 if (ztest_random(2) == 0) 2824 object = ZTEST_MICROZAP_OBJ; 2825 else 2826 object = ZTEST_FATZAP_OBJ; 2827 2828 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2829 wsize = sizeof (txg); 2830 wc = 1; 2831 data = &txg; 2832 } else { 2833 wsize = 1; 2834 wc = namelen; 2835 data = string_value; 2836 } 2837 2838 count = -1ULL; 2839 VERIFY(zap_count(os, object, &count) == 0); 2840 ASSERT(count != -1ULL); 2841 2842 /* 2843 * Select an operation: length, lookup, add, update, remove. 2844 */ 2845 i = ztest_random(5); 2846 2847 if (i >= 2) { 2848 tx = dmu_tx_create(os); 2849 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2850 error = dmu_tx_assign(tx, TXG_WAIT); 2851 if (error) { 2852 ztest_record_enospc("zap parallel"); 2853 dmu_tx_abort(tx); 2854 return; 2855 } 2856 txg = dmu_tx_get_txg(tx); 2857 bcopy(name, string_value, namelen); 2858 } else { 2859 tx = NULL; 2860 txg = 0; 2861 bzero(string_value, namelen); 2862 } 2863 2864 switch (i) { 2865 2866 case 0: 2867 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 2868 if (error == 0) { 2869 ASSERT3U(wsize, ==, zl_wsize); 2870 ASSERT3U(wc, ==, zl_wc); 2871 } else { 2872 ASSERT3U(error, ==, ENOENT); 2873 } 2874 break; 2875 2876 case 1: 2877 error = zap_lookup(os, object, name, wsize, wc, data); 2878 if (error == 0) { 2879 if (data == string_value && 2880 bcmp(name, data, namelen) != 0) 2881 fatal(0, "name '%s' != val '%s' len %d", 2882 name, data, namelen); 2883 } else { 2884 ASSERT3U(error, ==, ENOENT); 2885 } 2886 break; 2887 2888 case 2: 2889 error = zap_add(os, object, name, wsize, wc, data, tx); 2890 ASSERT(error == 0 || error == EEXIST); 2891 break; 2892 2893 case 3: 2894 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 2895 break; 2896 2897 case 4: 2898 error = zap_remove(os, object, name, tx); 2899 ASSERT(error == 0 || error == ENOENT); 2900 break; 2901 } 2902 2903 if (tx != NULL) 2904 dmu_tx_commit(tx); 2905 } 2906 2907 void 2908 ztest_dsl_prop_get_set(ztest_args_t *za) 2909 { 2910 objset_t *os = za->za_os; 2911 int i, inherit; 2912 uint64_t value; 2913 const char *prop, *valname; 2914 char setpoint[MAXPATHLEN]; 2915 char osname[MAXNAMELEN]; 2916 int error; 2917 2918 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2919 2920 dmu_objset_name(os, osname); 2921 2922 for (i = 0; i < 2; i++) { 2923 if (i == 0) { 2924 prop = "checksum"; 2925 value = ztest_random_checksum(); 2926 inherit = (value == ZIO_CHECKSUM_INHERIT); 2927 } else { 2928 prop = "compression"; 2929 value = ztest_random_compress(); 2930 inherit = (value == ZIO_COMPRESS_INHERIT); 2931 } 2932 2933 error = dsl_prop_set(osname, prop, sizeof (value), 2934 !inherit, &value); 2935 2936 if (error == ENOSPC) { 2937 ztest_record_enospc("dsl_prop_set"); 2938 break; 2939 } 2940 2941 ASSERT3U(error, ==, 0); 2942 2943 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 2944 1, &value, setpoint), ==, 0); 2945 2946 if (i == 0) 2947 valname = zio_checksum_table[value].ci_name; 2948 else 2949 valname = zio_compress_table[value].ci_name; 2950 2951 if (zopt_verbose >= 6) { 2952 (void) printf("%s %s = %s for '%s'\n", 2953 osname, prop, valname, setpoint); 2954 } 2955 } 2956 2957 (void) rw_unlock(&ztest_shared->zs_name_lock); 2958 } 2959 2960 /* 2961 * Inject random faults into the on-disk data. 2962 */ 2963 void 2964 ztest_fault_inject(ztest_args_t *za) 2965 { 2966 int fd; 2967 uint64_t offset; 2968 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2969 uint64_t bad = 0x1990c0ffeedecade; 2970 uint64_t top, leaf; 2971 char path0[MAXPATHLEN]; 2972 char pathrand[MAXPATHLEN]; 2973 size_t fsize; 2974 spa_t *spa = za->za_spa; 2975 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 2976 int iters = 1000; 2977 int maxfaults = zopt_maxfaults; 2978 vdev_t *vd0 = NULL; 2979 uint64_t guid0 = 0; 2980 2981 ASSERT(leaves >= 1); 2982 2983 /* 2984 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 2985 */ 2986 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 2987 2988 if (ztest_random(2) == 0) { 2989 /* 2990 * Inject errors on a normal data device. 2991 */ 2992 top = ztest_random(spa->spa_root_vdev->vdev_children); 2993 leaf = ztest_random(leaves); 2994 2995 /* 2996 * Generate paths to the first leaf in this top-level vdev, 2997 * and to the random leaf we selected. We'll induce transient 2998 * write failures and random online/offline activity on leaf 0, 2999 * and we'll write random garbage to the randomly chosen leaf. 3000 */ 3001 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 3002 zopt_dir, zopt_pool, top * leaves + 0); 3003 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 3004 zopt_dir, zopt_pool, top * leaves + leaf); 3005 3006 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 3007 if (vd0 != NULL && maxfaults != 1) { 3008 /* 3009 * Make vd0 explicitly claim to be unreadable, 3010 * or unwriteable, or reach behind its back 3011 * and close the underlying fd. We can do this if 3012 * maxfaults == 0 because we'll fail and reexecute, 3013 * and we can do it if maxfaults >= 2 because we'll 3014 * have enough redundancy. If maxfaults == 1, the 3015 * combination of this with injection of random data 3016 * corruption below exceeds the pool's fault tolerance. 3017 */ 3018 vdev_file_t *vf = vd0->vdev_tsd; 3019 3020 if (vf != NULL && ztest_random(3) == 0) { 3021 (void) close(vf->vf_vnode->v_fd); 3022 vf->vf_vnode->v_fd = -1; 3023 } else if (ztest_random(2) == 0) { 3024 vd0->vdev_cant_read = B_TRUE; 3025 } else { 3026 vd0->vdev_cant_write = B_TRUE; 3027 } 3028 guid0 = vd0->vdev_guid; 3029 } 3030 } else { 3031 /* 3032 * Inject errors on an l2cache device. 3033 */ 3034 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3035 3036 if (sav->sav_count == 0) { 3037 spa_config_exit(spa, SCL_STATE, FTAG); 3038 return; 3039 } 3040 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3041 guid0 = vd0->vdev_guid; 3042 (void) strcpy(path0, vd0->vdev_path); 3043 (void) strcpy(pathrand, vd0->vdev_path); 3044 3045 leaf = 0; 3046 leaves = 1; 3047 maxfaults = INT_MAX; /* no limit on cache devices */ 3048 } 3049 3050 spa_config_exit(spa, SCL_STATE, FTAG); 3051 3052 if (maxfaults == 0) 3053 return; 3054 3055 /* 3056 * If we can tolerate two or more faults, randomly online/offline vd0. 3057 */ 3058 if (maxfaults >= 2 && guid0 != 0) { 3059 if (ztest_random(10) < 6) { 3060 int flags = (ztest_random(2) == 0 ? 3061 ZFS_OFFLINE_TEMPORARY : 0); 3062 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 3063 } else { 3064 (void) vdev_online(spa, guid0, 0, NULL); 3065 } 3066 } 3067 3068 /* 3069 * We have at least single-fault tolerance, so inject data corruption. 3070 */ 3071 fd = open(pathrand, O_RDWR); 3072 3073 if (fd == -1) /* we hit a gap in the device namespace */ 3074 return; 3075 3076 fsize = lseek(fd, 0, SEEK_END); 3077 3078 while (--iters != 0) { 3079 offset = ztest_random(fsize / (leaves << bshift)) * 3080 (leaves << bshift) + (leaf << bshift) + 3081 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 3082 3083 if (offset >= fsize) 3084 continue; 3085 3086 if (zopt_verbose >= 6) 3087 (void) printf("injecting bad word into %s," 3088 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 3089 3090 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 3091 fatal(1, "can't inject bad word at 0x%llx in %s", 3092 offset, pathrand); 3093 } 3094 3095 (void) close(fd); 3096 } 3097 3098 /* 3099 * Scrub the pool. 3100 */ 3101 void 3102 ztest_scrub(ztest_args_t *za) 3103 { 3104 spa_t *spa = za->za_spa; 3105 3106 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3107 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 3108 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3109 } 3110 3111 /* 3112 * Rename the pool to a different name and then rename it back. 3113 */ 3114 void 3115 ztest_spa_rename(ztest_args_t *za) 3116 { 3117 char *oldname, *newname; 3118 int error; 3119 spa_t *spa; 3120 3121 (void) rw_wrlock(&ztest_shared->zs_name_lock); 3122 3123 oldname = za->za_pool; 3124 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 3125 (void) strcpy(newname, oldname); 3126 (void) strcat(newname, "_tmp"); 3127 3128 /* 3129 * Do the rename 3130 */ 3131 error = spa_rename(oldname, newname); 3132 if (error) 3133 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 3134 newname, error); 3135 3136 /* 3137 * Try to open it under the old name, which shouldn't exist 3138 */ 3139 error = spa_open(oldname, &spa, FTAG); 3140 if (error != ENOENT) 3141 fatal(0, "spa_open('%s') = %d", oldname, error); 3142 3143 /* 3144 * Open it under the new name and make sure it's still the same spa_t. 3145 */ 3146 error = spa_open(newname, &spa, FTAG); 3147 if (error != 0) 3148 fatal(0, "spa_open('%s') = %d", newname, error); 3149 3150 ASSERT(spa == za->za_spa); 3151 spa_close(spa, FTAG); 3152 3153 /* 3154 * Rename it back to the original 3155 */ 3156 error = spa_rename(newname, oldname); 3157 if (error) 3158 fatal(0, "spa_rename('%s', '%s') = %d", newname, 3159 oldname, error); 3160 3161 /* 3162 * Make sure it can still be opened 3163 */ 3164 error = spa_open(oldname, &spa, FTAG); 3165 if (error != 0) 3166 fatal(0, "spa_open('%s') = %d", oldname, error); 3167 3168 ASSERT(spa == za->za_spa); 3169 spa_close(spa, FTAG); 3170 3171 umem_free(newname, strlen(newname) + 1); 3172 3173 (void) rw_unlock(&ztest_shared->zs_name_lock); 3174 } 3175 3176 3177 /* 3178 * Completely obliterate one disk. 3179 */ 3180 static void 3181 ztest_obliterate_one_disk(uint64_t vdev) 3182 { 3183 int fd; 3184 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 3185 size_t fsize; 3186 3187 if (zopt_maxfaults < 2) 3188 return; 3189 3190 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3191 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 3192 3193 fd = open(dev_name, O_RDWR); 3194 3195 if (fd == -1) 3196 fatal(1, "can't open %s", dev_name); 3197 3198 /* 3199 * Determine the size. 3200 */ 3201 fsize = lseek(fd, 0, SEEK_END); 3202 3203 (void) close(fd); 3204 3205 /* 3206 * Rename the old device to dev_name.old (useful for debugging). 3207 */ 3208 VERIFY(rename(dev_name, copy_name) == 0); 3209 3210 /* 3211 * Create a new one. 3212 */ 3213 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 3214 VERIFY(ftruncate(fd, fsize) == 0); 3215 (void) close(fd); 3216 } 3217 3218 static void 3219 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 3220 { 3221 char dev_name[MAXPATHLEN]; 3222 nvlist_t *root; 3223 int error; 3224 uint64_t guid; 3225 vdev_t *vd; 3226 3227 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3228 3229 /* 3230 * Build the nvlist describing dev_name. 3231 */ 3232 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 3233 3234 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3235 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 3236 guid = 0; 3237 else 3238 guid = vd->vdev_guid; 3239 spa_config_exit(spa, SCL_VDEV, FTAG); 3240 error = spa_vdev_attach(spa, guid, root, B_TRUE); 3241 if (error != 0 && 3242 error != EBUSY && 3243 error != ENOTSUP && 3244 error != ENODEV && 3245 error != EDOM) 3246 fatal(0, "spa_vdev_attach(in-place) = %d", error); 3247 3248 nvlist_free(root); 3249 } 3250 3251 static void 3252 ztest_verify_blocks(char *pool) 3253 { 3254 int status; 3255 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 3256 char zbuf[1024]; 3257 char *bin; 3258 char *ztest; 3259 char *isa; 3260 int isalen; 3261 FILE *fp; 3262 3263 (void) realpath(getexecname(), zdb); 3264 3265 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 3266 bin = strstr(zdb, "/usr/bin/"); 3267 ztest = strstr(bin, "/ztest"); 3268 isa = bin + 8; 3269 isalen = ztest - isa; 3270 isa = strdup(isa); 3271 /* LINTED */ 3272 (void) sprintf(bin, 3273 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 3274 isalen, 3275 isa, 3276 zopt_verbose >= 3 ? "s" : "", 3277 zopt_verbose >= 4 ? "v" : "", 3278 pool); 3279 free(isa); 3280 3281 if (zopt_verbose >= 5) 3282 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 3283 3284 fp = popen(zdb, "r"); 3285 3286 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 3287 if (zopt_verbose >= 3) 3288 (void) printf("%s", zbuf); 3289 3290 status = pclose(fp); 3291 3292 if (status == 0) 3293 return; 3294 3295 ztest_dump_core = 0; 3296 if (WIFEXITED(status)) 3297 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 3298 else 3299 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 3300 } 3301 3302 static void 3303 ztest_walk_pool_directory(char *header) 3304 { 3305 spa_t *spa = NULL; 3306 3307 if (zopt_verbose >= 6) 3308 (void) printf("%s\n", header); 3309 3310 mutex_enter(&spa_namespace_lock); 3311 while ((spa = spa_next(spa)) != NULL) 3312 if (zopt_verbose >= 6) 3313 (void) printf("\t%s\n", spa_name(spa)); 3314 mutex_exit(&spa_namespace_lock); 3315 } 3316 3317 static void 3318 ztest_spa_import_export(char *oldname, char *newname) 3319 { 3320 nvlist_t *config, *newconfig; 3321 uint64_t pool_guid; 3322 spa_t *spa; 3323 int error; 3324 3325 if (zopt_verbose >= 4) { 3326 (void) printf("import/export: old = %s, new = %s\n", 3327 oldname, newname); 3328 } 3329 3330 /* 3331 * Clean up from previous runs. 3332 */ 3333 (void) spa_destroy(newname); 3334 3335 /* 3336 * Get the pool's configuration and guid. 3337 */ 3338 error = spa_open(oldname, &spa, FTAG); 3339 if (error) 3340 fatal(0, "spa_open('%s') = %d", oldname, error); 3341 3342 /* 3343 * Kick off a scrub to tickle scrub/export races. 3344 */ 3345 if (ztest_random(2) == 0) 3346 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3347 3348 pool_guid = spa_guid(spa); 3349 spa_close(spa, FTAG); 3350 3351 ztest_walk_pool_directory("pools before export"); 3352 3353 /* 3354 * Export it. 3355 */ 3356 error = spa_export(oldname, &config, B_FALSE, B_FALSE); 3357 if (error) 3358 fatal(0, "spa_export('%s') = %d", oldname, error); 3359 3360 ztest_walk_pool_directory("pools after export"); 3361 3362 /* 3363 * Try to import it. 3364 */ 3365 newconfig = spa_tryimport(config); 3366 ASSERT(newconfig != NULL); 3367 nvlist_free(newconfig); 3368 3369 /* 3370 * Import it under the new name. 3371 */ 3372 error = spa_import(newname, config, NULL); 3373 if (error) 3374 fatal(0, "spa_import('%s') = %d", newname, error); 3375 3376 ztest_walk_pool_directory("pools after import"); 3377 3378 /* 3379 * Try to import it again -- should fail with EEXIST. 3380 */ 3381 error = spa_import(newname, config, NULL); 3382 if (error != EEXIST) 3383 fatal(0, "spa_import('%s') twice", newname); 3384 3385 /* 3386 * Try to import it under a different name -- should fail with EEXIST. 3387 */ 3388 error = spa_import(oldname, config, NULL); 3389 if (error != EEXIST) 3390 fatal(0, "spa_import('%s') under multiple names", newname); 3391 3392 /* 3393 * Verify that the pool is no longer visible under the old name. 3394 */ 3395 error = spa_open(oldname, &spa, FTAG); 3396 if (error != ENOENT) 3397 fatal(0, "spa_open('%s') = %d", newname, error); 3398 3399 /* 3400 * Verify that we can open and close the pool using the new name. 3401 */ 3402 error = spa_open(newname, &spa, FTAG); 3403 if (error) 3404 fatal(0, "spa_open('%s') = %d", newname, error); 3405 ASSERT(pool_guid == spa_guid(spa)); 3406 spa_close(spa, FTAG); 3407 3408 nvlist_free(config); 3409 } 3410 3411 static void 3412 ztest_resume(spa_t *spa) 3413 { 3414 if (spa_suspended(spa)) { 3415 spa_vdev_state_enter(spa); 3416 vdev_clear(spa, NULL); 3417 (void) spa_vdev_state_exit(spa, NULL, 0); 3418 (void) zio_resume(spa); 3419 } 3420 } 3421 3422 static void * 3423 ztest_resume_thread(void *arg) 3424 { 3425 spa_t *spa = arg; 3426 3427 while (!ztest_exiting) { 3428 (void) poll(NULL, 0, 1000); 3429 ztest_resume(spa); 3430 } 3431 return (NULL); 3432 } 3433 3434 static void * 3435 ztest_thread(void *arg) 3436 { 3437 ztest_args_t *za = arg; 3438 ztest_shared_t *zs = ztest_shared; 3439 hrtime_t now, functime; 3440 ztest_info_t *zi; 3441 int f, i; 3442 3443 while ((now = gethrtime()) < za->za_stop) { 3444 /* 3445 * See if it's time to force a crash. 3446 */ 3447 if (now > za->za_kill) { 3448 zs->zs_alloc = spa_get_alloc(za->za_spa); 3449 zs->zs_space = spa_get_space(za->za_spa); 3450 (void) kill(getpid(), SIGKILL); 3451 } 3452 3453 /* 3454 * Pick a random function. 3455 */ 3456 f = ztest_random(ZTEST_FUNCS); 3457 zi = &zs->zs_info[f]; 3458 3459 /* 3460 * Decide whether to call it, based on the requested frequency. 3461 */ 3462 if (zi->zi_call_target == 0 || 3463 (double)zi->zi_call_total / zi->zi_call_target > 3464 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 3465 continue; 3466 3467 atomic_add_64(&zi->zi_calls, 1); 3468 atomic_add_64(&zi->zi_call_total, 1); 3469 3470 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 3471 ZTEST_DIRSIZE; 3472 za->za_diroff_shared = (1ULL << 63); 3473 3474 for (i = 0; i < zi->zi_iters; i++) 3475 zi->zi_func(za); 3476 3477 functime = gethrtime() - now; 3478 3479 atomic_add_64(&zi->zi_call_time, functime); 3480 3481 if (zopt_verbose >= 4) { 3482 Dl_info dli; 3483 (void) dladdr((void *)zi->zi_func, &dli); 3484 (void) printf("%6.2f sec in %s\n", 3485 (double)functime / NANOSEC, dli.dli_sname); 3486 } 3487 3488 /* 3489 * If we're getting ENOSPC with some regularity, stop. 3490 */ 3491 if (zs->zs_enospc_count > 10) 3492 break; 3493 } 3494 3495 return (NULL); 3496 } 3497 3498 /* 3499 * Kick off threads to run tests on all datasets in parallel. 3500 */ 3501 static void 3502 ztest_run(char *pool) 3503 { 3504 int t, d, error; 3505 ztest_shared_t *zs = ztest_shared; 3506 ztest_args_t *za; 3507 spa_t *spa; 3508 char name[100]; 3509 thread_t resume_tid; 3510 3511 ztest_exiting = B_FALSE; 3512 3513 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 3514 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 3515 3516 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 3517 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 3518 3519 /* 3520 * Destroy one disk before we even start. 3521 * It's mirrored, so everything should work just fine. 3522 * This makes us exercise fault handling very early in spa_load(). 3523 */ 3524 ztest_obliterate_one_disk(0); 3525 3526 /* 3527 * Verify that the sum of the sizes of all blocks in the pool 3528 * equals the SPA's allocated space total. 3529 */ 3530 ztest_verify_blocks(pool); 3531 3532 /* 3533 * Kick off a replacement of the disk we just obliterated. 3534 */ 3535 kernel_init(FREAD | FWRITE); 3536 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3537 ztest_replace_one_disk(spa, 0); 3538 if (zopt_verbose >= 5) 3539 show_pool_stats(spa); 3540 spa_close(spa, FTAG); 3541 kernel_fini(); 3542 3543 kernel_init(FREAD | FWRITE); 3544 3545 /* 3546 * Verify that we can export the pool and reimport it under a 3547 * different name. 3548 */ 3549 if (ztest_random(2) == 0) { 3550 (void) snprintf(name, 100, "%s_import", pool); 3551 ztest_spa_import_export(pool, name); 3552 ztest_spa_import_export(name, pool); 3553 } 3554 3555 /* 3556 * Verify that we can loop over all pools. 3557 */ 3558 mutex_enter(&spa_namespace_lock); 3559 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3560 if (zopt_verbose > 3) { 3561 (void) printf("spa_next: found %s\n", spa_name(spa)); 3562 } 3563 } 3564 mutex_exit(&spa_namespace_lock); 3565 3566 /* 3567 * Open our pool. 3568 */ 3569 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3570 3571 /* 3572 * We don't expect the pool to suspend unless maxfaults == 0, 3573 * in which case ztest_fault_inject() temporarily takes away 3574 * the only valid replica. 3575 */ 3576 if (zopt_maxfaults == 0) 3577 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 3578 else 3579 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 3580 3581 /* 3582 * Create a thread to periodically resume suspended I/O. 3583 */ 3584 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 3585 &resume_tid) == 0); 3586 3587 /* 3588 * Verify that we can safely inquire about about any object, 3589 * whether it's allocated or not. To make it interesting, 3590 * we probe a 5-wide window around each power of two. 3591 * This hits all edge cases, including zero and the max. 3592 */ 3593 for (t = 0; t < 64; t++) { 3594 for (d = -5; d <= 5; d++) { 3595 error = dmu_object_info(spa->spa_meta_objset, 3596 (1ULL << t) + d, NULL); 3597 ASSERT(error == 0 || error == ENOENT || 3598 error == EINVAL); 3599 } 3600 } 3601 3602 /* 3603 * Now kick off all the tests that run in parallel. 3604 */ 3605 zs->zs_enospc_count = 0; 3606 3607 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3608 3609 if (zopt_verbose >= 4) 3610 (void) printf("starting main threads...\n"); 3611 3612 za[0].za_start = gethrtime(); 3613 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3614 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3615 za[0].za_kill = za[0].za_stop; 3616 if (ztest_random(100) < zopt_killrate) 3617 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3618 3619 for (t = 0; t < zopt_threads; t++) { 3620 d = t % zopt_datasets; 3621 3622 (void) strcpy(za[t].za_pool, pool); 3623 za[t].za_os = za[d].za_os; 3624 za[t].za_spa = spa; 3625 za[t].za_zilog = za[d].za_zilog; 3626 za[t].za_instance = t; 3627 za[t].za_random = ztest_random(-1ULL); 3628 za[t].za_start = za[0].za_start; 3629 za[t].za_stop = za[0].za_stop; 3630 za[t].za_kill = za[0].za_kill; 3631 3632 if (t < zopt_datasets) { 3633 int test_future = FALSE; 3634 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3635 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3636 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 3637 ztest_create_cb, NULL); 3638 if (error == EEXIST) { 3639 test_future = TRUE; 3640 } else if (error == ENOSPC) { 3641 zs->zs_enospc_count++; 3642 (void) rw_unlock(&ztest_shared->zs_name_lock); 3643 break; 3644 } else if (error != 0) { 3645 fatal(0, "dmu_objset_create(%s) = %d", 3646 name, error); 3647 } 3648 error = dmu_objset_open(name, DMU_OST_OTHER, 3649 DS_MODE_USER, &za[d].za_os); 3650 if (error) 3651 fatal(0, "dmu_objset_open('%s') = %d", 3652 name, error); 3653 (void) rw_unlock(&ztest_shared->zs_name_lock); 3654 if (test_future) 3655 ztest_dmu_check_future_leak(&za[t]); 3656 zil_replay(za[d].za_os, za[d].za_os, 3657 ztest_replay_vector); 3658 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3659 } 3660 3661 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3662 &za[t].za_thread) == 0); 3663 } 3664 3665 while (--t >= 0) { 3666 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 3667 if (t < zopt_datasets) { 3668 zil_close(za[t].za_zilog); 3669 dmu_objset_close(za[t].za_os); 3670 } 3671 } 3672 3673 if (zopt_verbose >= 3) 3674 show_pool_stats(spa); 3675 3676 txg_wait_synced(spa_get_dsl(spa), 0); 3677 3678 zs->zs_alloc = spa_get_alloc(spa); 3679 zs->zs_space = spa_get_space(spa); 3680 3681 /* 3682 * If we had out-of-space errors, destroy a random objset. 3683 */ 3684 if (zs->zs_enospc_count != 0) { 3685 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3686 d = (int)ztest_random(zopt_datasets); 3687 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3688 if (zopt_verbose >= 3) 3689 (void) printf("Destroying %s to free up space\n", name); 3690 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 3691 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 3692 (void) rw_unlock(&ztest_shared->zs_name_lock); 3693 } 3694 3695 txg_wait_synced(spa_get_dsl(spa), 0); 3696 3697 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3698 3699 /* Kill the resume thread */ 3700 ztest_exiting = B_TRUE; 3701 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 3702 ztest_resume(spa); 3703 3704 /* 3705 * Right before closing the pool, kick off a bunch of async I/O; 3706 * spa_close() should wait for it to complete. 3707 */ 3708 for (t = 1; t < 50; t++) 3709 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3710 3711 spa_close(spa, FTAG); 3712 3713 kernel_fini(); 3714 } 3715 3716 void 3717 print_time(hrtime_t t, char *timebuf) 3718 { 3719 hrtime_t s = t / NANOSEC; 3720 hrtime_t m = s / 60; 3721 hrtime_t h = m / 60; 3722 hrtime_t d = h / 24; 3723 3724 s -= m * 60; 3725 m -= h * 60; 3726 h -= d * 24; 3727 3728 timebuf[0] = '\0'; 3729 3730 if (d) 3731 (void) sprintf(timebuf, 3732 "%llud%02lluh%02llum%02llus", d, h, m, s); 3733 else if (h) 3734 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3735 else if (m) 3736 (void) sprintf(timebuf, "%llum%02llus", m, s); 3737 else 3738 (void) sprintf(timebuf, "%llus", s); 3739 } 3740 3741 /* 3742 * Create a storage pool with the given name and initial vdev size. 3743 * Then create the specified number of datasets in the pool. 3744 */ 3745 static void 3746 ztest_init(char *pool) 3747 { 3748 spa_t *spa; 3749 int error; 3750 nvlist_t *nvroot; 3751 3752 kernel_init(FREAD | FWRITE); 3753 3754 /* 3755 * Create the storage pool. 3756 */ 3757 (void) spa_destroy(pool); 3758 ztest_shared->zs_vdev_primaries = 0; 3759 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 3760 0, zopt_raidz, zopt_mirrors, 1); 3761 error = spa_create(pool, nvroot, NULL, NULL, NULL); 3762 nvlist_free(nvroot); 3763 3764 if (error) 3765 fatal(0, "spa_create() = %d", error); 3766 error = spa_open(pool, &spa, FTAG); 3767 if (error) 3768 fatal(0, "spa_open() = %d", error); 3769 3770 if (zopt_verbose >= 3) 3771 show_pool_stats(spa); 3772 3773 spa_close(spa, FTAG); 3774 3775 kernel_fini(); 3776 } 3777 3778 int 3779 main(int argc, char **argv) 3780 { 3781 int kills = 0; 3782 int iters = 0; 3783 int i, f; 3784 ztest_shared_t *zs; 3785 ztest_info_t *zi; 3786 char timebuf[100]; 3787 char numbuf[6]; 3788 3789 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3790 3791 /* Override location of zpool.cache */ 3792 spa_config_path = "/tmp/zpool.cache"; 3793 3794 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3795 3796 process_options(argc, argv); 3797 3798 /* 3799 * Blow away any existing copy of zpool.cache 3800 */ 3801 if (zopt_init != 0) 3802 (void) remove("/tmp/zpool.cache"); 3803 3804 zs = ztest_shared = (void *)mmap(0, 3805 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3806 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3807 3808 if (zopt_verbose >= 1) { 3809 (void) printf("%llu vdevs, %d datasets, %d threads," 3810 " %llu seconds...\n", 3811 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 3812 (u_longlong_t)zopt_time); 3813 } 3814 3815 /* 3816 * Create and initialize our storage pool. 3817 */ 3818 for (i = 1; i <= zopt_init; i++) { 3819 bzero(zs, sizeof (ztest_shared_t)); 3820 if (zopt_verbose >= 3 && zopt_init != 1) 3821 (void) printf("ztest_init(), pass %d\n", i); 3822 ztest_init(zopt_pool); 3823 } 3824 3825 /* 3826 * Initialize the call targets for each function. 3827 */ 3828 for (f = 0; f < ZTEST_FUNCS; f++) { 3829 zi = &zs->zs_info[f]; 3830 3831 *zi = ztest_info[f]; 3832 3833 if (*zi->zi_interval == 0) 3834 zi->zi_call_target = UINT64_MAX; 3835 else 3836 zi->zi_call_target = zopt_time / *zi->zi_interval; 3837 } 3838 3839 zs->zs_start_time = gethrtime(); 3840 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3841 3842 /* 3843 * Run the tests in a loop. These tests include fault injection 3844 * to verify that self-healing data works, and forced crashes 3845 * to verify that we never lose on-disk consistency. 3846 */ 3847 while (gethrtime() < zs->zs_stop_time) { 3848 int status; 3849 pid_t pid; 3850 char *tmp; 3851 3852 /* 3853 * Initialize the workload counters for each function. 3854 */ 3855 for (f = 0; f < ZTEST_FUNCS; f++) { 3856 zi = &zs->zs_info[f]; 3857 zi->zi_calls = 0; 3858 zi->zi_call_time = 0; 3859 } 3860 3861 pid = fork(); 3862 3863 if (pid == -1) 3864 fatal(1, "fork failed"); 3865 3866 if (pid == 0) { /* child */ 3867 struct rlimit rl = { 1024, 1024 }; 3868 (void) setrlimit(RLIMIT_NOFILE, &rl); 3869 (void) enable_extended_FILE_stdio(-1, -1); 3870 ztest_run(zopt_pool); 3871 exit(0); 3872 } 3873 3874 while (waitpid(pid, &status, 0) != pid) 3875 continue; 3876 3877 if (WIFEXITED(status)) { 3878 if (WEXITSTATUS(status) != 0) { 3879 (void) fprintf(stderr, 3880 "child exited with code %d\n", 3881 WEXITSTATUS(status)); 3882 exit(2); 3883 } 3884 } else if (WIFSIGNALED(status)) { 3885 if (WTERMSIG(status) != SIGKILL) { 3886 (void) fprintf(stderr, 3887 "child died with signal %d\n", 3888 WTERMSIG(status)); 3889 exit(3); 3890 } 3891 kills++; 3892 } else { 3893 (void) fprintf(stderr, "something strange happened " 3894 "to child\n"); 3895 exit(4); 3896 } 3897 3898 iters++; 3899 3900 if (zopt_verbose >= 1) { 3901 hrtime_t now = gethrtime(); 3902 3903 now = MIN(now, zs->zs_stop_time); 3904 print_time(zs->zs_stop_time - now, timebuf); 3905 nicenum(zs->zs_space, numbuf); 3906 3907 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 3908 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 3909 iters, 3910 WIFEXITED(status) ? "Complete" : "SIGKILL", 3911 (u_longlong_t)zs->zs_enospc_count, 3912 100.0 * zs->zs_alloc / zs->zs_space, 3913 numbuf, 3914 100.0 * (now - zs->zs_start_time) / 3915 (zopt_time * NANOSEC), timebuf); 3916 } 3917 3918 if (zopt_verbose >= 2) { 3919 (void) printf("\nWorkload summary:\n\n"); 3920 (void) printf("%7s %9s %s\n", 3921 "Calls", "Time", "Function"); 3922 (void) printf("%7s %9s %s\n", 3923 "-----", "----", "--------"); 3924 for (f = 0; f < ZTEST_FUNCS; f++) { 3925 Dl_info dli; 3926 3927 zi = &zs->zs_info[f]; 3928 print_time(zi->zi_call_time, timebuf); 3929 (void) dladdr((void *)zi->zi_func, &dli); 3930 (void) printf("%7llu %9s %s\n", 3931 (u_longlong_t)zi->zi_calls, timebuf, 3932 dli.dli_sname); 3933 } 3934 (void) printf("\n"); 3935 } 3936 3937 /* 3938 * It's possible that we killed a child during a rename test, in 3939 * which case we'll have a 'ztest_tmp' pool lying around instead 3940 * of 'ztest'. Do a blind rename in case this happened. 3941 */ 3942 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 3943 (void) strcpy(tmp, zopt_pool); 3944 (void) strcat(tmp, "_tmp"); 3945 kernel_init(FREAD | FWRITE); 3946 (void) spa_rename(tmp, zopt_pool); 3947 kernel_fini(); 3948 umem_free(tmp, strlen(tmp) + 1); 3949 } 3950 3951 ztest_verify_blocks(zopt_pool); 3952 3953 if (zopt_verbose >= 1) { 3954 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 3955 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 3956 } 3957 3958 return (0); 3959 } 3960