xref: /titanic_51/usr/src/cmd/zfs/zfs_iter.c (revision b9bd317cda1afb3a01f4812de73e8cec888cbbd7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <libintl.h>
29 #include <libuutil.h>
30 #include <stddef.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <strings.h>
34 
35 #include <libzfs.h>
36 
37 #include "zfs_util.h"
38 #include "zfs_iter.h"
39 
40 /*
41  * This is a private interface used to gather up all the datasets specified on
42  * the command line so that we can iterate over them in order.
43  *
44  * First, we iterate over all filesystems, gathering them together into an
45  * AVL tree.  We report errors for any explicitly specified datasets
46  * that we couldn't open.
47  *
48  * When finished, we have an AVL tree of ZFS handles.  We go through and execute
49  * the provided callback for each one, passing whatever data the user supplied.
50  */
51 
52 typedef struct zfs_node {
53 	zfs_handle_t	*zn_handle;
54 	uu_avl_node_t	zn_avlnode;
55 } zfs_node_t;
56 
57 typedef struct callback_data {
58 	uu_avl_t	*cb_avl;
59 	int		cb_recurse;
60 	zfs_type_t	cb_types;
61 	zfs_sort_column_t *cb_sortcol;
62 	zprop_list_t	**cb_proplist;
63 } callback_data_t;
64 
65 uu_avl_pool_t *avl_pool;
66 
67 /*
68  * Called for each dataset.  If the object the object is of an appropriate type,
69  * add it to the avl tree and recurse over any children as necessary.
70  */
71 static int
72 zfs_callback(zfs_handle_t *zhp, void *data)
73 {
74 	callback_data_t *cb = data;
75 	int dontclose = 0;
76 
77 	/*
78 	 * If this object is of the appropriate type, add it to the AVL tree.
79 	 */
80 	if (zfs_get_type(zhp) & cb->cb_types) {
81 		uu_avl_index_t idx;
82 		zfs_node_t *node = safe_malloc(sizeof (zfs_node_t));
83 
84 		node->zn_handle = zhp;
85 		uu_avl_node_init(node, &node->zn_avlnode, avl_pool);
86 		if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol,
87 		    &idx) == NULL) {
88 			if (cb->cb_proplist &&
89 			    zfs_expand_proplist(zhp, cb->cb_proplist) != 0) {
90 				free(node);
91 				return (-1);
92 			}
93 			uu_avl_insert(cb->cb_avl, node, idx);
94 			dontclose = 1;
95 		} else {
96 			free(node);
97 		}
98 	}
99 
100 	/*
101 	 * Recurse if necessary.
102 	 */
103 	if (cb->cb_recurse) {
104 		if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM)
105 			(void) zfs_iter_filesystems(zhp, zfs_callback, data);
106 		if (zfs_get_type(zhp) != ZFS_TYPE_SNAPSHOT &&
107 		    (cb->cb_types & ZFS_TYPE_SNAPSHOT))
108 			(void) zfs_iter_snapshots(zhp, zfs_callback, data);
109 	}
110 
111 	if (!dontclose)
112 		zfs_close(zhp);
113 
114 	return (0);
115 }
116 
117 int
118 zfs_add_sort_column(zfs_sort_column_t **sc, const char *name,
119     boolean_t reverse)
120 {
121 	zfs_sort_column_t *col;
122 	zfs_prop_t prop;
123 
124 	if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL &&
125 	    !zfs_prop_user(name))
126 		return (-1);
127 
128 	col = safe_malloc(sizeof (zfs_sort_column_t));
129 
130 	col->sc_prop = prop;
131 	col->sc_reverse = reverse;
132 	if (prop == ZPROP_INVAL) {
133 		col->sc_user_prop = safe_malloc(strlen(name) + 1);
134 		(void) strcpy(col->sc_user_prop, name);
135 	}
136 
137 	if (*sc == NULL) {
138 		col->sc_last = col;
139 		*sc = col;
140 	} else {
141 		(*sc)->sc_last->sc_next = col;
142 		(*sc)->sc_last = col;
143 	}
144 
145 	return (0);
146 }
147 
148 void
149 zfs_free_sort_columns(zfs_sort_column_t *sc)
150 {
151 	zfs_sort_column_t *col;
152 
153 	while (sc != NULL) {
154 		col = sc->sc_next;
155 		free(sc->sc_user_prop);
156 		free(sc);
157 		sc = col;
158 	}
159 }
160 
161 /* ARGSUSED */
162 static int
163 zfs_compare(const void *larg, const void *rarg, void *unused)
164 {
165 	zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
166 	zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
167 	const char *lname = zfs_get_name(l);
168 	const char *rname = zfs_get_name(r);
169 	char *lat, *rat;
170 	uint64_t lcreate, rcreate;
171 	int ret;
172 
173 	lat = (char *)strchr(lname, '@');
174 	rat = (char *)strchr(rname, '@');
175 
176 	if (lat != NULL)
177 		*lat = '\0';
178 	if (rat != NULL)
179 		*rat = '\0';
180 
181 	ret = strcmp(lname, rname);
182 	if (ret == 0) {
183 		/*
184 		 * If we're comparing a dataset to one of its snapshots, we
185 		 * always make the full dataset first.
186 		 */
187 		if (lat == NULL) {
188 			ret = -1;
189 		} else if (rat == NULL) {
190 			ret = 1;
191 		} else {
192 			/*
193 			 * If we have two snapshots from the same dataset, then
194 			 * we want to sort them according to creation time.  We
195 			 * use the hidden CREATETXG property to get an absolute
196 			 * ordering of snapshots.
197 			 */
198 			lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG);
199 			rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG);
200 
201 			if (lcreate < rcreate)
202 				ret = -1;
203 			else if (lcreate > rcreate)
204 				ret = 1;
205 		}
206 	}
207 
208 	if (lat != NULL)
209 		*lat = '@';
210 	if (rat != NULL)
211 		*rat = '@';
212 
213 	return (ret);
214 }
215 
216 /*
217  * Sort datasets by specified columns.
218  *
219  * o  Numeric types sort in ascending order.
220  * o  String types sort in alphabetical order.
221  * o  Types inappropriate for a row sort that row to the literal
222  *    bottom, regardless of the specified ordering.
223  *
224  * If no sort columns are specified, or two datasets compare equally
225  * across all specified columns, they are sorted alphabetically by name
226  * with snapshots grouped under their parents.
227  */
228 static int
229 zfs_sort(const void *larg, const void *rarg, void *data)
230 {
231 	zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
232 	zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
233 	zfs_sort_column_t *sc = (zfs_sort_column_t *)data;
234 	zfs_sort_column_t *psc;
235 
236 	for (psc = sc; psc != NULL; psc = psc->sc_next) {
237 		char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN];
238 		char *lstr, *rstr;
239 		uint64_t lnum, rnum;
240 		boolean_t lvalid, rvalid;
241 		int ret = 0;
242 
243 		/*
244 		 * We group the checks below the generic code.  If 'lstr' and
245 		 * 'rstr' are non-NULL, then we do a string based comparison.
246 		 * Otherwise, we compare 'lnum' and 'rnum'.
247 		 */
248 		lstr = rstr = NULL;
249 		if (psc->sc_prop == ZPROP_INVAL) {
250 			nvlist_t *luser, *ruser;
251 			nvlist_t *lval, *rval;
252 
253 			luser = zfs_get_user_props(l);
254 			ruser = zfs_get_user_props(r);
255 
256 			lvalid = (nvlist_lookup_nvlist(luser,
257 			    psc->sc_user_prop, &lval) == 0);
258 			rvalid = (nvlist_lookup_nvlist(ruser,
259 			    psc->sc_user_prop, &rval) == 0);
260 
261 			if (lvalid)
262 				verify(nvlist_lookup_string(lval,
263 				    ZPROP_VALUE, &lstr) == 0);
264 			if (rvalid)
265 				verify(nvlist_lookup_string(rval,
266 				    ZPROP_VALUE, &rstr) == 0);
267 
268 		} else if (zfs_prop_is_string(psc->sc_prop)) {
269 			lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf,
270 			    sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0);
271 			rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf,
272 			    sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0);
273 
274 			lstr = lbuf;
275 			rstr = rbuf;
276 		} else {
277 			lvalid = zfs_prop_valid_for_type(psc->sc_prop,
278 			    zfs_get_type(l));
279 			rvalid = zfs_prop_valid_for_type(psc->sc_prop,
280 			    zfs_get_type(r));
281 
282 			if (lvalid)
283 				(void) zfs_prop_get_numeric(l, psc->sc_prop,
284 				    &lnum, NULL, NULL, 0);
285 			if (rvalid)
286 				(void) zfs_prop_get_numeric(r, psc->sc_prop,
287 				    &rnum, NULL, NULL, 0);
288 		}
289 
290 		if (!lvalid && !rvalid)
291 			continue;
292 		else if (!lvalid)
293 			return (1);
294 		else if (!rvalid)
295 			return (-1);
296 
297 		if (lstr)
298 			ret = strcmp(lstr, rstr);
299 		if (lnum < rnum)
300 			ret = -1;
301 		else if (lnum > rnum)
302 			ret = 1;
303 
304 		if (ret != 0) {
305 			if (psc->sc_reverse == B_TRUE)
306 				ret = (ret < 0) ? 1 : -1;
307 			return (ret);
308 		}
309 	}
310 
311 	return (zfs_compare(larg, rarg, NULL));
312 }
313 
314 int
315 zfs_for_each(int argc, char **argv, boolean_t recurse, zfs_type_t types,
316     zfs_sort_column_t *sortcol, zprop_list_t **proplist, zfs_iter_f callback,
317     void *data, boolean_t args_can_be_paths)
318 {
319 	callback_data_t cb;
320 	int ret = 0;
321 	zfs_node_t *node;
322 	uu_avl_walk_t *walk;
323 
324 	avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t),
325 	    offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT);
326 
327 	if (avl_pool == NULL) {
328 		(void) fprintf(stderr,
329 		    gettext("internal error: out of memory\n"));
330 		exit(1);
331 	}
332 
333 	cb.cb_sortcol = sortcol;
334 	cb.cb_recurse = recurse;
335 	cb.cb_proplist = proplist;
336 	cb.cb_types = types;
337 	if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) {
338 		(void) fprintf(stderr,
339 		    gettext("internal error: out of memory\n"));
340 		exit(1);
341 	}
342 
343 	if (argc == 0) {
344 		/*
345 		 * If given no arguments, iterate over all datasets.
346 		 */
347 		cb.cb_recurse = 1;
348 		ret = zfs_iter_root(g_zfs, zfs_callback, &cb);
349 	} else {
350 		int i;
351 		zfs_handle_t *zhp;
352 		zfs_type_t argtype;
353 
354 		/*
355 		 * If we're recursive, then we always allow filesystems as
356 		 * arguments.  If we also are interested in snapshots, then we
357 		 * can take volumes as well.
358 		 */
359 		argtype = types;
360 		if (recurse) {
361 			argtype |= ZFS_TYPE_FILESYSTEM;
362 			if (types & ZFS_TYPE_SNAPSHOT)
363 				argtype |= ZFS_TYPE_VOLUME;
364 		}
365 
366 		for (i = 0; i < argc; i++) {
367 			if (args_can_be_paths) {
368 				zhp = zfs_path_to_zhandle(g_zfs, argv[i],
369 				    argtype);
370 			} else {
371 				zhp = zfs_open(g_zfs, argv[i], argtype);
372 			}
373 			if (zhp != NULL)
374 				ret |= zfs_callback(zhp, &cb);
375 			else
376 				ret = 1;
377 		}
378 	}
379 
380 	/*
381 	 * At this point we've got our AVL tree full of zfs handles, so iterate
382 	 * over each one and execute the real user callback.
383 	 */
384 	for (node = uu_avl_first(cb.cb_avl); node != NULL;
385 	    node = uu_avl_next(cb.cb_avl, node))
386 		ret |= callback(node->zn_handle, data);
387 
388 	/*
389 	 * Finally, clean up the AVL tree.
390 	 */
391 	if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) {
392 		(void) fprintf(stderr,
393 		    gettext("internal error: out of memory"));
394 		exit(1);
395 	}
396 
397 	while ((node = uu_avl_walk_next(walk)) != NULL) {
398 		uu_avl_remove(cb.cb_avl, node);
399 		zfs_close(node->zn_handle);
400 		free(node);
401 	}
402 
403 	uu_avl_walk_end(walk);
404 	uu_avl_destroy(cb.cb_avl);
405 	uu_avl_pool_destroy(avl_pool);
406 
407 	return (ret);
408 }
409