xref: /titanic_51/usr/src/cmd/sgs/rtld/sparcv9/sparc_elf.c (revision c2765d203a42aaeda144370182c6cda62904d860)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * SPARC V9 machine dependent and ELF file class dependent functions.
29  * Contains routines for performing function binding and symbol relocations.
30  */
31 
32 #include	<stdio.h>
33 #include	<sys/elf.h>
34 #include	<sys/elf_SPARC.h>
35 #include	<sys/mman.h>
36 #include	<dlfcn.h>
37 #include	<synch.h>
38 #include	<string.h>
39 #include	<debug.h>
40 #include	<reloc.h>
41 #include	<conv.h>
42 #include	"_rtld.h"
43 #include	"_audit.h"
44 #include	"_elf.h"
45 #include	"_inline.h"
46 #include	"msg.h"
47 
48 extern void	iflush_range(caddr_t, size_t);
49 extern void	plt_upper_32(uintptr_t, uintptr_t);
50 extern void	plt_upper_44(uintptr_t, uintptr_t);
51 extern void	plt_full_range(uintptr_t, uintptr_t);
52 extern void	elf_rtbndr(Rt_map *, ulong_t, caddr_t);
53 extern void	elf_rtbndr_far(Rt_map *, ulong_t, caddr_t);
54 
55 int
56 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr)
57 {
58 	/*
59 	 * Check machine type and flags.
60 	 */
61 	if (ehdr->e_flags & EF_SPARC_EXT_MASK) {
62 		/*
63 		 * Check vendor-specific extensions.
64 		 */
65 		if (ehdr->e_flags & EF_SPARC_HAL_R1) {
66 			rej->rej_type = SGS_REJ_HAL;
67 			rej->rej_info = (uint_t)ehdr->e_flags;
68 			return (0);
69 		}
70 		if ((ehdr->e_flags & EF_SPARC_SUN_US3) & ~at_flags) {
71 			rej->rej_type = SGS_REJ_US3;
72 			rej->rej_info = (uint_t)ehdr->e_flags;
73 			return (0);
74 		}
75 
76 		/*
77 		 * Generic check.
78 		 * All of our 64-bit SPARC's support the US1 (UltraSPARC 1)
79 		 * instructions so that bit isn't worth checking for explicitly.
80 		 */
81 		if ((ehdr->e_flags & EF_SPARC_EXT_MASK) & ~at_flags) {
82 			rej->rej_type = SGS_REJ_BADFLAG;
83 			rej->rej_info = (uint_t)ehdr->e_flags;
84 			return (0);
85 		}
86 	} else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) {
87 		rej->rej_type = SGS_REJ_BADFLAG;
88 		rej->rej_info = (uint_t)ehdr->e_flags;
89 		return (0);
90 	}
91 	return (1);
92 }
93 
94 
95 void
96 ldso_plt_init(Rt_map *lmp)
97 {
98 	/*
99 	 * There is no need to analyze ld.so because we don't map in any of
100 	 * its dependencies.  However we may map these dependencies in later
101 	 * (as if ld.so had dlopened them), so initialize the plt and the
102 	 * permission information.
103 	 */
104 	if (PLTGOT(lmp)) {
105 		Xword pltoff;
106 
107 		/*
108 		 * Install the lm pointer in .PLT2 as per the ABI.
109 		 */
110 		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
111 		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
112 
113 		/*
114 		 * The V9 ABI states that the first 32k PLT entries
115 		 * use .PLT1, with .PLT0 used by the "latter" entries.
116 		 * We don't currently implement the extendend format,
117 		 * so install an error handler in .PLT0 to catch anyone
118 		 * trying to use it.
119 		 */
120 		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
121 
122 		/*
123 		 * Initialize .PLT1
124 		 */
125 		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
126 		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
127 	}
128 }
129 
130 /*
131  * elf_plt_write() will test to see how far away our destination
132  *	address lies.  If it is close enough that a branch can
133  *	be used instead of a jmpl - we will fill the plt in with
134  * 	single branch.  The branches are much quicker then
135  *	a jmpl instruction - see bug#4356879 for further
136  *	details.
137  *
138  *	NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since
139  *		librtld/dldump update PLT's who's physical
140  *		address is not the same as the 'virtual' runtime
141  *		address.
142  */
143 Pltbindtype
144 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval,
145 	Xword pltndx)
146 {
147 	Rela		*rel = (Rela *)rptr;
148 	uintptr_t	nsym = ~symval;
149 	uintptr_t	vpltaddr, pltaddr;
150 	long		disp;
151 
152 
153 	pltaddr = addr + rel->r_offset;
154 	vpltaddr = vaddr + rel->r_offset;
155 	disp = symval - vpltaddr - 4;
156 
157 	if (pltndx >= (M64_PLT_NEARPLTS - M_PLT_XNumber)) {
158 		*((Sxword *)pltaddr) = (uintptr_t)symval +
159 		    (uintptr_t)rel->r_addend - vaddr;
160 		DBG_CALL(pltcntfar++);
161 		return (PLT_T_FAR);
162 	}
163 
164 	/*
165 	 * Test if the destination address is close enough to use
166 	 * a ba,a... instruction to reach it.
167 	 */
168 	if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) {
169 		uint_t		*pltent, bainstr;
170 		Pltbindtype	rc;
171 
172 		pltent = (uint_t *)pltaddr;
173 
174 		/*
175 		 * The
176 		 *
177 		 *	ba,a,pt %icc, <dest>
178 		 *
179 		 * is the most efficient of the PLT's.  If we
180 		 * are within +-20 bits - use that branch.
181 		 */
182 		if (S_INRANGE(disp, 20)) {
183 			bainstr = M_BA_A_PT;	/* ba,a,pt %icc,<dest> */
184 			/* LINTED */
185 			bainstr |= (uint_t)(S_MASK(19) & (disp >> 2));
186 			rc = PLT_T_21D;
187 			DBG_CALL(pltcnt21d++);
188 		} else {
189 			/*
190 			 * Otherwise - we fall back to the good old
191 			 *
192 			 *	ba,a	<dest>
193 			 *
194 			 * Which still beats a jmpl instruction.
195 			 */
196 			bainstr = M_BA_A;		/* ba,a <dest> */
197 			/* LINTED */
198 			bainstr |= (uint_t)(S_MASK(22) & (disp >> 2));
199 			rc = PLT_T_24D;
200 			DBG_CALL(pltcnt24d++);
201 		}
202 
203 		pltent[2] = M_NOP;		/* nop instr */
204 		pltent[1] = bainstr;
205 
206 		iflush_range((char *)(&pltent[1]), 4);
207 		pltent[0] = M_NOP;		/* nop instr */
208 		iflush_range((char *)(&pltent[0]), 4);
209 		return (rc);
210 	}
211 
212 	if ((nsym >> 32) == 0) {
213 		plt_upper_32(pltaddr, symval);
214 		DBG_CALL(pltcntu32++);
215 		return (PLT_T_U32);
216 	}
217 
218 	if ((nsym >> 44) == 0) {
219 		plt_upper_44(pltaddr, symval);
220 		DBG_CALL(pltcntu44++);
221 		return (PLT_T_U44);
222 	}
223 
224 	/*
225 	 * The PLT destination is not in reach of
226 	 * a branch instruction - so we fall back
227 	 * to a 'jmpl' sequence.
228 	 */
229 	plt_full_range(pltaddr, symval);
230 	DBG_CALL(pltcntfull++);
231 	return (PLT_T_FULL);
232 }
233 
234 /*
235  * Once relocated, the following 6 instruction sequence moves
236  * a 64-bit immediate value into register %g1
237  */
238 #define	VAL64_TO_G1 \
239 /* 0x00 */	0x0b, 0x00, 0x00, 0x00,	/* sethi %hh(value), %g5 */ \
240 /* 0x04 */	0x8a, 0x11, 0x60, 0x00,	/* or %g5, %hm(value), %g5 */ \
241 /* 0x08 */	0x8b, 0x29, 0x70, 0x20,	/* sllx %g5, 32, %g5 */ \
242 /* 0x0c */	0x03, 0x00, 0x00, 0x00,	/* sethi %lm(value), %g1 */ \
243 /* 0x10 */	0x82, 0x10, 0x60, 0x00,	/* or %g1, %lo(value), %g1 */ \
244 /* 0x14 */	0x82, 0x10, 0x40, 0x05	/* or %g1, %g5, %g1 */
245 
246 /*
247  * Local storage space created on the stack created for this glue
248  * code includes space for:
249  *		0x8	pointer to dyn_data
250  *		0x8	size prev stack frame
251  */
252 static const Byte dyn_plt_template[] = {
253 /* 0x0 */	0x2a, 0xcf, 0x80, 0x03,	/* brnz,a,pt %fp, 0xc	*/
254 /* 0x4 */	0x82, 0x27, 0x80, 0x0e,	/* sub %fp, %sp, %g1 */
255 /* 0x8 */	0x82, 0x10, 0x20, 0xb0,	/* mov 176, %g1	*/
256 /* 0xc */	0x9d, 0xe3, 0xbf, 0x40,	/* save %sp, -192, %sp	*/
257 /* 0x10 */	0xc2, 0x77, 0xa7, 0xef,	/* stx %g1, [%fp + 2031] */
258 
259 					/* store prev stack size */
260 /* 0x14 */	VAL64_TO_G1,		/* dyn_data to g1 */
261 /* 0x2c */	0xc2, 0x77, 0xa7, 0xf7,	/* stx %g1, [%fp + 2039] */
262 
263 /* 0x30 */	VAL64_TO_G1,		/* elf_plt_trace() addr to g1 */
264 
265 					/* Call to elf_plt_trace() via g1 */
266 /* 0x48 */	0x9f, 0xc0, 0x60, 0x00,	/* jmpl ! link r[15] to addr in g1 */
267 /* 0x4c */	0x01, 0x00, 0x00, 0x00	/* nop ! for jmpl delay slot *AND* */
268 					/*	to get 8-byte alignment */
269 };
270 
271 int	dyn_plt_ent_size = sizeof (dyn_plt_template) +
272 		sizeof (Addr) +		/* reflmp */
273 		sizeof (Addr) +		/* deflmp */
274 		sizeof (Word) +		/* symndx */
275 		sizeof (Word) +		/* sb_flags */
276 		sizeof (Sym);		/* symdef */
277 
278 /*
279  * the dynamic plt entry is:
280  *
281  *	brnz,a,pt	%fp, 1f
282  *	sub     	%sp, %fp, %g1
283  *	mov     	SA(MINFRAME), %g1
284  * 1:
285  *	save    	%sp, -(SA(MINFRAME) + (2 * CLONGSIZE)), %sp
286  *
287  *	! store prev stack size
288  *	stx     	%g1, [%fp + STACK_BIAS - (2 * CLONGSIZE)]
289  *
290  * 2:
291  *	! move dyn_data to %g1
292  *	sethi   	%hh(dyn_data), %g5
293  *	or      	%g5, %hm(dyn_data), %g5
294  *	sllx    	%g5, 32, %g5
295  *	sethi   	%lm(dyn_data), %g1
296  *	or      	%g1, %lo(dyn_data), %g1
297  *	or      	%g1, %g5, %g1
298  *
299  *	! store dyn_data ptr on frame (from %g1)
300  *	 stx     	%g1, [%fp + STACK_BIAS - CLONGSIZE]
301  *
302  *	! Move address of elf_plt_trace() into %g1
303  *	[Uses same 6 instructions as shown at label 2: above. Not shown.]
304  *
305  *	! Use JMPL to make call. CALL instruction is limited to 30-bits.
306  *	! of displacement.
307  *	jmp1		%g1, %o7
308  *
309  *	! JMPL has a delay slot that must be filled. And, the sequence
310  *	! of instructions needs to have 8-byte alignment. This NOP does both.
311  *	! The alignment is needed for the data we put following the
312  *	! instruction.
313  *	nop
314  *
315  * dyn data:
316  *	Addr		reflmp
317  *	Addr		deflmp
318  *	Word		symndx
319  *	Word		sb_flags
320  *	Sym		symdef  (Elf64_Sym = 24-bytes)
321  */
322 
323 /*
324  * Relocate the instructions given by the VAL64_TO_G1 macro above.
325  * The arguments parallel those of do_reloc_rtld().
326  *
327  * entry:
328  *	off - Address of 1st instruction in sequence.
329  *	value - Value being relocated (addend)
330  *	sym - Name of value being relocated.
331  *	lml - link map list
332  *
333  * exit:
334  *	Returns TRUE for success, FALSE for failure.
335  */
336 static int
337 reloc_val64_to_g1(uchar_t *off, Addr *value, const char *sym, Lm_list *lml)
338 {
339 	Xword	tmp_value;
340 
341 	/*
342 	 * relocating:
343 	 *	sethi	%hh(value), %g5
344 	 */
345 	tmp_value = (Xword)value;
346 	if (do_reloc_rtld(R_SPARC_HH22, off, &tmp_value, sym,
347 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
348 		return (0);
349 	}
350 
351 	/*
352 	 * relocating:
353 	 *	or	%g5, %hm(value), %g5
354 	 */
355 	tmp_value = (Xword)value;
356 	if (do_reloc_rtld(R_SPARC_HM10, off + 4, &tmp_value, sym,
357 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
358 		return (0);
359 	}
360 
361 	/*
362 	 * relocating:
363 	 *	sethi	%lm(value), %g1
364 	 */
365 	tmp_value = (Xword)value;
366 	if (do_reloc_rtld(R_SPARC_LM22, off + 12, &tmp_value, sym,
367 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
368 		return (0);
369 	}
370 
371 	/*
372 	 * relocating:
373 	 *	or	%g1, %lo(value), %g1
374 	 */
375 	tmp_value = (Xword)value;
376 	if (do_reloc_rtld(R_SPARC_LO10, off + 16, &tmp_value, sym,
377 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
378 		return (0);
379 	}
380 
381 	return (1);
382 }
383 
384 static caddr_t
385 elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp,
386     Sym *sym, uint_t symndx, ulong_t pltndx, caddr_t to, uint_t sb_flags,
387     int *fail)
388 {
389 	extern ulong_t	elf_plt_trace();
390 	uchar_t		*dyn_plt;
391 	uintptr_t	*dyndata;
392 
393 	/*
394 	 * If both pltenter & pltexit have been disabled there
395 	 * there is no reason to even create the glue code.
396 	 */
397 	if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) ==
398 	    (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) {
399 		(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr,
400 		    rptr, (uintptr_t)to, pltndx);
401 		return (to);
402 	}
403 
404 	/*
405 	 * We only need to add the glue code if there is an auditing
406 	 * library that is interested in this binding.
407 	 */
408 	dyn_plt = (uchar_t *)((uintptr_t)AUDINFO(rlmp)->ai_dynplts +
409 	    (pltndx * dyn_plt_ent_size));
410 
411 	/*
412 	 * Have we initialized this dynamic plt entry yet?  If we haven't do it
413 	 * now.  Otherwise this function has been called before, but from a
414 	 * different plt (ie. from another shared object).  In that case
415 	 * we just set the plt to point to the new dyn_plt.
416 	 */
417 	if (*dyn_plt == 0) {
418 		Sym	*symp;
419 		Lm_list	*lml = LIST(rlmp);
420 
421 		(void) memcpy((void *)dyn_plt, dyn_plt_template,
422 		    sizeof (dyn_plt_template));
423 		dyndata = (uintptr_t *)((uintptr_t)dyn_plt +
424 		    sizeof (dyn_plt_template));
425 
426 		/*
427 		 * relocating:
428 		 *	VAL64_TO_G1(dyndata)
429 		 *	VAL64_TO_G1(&elf_plt_trace)
430 		 */
431 		if (!(reloc_val64_to_g1((dyn_plt + 0x14), dyndata,
432 		    MSG_ORIG(MSG_SYM_LADYNDATA), lml) &&
433 		    reloc_val64_to_g1((dyn_plt + 0x30), (Addr *)&elf_plt_trace,
434 		    MSG_ORIG(MSG_SYM_ELFPLTTRACE), lml))) {
435 			*fail = 1;
436 			return (0);
437 		}
438 
439 		*dyndata++ = (Addr)rlmp;
440 		*dyndata++ = (Addr)dlmp;
441 
442 		/*
443 		 * symndx in the high word, sb_flags in the low.
444 		 */
445 		*dyndata = (Addr)sb_flags;
446 		*(Word *)dyndata = symndx;
447 		dyndata++;
448 
449 		symp = (Sym *)dyndata;
450 		*symp = *sym;
451 		symp->st_value = (Addr)to;
452 		iflush_range((void *)dyn_plt, sizeof (dyn_plt_template));
453 	}
454 
455 	(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr,
456 	    (uintptr_t)dyn_plt, pltndx);
457 	return ((caddr_t)dyn_plt);
458 }
459 
460 /*
461  * Function binding routine - invoked on the first call to a function through
462  * the procedure linkage table;
463  * passes first through an assembly language interface.
464  *
465  * Takes the address of the PLT entry where the call originated,
466  * the offset into the relocation table of the associated
467  * relocation entry and the address of the link map (rt_private_map struct)
468  * for the entry.
469  *
470  * Returns the address of the function referenced after re-writing the PLT
471  * entry to invoke the function directly.
472  *
473  * On error, causes process to terminate with a signal.
474  */
475 ulong_t
476 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from)
477 {
478 	Rt_map		*nlmp, *llmp;
479 	Addr		addr, vaddr, reloff, symval;
480 	char		*name;
481 	Rela		*rptr;
482 	Sym		*rsym, *nsym;
483 	Xword		pltndx;
484 	uint_t		binfo, sb_flags = 0, dbg_class;
485 	ulong_t		rsymndx;
486 	Slookup		sl;
487 	Pltbindtype	pbtype;
488 	int		entry, lmflags, farplt = 0;
489 	Lm_list		*lml;
490 
491 	/*
492 	 * For compatibility with libthread (TI_VERSION 1) we track the entry
493 	 * value.  A zero value indicates we have recursed into ld.so.1 to
494 	 * further process a locking request.  Under this recursion we disable
495 	 * tsort and cleanup activities.
496 	 */
497 	entry = enter(0);
498 
499 	lml = LIST(lmp);
500 	if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) {
501 		dbg_class = dbg_desc->d_class;
502 		dbg_desc->d_class = 0;
503 	}
504 
505 	/*
506 	 * Must calculate true plt relocation address from reloc.
507 	 * Take offset, subtract number of reserved PLT entries, and divide
508 	 * by PLT entry size, which should give the index of the plt
509 	 * entry (and relocation entry since they have been defined to be
510 	 * in the same order).  Then we must multiply by the size of
511 	 * a relocation entry, which will give us the offset of the
512 	 * plt relocation entry from the start of them given by JMPREL(lm).
513 	 */
514 	addr = pltoff - M_PLT_RESERVSZ;
515 
516 	if (pltoff < (M64_PLT_NEARPLTS * M_PLT_ENTSIZE)) {
517 		pltndx = addr / M_PLT_ENTSIZE;
518 	} else {
519 		ulong_t	pltblockoff;
520 
521 		pltblockoff = pltoff - (M64_PLT_NEARPLTS * M_PLT_ENTSIZE);
522 		pltndx = M64_PLT_NEARPLTS +
523 		    ((pltblockoff / M64_PLT_FBLOCKSZ) * M64_PLT_FBLKCNTS) +
524 		    ((pltblockoff % M64_PLT_FBLOCKSZ) / M64_PLT_FENTSIZE) -
525 		    M_PLT_XNumber;
526 		farplt = 1;
527 	}
528 
529 	/*
530 	 * Perform some basic sanity checks.  If we didn't get a load map
531 	 * or the plt offset is invalid then its possible someone has walked
532 	 * over the plt entries or jumped to plt[01] out of the blue.
533 	 */
534 	if (!lmp || (!farplt && (addr % M_PLT_ENTSIZE) != 0) ||
535 	    (farplt && (addr % M_PLT_INSSIZE))) {
536 		Conv_inv_buf_t	inv_buf;
537 
538 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF),
539 		    conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf),
540 		    EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from));
541 		rtldexit(lml, 1);
542 	}
543 	reloff = pltndx * sizeof (Rela);
544 
545 	/*
546 	 * Use relocation entry to get symbol table entry and symbol name.
547 	 */
548 	addr = (ulong_t)JMPREL(lmp);
549 	rptr = (Rela *)(addr + reloff);
550 	rsymndx = ELF_R_SYM(rptr->r_info);
551 	rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp)));
552 	name = (char *)(STRTAB(lmp) + rsym->st_name);
553 
554 	/*
555 	 * Determine the last link-map of this list, this'll be the starting
556 	 * point for any tsort() processing.
557 	 */
558 	llmp = lml->lm_tail;
559 
560 	/*
561 	 * Find definition for symbol.  Initialize the symbol lookup data
562 	 * structure.
563 	 */
564 	SLOOKUP_INIT(sl, name, lmp, lml->lm_head, ld_entry_cnt, 0,
565 	    rsymndx, rsym, 0, LKUP_DEFT);
566 
567 	if ((nsym = lookup_sym(&sl, &nlmp, &binfo, NULL)) == 0) {
568 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
569 		    demangle(name));
570 		rtldexit(lml, 1);
571 	}
572 
573 	symval = nsym->st_value;
574 	if (!(FLAGS(nlmp) & FLG_RT_FIXED) &&
575 	    (nsym->st_shndx != SHN_ABS))
576 		symval += ADDR(nlmp);
577 	if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) {
578 		/*
579 		 * Record that this new link map is now bound to the caller.
580 		 */
581 		if (bind_one(lmp, nlmp, BND_REFER) == 0)
582 			rtldexit(lml, 1);
583 	}
584 
585 	if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_SYMBIND) {
586 		/* LINTED */
587 		uint_t	symndx = (uint_t)(((uintptr_t)nsym -
588 		    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
589 
590 		symval = audit_symbind(lmp, nlmp, nsym, symndx, symval,
591 		    &sb_flags);
592 	}
593 
594 	if (FLAGS(lmp) & FLG_RT_FIXED)
595 		vaddr = 0;
596 	else
597 		vaddr = ADDR(lmp);
598 
599 	pbtype = PLT_T_NONE;
600 	if (!(rtld_flags & RT_FL_NOBIND)) {
601 		if (((lml->lm_tflags | AFLAGS(lmp)) &
602 		    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
603 		    AUDINFO(lmp)->ai_dynplts) {
604 			int	fail = 0;
605 			/* LINTED */
606 			uint_t	symndx = (uint_t)(((uintptr_t)nsym -
607 			    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
608 
609 			symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr,
610 			    rptr, lmp, nlmp, nsym, symndx, pltndx,
611 			    (caddr_t)symval, sb_flags, &fail);
612 			if (fail)
613 				rtldexit(lml, 1);
614 		} else {
615 			/*
616 			 * Write standard PLT entry to jump directly
617 			 * to newly bound function.
618 			 */
619 			pbtype = elf_plt_write((uintptr_t)vaddr,
620 			    (uintptr_t)vaddr, rptr, symval, pltndx);
621 		}
622 	}
623 
624 	/*
625 	 * Print binding information and rebuild PLT entry.
626 	 */
627 	DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)),
628 	    (Xword)pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value,
629 	    name, binfo));
630 
631 	/*
632 	 * Complete any processing for newly loaded objects.  Note we don't
633 	 * know exactly where any new objects are loaded (we know the object
634 	 * that supplied the symbol, but others may have been loaded lazily as
635 	 * we searched for the symbol), so sorting starts from the last
636 	 * link-map know on entry to this routine.
637 	 */
638 	if (entry)
639 		load_completion(llmp);
640 
641 	/*
642 	 * Some operations like dldump() or dlopen()'ing a relocatable object
643 	 * result in objects being loaded on rtld's link-map, make sure these
644 	 * objects are initialized also.
645 	 */
646 	if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init)
647 		load_completion(nlmp);
648 
649 	/*
650 	 * Make sure the object to which we've bound has had it's .init fired.
651 	 * Cleanup before return to user code.
652 	 */
653 	if (entry) {
654 		is_dep_init(nlmp, lmp);
655 		leave(lml, 0);
656 	}
657 
658 	if (lmflags & LML_FLG_RTLDLM)
659 		dbg_desc->d_class = dbg_class;
660 
661 	return (symval);
662 }
663 
664 static int
665 bindpltpad(Rt_map *lmp, List *padlist, Addr value, void **pltaddr,
666     const char *fname, const char *sname)
667 {
668 	Listnode	*lnp, *prevlnp;
669 	Pltpadinfo	*pip;
670 	void		*plt;
671 	uintptr_t	pltoff;
672 	Rela		rel;
673 	int		i;
674 
675 	prevlnp = 0;
676 	for (LIST_TRAVERSE(padlist, lnp, pip)) {
677 		if (pip->pp_addr == value) {
678 			*pltaddr = pip->pp_plt;
679 			DBG_CALL(Dbg_bind_pltpad_from(lmp, (Addr)*pltaddr,
680 			    sname));
681 			return (1);
682 		}
683 		if (pip->pp_addr > value)
684 			break;
685 		prevlnp = lnp;
686 	}
687 
688 	plt = PLTPAD(lmp);
689 	pltoff = (uintptr_t)plt - (uintptr_t)ADDR(lmp);
690 
691 	PLTPAD(lmp) = (void *)((uintptr_t)PLTPAD(lmp) + M_PLT_ENTSIZE);
692 
693 	if (PLTPAD(lmp) > PLTPADEND(lmp)) {
694 		/*
695 		 * Just fail in usual relocation way
696 		 */
697 		*pltaddr = (void *)value;
698 		return (1);
699 	}
700 	rel.r_offset = pltoff;
701 	rel.r_info = 0;
702 	rel.r_addend = 0;
703 
704 	/*
705 	 * elf_plt_write assumes the plt was previously filled
706 	 * with NOP's, so fill it in now.
707 	 */
708 	for (i = 0; i < (M_PLT_ENTSIZE / sizeof (uint_t)); i++) {
709 		((uint_t *)plt)[i] = M_NOP;
710 	}
711 	iflush_range((caddr_t)plt, M_PLT_ENTSIZE);
712 
713 	(void) elf_plt_write(ADDR(lmp), ADDR(lmp), &rel, value, 0);
714 
715 	if ((pip = calloc(sizeof (Pltpadinfo), 1)) == 0)
716 		return (0);
717 	pip->pp_addr = value;
718 	pip->pp_plt = plt;
719 
720 	if (prevlnp)
721 		lnp = list_insert(padlist, pip, prevlnp);
722 	else
723 		lnp = list_prepend(padlist, pip);
724 
725 	if (!lnp) {
726 		free(pip);
727 		return (0);
728 	}
729 
730 	*pltaddr = plt;
731 	DBG_CALL(Dbg_bind_pltpad_to(lmp, (Addr)*pltaddr, fname, sname));
732 	return (1);
733 }
734 
735 /*
736  * Read and process the relocations for one link object, we assume all
737  * relocation sections for loadable segments are stored contiguously in
738  * the file.
739  */
740 int
741 elf_reloc(Rt_map *lmp, uint_t plt, int *in_nfavl, APlist **textrel)
742 {
743 	ulong_t		relbgn, relend, relsiz, basebgn, pltbgn, pltend;
744 	ulong_t		pltndx, roffset, rsymndx, psymndx = 0;
745 	uint_t		dsymndx, binfo, pbinfo;
746 	Byte		rtype;
747 	long		reladd;
748 	Addr		value, pvalue;
749 	Sym		*symref, *psymref, *symdef, *psymdef;
750 	char		*name, *pname;
751 	Rt_map		*_lmp, *plmp;
752 	int		ret = 1, noplt = 0;
753 	long		relacount = RELACOUNT(lmp);
754 	Rela		*rel;
755 	Pltbindtype	pbtype;
756 	List		pltpadlist = {0, 0};
757 	APlist		*bound = NULL;
758 
759 	/*
760 	 * If an object has any DT_REGISTER entries associated with
761 	 * it, they are processed now.
762 	 */
763 	if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) {
764 		if (elf_regsyms(lmp) == 0)
765 			return (0);
766 	}
767 
768 	/*
769 	 * Although only necessary for lazy binding, initialize the first
770 	 * procedure linkage table entry to go to elf_rtbndr().  dbx(1) seems
771 	 * to find this useful.
772 	 */
773 	if ((plt == 0) && PLTGOT(lmp)) {
774 		mmapobj_result_t	*mpp;
775 		Xword			pltoff;
776 
777 		/*
778 		 * Make sure the segment is writable.
779 		 */
780 		if ((((mpp =
781 		    find_segment((caddr_t)PLTGOT(lmp), lmp)) != NULL) &&
782 		    ((mpp->mr_prot & PROT_WRITE) == 0)) &&
783 		    ((set_prot(lmp, mpp, 1) == 0) ||
784 		    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL)))
785 			return (0);
786 
787 		/*
788 		 * Install the lm pointer in .PLT2 as per the ABI.
789 		 */
790 		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
791 		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
792 
793 		/*
794 		 * The V9 ABI states that the first 32k PLT entries
795 		 * use .PLT1, with .PLT0 used by the "latter" entries.
796 		 * We don't currently implement the extendend format,
797 		 * so install an error handler in .PLT0 to catch anyone
798 		 * trying to use it.
799 		 */
800 		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
801 
802 		/*
803 		 * Initialize .PLT1
804 		 */
805 		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
806 		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
807 	}
808 
809 	/*
810 	 * Initialize the plt start and end addresses.
811 	 */
812 	if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0)
813 		pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp));
814 
815 	/*
816 	 * If we've been called upon to promote an RTLD_LAZY object to an
817 	 * RTLD_NOW then we're only interested in scaning the .plt table.
818 	 */
819 	if (plt) {
820 		relbgn = pltbgn;
821 		relend = pltend;
822 	} else {
823 		/*
824 		 * The relocation sections appear to the run-time linker as a
825 		 * single table.  Determine the address of the beginning and end
826 		 * of this table.  There are two different interpretations of
827 		 * the ABI at this point:
828 		 *
829 		 *   o	The REL table and its associated RELSZ indicate the
830 		 *	concatenation of *all* relocation sections (this is the
831 		 *	model our link-editor constructs).
832 		 *
833 		 *   o	The REL table and its associated RELSZ indicate the
834 		 *	concatenation of all *but* the .plt relocations.  These
835 		 *	relocations are specified individually by the JMPREL and
836 		 *	PLTRELSZ entries.
837 		 *
838 		 * Determine from our knowledege of the relocation range and
839 		 * .plt range, the range of the total relocation table.  Note
840 		 * that one other ABI assumption seems to be that the .plt
841 		 * relocations always follow any other relocations, the
842 		 * following range checking drops that assumption.
843 		 */
844 		relbgn = (ulong_t)(REL(lmp));
845 		relend = relbgn + (ulong_t)(RELSZ(lmp));
846 		if (pltbgn) {
847 			if (!relbgn || (relbgn > pltbgn))
848 				relbgn = pltbgn;
849 			if (!relbgn || (relend < pltend))
850 				relend = pltend;
851 		}
852 	}
853 	if (!relbgn || (relbgn == relend)) {
854 		DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE));
855 		return (1);
856 	}
857 
858 	relsiz = (ulong_t)(RELENT(lmp));
859 	basebgn = ADDR(lmp);
860 
861 	DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START));
862 
863 	/*
864 	 * If we're processing in lazy mode there is no need to scan the
865 	 * .rela.plt table.
866 	 */
867 	if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0))
868 		noplt = 1;
869 
870 	/*
871 	 * Loop through relocations.
872 	 */
873 	while (relbgn < relend) {
874 		mmapobj_result_t	*mpp;
875 		uint_t			sb_flags = 0;
876 		Addr			vaddr;
877 
878 		rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
879 
880 		/*
881 		 * If this is a RELATIVE relocation in a shared object
882 		 * (the common case), and if we are not debugging, then
883 		 * jump into a tighter relocaiton loop (elf_reloc_relacount)
884 		 * Only make the jump if we've been given a hint on the
885 		 * number of relocations.
886 		 */
887 		if ((rtype == R_SPARC_RELATIVE) &&
888 		    ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) {
889 			if (relacount) {
890 				relbgn = elf_reloc_relative_count(relbgn,
891 				    relacount, relsiz, basebgn, lmp, textrel);
892 				relacount = 0;
893 			} else {
894 				relbgn = elf_reloc_relative(relbgn, relend,
895 				    relsiz, basebgn, lmp, textrel);
896 			}
897 			if (relbgn >= relend)
898 				break;
899 			rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info,
900 			    M_MACH);
901 		}
902 
903 		roffset = ((Rela *)relbgn)->r_offset;
904 
905 		reladd = (long)(((Rela *)relbgn)->r_addend);
906 		rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info);
907 
908 		rel = (Rela *)relbgn;
909 		relbgn += relsiz;
910 
911 		/*
912 		 * Optimizations.
913 		 */
914 		if (rtype == R_SPARC_NONE)
915 			continue;
916 		if (noplt && ((ulong_t)rel >= pltbgn) &&
917 		    ((ulong_t)rel < pltend)) {
918 			relbgn = pltend;
919 			continue;
920 		}
921 
922 		if (rtype != R_SPARC_REGISTER) {
923 			/*
924 			 * If this is a shared object, add the base address
925 			 * to offset.
926 			 */
927 			if (!(FLAGS(lmp) & FLG_RT_FIXED))
928 				roffset += basebgn;
929 
930 			/*
931 			 * If this relocation is not against part of the image
932 			 * mapped into memory we skip it.
933 			 */
934 			if ((mpp = find_segment((caddr_t)roffset,
935 			    lmp)) == NULL) {
936 				elf_reloc_bad(lmp, (void *)rel, rtype, roffset,
937 				    rsymndx);
938 				continue;
939 			}
940 		}
941 
942 		/*
943 		 * If we're promoting plts, determine if this one has already
944 		 * been written. An uninitialized plts' second instruction is a
945 		 * branch.
946 		 */
947 		if (plt) {
948 			uchar_t	*_roffset = (uchar_t *)roffset;
949 
950 			_roffset += M_PLT_INSSIZE;
951 			/* LINTED */
952 			if ((*(uint_t *)_roffset &
953 			    (~(S_MASK(19)))) != M_BA_A_XCC)
954 				continue;
955 		}
956 
957 		binfo = 0;
958 		pltndx = (ulong_t)-1;
959 		pbtype = PLT_T_NONE;
960 
961 		/*
962 		 * If a symbol index is specified then get the symbol table
963 		 * entry, locate the symbol definition, and determine its
964 		 * address.
965 		 */
966 		if (rsymndx) {
967 			/*
968 			 * Get the local symbol table entry.
969 			 */
970 			symref = (Sym *)((ulong_t)SYMTAB(lmp) +
971 			    (rsymndx * SYMENT(lmp)));
972 
973 			/*
974 			 * If this is a local symbol, just use the base address.
975 			 * (we should have no local relocations in the
976 			 * executable).
977 			 */
978 			if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) {
979 				value = basebgn;
980 				name = (char *)0;
981 
982 				/*
983 				 * Special case TLS relocations.
984 				 */
985 				if ((rtype == R_SPARC_TLS_DTPMOD32) ||
986 				    (rtype == R_SPARC_TLS_DTPMOD64)) {
987 					/*
988 					 * Use the TLS modid.
989 					 */
990 					value = TLSMODID(lmp);
991 
992 				} else if ((rtype == R_SPARC_TLS_TPOFF32) ||
993 				    (rtype == R_SPARC_TLS_TPOFF64)) {
994 					if ((value = elf_static_tls(lmp, symref,
995 					    rel, rtype, 0, roffset, 0)) == 0) {
996 						ret = 0;
997 						break;
998 					}
999 				}
1000 			} else {
1001 				/*
1002 				 * If the symbol index is equal to the previous
1003 				 * symbol index relocation we processed then
1004 				 * reuse the previous values. (Note that there
1005 				 * have been cases where a relocation exists
1006 				 * against a copy relocation symbol, our ld(1)
1007 				 * should optimize this away, but make sure we
1008 				 * don't use the same symbol information should
1009 				 * this case exist).
1010 				 */
1011 				if ((rsymndx == psymndx) &&
1012 				    (rtype != R_SPARC_COPY)) {
1013 					/* LINTED */
1014 					if (psymdef == 0) {
1015 						DBG_CALL(Dbg_bind_weak(lmp,
1016 						    (Addr)roffset, (Addr)
1017 						    (roffset - basebgn), name));
1018 						continue;
1019 					}
1020 					/* LINTED */
1021 					value = pvalue;
1022 					/* LINTED */
1023 					name = pname;
1024 					symdef = psymdef;
1025 					/* LINTED */
1026 					symref = psymref;
1027 					/* LINTED */
1028 					_lmp = plmp;
1029 					/* LINTED */
1030 					binfo = pbinfo;
1031 
1032 					if ((LIST(_lmp)->lm_tflags |
1033 					    AFLAGS(_lmp)) &
1034 					    LML_TFLG_AUD_SYMBIND) {
1035 						value = audit_symbind(lmp, _lmp,
1036 						    /* LINTED */
1037 						    symdef, dsymndx, value,
1038 						    &sb_flags);
1039 					}
1040 				} else {
1041 					Slookup		sl;
1042 
1043 					/*
1044 					 * Lookup the symbol definition.
1045 					 * Initialize the symbol lookup data
1046 					 * structure.
1047 					 */
1048 					name = (char *)(STRTAB(lmp) +
1049 					    symref->st_name);
1050 
1051 					SLOOKUP_INIT(sl, name, lmp, 0,
1052 					    ld_entry_cnt, 0, rsymndx, symref,
1053 					    rtype, LKUP_STDRELOC);
1054 
1055 					symdef = lookup_sym(&sl, &_lmp,
1056 					    &binfo, in_nfavl);
1057 
1058 					/*
1059 					 * If the symbol is not found and the
1060 					 * reference was not to a weak symbol,
1061 					 * report an error.  Weak references
1062 					 * may be unresolved.
1063 					 */
1064 					/* BEGIN CSTYLED */
1065 					if (symdef == 0) {
1066 					    if (sl.sl_bind != STB_WEAK) {
1067 						if (elf_reloc_error(lmp, name,
1068 						    rel, binfo))
1069 							continue;
1070 
1071 						ret = 0;
1072 						break;
1073 
1074 					    } else {
1075 						psymndx = rsymndx;
1076 						psymdef = 0;
1077 
1078 						DBG_CALL(Dbg_bind_weak(lmp,
1079 						    (Addr)roffset, (Addr)
1080 						    (roffset - basebgn), name));
1081 						continue;
1082 					    }
1083 					}
1084 					/* END CSTYLED */
1085 
1086 					/*
1087 					 * If symbol was found in an object
1088 					 * other than the referencing object
1089 					 * then record the binding.
1090 					 */
1091 					if ((lmp != _lmp) && ((FLAGS1(_lmp) &
1092 					    FL1_RT_NOINIFIN) == 0)) {
1093 						if (aplist_test(&bound, _lmp,
1094 						    AL_CNT_RELBIND) == 0) {
1095 							ret = 0;
1096 							break;
1097 						}
1098 					}
1099 
1100 					/*
1101 					 * Calculate the location of definition;
1102 					 * symbol value plus base address of
1103 					 * containing shared object.
1104 					 */
1105 					if (IS_SIZE(rtype))
1106 						value = symdef->st_size;
1107 					else
1108 						value = symdef->st_value;
1109 
1110 					if (!(FLAGS(_lmp) & FLG_RT_FIXED) &&
1111 					    !(IS_SIZE(rtype)) &&
1112 					    (symdef->st_shndx != SHN_ABS) &&
1113 					    (ELF_ST_TYPE(symdef->st_info) !=
1114 					    STT_TLS))
1115 						value += ADDR(_lmp);
1116 
1117 					/*
1118 					 * Retain this symbol index and the
1119 					 * value in case it can be used for the
1120 					 * subsequent relocations.
1121 					 */
1122 					if (rtype != R_SPARC_COPY) {
1123 						psymndx = rsymndx;
1124 						pvalue = value;
1125 						pname = name;
1126 						psymdef = symdef;
1127 						psymref = symref;
1128 						plmp = _lmp;
1129 						pbinfo = binfo;
1130 					}
1131 					if ((LIST(_lmp)->lm_tflags |
1132 					    AFLAGS(_lmp)) &
1133 					    LML_TFLG_AUD_SYMBIND) {
1134 						/* LINTED */
1135 						dsymndx = (((uintptr_t)symdef -
1136 						    (uintptr_t)SYMTAB(_lmp)) /
1137 						    SYMENT(_lmp));
1138 						value = audit_symbind(lmp, _lmp,
1139 						    symdef, dsymndx, value,
1140 						    &sb_flags);
1141 					}
1142 				}
1143 
1144 				/*
1145 				 * If relocation is PC-relative, subtract
1146 				 * offset address.
1147 				 */
1148 				if (IS_PC_RELATIVE(rtype))
1149 					value -= roffset;
1150 
1151 				/*
1152 				 * Special case TLS relocations.
1153 				 */
1154 				if ((rtype == R_SPARC_TLS_DTPMOD32) ||
1155 				    (rtype == R_SPARC_TLS_DTPMOD64)) {
1156 					/*
1157 					 * Relocation value is the TLS modid.
1158 					 */
1159 					value = TLSMODID(_lmp);
1160 
1161 				} else if ((rtype == R_SPARC_TLS_TPOFF64) ||
1162 				    (rtype == R_SPARC_TLS_TPOFF32)) {
1163 					if ((value = elf_static_tls(_lmp,
1164 					    symdef, rel, rtype, name, roffset,
1165 					    value)) == 0) {
1166 						ret = 0;
1167 						break;
1168 					}
1169 				}
1170 			}
1171 		} else {
1172 			/*
1173 			 * Special cases.
1174 			 */
1175 			if (rtype == R_SPARC_REGISTER) {
1176 				/*
1177 				 * A register symbol associated with symbol
1178 				 * index 0 is initialized (i.e. relocated) to
1179 				 * a constant in the r_addend field rather than
1180 				 * to a symbol value.
1181 				 */
1182 				value = 0;
1183 
1184 			} else if ((rtype == R_SPARC_TLS_DTPMOD32) ||
1185 			    (rtype == R_SPARC_TLS_DTPMOD64)) {
1186 				/*
1187 				 * TLS relocation value is the TLS modid.
1188 				 */
1189 				value = TLSMODID(lmp);
1190 			} else
1191 				value = basebgn;
1192 			name = (char *)0;
1193 		}
1194 
1195 		DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH,
1196 		    M_REL_SHT_TYPE, rel, NULL, name));
1197 
1198 		/*
1199 		 * Make sure the segment is writable.
1200 		 */
1201 		if ((rtype != R_SPARC_REGISTER) &&
1202 		    ((mpp->mr_prot & PROT_WRITE) == 0) &&
1203 		    ((set_prot(lmp, mpp, 1) == 0) ||
1204 		    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL))) {
1205 			ret = 0;
1206 			break;
1207 		}
1208 
1209 		/*
1210 		 * Call relocation routine to perform required relocation.
1211 		 */
1212 		switch (rtype) {
1213 		case R_SPARC_REGISTER:
1214 			/*
1215 			 * The v9 ABI 4.2.4 says that system objects may,
1216 			 * but are not required to, use register symbols
1217 			 * to inidcate how they use global registers. Thus
1218 			 * at least %g6, %g7 must be allowed in addition
1219 			 * to %g2 and %g3.
1220 			 */
1221 			value += reladd;
1222 			if (roffset == STO_SPARC_REGISTER_G1) {
1223 				set_sparc_g1(value);
1224 			} else if (roffset == STO_SPARC_REGISTER_G2) {
1225 				set_sparc_g2(value);
1226 			} else if (roffset == STO_SPARC_REGISTER_G3) {
1227 				set_sparc_g3(value);
1228 			} else if (roffset == STO_SPARC_REGISTER_G4) {
1229 				set_sparc_g4(value);
1230 			} else if (roffset == STO_SPARC_REGISTER_G5) {
1231 				set_sparc_g5(value);
1232 			} else if (roffset == STO_SPARC_REGISTER_G6) {
1233 				set_sparc_g6(value);
1234 			} else if (roffset == STO_SPARC_REGISTER_G7) {
1235 				set_sparc_g7(value);
1236 			} else {
1237 				eprintf(LIST(lmp), ERR_FATAL,
1238 				    MSG_INTL(MSG_REL_BADREG), NAME(lmp),
1239 				    EC_ADDR(roffset));
1240 				ret = 0;
1241 				break;
1242 			}
1243 
1244 			DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD,
1245 			    M_MACH, (Xword)roffset, (Xword)value));
1246 			break;
1247 		case R_SPARC_COPY:
1248 			if (elf_copy_reloc(name, symref, lmp, (void *)roffset,
1249 			    symdef, _lmp, (const void *)value) == 0)
1250 				ret = 0;
1251 			break;
1252 		case R_SPARC_JMP_SLOT:
1253 			pltndx = ((uintptr_t)rel -
1254 			    (uintptr_t)JMPREL(lmp)) / relsiz;
1255 
1256 			if (FLAGS(lmp) & FLG_RT_FIXED)
1257 				vaddr = 0;
1258 			else
1259 				vaddr = ADDR(lmp);
1260 
1261 			if (((LIST(lmp)->lm_tflags | AFLAGS(lmp)) &
1262 			    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
1263 			    AUDINFO(lmp)->ai_dynplts) {
1264 				int	fail = 0;
1265 				/* LINTED */
1266 				uint_t	symndx = (uint_t)(((uintptr_t)symdef -
1267 				    (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp));
1268 
1269 				(void) elf_plt_trace_write((caddr_t)vaddr,
1270 				    (Rela *)rel, lmp, _lmp, symdef, symndx,
1271 				    pltndx, (caddr_t)value, sb_flags, &fail);
1272 				if (fail)
1273 					ret = 0;
1274 			} else {
1275 				/*
1276 				 * Write standard PLT entry to jump directly
1277 				 * to newly bound function.
1278 				 */
1279 				DBG_CALL(Dbg_reloc_apply_val(LIST(lmp),
1280 				    ELF_DBG_RTLD, (Xword)roffset,
1281 				    (Xword)value));
1282 				pbtype = elf_plt_write((uintptr_t)vaddr,
1283 				    (uintptr_t)vaddr, (void *)rel, value,
1284 				    pltndx);
1285 			}
1286 			break;
1287 		case R_SPARC_WDISP30:
1288 			if (PLTPAD(lmp) &&
1289 			    (S_INRANGE((Sxword)value, 29) == 0)) {
1290 				void *	plt = 0;
1291 
1292 				if (bindpltpad(lmp, &pltpadlist,
1293 				    value + roffset, &plt,
1294 				    NAME(_lmp), name) == 0) {
1295 					ret = 0;
1296 					break;
1297 				}
1298 				value = (Addr)((Addr)plt - roffset);
1299 			}
1300 			/* FALLTHROUGH */
1301 		default:
1302 			value += reladd;
1303 			if (IS_EXTOFFSET(rtype))
1304 				value += (Word)ELF_R_TYPE_DATA(rel->r_info);
1305 
1306 			/*
1307 			 * Write the relocation out.  If this relocation is a
1308 			 * common basic write, skip the doreloc() engine.
1309 			 */
1310 			if ((rtype == R_SPARC_GLOB_DAT) ||
1311 			    (rtype == R_SPARC_64)) {
1312 				if (roffset & 0x7) {
1313 					Conv_inv_buf_t	inv_buf;
1314 
1315 					eprintf(LIST(lmp), ERR_FATAL,
1316 					    MSG_INTL(MSG_REL_NONALIGN),
1317 					    conv_reloc_SPARC_type(rtype,
1318 					    0, &inv_buf),
1319 					    NAME(lmp), demangle(name),
1320 					    EC_OFF(roffset));
1321 					ret = 0;
1322 				} else
1323 					*(ulong_t *)roffset += value;
1324 			} else {
1325 				if (do_reloc_rtld(rtype, (uchar_t *)roffset,
1326 				    (Xword *)&value, name,
1327 				    NAME(lmp), LIST(lmp)) == 0)
1328 					ret = 0;
1329 			}
1330 
1331 			/*
1332 			 * The value now contains the 'bit-shifted' value that
1333 			 * was or'ed into memory (this was set by
1334 			 * do_reloc_rtld()).
1335 			 */
1336 			DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD,
1337 			    (Xword)roffset, (Xword)value));
1338 
1339 			/*
1340 			 * If this relocation is against a text segment, make
1341 			 * sure that the instruction cache is flushed.
1342 			 */
1343 			if (textrel)
1344 				iflush_range((caddr_t)roffset, 0x4);
1345 		}
1346 
1347 		if ((ret == 0) &&
1348 		    ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0))
1349 			break;
1350 
1351 		if (binfo) {
1352 			DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset,
1353 			    (Off)(roffset - basebgn), pltndx, pbtype,
1354 			    _lmp, (Addr)value, symdef->st_value, name, binfo));
1355 		}
1356 	}
1357 
1358 	/*
1359 	 * Free up any items on the pltpadlist if it was allocated
1360 	 */
1361 	if (pltpadlist.head) {
1362 		Listnode	*lnp, *plnp = NULL;
1363 		Pltpadinfo	*pip;
1364 
1365 		for (LIST_TRAVERSE(&pltpadlist, lnp, pip)) {
1366 			if (plnp)
1367 				free(plnp);
1368 			free(pip);
1369 			plnp = lnp;
1370 		}
1371 		if (plnp)
1372 			free(plnp);
1373 	}
1374 
1375 	return (relocate_finish(lmp, bound, ret));
1376 }
1377 
1378 /*
1379  * Provide a machine specific interface to the conversion routine.  By calling
1380  * the machine specific version, rather than the generic version, we insure that
1381  * the data tables/strings for all known machine versions aren't dragged into
1382  * ld.so.1.
1383  */
1384 const char *
1385 _conv_reloc_type(uint_t rel)
1386 {
1387 	static Conv_inv_buf_t	inv_buf;
1388 
1389 	return (conv_reloc_SPARC_type(rel, 0, &inv_buf));
1390 }
1391