1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Utility routines for run-time linker. some are duplicated here from libc 33 * (with different names) to avoid name space collisions. 34 */ 35 #include "_synonyms.h" 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <debug.h> 50 #include <conv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "_elf.h" 54 #include "msg.h" 55 56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 57 58 /* 59 * All error messages go through eprintf(). During process initialization these 60 * messages should be directed to the standard error, however once control has 61 * been passed to the applications code these messages should be stored in an 62 * internal buffer for use with dlerror(). Note, fatal error conditions that 63 * may occur while running the application will still cause a standard error 64 * message, see rtldexit() in this file for details. 65 * The `application' flag serves to indicate the transition between process 66 * initialization and when the applications code is running. 67 */ 68 69 /* 70 * Null function used as place where a debugger can set a breakpoint. 71 */ 72 void 73 rtld_db_dlactivity(Lm_list *lml) 74 { 75 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 76 r_debug.rtd_rdebug.r_state)); 77 } 78 79 /* 80 * Null function used as place where debugger can set a pre .init 81 * processing breakpoint. 82 */ 83 void 84 rtld_db_preinit(Lm_list *lml) 85 { 86 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 87 r_debug.rtd_rdebug.r_state)); 88 } 89 90 /* 91 * Null function used as place where debugger can set a post .init 92 * processing breakpoint. 93 */ 94 void 95 rtld_db_postinit(Lm_list *lml) 96 { 97 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 98 r_debug.rtd_rdebug.r_state)); 99 } 100 101 /* 102 * Debugger Event Notification 103 * 104 * This function centralizes all debugger event notification (ala rtld_db). 105 * 106 * There's a simple intent, focused on insuring the primary link-map control 107 * list (or each link-map list) is consistent, and the indication that objects 108 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 109 * event are posted for each of these, most debuggers don't care, as their 110 * view is that these events simply convey an "inconsistent" state. 111 * 112 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 113 * enter ld.so.1. 114 * 115 * With auditors, we may be in the process of relocating a collection of 116 * objects, and will leave() ld.so.1 to call the auditor. At this point we 117 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 118 * object to the debuggers until relocation processing has been completed on it. 119 * To allow for the collection of these objects that are pending relocation, an 120 * RD_ADD event is set after completing a series of relocations on the primary 121 * link-map control list. 122 * 123 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 124 * required later (LML_FLG_DBNOTIF): 125 * 126 * i the first time we add or delete an object to the primary link-map 127 * control list. 128 * ii the first time we move a secondary link-map control list to the primary 129 * link-map control list (effectively, this is like adding a group of 130 * objects to the primary link-map control list). 131 * 132 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 133 * 134 * i each time we leave the runtime linker. 135 */ 136 void 137 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 138 { 139 void (*fptr)(Lm_list *); 140 141 switch (event) { 142 case RD_PREINIT: 143 fptr = rtld_db_preinit; 144 break; 145 case RD_POSTINIT: 146 fptr = rtld_db_postinit; 147 break; 148 case RD_DLACTIVITY: 149 switch (state) { 150 case RT_CONSISTENT: 151 lml->lm_flags &= ~LML_FLG_DBNOTIF; 152 153 /* 154 * Do we need to send a notification? 155 */ 156 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 157 return; 158 rtld_flags &= ~RT_FL_DBNOTIF; 159 break; 160 case RT_ADD: 161 case RT_DELETE: 162 lml->lm_flags |= LML_FLG_DBNOTIF; 163 164 /* 165 * If we are already in an inconsistent state, no 166 * notification is required. 167 */ 168 if (rtld_flags & RT_FL_DBNOTIF) 169 return; 170 rtld_flags |= RT_FL_DBNOTIF; 171 break; 172 }; 173 fptr = rtld_db_dlactivity; 174 break; 175 default: 176 /* 177 * RD_NONE - do nothing 178 */ 179 break; 180 }; 181 182 /* 183 * Set event state and call 'notification' function. 184 * 185 * The debugging clients have previously been told about these 186 * notification functions and have set breakpoints on them if they 187 * are interested in the notification. 188 */ 189 r_debug.rtd_rdebug.r_state = state; 190 r_debug.rtd_rdebug.r_rdevent = event; 191 fptr(lml); 192 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 193 } 194 195 #if defined(__sparc) || defined(__x86) 196 /* 197 * Stack Cleanup. 198 * 199 * This function is invoked to 'remove' arguments that were passed in on the 200 * stack. This is most likely if ld.so.1 was invoked directly. In that case 201 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 202 * Which means we then need to slide everything above it on the stack down 203 * accordingly. 204 * 205 * While the stack layout is platform specific - it just so happens that __x86, 206 * and __sparc platforms share the following initial stack layout. 207 * 208 * !_______________________! high addresses 209 * ! ! 210 * ! Information ! 211 * ! Block ! 212 * ! (size varies) ! 213 * !_______________________! 214 * ! 0 word ! 215 * !_______________________! 216 * ! Auxiliary ! 217 * ! vector ! 218 * ! 2 word entries ! 219 * ! ! 220 * !_______________________! 221 * ! 0 word ! 222 * !_______________________! 223 * ! Environment ! 224 * ! pointers ! 225 * ! ... ! 226 * ! (one word each) ! 227 * !_______________________! 228 * ! 0 word ! 229 * !_______________________! 230 * ! Argument ! low addresses 231 * ! pointers ! 232 * ! Argc words ! 233 * !_______________________! 234 * ! ! 235 * ! Argc ! 236 * !_______________________! 237 * ! ... ! 238 * 239 */ 240 static void 241 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 242 { 243 int ndx; 244 long *argc; 245 char **oargv, **nargv; 246 char **oenvp, **nenvp; 247 auxv_t *oauxv, *nauxv; 248 249 /* 250 * Slide ARGV[] and update argc. The argv pointer remains the same, 251 * however slide the applications arguments over the arguments to 252 * ld.so.1. 253 */ 254 nargv = &argv[0]; 255 oargv = &argv[rmcnt]; 256 257 for (ndx = 0; oargv[ndx]; ndx++) 258 nargv[ndx] = oargv[ndx]; 259 nargv[ndx] = oargv[ndx]; 260 261 argc = (long *)((uintptr_t)argv - sizeof (long *)); 262 *argc -= rmcnt; 263 264 /* 265 * Slide ENVP[], and update the environment array pointer. 266 */ 267 ndx++; 268 nenvp = &nargv[ndx]; 269 oenvp = &oargv[ndx]; 270 *envp = nenvp; 271 272 for (ndx = 0; oenvp[ndx]; ndx++) 273 nenvp[ndx] = oenvp[ndx]; 274 nenvp[ndx] = oenvp[ndx]; 275 276 /* 277 * Slide AUXV[], and update the aux vector pointer. 278 */ 279 ndx++; 280 nauxv = (auxv_t *)&nenvp[ndx]; 281 oauxv = (auxv_t *)&oenvp[ndx]; 282 *auxv = nauxv; 283 284 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 285 nauxv[ndx] = oauxv[ndx]; 286 nauxv[ndx] = oauxv[ndx]; 287 } 288 #else 289 /* 290 * Verify that the above routine is appropriate for any new platforms. 291 */ 292 #error unsupported architecture! 293 #endif 294 295 /* 296 * The only command line argument recognized is -e, followed by a runtime 297 * linker environment variable. 298 */ 299 int 300 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 301 Word *lmtflags, int aout) 302 { 303 int ndx; 304 305 for (ndx = 1; argv[ndx]; ndx++) { 306 char *str; 307 308 if (argv[ndx][0] != '-') 309 break; 310 311 if (argv[ndx][1] == '\0') { 312 ndx++; 313 break; 314 } 315 316 if (argv[ndx][1] != 'e') 317 return (1); 318 319 if (argv[ndx][2] == '\0') { 320 ndx++; 321 if (argv[ndx] == NULL) 322 return (1); 323 str = argv[ndx]; 324 } else 325 str = &argv[ndx][2]; 326 327 /* 328 * If the environment variable starts with LD_, strip the LD_. 329 * Otherwise, take things as is. 330 */ 331 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 332 (str[3] != '\0')) 333 str += 3; 334 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 335 return (1); 336 } 337 338 /* 339 * Make sure an object file has been specified. 340 */ 341 if (argv[ndx] == 0) 342 return (1); 343 344 /* 345 * Having gotten the arguments, clean ourselves off of the stack. 346 */ 347 stack_cleanup(argv, envp, auxv, ndx); 348 return (0); 349 } 350 351 /* 352 * Compare function for PathNode AVL tree. 353 */ 354 static int 355 pnavl_compare(const void *n1, const void *n2) 356 { 357 uint_t hash1, hash2; 358 const char *st1, *st2; 359 int rc; 360 361 hash1 = ((PathNode *)n1)->pn_hash; 362 hash2 = ((PathNode *)n2)->pn_hash; 363 364 if (hash1 > hash2) 365 return (1); 366 if (hash1 < hash2) 367 return (-1); 368 369 st1 = ((PathNode *)n1)->pn_name; 370 st2 = ((PathNode *)n2)->pn_name; 371 372 rc = strcmp(st1, st2); 373 if (rc > 0) 374 return (1); 375 if (rc < 0) 376 return (-1); 377 return (0); 378 } 379 380 /* 381 * Determine if a pathname has already been recorded on the full path name 382 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 383 * successfully loaded. If the path name does not exist in this AVL tree, then 384 * the next insertion point is deposited in "where". This value can be used by 385 * fpavl_insert() to expedite the insertion. 386 */ 387 Rt_map * 388 fpavl_recorded(Lm_list *lml, const char *name, avl_index_t *where) 389 { 390 FullPathNode fpn, *fpnp; 391 avl_tree_t *avlt; 392 393 /* 394 * Create the avl tree if required. 395 */ 396 if ((avlt = lml->lm_fpavl) == NULL) { 397 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 398 return (0); 399 avl_create(avlt, pnavl_compare, sizeof (FullPathNode), 400 SGSOFFSETOF(FullPathNode, fpn_node.pn_avl)); 401 lml->lm_fpavl = avlt; 402 } 403 404 fpn.fpn_node.pn_name = name; 405 fpn.fpn_node.pn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 /* 414 * Insert a name into the FullPathNode AVL tree for the link-map list. The 415 * objects NAME() is the path that would have originally been searched for, and 416 * is therefore the name to associate with any "where" value. If the object has 417 * a different PATHNAME(), perhaps because it has resolved to a different file 418 * (see fullpath()), then this name will be recorded as a separate FullPathNode 419 * (see load_file()). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullPathNode *fpnp; 425 426 if (where == 0) { 427 /* LINTED */ 428 Rt_map *_lmp = fpavl_recorded(lml, name, &where); 429 430 /* 431 * We better not get a hit now, we do not want duplicates in 432 * the tree. 433 */ 434 ASSERT(_lmp == 0); 435 } 436 437 /* 438 * Insert new node in tree. 439 */ 440 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == 0) 441 return (0); 442 443 fpnp->fpn_node.pn_name = name; 444 fpnp->fpn_node.pn_hash = sgs_str_hash(name); 445 fpnp->fpn_lmp = lmp; 446 447 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 448 free(fpnp); 449 return (0); 450 } 451 452 ASSERT(lml->lm_fpavl != NULL); 453 avl_insert(lml->lm_fpavl, fpnp, where); 454 return (1); 455 } 456 457 /* 458 * Remove an object from the FullPath AVL tree. Note, this is called *before* 459 * the objects link-map is torn down (remove_so), which is where any NAME() and 460 * PATHNAME() strings will be deallocated. 461 */ 462 void 463 fpavl_remove(Rt_map *lmp) 464 { 465 FullPathNode *fpnp; 466 Aliste idx; 467 468 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 469 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 470 free(fpnp); 471 } 472 free(FPNODE(lmp)); 473 FPNODE(lmp) = NULL; 474 } 475 476 /* 477 * Determine if a pathname has already been recorded on the not-found AVL tree. 478 * This tree maintains a node for each path name that ld.so.1 has explicitly 479 * inspected, but has failed to load during a single ld.so.1 operation. If the 480 * path name does not exist in this AVL tree, then the next insertion point is 481 * deposited in "where". This value can be used by nfavl_insert() to expedite 482 * the insertion. 483 */ 484 int 485 nfavl_recorded(const char *name, avl_index_t *where) 486 { 487 PathNode pn; 488 avl_tree_t *avlt; 489 490 /* 491 * Create the avl tree if required. 492 */ 493 if ((avlt = nfavl) == NULL) { 494 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 495 return (0); 496 avl_create(avlt, pnavl_compare, sizeof (PathNode), 497 SGSOFFSETOF(PathNode, pn_avl)); 498 nfavl = avlt; 499 } 500 501 pn.pn_name = name; 502 pn.pn_hash = sgs_str_hash(name); 503 504 if (avl_find(avlt, &pn, where) == NULL) 505 return (0); 506 507 return (1); 508 } 509 510 /* 511 * Insert a name into the not-found AVL tree. 512 */ 513 void 514 nfavl_insert(const char *name, avl_index_t where) 515 { 516 PathNode *pnp; 517 518 if (where == 0) { 519 /* LINTED */ 520 int in_nfavl = nfavl_recorded(name, &where); 521 522 /* 523 * We better not get a hit now, we do not want duplicates in 524 * the tree. 525 */ 526 ASSERT(in_nfavl == 0); 527 } 528 529 /* 530 * Insert new node in tree. 531 */ 532 if ((pnp = calloc(sizeof (PathNode), 1)) != 0) { 533 pnp->pn_name = name; 534 pnp->pn_hash = sgs_str_hash(name); 535 avl_insert(nfavl, pnp, where); 536 } 537 } 538 539 /* 540 * Prior to calling an object, either via a .plt or through dlsym(), make sure 541 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 542 * init's in the correct order, however, this order is typically based on needed 543 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 544 * still occur and result in bindings that were not captured during topological 545 * sorting. This routine compensates for this lack of binding information, and 546 * provides for dynamic .init firing. 547 */ 548 void 549 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 550 { 551 Rt_map **tobj; 552 553 /* 554 * If the caller is an auditor, and the destination isn't, then don't 555 * run any .inits (see comments in load_completion()). 556 */ 557 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 558 (LIST(clmp) != LIST(dlmp))) 559 return; 560 561 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 562 return; 563 564 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 565 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 566 return; 567 568 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 569 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 570 DBG_CALL(Dbg_util_no_init(dlmp)); 571 return; 572 } 573 574 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 575 tobj[0] = dlmp; 576 call_init(tobj, DBG_INIT_DYN); 577 } 578 } 579 580 /* 581 * In a threaded environment insure the thread responsible for loading an object 582 * has completed .init processing for that object before any new thread is 583 * allowed to access the object. This check is only valid with libthread 584 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 585 * 586 * When a new link-map is created, the thread that causes it to be loaded is 587 * identified by THREADID(dlmp). Compare this with the current thread to 588 * determine if it must be blocked. 589 * 590 * NOTE, there are a number of instances (typically only for .plt processing) 591 * where we must skip this test: 592 * 593 * . any thread id of 0 - threads that call thr_exit() may be in this state 594 * thus we can't deduce what tid they used to be. Also some of the 595 * lib/libthread worker threads have this id and must bind (to themselves 596 * or libc) for libthread to function. 597 * 598 * . libthread itself binds to libc, and as libthread is INITFIRST 599 * libc's .init can't have fired yet. Luckly libc's .init is not required 600 * by libthreads binding. 601 * 602 * . if the caller is an auditor, and the destination isn't, then don't 603 * block (see comments in load_completion()). 604 */ 605 void 606 /* ARGSUSED2 */ 607 is_dep_ready(Rt_map *dlmp, Rt_map *clmp, int what) 608 { 609 thread_t tid; 610 611 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 612 (LIST(clmp) != LIST(dlmp))) 613 return; 614 615 if ((rtld_flags & RT_FL_CONCUR) && 616 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 617 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 618 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 619 rtldexit(LIST(dlmp), 1); 620 } 621 } 622 623 /* 624 * Execute .{preinit|init|fini}array sections 625 */ 626 void 627 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 628 { 629 int start, stop, incr, ndx; 630 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 631 632 if (array == NULL) 633 return; 634 635 /* 636 * initarray & preinitarray are walked from beginning to end - while 637 * finiarray is walked from end to beginning. 638 */ 639 if (shtype == SHT_FINI_ARRAY) { 640 start = arraycnt - 1; 641 stop = incr = -1; 642 } else { 643 start = 0; 644 stop = arraycnt; 645 incr = 1; 646 } 647 648 /* 649 * Call the .*array[] entries 650 */ 651 for (ndx = start; ndx != stop; ndx += incr) { 652 void (*fptr)(void) = (void(*)())array[ndx]; 653 654 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 655 656 leave(LIST(lmp), 0); 657 (*fptr)(); 658 (void) enter(0); 659 } 660 } 661 662 663 /* 664 * Execute any .init sections. These are passed to us in an lmp array which 665 * (by default) will have been sorted. 666 */ 667 void 668 call_init(Rt_map **tobj, int flag) 669 { 670 Rt_map **_tobj, **_nobj; 671 static List pending = { NULL, NULL }; 672 673 /* 674 * If we're in the middle of an INITFIRST, this must complete before 675 * any new init's are fired. In this case add the object list to the 676 * pending queue and return. We'll pick up the queue after any 677 * INITFIRST objects have their init's fired. 678 */ 679 if (rtld_flags & RT_FL_INITFIRST) { 680 (void) list_append(&pending, tobj); 681 return; 682 } 683 684 /* 685 * Traverse the tobj array firing each objects init. 686 */ 687 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 688 Rt_map *lmp = *_tobj; 689 void (*iptr)() = INIT(lmp); 690 691 if (FLAGS(lmp) & FLG_RT_INITCALL) 692 continue; 693 694 FLAGS(lmp) |= FLG_RT_INITCALL; 695 696 /* 697 * Establish an initfirst state if necessary - no other inits 698 * will be fired (because of additional relocation bindings) 699 * when in this state. 700 */ 701 if (FLAGS(lmp) & FLG_RT_INITFRST) 702 rtld_flags |= RT_FL_INITFIRST; 703 704 if (INITARRAY(lmp) || iptr) { 705 Aliste idx; 706 Bnd_desc *bdp; 707 708 /* 709 * Make sure that all dependencies that have been 710 * relocated to are initialized before this objects 711 * .init is executed. This insures that a dependency 712 * on an external item that must first be initialized 713 * by its associated object is satisfied. 714 */ 715 for (APLIST_TRAVERSE(DEPENDS(lmp), idx, bdp)) { 716 if ((bdp->b_flags & BND_REFER) == 0) 717 continue; 718 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 719 } 720 DBG_CALL(Dbg_util_call_init(lmp, flag)); 721 } 722 723 if (iptr) { 724 leave(LIST(lmp), 0); 725 (*iptr)(); 726 (void) enter(0); 727 } 728 729 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 730 SHT_INIT_ARRAY); 731 732 if (INITARRAY(lmp) || iptr) 733 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 734 735 /* 736 * Set the initdone flag regardless of whether this object 737 * actually contains an .init section. This flag prevents us 738 * from processing this section again for an .init and also 739 * signifies that a .fini must be called should it exist. 740 * Clear the sort field for use in later .fini processing. 741 */ 742 FLAGS(lmp) |= FLG_RT_INITDONE; 743 SORTVAL(lmp) = -1; 744 745 /* 746 * Wake anyone up who might be waiting on this .init. 747 */ 748 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 749 DBG_CALL(Dbg_util_broadcast(lmp)); 750 (void) rt_cond_broadcast(CONDVAR(lmp)); 751 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 752 } 753 754 /* 755 * If we're firing an INITFIRST object, and other objects must 756 * be fired which are not INITFIRST, make sure we grab any 757 * pending objects that might have been delayed as this 758 * INITFIRST was processed. 759 */ 760 if ((rtld_flags & RT_FL_INITFIRST) && 761 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 762 Listnode *lnp; 763 Rt_map **pobj; 764 765 rtld_flags &= ~RT_FL_INITFIRST; 766 767 while ((lnp = pending.head) != NULL) { 768 if ((pending.head = lnp->next) == NULL) 769 pending.tail = NULL; 770 pobj = lnp->data; 771 free(lnp); 772 773 call_init(pobj, DBG_INIT_PEND); 774 } 775 } 776 } 777 free(tobj); 778 } 779 780 /* 781 * Function called by atexit(3C). Calls all .fini sections related with the 782 * mains dependent shared libraries in the order in which the shared libraries 783 * have been loaded. Skip any .fini defined in the main executable, as this 784 * will be called by crt0 (main was never marked as initdone). 785 */ 786 void 787 call_fini(Lm_list * lml, Rt_map ** tobj) 788 { 789 Rt_map **_tobj; 790 791 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 792 Rt_map *clmp, * lmp = *_tobj; 793 Aliste idx; 794 Bnd_desc *bdp; 795 796 /* 797 * If concurrency checking isn't enabled only fire .fini if 798 * .init has completed. We collect all .fini sections of 799 * objects that had their .init collected, but that doesn't 800 * mean at the time that the .init had completed. 801 */ 802 if ((rtld_flags & RT_FL_CONCUR) || 803 (FLAGS(lmp) & FLG_RT_INITDONE)) { 804 void (*fptr)(void) = FINI(lmp); 805 806 if (FINIARRAY(lmp) || fptr) { 807 /* 808 * If concurrency checking is enabled make sure 809 * this object's .init is completed before 810 * calling any .fini. 811 */ 812 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 813 DBG_CALL(Dbg_util_call_fini(lmp)); 814 } 815 816 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 817 SHT_FINI_ARRAY); 818 819 if (fptr) { 820 leave(LIST(lmp), 0); 821 (*fptr)(); 822 (void) enter(0); 823 } 824 } 825 826 /* 827 * Skip main, this is explicitly called last in atexit_fini(). 828 */ 829 if (FLAGS(lmp) & FLG_RT_ISMAIN) 830 continue; 831 832 /* 833 * Audit `close' operations at this point. The library has 834 * exercised its last instructions (regardless of whether it 835 * will be unmapped or not). 836 * 837 * First call any global auditing. 838 */ 839 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 840 _audit_objclose(&(auditors->ad_list), lmp); 841 842 /* 843 * Finally determine whether this object has local auditing 844 * requirements by inspecting itself and then its dependencies. 845 */ 846 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 847 continue; 848 849 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 850 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 851 852 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 853 clmp = bdp->b_caller; 854 855 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 856 _audit_objclose(&(AUDITORS(clmp)->ad_list), 857 lmp); 858 break; 859 } 860 } 861 } 862 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 863 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 864 865 free(tobj); 866 } 867 868 void 869 atexit_fini() 870 { 871 Rt_map **tobj, *lmp; 872 Lm_list *lml; 873 Listnode *lnp; 874 875 (void) enter(0); 876 877 rtld_flags |= RT_FL_ATEXIT; 878 879 lml = &lml_main; 880 lml->lm_flags |= LML_FLG_ATEXIT; 881 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 882 lmp = (Rt_map *)lml->lm_head; 883 884 /* 885 * Reverse topologically sort the main link-map for .fini execution. 886 */ 887 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 888 (tobj != (Rt_map **)S_ERROR)) 889 call_fini(lml, tobj); 890 891 /* 892 * Add an explicit close to main and ld.so.1. Although main's .fini is 893 * collected in call_fini() to provide for FINITARRAY processing, its 894 * audit_objclose is explicitly skipped. This provides for it to be 895 * called last, here. This is the reverse of the explicit calls to 896 * audit_objopen() made in setup(). 897 */ 898 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 899 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 900 audit_objclose(lmp, lmp); 901 } 902 903 /* 904 * Now that all .fini code has been run, see what unreferenced objects 905 * remain. 906 */ 907 unused(lml); 908 909 /* 910 * Traverse any alternative link-map lists. 911 */ 912 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 913 /* 914 * Ignore the base-link-map list, which has already been 915 * processed, and the runtime linkers link-map list, which is 916 * typically processed last. 917 */ 918 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 919 continue; 920 921 if ((lmp = (Rt_map *)lml->lm_head) == 0) 922 continue; 923 924 lml->lm_flags |= LML_FLG_ATEXIT; 925 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 926 927 /* 928 * Reverse topologically sort the link-map for .fini execution. 929 */ 930 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 931 (tobj != (Rt_map **)S_ERROR)) 932 call_fini(lml, tobj); 933 934 unused(lml); 935 } 936 937 /* 938 * Finally reverse topologically sort the runtime linkers link-map for 939 * .fini execution. 940 */ 941 lml = &lml_rtld; 942 lml->lm_flags |= LML_FLG_ATEXIT; 943 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 944 lmp = (Rt_map *)lml->lm_head; 945 946 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 947 (tobj != (Rt_map **)S_ERROR)) 948 call_fini(lml, tobj); 949 950 leave(&lml_main, 0); 951 } 952 953 954 /* 955 * This routine is called to complete any runtime linker activity which may have 956 * resulted in objects being loaded. This is called from all user entry points 957 * and from any internal dl*() requests. 958 */ 959 void 960 load_completion(Rt_map *nlmp) 961 { 962 Rt_map **tobj = 0; 963 Lm_list *nlml; 964 965 /* 966 * Establish any .init processing. Note, in a world of lazy loading, 967 * objects may have been loaded regardless of whether the users request 968 * was fulfilled (i.e., a dlsym() request may have failed to find a 969 * symbol but objects might have been loaded during its search). Thus, 970 * any tsorting starts from the nlmp (new link-maps) pointer and not 971 * necessarily from the link-map that may have satisfied the request. 972 * 973 * Note, the primary link-map has an initialization phase where dynamic 974 * .init firing is suppressed. This provides for a simple and clean 975 * handshake with the primary link-maps libc, which is important for 976 * establishing uberdata. In addition, auditors often obtain handles 977 * to primary link-map objects as the objects are loaded, so as to 978 * inspect the link-map for symbols. This inspection is allowed without 979 * running any code on the primary link-map, as running this code may 980 * reenter the auditor, who may not yet have finished its own 981 * initialization. 982 */ 983 if (nlmp) 984 nlml = LIST(nlmp); 985 986 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 987 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 988 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 989 RT_SORT_REV)) == (Rt_map **)S_ERROR) 990 tobj = 0; 991 } 992 993 /* 994 * Make sure any alternative link-map retrieves any external interfaces 995 * and initializes threads. 996 */ 997 if (nlmp && (nlml != &lml_main)) { 998 (void) rt_get_extern(nlml, nlmp); 999 rt_thr_init(nlml); 1000 } 1001 1002 /* 1003 * Traverse the list of new link-maps and register any dynamic TLS. 1004 * This storage is established for any objects not on the primary 1005 * link-map, and for any objects added to the primary link-map after 1006 * static TLS has been registered. 1007 */ 1008 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1009 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1010 Rt_map *lmp; 1011 1012 for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) { 1013 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1014 tls_modaddrem(lmp, TM_FLG_MODADD); 1015 } 1016 nlml->lm_tls = 0; 1017 } 1018 1019 /* 1020 * Fire any .init's. 1021 */ 1022 if (tobj) 1023 call_init(tobj, DBG_INIT_SORT); 1024 } 1025 1026 /* 1027 * Append an item to the specified list, and return a pointer to the list 1028 * node created. 1029 */ 1030 Listnode * 1031 list_append(List *lst, const void *item) 1032 { 1033 Listnode *_lnp; 1034 1035 if ((_lnp = malloc(sizeof (Listnode))) == 0) 1036 return (0); 1037 1038 _lnp->data = (void *)item; 1039 _lnp->next = NULL; 1040 1041 if (lst->head == NULL) 1042 lst->tail = lst->head = _lnp; 1043 else { 1044 lst->tail->next = _lnp; 1045 lst->tail = lst->tail->next; 1046 } 1047 return (_lnp); 1048 } 1049 1050 1051 /* 1052 * Add an item after specified listnode, and return a pointer to the list 1053 * node created. 1054 */ 1055 Listnode * 1056 list_insert(List *lst, const void *item, Listnode *lnp) 1057 { 1058 Listnode *_lnp; 1059 1060 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1061 return (0); 1062 1063 _lnp->data = (void *)item; 1064 _lnp->next = lnp->next; 1065 if (_lnp->next == NULL) 1066 lst->tail = _lnp; 1067 lnp->next = _lnp; 1068 return (_lnp); 1069 } 1070 1071 /* 1072 * Prepend an item to the specified list, and return a pointer to the 1073 * list node created. 1074 */ 1075 Listnode * 1076 list_prepend(List * lst, const void * item) 1077 { 1078 Listnode *_lnp; 1079 1080 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1081 return (0); 1082 1083 _lnp->data = (void *)item; 1084 1085 if (lst->head == NULL) { 1086 _lnp->next = NULL; 1087 lst->tail = lst->head = _lnp; 1088 } else { 1089 _lnp->next = lst->head; 1090 lst->head = _lnp; 1091 } 1092 return (_lnp); 1093 } 1094 1095 1096 /* 1097 * Delete a 'listnode' from a list. 1098 */ 1099 void 1100 list_delete(List *lst, void *item) 1101 { 1102 Listnode *clnp, *plnp; 1103 1104 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1105 if (item == clnp->data) 1106 break; 1107 plnp = clnp; 1108 } 1109 1110 if (clnp == 0) 1111 return; 1112 1113 if (lst->head == clnp) 1114 lst->head = clnp->next; 1115 if (lst->tail == clnp) 1116 lst->tail = plnp; 1117 1118 if (plnp) 1119 plnp->next = clnp->next; 1120 1121 free(clnp); 1122 } 1123 1124 /* 1125 * Append an item to the specified link map control list. 1126 */ 1127 void 1128 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1129 { 1130 Lm_cntl *lmc; 1131 int add = 1; 1132 1133 /* 1134 * Indicate that this link-map list has a new object. 1135 */ 1136 (lml->lm_obj)++; 1137 1138 /* 1139 * If we're about to add a new object to the main link-map control list, 1140 * alert the debuggers that we are about to mess with this list. 1141 * Additions of individual objects to the main link-map control list 1142 * occur during initial setup as the applications immediate dependencies 1143 * are loaded. Individual objects are also loaded on the main link-map 1144 * control list of new alternative link-map control lists. 1145 */ 1146 if ((lmco == ALIST_OFF_DATA) && 1147 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1148 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1149 1150 /* LINTED */ 1151 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1152 1153 /* 1154 * A link-map list header points to one of more link-map control lists 1155 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1156 * the list of relocated objects. Other lists maintain objects that 1157 * are still being analyzed or relocated. This list provides the core 1158 * link-map list information used by all ld.so.1 routines. 1159 */ 1160 if (lmc->lc_head == NULL) { 1161 /* 1162 * If this is the first link-map for the given control list, 1163 * initialize the list. 1164 */ 1165 lmc->lc_head = lmc->lc_tail = lmp; 1166 add = 0; 1167 1168 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1169 Rt_map *tlmp; 1170 1171 /* 1172 * If this is an interposer then append the link-map following 1173 * any other interposers (these are objects that have been 1174 * previously preloaded, or were identified with -z interpose). 1175 * Interposers can only be inserted on the first link-map 1176 * control list, as once relocation has started, interposition 1177 * from new interposers can't be guaranteed. 1178 * 1179 * NOTE: We do not interpose on the head of a list. This model 1180 * evolved because dynamic executables have already been fully 1181 * relocated within themselves and thus can't be interposed on. 1182 * Nowadays it's possible to have shared objects at the head of 1183 * a list, which conceptually means they could be interposed on. 1184 * But, shared objects can be created via dldump() and may only 1185 * be partially relocated (just relatives), in which case they 1186 * are interposable, but are marked as fixed (ET_EXEC). 1187 * 1188 * Thus we really don't have a clear method of deciding when the 1189 * head of a link-map is interposable. So, to be consistent, 1190 * for now only add interposers after the link-map lists head 1191 * object. 1192 */ 1193 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1194 tlmp = (Rt_map *)NEXT(tlmp)) { 1195 1196 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1197 continue; 1198 1199 /* 1200 * Insert the new link-map before this non-interposer, 1201 * and indicate an interposer is found. 1202 */ 1203 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1204 PREV(lmp) = PREV(tlmp); 1205 1206 NEXT(lmp) = (Link_map *)tlmp; 1207 PREV(tlmp) = (Link_map *)lmp; 1208 1209 lmc->lc_flags |= LMC_FLG_REANALYZE; 1210 add = 0; 1211 break; 1212 } 1213 } 1214 1215 /* 1216 * Fall through to appending the new link map to the tail of the list. 1217 * If we're processing the initial objects of this link-map list, add 1218 * them to the backward compatibility list. 1219 */ 1220 if (add) { 1221 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1222 PREV(lmp) = (Link_map *)lmc->lc_tail; 1223 lmc->lc_tail = lmp; 1224 } 1225 1226 /* 1227 * Having added this link-map to a control list, indicate which control 1228 * list the link-map belongs to. Note, control list information is 1229 * always maintained as an offset, as the Alist can be reallocated. 1230 */ 1231 CNTL(lmp) = lmco; 1232 1233 /* 1234 * Indicate if an interposer is found. Note that the first object on a 1235 * link-map can be explicitly defined as an interposer so that it can 1236 * provide interposition over direct binding requests. 1237 */ 1238 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1239 lml->lm_flags |= LML_FLG_INTRPOSE; 1240 1241 /* 1242 * For backward compatibility with debuggers, the link-map list contains 1243 * pointers to the main control list. 1244 */ 1245 if (lmco == ALIST_OFF_DATA) { 1246 lml->lm_head = lmc->lc_head; 1247 lml->lm_tail = lmc->lc_tail; 1248 } 1249 } 1250 1251 /* 1252 * Delete an item from the specified link map control list. 1253 */ 1254 void 1255 lm_delete(Lm_list *lml, Rt_map *lmp) 1256 { 1257 Lm_cntl *lmc; 1258 1259 /* 1260 * If the control list pointer hasn't been initialized, this object 1261 * never got added to a link-map list. 1262 */ 1263 if (CNTL(lmp) == 0) 1264 return; 1265 1266 /* 1267 * If we're about to delete an object from the main link-map control 1268 * list, alert the debuggers that we are about to mess with this list. 1269 */ 1270 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1271 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1272 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1273 1274 /* LINTED */ 1275 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1276 1277 if (lmc->lc_head == lmp) 1278 lmc->lc_head = (Rt_map *)NEXT(lmp); 1279 else 1280 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1281 1282 if (lmc->lc_tail == lmp) 1283 lmc->lc_tail = (Rt_map *)PREV(lmp); 1284 else 1285 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1286 1287 /* 1288 * For backward compatibility with debuggers, the link-map list contains 1289 * pointers to the main control list. 1290 */ 1291 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1292 lml->lm_head = lmc->lc_head; 1293 lml->lm_tail = lmc->lc_tail; 1294 } 1295 1296 /* 1297 * Indicate we have one less object on this control list. 1298 */ 1299 (lml->lm_obj)--; 1300 } 1301 1302 /* 1303 * Move a link-map control list to another. Objects that are being relocated 1304 * are maintained on secondary control lists. Once their relocation is 1305 * complete, the entire list is appended to the previous control list, as this 1306 * list must have been the trigger for generating the new control list. 1307 */ 1308 void 1309 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1310 { 1311 Rt_map *lmp; 1312 1313 /* 1314 * If we're about to add a new family of objects to the main link-map 1315 * control list, alert the debuggers that we are about to mess with this 1316 * list. Additions of object families to the main link-map control 1317 * list occur during lazy loading, filtering and dlopen(). 1318 */ 1319 if ((plmco == ALIST_OFF_DATA) && 1320 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1321 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1322 1323 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1324 1325 /* 1326 * Indicate each new link-map has been moved to the previous link-map 1327 * control list. 1328 */ 1329 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1330 CNTL(lmp) = plmco; 1331 1332 /* 1333 * Move the new link-map control list, to the callers link-map control 1334 * list. 1335 */ 1336 if (plmc->lc_head == 0) { 1337 plmc->lc_head = nlmc->lc_head; 1338 PREV(nlmc->lc_head) = 0; 1339 } else { 1340 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1341 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1342 } 1343 1344 plmc->lc_tail = nlmc->lc_tail; 1345 nlmc->lc_head = nlmc->lc_tail = 0; 1346 1347 /* 1348 * For backward compatibility with debuggers, the link-map list contains 1349 * pointers to the main control list. 1350 */ 1351 if (plmco == ALIST_OFF_DATA) { 1352 lml->lm_head = plmc->lc_head; 1353 lml->lm_tail = plmc->lc_tail; 1354 } 1355 } 1356 1357 /* 1358 * Environment variables can have a variety of defined permutations, and thus 1359 * the following infrastructure exists to allow this variety and to select the 1360 * required definition. 1361 * 1362 * Environment variables can be defined as 32- or 64-bit specific, and if so 1363 * they will take precedence over any instruction set neutral form. Typically 1364 * this is only useful when the environment value is an informational string. 1365 * 1366 * Environment variables may be obtained from the standard user environment or 1367 * from a configuration file. The latter provides a fallback if no user 1368 * environment setting is found, and can take two forms: 1369 * 1370 * . a replaceable definition - this will be used if no user environment 1371 * setting has been seen, or 1372 * 1373 * . an permanent definition - this will be used no matter what user 1374 * environment setting is seen. In the case of list variables it will be 1375 * appended to any process environment setting seen. 1376 * 1377 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1378 * override any replaceable environment variables from a configuration file. 1379 */ 1380 static u_longlong_t rplgen; /* replaceable generic */ 1381 /* variables */ 1382 static u_longlong_t rplisa; /* replaceable ISA specific */ 1383 /* variables */ 1384 static u_longlong_t prmgen; /* permanent generic */ 1385 /* variables */ 1386 static u_longlong_t prmisa; /* permanent ISA specific */ 1387 /* variables */ 1388 1389 /* 1390 * Classify an environment variables type. 1391 */ 1392 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1393 /* the wrong ISA */ 1394 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1395 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1396 /* config file */ 1397 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1398 1399 /* 1400 * Identify all environment variables. 1401 */ 1402 #define ENV_FLG_AUDIT 0x0000000001ULL 1403 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1404 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1405 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1406 #define ENV_FLG_BINDINGS 0x0000000010ULL 1407 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1408 #define ENV_FLG_CONFGEN 0x0000000040ULL 1409 #define ENV_FLG_CONFIG 0x0000000080ULL 1410 #define ENV_FLG_DEBUG 0x0000000100ULL 1411 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1412 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1413 #define ENV_FLG_FLAGS 0x0000000800ULL 1414 #define ENV_FLG_INIT 0x0000001000ULL 1415 #define ENV_FLG_LIBPATH 0x0000002000ULL 1416 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1417 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1418 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1419 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1420 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1421 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1422 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1423 #define ENV_FLG_NODIRECT 0x0000200000ULL 1424 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1425 #define ENV_FLG_NOLAZY 0x0000800000ULL 1426 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1427 #define ENV_FLG_NOVERSION 0x0002000000ULL 1428 #define ENV_FLG_PRELOAD 0x0004000000ULL 1429 #define ENV_FLG_PROFILE 0x0008000000ULL 1430 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1431 #define ENV_FLG_SIGNAL 0x0020000000ULL 1432 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1433 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1434 #define ENV_FLG_UNREF 0x0100000000ULL 1435 #define ENV_FLG_UNUSED 0x0200000000ULL 1436 #define ENV_FLG_VERBOSE 0x0400000000ULL 1437 #define ENV_FLG_WARN 0x0800000000ULL 1438 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1439 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1440 #define ENV_FLG_NOUNRESWEAK 0x4000000000ULL 1441 #define ENV_FLG_NOPAREXT 0x8000000000ULL 1442 1443 #ifdef SIEBEL_DISABLE 1444 #define ENV_FLG_FIX_1 0x8000000000ULL 1445 #endif 1446 1447 #define SEL_REPLACE 0x0001 1448 #define SEL_PERMANT 0x0002 1449 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1450 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1451 #define SEL_ACT_STR 0x0400 /* setting string value */ 1452 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1453 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1454 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1455 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1456 1457 /* 1458 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1459 * and len specifies its length (comparing a strings length before the string 1460 * itself speed things up). s2 points to the token itself which has already 1461 * had any leading white-space removed. 1462 */ 1463 static void 1464 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1465 Word *lmtflags, uint_t env_flags, int aout) 1466 { 1467 u_longlong_t variable = 0; 1468 ushort_t select = 0; 1469 const char **str; 1470 Word val = 0; 1471 1472 /* 1473 * Determine whether we're dealing with a replaceable or permanent 1474 * string. 1475 */ 1476 if (env_flags & ENV_TYP_PERMANT) { 1477 /* 1478 * If the string is from a configuration file and defined as 1479 * permanent, assign it as permanent. 1480 */ 1481 select |= SEL_PERMANT; 1482 } else 1483 select |= SEL_REPLACE; 1484 1485 /* 1486 * Parse the variable given. 1487 * 1488 * The LD_AUDIT family. 1489 */ 1490 if (*s1 == 'A') { 1491 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1492 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1493 /* 1494 * Replaceable and permanent audit objects can exist. 1495 */ 1496 select |= SEL_ACT_STR; 1497 if (select & SEL_REPLACE) 1498 str = &rpl_audit; 1499 else { 1500 str = &prm_audit; 1501 rpl_audit = 0; 1502 } 1503 variable = ENV_FLG_AUDIT; 1504 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1505 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1506 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1507 /* 1508 * A specialized variable for plt_exit() use, not 1509 * documented for general use. 1510 */ 1511 select |= SEL_ACT_SPEC_2; 1512 variable = ENV_FLG_AUDIT_ARGS; 1513 } 1514 } 1515 /* 1516 * The LD_BIND family and LD_BREADTH (historic). 1517 */ 1518 else if (*s1 == 'B') { 1519 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1520 MSG_ORIG(MSG_LD_BIND_LAZY), 1521 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1522 select |= SEL_ACT_RT2; 1523 val = RT_FL2_BINDLAZY; 1524 variable = ENV_FLG_BIND_LAZY; 1525 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1526 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1527 select |= SEL_ACT_RT2; 1528 val = RT_FL2_BINDNOW; 1529 variable = ENV_FLG_BIND_NOW; 1530 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1531 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1532 /* 1533 * Another trick, enabled to help debug AOUT 1534 * applications under BCP, but not documented for 1535 * general use. 1536 */ 1537 select |= SEL_ACT_RT; 1538 val = RT_FL_NOBIND; 1539 variable = ENV_FLG_BIND_NOT; 1540 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1541 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1542 /* 1543 * This variable is simply for backward compatibility. 1544 * If this and LD_DEBUG are both specified, only one of 1545 * the strings is going to get processed. 1546 */ 1547 select |= SEL_ACT_SPEC_2; 1548 variable = ENV_FLG_BINDINGS; 1549 #ifndef LD_BREADTH_DISABLED 1550 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1551 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1552 /* 1553 * Besides some old patches this is no longer available. 1554 */ 1555 rtld_flags |= RT_FL_BREADTH; 1556 return; 1557 #endif 1558 } 1559 } 1560 /* 1561 * LD_CONCURRENCY and LD_CONFIG family. 1562 */ 1563 else if (*s1 == 'C') { 1564 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1565 MSG_ORIG(MSG_LD_CONCURRENCY), 1566 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1567 /* 1568 * Waiting in the wings, as concurrency checking isn't 1569 * yet enabled. 1570 */ 1571 select |= SEL_ACT_SPEC_2; 1572 variable = ENV_FLG_CONCURRENCY; 1573 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1574 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1575 /* 1576 * Set by crle(1) to indicate it's building a 1577 * configuration file, not documented for general use. 1578 */ 1579 select |= SEL_ACT_SPEC_2; 1580 variable = ENV_FLG_CONFGEN; 1581 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1582 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1583 /* 1584 * Secure applications must use a default configuration 1585 * file. A setting from a configuration file doesn't 1586 * make sense (given we must be reading a configuration 1587 * file to have gotten this). 1588 */ 1589 if ((rtld_flags & RT_FL_SECURE) || 1590 (env_flags & ENV_TYP_CONFIG)) 1591 return; 1592 select |= SEL_ACT_STR; 1593 str = &config->c_name; 1594 variable = ENV_FLG_CONFIG; 1595 } 1596 } 1597 /* 1598 * The LD_DEBUG family and LD_DEMANGLE. 1599 */ 1600 else if (*s1 == 'D') { 1601 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1602 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1603 select |= SEL_ACT_STR; 1604 if (select & SEL_REPLACE) 1605 str = &rpl_debug; 1606 else { 1607 str = &prm_debug; 1608 rpl_debug = 0; 1609 } 1610 variable = ENV_FLG_DEBUG; 1611 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1612 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1613 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1614 select |= SEL_ACT_STR; 1615 str = &dbg_file; 1616 variable = ENV_FLG_DEBUG_OUTPUT; 1617 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1618 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1619 select |= SEL_ACT_RT; 1620 val = RT_FL_DEMANGLE; 1621 variable = ENV_FLG_DEMANGLE; 1622 } 1623 } 1624 /* 1625 * LD_FLAGS - collect the best variable definition. On completion of 1626 * environment variable processing pass the result to ld_flags_env() 1627 * where they'll be decomposed and passed back to this routine. 1628 */ 1629 else if (*s1 == 'F') { 1630 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1631 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1632 select |= SEL_ACT_SPEC_1; 1633 if (select & SEL_REPLACE) 1634 str = &rpl_ldflags; 1635 else { 1636 str = &prm_ldflags; 1637 rpl_ldflags = 0; 1638 } 1639 variable = ENV_FLG_FLAGS; 1640 } 1641 } 1642 /* 1643 * LD_INIT (internal, used by ldd(1)). 1644 */ 1645 else if (*s1 == 'I') { 1646 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1647 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1648 select |= SEL_ACT_LML; 1649 val = LML_FLG_TRC_INIT; 1650 variable = ENV_FLG_INIT; 1651 } 1652 } 1653 /* 1654 * The LD_LIBRARY_PATH and LD_LOAD families. 1655 */ 1656 else if (*s1 == 'L') { 1657 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1658 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1659 select |= SEL_ACT_SPEC_1; 1660 if (select & SEL_REPLACE) 1661 str = &rpl_libpath; 1662 else { 1663 str = &prm_libpath; 1664 rpl_libpath = 0; 1665 } 1666 variable = ENV_FLG_LIBPATH; 1667 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1668 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1669 /* 1670 * Internal use by crle(1), not documented for general 1671 * use. 1672 */ 1673 select |= SEL_ACT_LML; 1674 val = LML_FLG_LOADAVAIL; 1675 variable = ENV_FLG_LOADAVAIL; 1676 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1677 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1678 select |= SEL_ACT_SPEC_2; 1679 variable = ENV_FLG_LOADFLTR; 1680 } 1681 } 1682 /* 1683 * The LD_NO family. 1684 */ 1685 else if (*s1 == 'N') { 1686 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1687 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1688 select |= SEL_ACT_RT; 1689 val = RT_FL_NOAUDIT; 1690 variable = ENV_FLG_NOAUDIT; 1691 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1692 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1693 select |= SEL_ACT_RT; 1694 val = RT_FL_NOAUXFLTR; 1695 variable = ENV_FLG_NOAUXFLTR; 1696 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1697 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1698 select |= SEL_ACT_RT; 1699 val = RT_FL_NOBAPLT; 1700 variable = ENV_FLG_NOBAPLT; 1701 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1702 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1703 select |= SEL_ACT_RT; 1704 val = RT_FL_NOCFG; 1705 variable = ENV_FLG_NOCONFIG; 1706 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1707 MSG_ORIG(MSG_LD_NODIRCONFIG), 1708 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1709 select |= SEL_ACT_RT; 1710 val = RT_FL_NODIRCFG; 1711 variable = ENV_FLG_NODIRCONFIG; 1712 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1713 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1714 select |= SEL_ACT_LMLT; 1715 val = LML_TFLG_NODIRECT; 1716 variable = ENV_FLG_NODIRECT; 1717 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1718 MSG_ORIG(MSG_LD_NOENVCONFIG), 1719 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1720 select |= SEL_ACT_RT; 1721 val = RT_FL_NOENVCFG; 1722 variable = ENV_FLG_NOENVCONFIG; 1723 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1724 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1725 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1726 select |= SEL_ACT_RT2; 1727 val = RT_FL2_NOFLTCFG; 1728 variable = ENV_FLG_NOFLTCONFIG; 1729 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1730 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1731 select |= SEL_ACT_LMLT; 1732 val = LML_TFLG_NOLAZYLD; 1733 variable = ENV_FLG_NOLAZY; 1734 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1735 MSG_ORIG(MSG_LD_NOOBJALTER), 1736 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1737 select |= SEL_ACT_RT; 1738 val = RT_FL_NOOBJALT; 1739 variable = ENV_FLG_NOOBJALTER; 1740 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1741 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1742 select |= SEL_ACT_RT; 1743 val = RT_FL_NOVERSION; 1744 variable = ENV_FLG_NOVERSION; 1745 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1746 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1747 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1748 /* 1749 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1750 */ 1751 select |= SEL_ACT_LML; 1752 val = LML_FLG_TRC_NOUNRESWEAK; 1753 variable = ENV_FLG_NOUNRESWEAK; 1754 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1755 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1756 select |= SEL_ACT_LML; 1757 val = LML_FLG_TRC_NOPAREXT; 1758 variable = ENV_FLG_NOPAREXT; 1759 } 1760 } 1761 /* 1762 * LD_ORIGIN. 1763 */ 1764 else if (*s1 == 'O') { 1765 #ifndef EXPAND_RELATIVE 1766 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1767 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1768 /* 1769 * Besides some old patches this is no longer required. 1770 */ 1771 rtld_flags |= RT_FL_RELATIVE; 1772 } 1773 #endif 1774 return; 1775 } 1776 /* 1777 * LD_PRELOAD and LD_PROFILE family. 1778 */ 1779 else if (*s1 == 'P') { 1780 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1781 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1782 select |= SEL_ACT_STR; 1783 if (select & SEL_REPLACE) 1784 str = &rpl_preload; 1785 else { 1786 str = &prm_preload; 1787 rpl_preload = 0; 1788 } 1789 variable = ENV_FLG_PRELOAD; 1790 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1791 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1792 /* 1793 * Only one user library can be profiled at a time. 1794 */ 1795 select |= SEL_ACT_SPEC_2; 1796 variable = ENV_FLG_PROFILE; 1797 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1798 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1799 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1800 /* 1801 * Only one user library can be profiled at a time. 1802 */ 1803 select |= SEL_ACT_STR; 1804 str = &profile_out; 1805 variable = ENV_FLG_PROFILE_OUTPUT; 1806 } 1807 } 1808 /* 1809 * LD_SIGNAL. 1810 */ 1811 else if (*s1 == 'S') { 1812 if (rtld_flags & RT_FL_SECURE) 1813 return; 1814 if ((len == MSG_LD_SIGNAL_SIZE) && 1815 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1816 MSG_LD_SIGNAL_SIZE) == 0)) { 1817 select |= SEL_ACT_SPEC_2; 1818 variable = ENV_FLG_SIGNAL; 1819 } 1820 } 1821 /* 1822 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1823 * the key to enabling all other ldd(1) specific environment variables. 1824 * In case an auditor is called, which in turn might exec(2) a 1825 * subprocess, this variable is disabled, so that any subprocess 1826 * escapes ldd(1) processing. 1827 */ 1828 else if (*s1 == 'T') { 1829 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1830 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1831 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1832 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1833 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1834 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1835 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1836 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1837 char *s0 = (char *)s1; 1838 1839 select |= SEL_ACT_SPEC_2; 1840 variable = ENV_FLG_TRACE_OBJS; 1841 1842 #if defined(__sparc) || defined(__x86) 1843 /* 1844 * The simplest way to "disable" this variable is to 1845 * truncate this string to "LD_'\0'". This string is 1846 * ignored by any ld.so.1 environment processing. 1847 * Use of such interfaces as unsetenv(3c) are overkill, 1848 * and would drag too much libc implementation detail 1849 * into ld.so.1. 1850 */ 1851 *s0 = '\0'; 1852 #else 1853 /* 1854 * Verify that the above write is appropriate for any new platforms. 1855 */ 1856 #error unsupported architecture! 1857 #endif 1858 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1859 MSG_ORIG(MSG_LD_TRACE_PTHS), 1860 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1861 select |= SEL_ACT_LML; 1862 val = LML_FLG_TRC_SEARCH; 1863 variable = ENV_FLG_TRACE_PTHS; 1864 } 1865 } 1866 /* 1867 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1868 */ 1869 else if (*s1 == 'U') { 1870 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1871 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1872 select |= SEL_ACT_LML; 1873 val = LML_FLG_TRC_UNREF; 1874 variable = ENV_FLG_UNREF; 1875 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1876 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1877 select |= SEL_ACT_LML; 1878 val = LML_FLG_TRC_UNUSED; 1879 variable = ENV_FLG_UNUSED; 1880 } 1881 } 1882 /* 1883 * LD_VERBOSE (internal, used by ldd(1)). 1884 */ 1885 else if (*s1 == 'V') { 1886 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1887 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1888 select |= SEL_ACT_LML; 1889 val = LML_FLG_TRC_VERBOSE; 1890 variable = ENV_FLG_VERBOSE; 1891 } 1892 } 1893 /* 1894 * LD_WARN (internal, used by ldd(1)). 1895 */ 1896 else if (*s1 == 'W') { 1897 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1898 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1899 select |= SEL_ACT_LML; 1900 val = LML_FLG_TRC_WARN; 1901 variable = ENV_FLG_WARN; 1902 } 1903 #ifdef SIEBEL_DISABLE 1904 } 1905 /* 1906 * LD__FIX__ (undocumented, enable future technology that can't be 1907 * delivered in a patch release). 1908 */ 1909 else if (*s1 == '_') { 1910 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1911 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1912 select |= SEL_ACT_RT; 1913 val = RT_FL_DISFIX_1; 1914 variable = ENV_FLG_FIX_1; 1915 } 1916 #endif 1917 } 1918 if (variable == 0) 1919 return; 1920 1921 /* 1922 * If the variable is already processed with ISA specific variable, 1923 * no further processing needed. 1924 */ 1925 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1926 ((select & SEL_PERMANT) && (prmisa & variable))) 1927 return; 1928 1929 /* 1930 * Now mark the appropriate variables. 1931 * If the replaceable variable is already set, then the 1932 * process environment variable must be set. Any replaceable 1933 * variable specified in a configuration file can be ignored. 1934 */ 1935 if (env_flags & ENV_TYP_ISA) { 1936 /* 1937 * This is ISA setting. We do the setting 1938 * even if s2 is NULL. 1939 * If s2 is NULL, we might need to undo 1940 * the setting. 1941 */ 1942 if (select & SEL_REPLACE) { 1943 if (rplisa & variable) 1944 return; 1945 rplisa |= variable; 1946 } else { 1947 prmisa |= variable; 1948 } 1949 } else if (s2) { 1950 /* 1951 * This is non0-ISA setting 1952 */ 1953 if (select & SEL_REPLACE) { 1954 if (rplgen & variable) 1955 return; 1956 rplgen |= variable; 1957 } else 1958 prmgen |= variable; 1959 } else 1960 /* 1961 * This is non-ISA setting which 1962 * can be ignored. 1963 */ 1964 return; 1965 1966 /* 1967 * Now perform the setting. 1968 */ 1969 if (select & SEL_ACT_RT) { 1970 if (s2) 1971 rtld_flags |= val; 1972 else 1973 rtld_flags &= ~val; 1974 } else if (select & SEL_ACT_RT2) { 1975 if (s2) 1976 rtld_flags2 |= val; 1977 else 1978 rtld_flags2 &= ~val; 1979 } else if (select & SEL_ACT_STR) 1980 *str = s2; 1981 else if (select & SEL_ACT_LML) { 1982 if (s2) 1983 *lmflags |= val; 1984 else 1985 *lmflags &= ~val; 1986 } else if (select & SEL_ACT_LMLT) { 1987 if (s2) 1988 *lmtflags |= val; 1989 else 1990 *lmtflags &= ~val; 1991 } else if (select & SEL_ACT_SPEC_1) { 1992 /* 1993 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1994 */ 1995 *str = s2; 1996 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1997 if (s2) { 1998 if (variable == ENV_FLG_FLAGS) 1999 env_info |= ENV_INF_FLAGCFG; 2000 else 2001 env_info |= ENV_INF_PATHCFG; 2002 } else { 2003 if (variable == ENV_FLG_FLAGS) 2004 env_info &= ~ENV_INF_FLAGCFG; 2005 else 2006 env_info &= ~ENV_INF_PATHCFG; 2007 } 2008 } 2009 } else if (select & SEL_ACT_SPEC_2) { 2010 /* 2011 * variables can be: ENV_FLG_ 2012 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 2013 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 2014 */ 2015 if (variable == ENV_FLG_AUDIT_ARGS) { 2016 if (s2) { 2017 audit_argcnt = atoi(s2); 2018 audit_argcnt += audit_argcnt % 2; 2019 } else 2020 audit_argcnt = 0; 2021 } else if (variable == ENV_FLG_BINDINGS) { 2022 if (s2) 2023 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 2024 else 2025 rpl_debug = 0; 2026 } else if (variable == ENV_FLG_CONCURRENCY) { 2027 if (s2) 2028 rtld_flags &= ~RT_FL_NOCONCUR; 2029 else 2030 rtld_flags |= RT_FL_NOCONCUR; 2031 } else if (variable == ENV_FLG_CONFGEN) { 2032 if (s2) { 2033 rtld_flags |= RT_FL_CONFGEN; 2034 *lmflags |= LML_FLG_IGNRELERR; 2035 } else { 2036 rtld_flags &= ~RT_FL_CONFGEN; 2037 *lmflags &= ~LML_FLG_IGNRELERR; 2038 } 2039 } else if (variable == ENV_FLG_LOADFLTR) { 2040 if (s2) { 2041 *lmtflags |= LML_TFLG_LOADFLTR; 2042 if (*s2 == '2') 2043 rtld_flags |= RT_FL_WARNFLTR; 2044 } else { 2045 *lmtflags &= ~LML_TFLG_LOADFLTR; 2046 rtld_flags &= ~RT_FL_WARNFLTR; 2047 } 2048 } else if (variable == ENV_FLG_PROFILE) { 2049 profile_name = s2; 2050 if (s2) { 2051 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2052 return; 2053 } 2054 /* BEGIN CSTYLED */ 2055 if (rtld_flags & RT_FL_SECURE) { 2056 profile_lib = 2057 #if defined(_ELF64) 2058 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2059 #else 2060 MSG_ORIG(MSG_PTH_LDPROFSE); 2061 #endif 2062 } else { 2063 profile_lib = 2064 #if defined(_ELF64) 2065 MSG_ORIG(MSG_PTH_LDPROF_64); 2066 #else 2067 MSG_ORIG(MSG_PTH_LDPROF); 2068 #endif 2069 } 2070 /* END CSTYLED */ 2071 } else 2072 profile_lib = 0; 2073 } else if (variable == ENV_FLG_SIGNAL) { 2074 killsig = s2 ? atoi(s2) : SIGKILL; 2075 } else if (variable == ENV_FLG_TRACE_OBJS) { 2076 if (s2) { 2077 *lmflags |= LML_FLG_TRC_ENABLE; 2078 if (*s2 == '2') 2079 *lmflags |= LML_FLG_TRC_LDDSTUB; 2080 } else 2081 *lmflags &= 2082 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2083 } 2084 } 2085 } 2086 2087 /* 2088 * Determine whether we have an architecture specific environment variable. 2089 * If we do, and we're the wrong architecture, it'll just get ignored. 2090 * Otherwise the variable is processed in it's architecture neutral form. 2091 */ 2092 static int 2093 ld_arch_env(const char *s1, size_t *len) 2094 { 2095 size_t _len = *len - 3; 2096 2097 if (s1[_len++] == '_') { 2098 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2099 #if defined(_ELF64) 2100 return (ENV_TYP_IGNORE); 2101 #else 2102 *len = *len - 3; 2103 return (ENV_TYP_ISA); 2104 #endif 2105 } 2106 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2107 #if defined(_ELF64) 2108 *len = *len - 3; 2109 return (ENV_TYP_ISA); 2110 #else 2111 return (ENV_TYP_IGNORE); 2112 #endif 2113 } 2114 } 2115 return (0); 2116 } 2117 2118 2119 /* 2120 * Process an LD_FLAGS environment variable. The value can be a comma 2121 * separated set of tokens, which are sent (in upper case) into the generic 2122 * LD_XXXX environment variable engine. For example: 2123 * 2124 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2125 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2126 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2127 * or 2128 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2129 */ 2130 static int 2131 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2132 uint_t env_flags, int aout) 2133 { 2134 char *nstr, *sstr, *estr = 0; 2135 size_t nlen, len; 2136 2137 if (str == 0) 2138 return (0); 2139 2140 /* 2141 * Create a new string as we're going to transform the token(s) into 2142 * uppercase and separate tokens with nulls. 2143 */ 2144 len = strlen(str); 2145 if ((nstr = malloc(len + 1)) == 0) 2146 return (1); 2147 (void) strcpy(nstr, str); 2148 2149 for (sstr = nstr; sstr; sstr++, len--) { 2150 int flags; 2151 2152 if ((*sstr != '\0') && (*sstr != ',')) { 2153 if (estr == 0) { 2154 if (*sstr == '=') 2155 estr = sstr; 2156 else { 2157 /* 2158 * Translate token to uppercase. Don't 2159 * use toupper(3C) as including this 2160 * code doubles the size of ld.so.1. 2161 */ 2162 if ((*sstr >= 'a') && (*sstr <= 'z')) 2163 *sstr = *sstr - ('a' - 'A'); 2164 } 2165 } 2166 continue; 2167 } 2168 2169 *sstr = '\0'; 2170 if (estr) { 2171 nlen = estr - nstr; 2172 if ((*++estr == '\0') || (*estr == ',')) 2173 estr = 0; 2174 } else 2175 nlen = sstr - nstr; 2176 2177 /* 2178 * Fabricate a boolean definition for any unqualified variable. 2179 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2180 * The value is sufficient to assert any boolean variables, plus 2181 * the term "(null)" is specifically chosen in case someone 2182 * mistakenly supplies something like LD_FLAGS=library_path. 2183 */ 2184 if (estr == 0) 2185 estr = (char *)MSG_INTL(MSG_STR_NULL); 2186 2187 /* 2188 * Determine whether the environment variable is 32- or 64-bit 2189 * specific. The length, len, will reflect the architecture 2190 * neutral portion of the string. 2191 */ 2192 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2193 ld_generic_env(nstr, nlen, estr, lmflags, 2194 lmtflags, (env_flags | flags), aout); 2195 } 2196 if (len == 0) 2197 return (0); 2198 2199 nstr = sstr + 1; 2200 estr = 0; 2201 } 2202 return (0); 2203 } 2204 2205 2206 /* 2207 * Process a single environment string. Only strings starting with `LD_' are 2208 * reserved for our use. By convention, all strings should be of the form 2209 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2210 * functionality is enabled. Also pick off applicable locale variables. 2211 */ 2212 #define LOC_LANG 1 2213 #define LOC_MESG 2 2214 #define LOC_ALL 3 2215 2216 static void 2217 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2218 int aout) 2219 { 2220 const char *s2; 2221 static size_t loc = 0; 2222 2223 if (*s1++ != 'L') 2224 return; 2225 2226 /* 2227 * See if we have any locale environment settings. These environment 2228 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2229 * is higher than LANG. 2230 */ 2231 s2 = s1; 2232 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2233 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2234 s2 += MSG_LC_ALL_SIZE; 2235 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2236 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2237 loc = LOC_ALL; 2238 } 2239 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2240 MSG_LC_MESSAGES_SIZE) == 0) { 2241 s2 += MSG_LC_MESSAGES_SIZE; 2242 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2243 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2244 loc = LOC_MESG; 2245 } 2246 } 2247 return; 2248 } 2249 2250 s2 = s1; 2251 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2252 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2253 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2254 loc = LOC_LANG; 2255 return; 2256 } 2257 2258 /* 2259 * Pick off any LD_XXXX environment variables. 2260 */ 2261 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2262 size_t len; 2263 int flags; 2264 2265 /* 2266 * In a branded process we must ignore all LD_XXXX env vars 2267 * because they are intended for the brand's linker. 2268 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2269 */ 2270 if (rtld_flags2 & RT_FL2_BRANDED) { 2271 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2272 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2273 return; 2274 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2275 } 2276 2277 /* 2278 * Environment variables with no value (ie. LD_XXXX=) typically 2279 * have no impact, however if environment variables are defined 2280 * within a configuration file, these null user settings can be 2281 * used to disable any configuration replaceable definitions. 2282 */ 2283 if ((s2 = strchr(s1, '=')) == 0) { 2284 len = strlen(s1); 2285 s2 = 0; 2286 } else if (*++s2 == '\0') { 2287 len = strlen(s1) - 1; 2288 s2 = 0; 2289 } else { 2290 len = s2 - s1 - 1; 2291 while (isspace(*s2)) 2292 s2++; 2293 } 2294 2295 /* 2296 * Determine whether the environment variable is 32- or 64-bit 2297 * specific. The length, len, will reflect the architecture 2298 * neutral portion of the string. 2299 */ 2300 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2301 return; 2302 env_flags |= flags; 2303 2304 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2305 } 2306 } 2307 2308 /* 2309 * Internal getenv routine. Called immediately after ld.so.1 initializes 2310 * itself. 2311 */ 2312 int 2313 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2314 { 2315 char *locale; 2316 2317 if (envp == (const char **)0) 2318 return (0); 2319 2320 while (*envp != (const char *)0) 2321 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2322 2323 /* 2324 * Having collected the best representation of any LD_FLAGS, process 2325 * these strings. 2326 */ 2327 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2328 return (1); 2329 2330 /* 2331 * Don't allow environment controlled auditing when tracing or if 2332 * explicitly disabled. Trigger all tracing modes from 2333 * LML_FLG_TRC_ENABLE. 2334 */ 2335 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2336 rpl_audit = profile_lib = profile_name = 0; 2337 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2338 *lmflags &= ~LML_MSK_TRC; 2339 2340 /* 2341 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2342 */ 2343 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2344 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2345 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2346 2347 /* 2348 * When using ldd(1) -r or -d against an executable, assert -p. 2349 */ 2350 if ((*lmflags & 2351 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2352 *lmflags |= LML_FLG_TRC_NOPAREXT; 2353 2354 /* 2355 * If we have a locale setting make sure its worth processing further. 2356 * C and POSIX locales don't need any processing. In addition, to 2357 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2358 * the locale to contain a segment that leads upward in the file system 2359 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2360 * the /usr/lib/locale hierarchy, there is no need to extensively 2361 * validate the mode or ownership of any message file (as libc's 2362 * generic handling of message files does). Duplicate the string so 2363 * that new locale setting can generically cleanup any previous locales. 2364 */ 2365 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) { 2366 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2367 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2368 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2369 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0; 2370 else 2371 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2372 } 2373 return (0); 2374 } 2375 2376 /* 2377 * Configuration environment processing. Called after the a.out has been 2378 * processed (as the a.out can specify its own configuration file). 2379 */ 2380 int 2381 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2382 { 2383 Word *lmflags = &(lml_main.lm_flags); 2384 Word *lmtflags = &(lml_main.lm_tflags); 2385 2386 if (envtbl == (Rtc_env *)0) 2387 return (0); 2388 2389 while (envtbl->env_str) { 2390 uint_t env_flags = ENV_TYP_CONFIG; 2391 2392 if (envtbl->env_flags & RTC_ENV_PERMANT) 2393 env_flags |= ENV_TYP_PERMANT; 2394 2395 ld_str_env((const char *)(envtbl->env_str + addr), 2396 lmflags, lmtflags, env_flags, 0); 2397 envtbl++; 2398 } 2399 2400 /* 2401 * Having collected the best representation of any LD_FLAGS, process 2402 * these strings. 2403 */ 2404 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2405 return (1); 2406 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2407 aout) == 1) 2408 return (1); 2409 2410 /* 2411 * Don't allow environment controlled auditing when tracing or if 2412 * explicitly disabled. Trigger all tracing modes from 2413 * LML_FLG_TRC_ENABLE. 2414 */ 2415 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2416 prm_audit = profile_lib = profile_name = 0; 2417 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2418 *lmflags &= ~LML_MSK_TRC; 2419 2420 return (0); 2421 } 2422 2423 int 2424 dowrite(Prfbuf * prf) 2425 { 2426 /* 2427 * We do not have a valid file descriptor, so we are unable 2428 * to flush the buffer. 2429 */ 2430 if (prf->pr_fd == -1) 2431 return (0); 2432 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2433 prf->pr_cur = prf->pr_buf; 2434 return (1); 2435 } 2436 2437 /* 2438 * Simplified printing. The following conversion specifications are supported: 2439 * 2440 * % [#] [-] [min field width] [. precision] s|d|x|c 2441 * 2442 * 2443 * dorprf takes the output buffer in the form of Prfbuf which permits 2444 * the verification of the output buffer size and the concatenation 2445 * of data to an already existing output buffer. The Prfbuf 2446 * structure contains the following: 2447 * 2448 * pr_buf pointer to the beginning of the output buffer. 2449 * pr_cur pointer to the next available byte in the output buffer. By 2450 * setting pr_cur ahead of pr_buf you can append to an already 2451 * existing buffer. 2452 * pr_len the size of the output buffer. By setting pr_len to '0' you 2453 * disable protection from overflows in the output buffer. 2454 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2455 * output to. If pr_fd is set to '-1' then it's assumed there is 2456 * no output buffer, and doprf() will return with an error to 2457 * indicate an output buffer overflow. If pr_fd is > -1 then when 2458 * the output buffer is filled it will be flushed to pr_fd and will 2459 * then be available for additional data. 2460 */ 2461 #define FLG_UT_MINUS 0x0001 /* - */ 2462 #define FLG_UT_SHARP 0x0002 /* # */ 2463 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2464 2465 /* 2466 * This macro is for use from within doprf only. It is to be used for checking 2467 * the output buffer size and placing characters into the buffer. 2468 */ 2469 #define PUTC(c) \ 2470 { \ 2471 char tmpc; \ 2472 \ 2473 tmpc = (c); \ 2474 if (bufsiz && (bp >= bufend)) { \ 2475 prf->pr_cur = bp; \ 2476 if (dowrite(prf) == 0) \ 2477 return (0); \ 2478 bp = prf->pr_cur; \ 2479 } \ 2480 *bp++ = tmpc; \ 2481 } 2482 2483 /* 2484 * Define a local buffer size for building a numeric value - large enough to 2485 * hold a 64-bit value. 2486 */ 2487 #define NUM_SIZE 22 2488 2489 size_t 2490 doprf(const char *format, va_list args, Prfbuf *prf) 2491 { 2492 char c; 2493 char *bp = prf->pr_cur; 2494 char *bufend = prf->pr_buf + prf->pr_len; 2495 size_t bufsiz = prf->pr_len; 2496 2497 while ((c = *format++) != '\0') { 2498 if (c != '%') { 2499 PUTC(c); 2500 } else { 2501 int base = 0, flag = 0, width = 0, prec = 0; 2502 size_t _i; 2503 int _c, _n; 2504 char *_s; 2505 int ls = 0; 2506 again: 2507 c = *format++; 2508 switch (c) { 2509 case '-': 2510 flag |= FLG_UT_MINUS; 2511 goto again; 2512 case '#': 2513 flag |= FLG_UT_SHARP; 2514 goto again; 2515 case '.': 2516 flag |= FLG_UT_DOTSEEN; 2517 goto again; 2518 case '0': 2519 case '1': 2520 case '2': 2521 case '3': 2522 case '4': 2523 case '5': 2524 case '6': 2525 case '7': 2526 case '8': 2527 case '9': 2528 if (flag & FLG_UT_DOTSEEN) 2529 prec = (prec * 10) + c - '0'; 2530 else 2531 width = (width * 10) + c - '0'; 2532 goto again; 2533 case 'x': 2534 case 'X': 2535 base = 16; 2536 break; 2537 case 'd': 2538 case 'D': 2539 case 'u': 2540 base = 10; 2541 flag &= ~FLG_UT_SHARP; 2542 break; 2543 case 'l': 2544 base = 10; 2545 ls++; /* number of l's (long or long long) */ 2546 if ((*format == 'l') || 2547 (*format == 'd') || (*format == 'D') || 2548 (*format == 'x') || (*format == 'X') || 2549 (*format == 'o') || (*format == 'O')) 2550 goto again; 2551 break; 2552 case 'o': 2553 case 'O': 2554 base = 8; 2555 break; 2556 case 'c': 2557 _c = va_arg(args, int); 2558 2559 for (_i = 24; _i > 0; _i -= 8) { 2560 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2561 PUTC(c); 2562 } 2563 } 2564 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2565 PUTC(c); 2566 } 2567 break; 2568 case 's': 2569 _s = va_arg(args, char *); 2570 _i = strlen(_s); 2571 /* LINTED */ 2572 _n = (int)(width - _i); 2573 if (!prec) 2574 /* LINTED */ 2575 prec = (int)_i; 2576 2577 if (width && !(flag & FLG_UT_MINUS)) { 2578 while (_n-- > 0) 2579 PUTC(' '); 2580 } 2581 while (((c = *_s++) != 0) && prec--) { 2582 PUTC(c); 2583 } 2584 if (width && (flag & FLG_UT_MINUS)) { 2585 while (_n-- > 0) 2586 PUTC(' '); 2587 } 2588 break; 2589 case '%': 2590 PUTC('%'); 2591 break; 2592 default: 2593 break; 2594 } 2595 2596 /* 2597 * Numeric processing 2598 */ 2599 if (base) { 2600 char local[NUM_SIZE]; 2601 size_t ssize = 0, psize = 0; 2602 const char *string = 2603 MSG_ORIG(MSG_STR_HEXNUM); 2604 const char *prefix = 2605 MSG_ORIG(MSG_STR_EMPTY); 2606 u_longlong_t num; 2607 2608 switch (ls) { 2609 case 0: /* int */ 2610 num = (u_longlong_t) 2611 va_arg(args, uint_t); 2612 break; 2613 case 1: /* long */ 2614 num = (u_longlong_t) 2615 va_arg(args, ulong_t); 2616 break; 2617 case 2: /* long long */ 2618 num = va_arg(args, u_longlong_t); 2619 break; 2620 } 2621 2622 if (flag & FLG_UT_SHARP) { 2623 if (base == 16) { 2624 prefix = MSG_ORIG(MSG_STR_HEX); 2625 psize = 2; 2626 } else { 2627 prefix = MSG_ORIG(MSG_STR_ZERO); 2628 psize = 1; 2629 } 2630 } 2631 if ((base == 10) && (long)num < 0) { 2632 prefix = MSG_ORIG(MSG_STR_NEGATE); 2633 psize = MSG_STR_NEGATE_SIZE; 2634 num = (u_longlong_t)(-(longlong_t)num); 2635 } 2636 2637 /* 2638 * Convert the numeric value into a local 2639 * string (stored in reverse order). 2640 */ 2641 _s = local; 2642 do { 2643 *_s++ = string[num % base]; 2644 num /= base; 2645 ssize++; 2646 } while (num); 2647 2648 ASSERT(ssize < sizeof (local)); 2649 2650 /* 2651 * Provide any precision or width padding. 2652 */ 2653 if (prec) { 2654 /* LINTED */ 2655 _n = (int)(prec - ssize); 2656 while ((_n-- > 0) && 2657 (ssize < sizeof (local))) { 2658 *_s++ = '0'; 2659 ssize++; 2660 } 2661 } 2662 if (width && !(flag & FLG_UT_MINUS)) { 2663 /* LINTED */ 2664 _n = (int)(width - ssize - psize); 2665 while (_n-- > 0) { 2666 PUTC(' '); 2667 } 2668 } 2669 2670 /* 2671 * Print any prefix and the numeric string 2672 */ 2673 while (*prefix) 2674 PUTC(*prefix++); 2675 do { 2676 PUTC(*--_s); 2677 } while (_s > local); 2678 2679 /* 2680 * Provide any width padding. 2681 */ 2682 if (width && (flag & FLG_UT_MINUS)) { 2683 /* LINTED */ 2684 _n = (int)(width - ssize - psize); 2685 while (_n-- > 0) 2686 PUTC(' '); 2687 } 2688 } 2689 } 2690 } 2691 2692 PUTC('\0'); 2693 prf->pr_cur = bp; 2694 return (1); 2695 } 2696 2697 static int 2698 doprintf(const char *format, va_list args, Prfbuf *prf) 2699 { 2700 char *ocur = prf->pr_cur; 2701 2702 if (doprf(format, args, prf) == 0) 2703 return (0); 2704 /* LINTED */ 2705 return ((int)(prf->pr_cur - ocur)); 2706 } 2707 2708 /* VARARGS2 */ 2709 int 2710 sprintf(char *buf, const char *format, ...) 2711 { 2712 va_list args; 2713 int len; 2714 Prfbuf prf; 2715 2716 va_start(args, format); 2717 prf.pr_buf = prf.pr_cur = buf; 2718 prf.pr_len = 0; 2719 prf.pr_fd = -1; 2720 len = doprintf(format, args, &prf); 2721 va_end(args); 2722 2723 /* 2724 * sprintf() return value excludes the terminating null byte. 2725 */ 2726 return (len - 1); 2727 } 2728 2729 /* VARARGS3 */ 2730 int 2731 snprintf(char *buf, size_t n, const char *format, ...) 2732 { 2733 va_list args; 2734 int len; 2735 Prfbuf prf; 2736 2737 va_start(args, format); 2738 prf.pr_buf = prf.pr_cur = buf; 2739 prf.pr_len = n; 2740 prf.pr_fd = -1; 2741 len = doprintf(format, args, &prf); 2742 va_end(args); 2743 2744 return (len); 2745 } 2746 2747 /* VARARGS2 */ 2748 int 2749 bufprint(Prfbuf *prf, const char *format, ...) 2750 { 2751 va_list args; 2752 int len; 2753 2754 va_start(args, format); 2755 len = doprintf(format, args, prf); 2756 va_end(args); 2757 2758 return (len); 2759 } 2760 2761 /*PRINTFLIKE1*/ 2762 int 2763 printf(const char *format, ...) 2764 { 2765 va_list args; 2766 char buffer[ERRSIZE]; 2767 Prfbuf prf; 2768 2769 va_start(args, format); 2770 prf.pr_buf = prf.pr_cur = buffer; 2771 prf.pr_len = ERRSIZE; 2772 prf.pr_fd = 1; 2773 (void) doprf(format, args, &prf); 2774 va_end(args); 2775 /* 2776 * Trim trailing '\0' form buffer 2777 */ 2778 prf.pr_cur--; 2779 return (dowrite(&prf)); 2780 } 2781 2782 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2783 2784 /*PRINTFLIKE3*/ 2785 void 2786 eprintf(Lm_list *lml, Error error, const char *format, ...) 2787 { 2788 va_list args; 2789 int overflow = 0; 2790 static int lock = 0; 2791 Prfbuf prf; 2792 2793 if (lock || (nextptr == (errbuf + ERRSIZE))) 2794 return; 2795 2796 /* 2797 * Note: this lock is here to prevent the same thread from recursively 2798 * entering itself during a eprintf. ie: during eprintf malloc() fails 2799 * and we try and call eprintf ... and then malloc() fails .... 2800 */ 2801 lock = 1; 2802 2803 /* 2804 * If we have completed startup initialization, all error messages 2805 * must be saved. These are reported through dlerror(). If we're 2806 * still in the initialization stage, output the error directly and 2807 * add a newline. 2808 */ 2809 va_start(args, format); 2810 2811 prf.pr_buf = prf.pr_cur = nextptr; 2812 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2813 2814 if (!(rtld_flags & RT_FL_APPLIC)) 2815 prf.pr_fd = 2; 2816 else 2817 prf.pr_fd = -1; 2818 2819 if (error > ERR_NONE) { 2820 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2821 error = ERR_WARNING; 2822 if (error == ERR_WARNING) { 2823 if (err_strs[ERR_WARNING] == 0) 2824 err_strs[ERR_WARNING] = 2825 MSG_INTL(MSG_ERR_WARNING); 2826 } else if (error == ERR_FATAL) { 2827 if (err_strs[ERR_FATAL] == 0) 2828 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2829 } else if (error == ERR_ELF) { 2830 if (err_strs[ERR_ELF] == 0) 2831 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2832 } 2833 if (procname) { 2834 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2835 rtldname, procname, err_strs[error]) == 0) 2836 overflow = 1; 2837 } else { 2838 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2839 rtldname, err_strs[error]) == 0) 2840 overflow = 1; 2841 } 2842 if (overflow == 0) { 2843 /* 2844 * Remove the terminating '\0'. 2845 */ 2846 prf.pr_cur--; 2847 } 2848 } 2849 2850 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2851 overflow = 1; 2852 2853 /* 2854 * If this is an ELF error, it will have been generated by a support 2855 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2856 * ELF error messages as it doesn't interact with libelf. Determine the 2857 * ELF error string. 2858 */ 2859 if ((overflow == 0) && (error == ERR_ELF)) { 2860 static int (*elfeno)() = 0; 2861 static const char *(*elfemg)(); 2862 const char *emsg; 2863 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2864 2865 if (NEXT(lmp) && (elfeno == 0)) { 2866 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2867 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2868 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2869 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2870 elfeno = 0; 2871 } 2872 2873 /* 2874 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2875 */ 2876 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2877 prf.pr_cur--; 2878 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2879 emsg) == 0) 2880 overflow = 1; 2881 } 2882 } 2883 2884 /* 2885 * Push out any message that's been built. Note, in the case of an 2886 * overflow condition, this message may be incomplete, in which case 2887 * make sure any partial string is null terminated. 2888 */ 2889 if (overflow) 2890 *(prf.pr_cur) = '\0'; 2891 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2892 *(prf.pr_cur - 1) = '\n'; 2893 (void) dowrite(&prf); 2894 } 2895 2896 DBG_CALL(Dbg_util_str(lml, nextptr)); 2897 va_end(args); 2898 2899 /* 2900 * Determine if there was insufficient space left in the buffer to 2901 * complete the message. If so, we'll have printed out as much as had 2902 * been processed if we're not yet executing the application. 2903 * Otherwise, there will be some debugging diagnostic indicating 2904 * as much of the error message as possible. Write out a final buffer 2905 * overflow diagnostic - unlocalized, so we don't chance more errors. 2906 */ 2907 if (overflow) { 2908 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2909 2910 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2911 lasterr = str; 2912 2913 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2914 (void) write(2, str, strlen(str)); 2915 (void) write(2, MSG_ORIG(MSG_STR_NL), 2916 MSG_STR_NL_SIZE); 2917 } 2918 } 2919 DBG_CALL(Dbg_util_str(lml, str)); 2920 2921 lock = 0; 2922 nextptr = errbuf + ERRSIZE; 2923 return; 2924 } 2925 2926 /* 2927 * If the application has started, then error messages are being saved 2928 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2929 * the case of a fatal error. In this case, establish the next error 2930 * pointer. If we haven't started the application, the whole message 2931 * buffer can be reused. 2932 */ 2933 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2934 lasterr = nextptr; 2935 2936 /* 2937 * Note, should we encounter an error such as ENOMEM, there may 2938 * be a number of the same error messages (ie. an operation 2939 * fails with ENOMEM, and then the attempts to construct the 2940 * error message itself, which incurs additional ENOMEM errors). 2941 * Compare any previous error message with the one we've just 2942 * created to prevent any duplication clutter. 2943 */ 2944 if ((rtld_flags & RT_FL_APPLIC) && 2945 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2946 prevptr = nextptr; 2947 nextptr = prf.pr_cur; 2948 *nextptr = '\0'; 2949 } 2950 } 2951 lock = 0; 2952 } 2953 2954 2955 #if DEBUG 2956 /* 2957 * Provide assfail() for ASSERT() statements, 2958 * see <sys/debug.h> for further details. 2959 */ 2960 int 2961 assfail(const char *a, const char *f, int l) 2962 { 2963 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2964 (void) _lwp_kill(_lwp_self(), SIGABRT); 2965 return (0); 2966 } 2967 #endif 2968 2969 /* 2970 * Exit. If we arrive here with a non zero status it's because of a fatal 2971 * error condition (most commonly a relocation error). If the application has 2972 * already had control, then the actual fatal error message will have been 2973 * recorded in the dlerror() message buffer. Print the message before really 2974 * exiting. 2975 */ 2976 void 2977 rtldexit(Lm_list * lml, int status) 2978 { 2979 if (status) { 2980 if (rtld_flags & RT_FL_APPLIC) { 2981 /* 2982 * If the error buffer has been used, write out all 2983 * pending messages - lasterr is simply a pointer to 2984 * the last message in this buffer. However, if the 2985 * buffer couldn't be created at all, lasterr points 2986 * to a constant error message string. 2987 */ 2988 if (*errbuf) { 2989 char *errptr = errbuf; 2990 char *errend = errbuf + ERRSIZE; 2991 2992 while ((errptr < errend) && *errptr) { 2993 size_t size = strlen(errptr); 2994 (void) write(2, errptr, size); 2995 (void) write(2, MSG_ORIG(MSG_STR_NL), 2996 MSG_STR_NL_SIZE); 2997 errptr += (size + 1); 2998 } 2999 } 3000 if (lasterr && ((lasterr < errbuf) || 3001 (lasterr > (errbuf + ERRSIZE)))) { 3002 (void) write(2, lasterr, strlen(lasterr)); 3003 (void) write(2, MSG_ORIG(MSG_STR_NL), 3004 MSG_STR_NL_SIZE); 3005 } 3006 } 3007 leave(lml, 0); 3008 (void) _lwp_kill(_lwp_self(), killsig); 3009 } 3010 _exit(status); 3011 } 3012 3013 /* 3014 * Routines to co-ordinate the opening of /dev/zero and /proc. 3015 * dz_fd is exported for possible use by libld.so, and to insure it gets 3016 * closed on leaving ld.so.1. 3017 */ 3018 int dz_fd = FD_UNAVAIL; 3019 3020 void 3021 dz_init(int fd) 3022 { 3023 dz_fd = fd; 3024 } 3025 3026 3027 /* 3028 * mmap() a page from MAP_ANON 3029 * 3030 * Note: MAP_ANON is only on Solaris8++, we use this routine to 3031 * not only mmap(MAP_ANON) but to also probe if it is available 3032 * on the current OS. 3033 */ 3034 Am_ret 3035 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags) 3036 { 3037 #if defined(MAP_ANON) 3038 static int noanon = 0; 3039 caddr_t va; 3040 3041 if (noanon == 0) { 3042 if ((va = (caddr_t)mmap(*addr, len, prot, 3043 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 3044 *addr = va; 3045 return (AM_OK); 3046 } 3047 3048 if ((errno != EBADF) && (errno != EINVAL)) { 3049 int err = errno; 3050 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3051 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3052 return (AM_ERROR); 3053 } else 3054 noanon = 1; 3055 } 3056 #endif 3057 return (AM_NOSUP); 3058 } 3059 3060 /* 3061 * Map anonymous memory from /dev/zero, or via MAP_ANON. 3062 * 3063 * (MAP_ANON only appears on Solaris 8, so we need fall-back 3064 * behavior for older systems.) 3065 */ 3066 caddr_t 3067 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3068 { 3069 caddr_t va; 3070 int err; 3071 Am_ret amret; 3072 3073 amret = anon_map(lml, &addr, len, prot, flags); 3074 3075 if (amret == AM_OK) 3076 return (addr); 3077 if (amret == AM_ERROR) 3078 return (MAP_FAILED); 3079 3080 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 3081 3082 if (dz_fd == FD_UNAVAIL) { 3083 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 3084 O_RDONLY)) == FD_UNAVAIL) { 3085 err = errno; 3086 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3087 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3088 return (MAP_FAILED); 3089 } 3090 } 3091 3092 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3093 err = errno; 3094 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3095 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3096 } 3097 return (va); 3098 } 3099 3100 static int pr_fd = FD_UNAVAIL; 3101 3102 int 3103 pr_open(Lm_list *lml) 3104 { 3105 char proc[16]; 3106 3107 if (pr_fd == FD_UNAVAIL) { 3108 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3109 (int)getpid()); 3110 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3111 int err = errno; 3112 3113 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3114 strerror(err)); 3115 } 3116 } 3117 return (pr_fd); 3118 } 3119 3120 static int nu_fd = FD_UNAVAIL; 3121 3122 caddr_t 3123 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3124 { 3125 caddr_t va; 3126 int err; 3127 3128 if (nu_fd == FD_UNAVAIL) { 3129 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3130 O_RDONLY)) == FD_UNAVAIL) { 3131 err = errno; 3132 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3133 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3134 return (MAP_FAILED); 3135 } 3136 } 3137 3138 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3139 MAP_FAILED) { 3140 err = errno; 3141 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3142 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3143 } 3144 return (va); 3145 } 3146 3147 /* 3148 * Generic entry point from user code - simply grabs a lock, and bumps the 3149 * entrance count. 3150 */ 3151 int 3152 enter(int flags) 3153 { 3154 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3155 if (!thr_flg_nolock) 3156 (void) rt_mutex_lock(&rtldlock); 3157 if (rtld_flags & RT_FL_OPERATION) 3158 ld_entry_cnt++; 3159 return (1); 3160 } 3161 return (0); 3162 } 3163 3164 /* 3165 * Determine whether a search path has been used. 3166 */ 3167 static void 3168 is_path_used(Lm_list *lml, Word unref, int *nl, Pnode *pnp, const char *obj) 3169 { 3170 for (; pnp; pnp = pnp->p_next) { 3171 const char *fmt, *name; 3172 3173 if ((pnp->p_len == 0) || (pnp->p_orig & PN_FLG_USED)) 3174 continue; 3175 3176 /* 3177 * If this pathname originated from an expanded token, use the 3178 * original for any diagnostic output. 3179 */ 3180 if ((name = pnp->p_oname) == 0) 3181 name = pnp->p_name; 3182 3183 if (unref == 0) { 3184 if ((*nl)++ == 0) 3185 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3186 DBG_CALL(Dbg_unused_path(lml, name, pnp->p_orig, 3187 (pnp->p_orig & PN_FLG_DUPLICAT), obj)); 3188 continue; 3189 } 3190 3191 /* 3192 * For now, disable any unused search path processing that has 3193 * been triggered for ldd(1). 3194 */ 3195 if (unref) 3196 continue; 3197 3198 if (pnp->p_orig & LA_SER_LIBPATH) { 3199 if (pnp->p_orig & LA_SER_CONFIG) { 3200 if (pnp->p_orig & PN_FLG_DUPLICAT) 3201 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3202 else 3203 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3204 } else { 3205 if (pnp->p_orig & PN_FLG_DUPLICAT) 3206 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3207 else 3208 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3209 } 3210 } else if (pnp->p_orig & LA_SER_RUNPATH) { 3211 fmt = MSG_INTL(MSG_USD_RUNPATH); 3212 } else 3213 continue; 3214 3215 if ((*nl)++ == 0) 3216 (void) printf(MSG_ORIG(MSG_STR_NL)); 3217 (void) printf(fmt, name, obj); 3218 } 3219 } 3220 3221 /* 3222 * Generate diagnostics as to whether an object has been used. A symbolic 3223 * reference that gets bound to an object marks it as used. Dependencies that 3224 * are unused when RTLD_NOW is in effect should be removed from future builds 3225 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3226 * candidates for lazy-loading. 3227 * 3228 * Unreferenced objects identify objects that are defined as dependencies but 3229 * are unreferenced by the caller. These unreferenced objects may however be 3230 * referenced by other objects within the process, and therefore don't qualify 3231 * as completely unused. They are still an unnecessary overhead. 3232 * 3233 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3234 * debugging. 3235 */ 3236 void 3237 unused(Lm_list *lml) 3238 { 3239 Rt_map *lmp; 3240 int nl = 0; 3241 Word unref, unuse; 3242 3243 /* 3244 * If we're not tracing unused references or dependencies, or debugging 3245 * there's nothing to do. 3246 */ 3247 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3248 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3249 3250 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3251 return; 3252 3253 /* 3254 * Detect unused global search paths. 3255 */ 3256 if (rpl_libdirs) 3257 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3258 if (prm_libdirs) 3259 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3260 3261 nl = 0; 3262 lmp = lml->lm_head; 3263 if (RLIST(lmp)) 3264 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3265 3266 /* 3267 * Traverse the link-maps looking for unreferenced or unused 3268 * dependencies. Ignore the first object on a link-map list, as this 3269 * is always used. 3270 */ 3271 nl = 0; 3272 for (lmp = (Rt_map *)NEXT(lmp); lmp; lmp = (Rt_map *)NEXT(lmp)) { 3273 /* 3274 * Determine if this object contains any runpaths that have 3275 * not been used. 3276 */ 3277 if (RLIST(lmp)) 3278 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3279 3280 /* 3281 * If tracing unreferenced objects, or under debugging, 3282 * determine whether any of this objects callers haven't 3283 * referenced it. 3284 */ 3285 if (unref || DBG_ENABLED) { 3286 Bnd_desc *bdp; 3287 Aliste idx; 3288 3289 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3290 Rt_map *clmp; 3291 3292 if (bdp->b_flags & BND_REFER) 3293 continue; 3294 3295 clmp = bdp->b_caller; 3296 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3297 continue; 3298 3299 /* BEGIN CSTYLED */ 3300 if (nl++ == 0) { 3301 if (unref) 3302 (void) printf(MSG_ORIG(MSG_STR_NL)); 3303 else 3304 DBG_CALL(Dbg_util_nl(lml, 3305 DBG_NL_STD)); 3306 } 3307 3308 if (unref) 3309 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3310 NAME(lmp), NAME(clmp)); 3311 else 3312 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3313 /* END CSTYLED */ 3314 } 3315 } 3316 3317 /* 3318 * If tracing unused objects simply display those objects that 3319 * haven't been referenced by anyone. 3320 */ 3321 if (FLAGS1(lmp) & FL1_RT_USED) 3322 continue; 3323 3324 if (nl++ == 0) { 3325 if (unref || unuse) 3326 (void) printf(MSG_ORIG(MSG_STR_NL)); 3327 else 3328 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3329 } 3330 if (CYCGROUP(lmp)) { 3331 if (unref || unuse) 3332 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3333 NAME(lmp), CYCGROUP(lmp)); 3334 else 3335 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3336 CYCGROUP(lmp))); 3337 } else { 3338 if (unref || unuse) 3339 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3340 NAME(lmp)); 3341 else 3342 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3343 } 3344 } 3345 3346 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3347 } 3348 3349 /* 3350 * Initialization routine for the Fmap structure. If the fmap structure is 3351 * already in use, any mapping is released. The structure is then initialized 3352 * in preparation for further use. 3353 */ 3354 void 3355 fmap_setup() 3356 { 3357 #if defined(MAP_ALIGN) 3358 /* 3359 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3360 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3361 * should now be freed. 3362 */ 3363 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3364 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3365 3366 /* 3367 * Providing we haven't determined that this system doesn't support 3368 * MAP_ALIGN, initialize the mapping address with the default segment 3369 * alignment. 3370 */ 3371 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3372 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3373 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3374 } else { 3375 fmap->fm_maddr = 0; 3376 fmap->fm_mflags = MAP_PRIVATE; 3377 } 3378 #else 3379 if (fmap->fm_maddr) 3380 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3381 3382 fmap->fm_maddr = 0; 3383 fmap->fm_mflags = MAP_PRIVATE; 3384 #endif 3385 3386 fmap->fm_msize = FMAP_SIZE; 3387 fmap->fm_hwptr = 0; 3388 } 3389 3390 /* 3391 * Generic cleanup routine called prior to returning control to the user. 3392 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3393 * released, and any locks dropped. 3394 */ 3395 void 3396 leave(Lm_list *lml, int flags) 3397 { 3398 Lm_list *elml = lml; 3399 Rt_map *clmp; 3400 Aliste idx; 3401 3402 /* 3403 * Alert the debuggers that the link-maps are consistent. Note, in the 3404 * case of tearing down a whole link-map list, lml will be null. In 3405 * this case use the main link-map list to test for a notification. 3406 */ 3407 if (elml == 0) 3408 elml = &lml_main; 3409 if (elml->lm_flags & LML_FLG_DBNOTIF) 3410 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3411 3412 /* 3413 * Alert any auditors that the link-maps are consistent. 3414 */ 3415 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3416 audit_activity(clmp, LA_ACT_CONSISTENT); 3417 3418 aplist_delete(elml->lm_actaudit, &idx); 3419 } 3420 3421 if (dz_fd != FD_UNAVAIL) { 3422 (void) close(dz_fd); 3423 dz_fd = FD_UNAVAIL; 3424 } 3425 3426 if (pr_fd != FD_UNAVAIL) { 3427 (void) close(pr_fd); 3428 pr_fd = FD_UNAVAIL; 3429 } 3430 3431 if (nu_fd != FD_UNAVAIL) { 3432 (void) close(nu_fd); 3433 nu_fd = FD_UNAVAIL; 3434 } 3435 3436 fmap_setup(); 3437 3438 /* 3439 * Reinitialize error message pointer, and any overflow indication. 3440 */ 3441 nextptr = errbuf; 3442 prevptr = 0; 3443 3444 /* 3445 * Don't drop our lock if we are running on our link-map list as 3446 * there's little point in doing so since we are single-threaded. 3447 * 3448 * LML_FLG_HOLDLOCK is set for: 3449 * *) The ld.so.1's link-map list. 3450 * *) The auditor's link-map if the environment is 3451 * libc/libthread un-unified. 3452 */ 3453 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3454 return; 3455 3456 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3457 if (!thr_flg_nolock) 3458 (void) rt_mutex_unlock(&rtldlock); 3459 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3460 } 3461 } 3462 3463 int 3464 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3465 { 3466 APlist *calp, *dalp; 3467 Aliste idx1, idx2; 3468 Grp_hdl *ghp1, *ghp2; 3469 3470 /* 3471 * An object can always find symbols within itself. 3472 */ 3473 if (clmp == dlmp) 3474 return (1); 3475 3476 /* 3477 * The search for a singleton must look in every loaded object. 3478 */ 3479 if (slflags & LKUP_SINGLETON) 3480 return (1); 3481 3482 /* 3483 * Don't allow an object to bind to an object that is being deleted 3484 * unless the binder is also being deleted. 3485 */ 3486 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3487 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3488 return (0); 3489 3490 /* 3491 * An object with world access can always bind to an object with global 3492 * visibility. 3493 */ 3494 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3495 return (1); 3496 3497 /* 3498 * An object with local access can only bind to an object that is a 3499 * member of the same group. 3500 */ 3501 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3502 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3503 return (0); 3504 3505 /* 3506 * Traverse the list of groups the caller is a part of. 3507 */ 3508 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3509 /* 3510 * If we're testing for the ability of two objects to bind to 3511 * each other regardless of a specific group, ignore that group. 3512 */ 3513 if (ghp && (ghp1 == ghp)) 3514 continue; 3515 3516 /* 3517 * Traverse the list of groups the destination is a part of. 3518 */ 3519 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3520 Grp_desc *gdp; 3521 Aliste idx3; 3522 3523 if (ghp1 != ghp2) 3524 continue; 3525 3526 /* 3527 * Make sure the relationship between the destination 3528 * and the caller provide symbols for relocation. 3529 * Parents are maintained as callers, but unless the 3530 * destination object was opened with RTLD_PARENT, the 3531 * parent doesn't provide symbols for the destination 3532 * to relocate against. 3533 */ 3534 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3535 if (dlmp != gdp->gd_depend) 3536 continue; 3537 3538 if (gdp->gd_flags & GPD_RELOC) 3539 return (1); 3540 } 3541 } 3542 } 3543 return (0); 3544 } 3545 3546 /* 3547 * Initialize the environ symbol. Traditionally this is carried out by the crt 3548 * code prior to jumping to main. However, init sections get fired before this 3549 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3550 * information. In addition, a process may have multiple link-maps (ld.so.1's 3551 * debugging and preloading objects), and link auditing, and each may need an 3552 * environ variable set. 3553 * 3554 * This routine is called after a relocation() pass, and thus provides for: 3555 * 3556 * o setting environ on the main link-map after the initial application and 3557 * its dependencies have been established. Typically environ lives in the 3558 * application (provided by its crt), but in older applications it might 3559 * be in libc. Who knows what's expected of applications not built on 3560 * Solaris. 3561 * 3562 * o after loading a new shared object. We can add shared objects to various 3563 * link-maps, and any link-map dependencies requiring getopt() require 3564 * their own environ. In addition, lazy loading might bring in the 3565 * supplier of environ (libc used to be a lazy loading candidate) after 3566 * the link-map has been established and other objects are present. 3567 * 3568 * This routine handles all these scenarios, without adding unnecessary overhead 3569 * to ld.so.1. 3570 */ 3571 void 3572 set_environ(Lm_list *lml) 3573 { 3574 Rt_map *dlmp; 3575 Sym *sym; 3576 Slookup sl; 3577 uint_t binfo; 3578 3579 /* 3580 * Initialize the symbol lookup data structure. 3581 */ 3582 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3583 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3584 3585 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo, 0)) { 3586 lml->lm_environ = (char ***)sym->st_value; 3587 3588 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3589 lml->lm_environ = 3590 (char ***)((uintptr_t)lml->lm_environ + 3591 (uintptr_t)ADDR(dlmp)); 3592 *(lml->lm_environ) = (char **)environ; 3593 lml->lm_flags |= LML_FLG_ENVIRON; 3594 } 3595 } 3596 3597 /* 3598 * Determine whether we have a secure executable. Uid and gid information 3599 * can be passed to us via the aux vector, however if these values are -1 3600 * then use the appropriate system call to obtain them. 3601 * 3602 * o If the user is the root they can do anything 3603 * 3604 * o If the real and effective uid's don't match, or the real and 3605 * effective gid's don't match then this is determined to be a `secure' 3606 * application. 3607 * 3608 * This function is called prior to any dependency processing (see _setup.c). 3609 * Any secure setting will remain in effect for the life of the process. 3610 */ 3611 void 3612 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3613 { 3614 #ifdef AT_SUN_AUXFLAGS 3615 if (auxflags != -1) { 3616 if ((auxflags & AF_SUN_SETUGID) != 0) 3617 rtld_flags |= RT_FL_SECURE; 3618 return; 3619 } 3620 #endif 3621 if (uid == (uid_t)-1) 3622 uid = getuid(); 3623 if (uid) { 3624 if (euid == (uid_t)-1) 3625 euid = geteuid(); 3626 if (uid != euid) 3627 rtld_flags |= RT_FL_SECURE; 3628 else { 3629 if (gid == (gid_t)-1) 3630 gid = getgid(); 3631 if (egid == (gid_t)-1) 3632 egid = getegid(); 3633 if (gid != egid) 3634 rtld_flags |= RT_FL_SECURE; 3635 } 3636 } 3637 } 3638 3639 /* 3640 * _REENTRANT code gets errno redefined to a function so provide for return 3641 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3642 * is basically singled threaded. Provide the interface for our dependencies. 3643 */ 3644 #undef errno 3645 #pragma weak _private___errno = ___errno 3646 int * 3647 ___errno() 3648 { 3649 extern int errno; 3650 3651 return (&errno); 3652 } 3653 3654 /* 3655 * The interface with the c library which is supplied through libdl.so.1. 3656 * A non-null argument allows a function pointer array to be passed to us which 3657 * is used to re-initialize the linker libc table. 3658 */ 3659 void 3660 _ld_libc(void * ptr) 3661 { 3662 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3663 } 3664 3665 /* 3666 * Determine whether a symbol name should be demangled. 3667 */ 3668 const char * 3669 demangle(const char *name) 3670 { 3671 if (rtld_flags & RT_FL_DEMANGLE) 3672 return (conv_demangle_name(name)); 3673 else 3674 return (name); 3675 } 3676