1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Utility routines for run-time linker. some are duplicated here from libc 33 * (with different names) to avoid name space collisions. 34 */ 35 #include "_synonyms.h" 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <debug.h> 50 #include <conv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "_elf.h" 54 #include "msg.h" 55 56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 57 58 /* 59 * All error messages go through eprintf(). During process initialization these 60 * messages should be directed to the standard error, however once control has 61 * been passed to the applications code these messages should be stored in an 62 * internal buffer for use with dlerror(). Note, fatal error conditions that 63 * may occur while running the application will still cause a standard error 64 * message, see rtldexit() in this file for details. 65 * The `application' flag serves to indicate the transition between process 66 * initialization and when the applications code is running. 67 */ 68 69 /* 70 * Null function used as place where a debugger can set a breakpoint. 71 */ 72 void 73 rtld_db_dlactivity(Lm_list *lml) 74 { 75 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 76 r_debug.rtd_rdebug.r_state)); 77 } 78 79 /* 80 * Null function used as place where debugger can set a pre .init 81 * processing breakpoint. 82 */ 83 void 84 rtld_db_preinit(Lm_list *lml) 85 { 86 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 87 r_debug.rtd_rdebug.r_state)); 88 } 89 90 /* 91 * Null function used as place where debugger can set a post .init 92 * processing breakpoint. 93 */ 94 void 95 rtld_db_postinit(Lm_list *lml) 96 { 97 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 98 r_debug.rtd_rdebug.r_state)); 99 } 100 101 /* 102 * Debugger Event Notification 103 * 104 * This function centralizes all debugger event notification (ala rtld_db). 105 * 106 * There's a simple intent, focused on insuring the primary link-map control 107 * list (or each link-map list) is consistent, and the indication that objects 108 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 109 * event are posted for each of these, most debuggers don't care, as their 110 * view is that these events simply convey an "inconsistent" state. 111 * 112 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 113 * enter ld.so.1. 114 * 115 * With auditors, we may be in the process of relocating a collection of 116 * objects, and will leave() ld.so.1 to call the auditor. At this point we 117 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 118 * object to the debuggers until relocation processing has been completed on it. 119 * To allow for the collection of these objects that are pending relocation, an 120 * RD_ADD event is set after completing a series of relocations on the primary 121 * link-map control list. 122 * 123 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 124 * required later (LML_FLG_DBNOTIF): 125 * 126 * i the first time we add or delete an object to the primary link-map 127 * control list. 128 * ii the first time we move a secondary link-map control list to the primary 129 * link-map control list (effectively, this is like adding a group of 130 * objects to the primary link-map control list). 131 * 132 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 133 * 134 * i each time we leave the runtime linker. 135 */ 136 void 137 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 138 { 139 void (*fptr)(Lm_list *); 140 141 switch (event) { 142 case RD_PREINIT: 143 fptr = rtld_db_preinit; 144 break; 145 case RD_POSTINIT: 146 fptr = rtld_db_postinit; 147 break; 148 case RD_DLACTIVITY: 149 switch (state) { 150 case RT_CONSISTENT: 151 lml->lm_flags &= ~LML_FLG_DBNOTIF; 152 153 /* 154 * Do we need to send a notification? 155 */ 156 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 157 return; 158 rtld_flags &= ~RT_FL_DBNOTIF; 159 break; 160 case RT_ADD: 161 case RT_DELETE: 162 lml->lm_flags |= LML_FLG_DBNOTIF; 163 164 /* 165 * If we are already in an inconsistent state, no 166 * notification is required. 167 */ 168 if (rtld_flags & RT_FL_DBNOTIF) 169 return; 170 rtld_flags |= RT_FL_DBNOTIF; 171 break; 172 }; 173 fptr = rtld_db_dlactivity; 174 break; 175 default: 176 /* 177 * RD_NONE - do nothing 178 */ 179 break; 180 }; 181 182 /* 183 * Set event state and call 'notification' function. 184 * 185 * The debugging clients have previously been told about these 186 * notification functions and have set breakpoints on them if they 187 * are interested in the notification. 188 */ 189 r_debug.rtd_rdebug.r_state = state; 190 r_debug.rtd_rdebug.r_rdevent = event; 191 fptr(lml); 192 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 193 } 194 195 #if defined(__sparc) || defined(__x86) 196 /* 197 * Stack Cleanup. 198 * 199 * This function is invoked to 'remove' arguments that were passed in on the 200 * stack. This is most likely if ld.so.1 was invoked directly. In that case 201 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 202 * Which means we then need to slide everything above it on the stack down 203 * accordingly. 204 * 205 * While the stack layout is platform specific - it just so happens that __x86, 206 * and __sparc platforms share the following initial stack layout. 207 * 208 * !_______________________! high addresses 209 * ! ! 210 * ! Information ! 211 * ! Block ! 212 * ! (size varies) ! 213 * !_______________________! 214 * ! 0 word ! 215 * !_______________________! 216 * ! Auxiliary ! 217 * ! vector ! 218 * ! 2 word entries ! 219 * ! ! 220 * !_______________________! 221 * ! 0 word ! 222 * !_______________________! 223 * ! Environment ! 224 * ! pointers ! 225 * ! ... ! 226 * ! (one word each) ! 227 * !_______________________! 228 * ! 0 word ! 229 * !_______________________! 230 * ! Argument ! low addresses 231 * ! pointers ! 232 * ! Argc words ! 233 * !_______________________! 234 * ! ! 235 * ! Argc ! 236 * !_______________________! 237 * ! ... ! 238 * 239 */ 240 static void 241 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 242 { 243 int ndx; 244 long *argc; 245 char **oargv, **nargv; 246 char **oenvp, **nenvp; 247 auxv_t *oauxv, *nauxv; 248 249 /* 250 * Slide ARGV[] and update argc. The argv pointer remains the same, 251 * however slide the applications arguments over the arguments to 252 * ld.so.1. 253 */ 254 nargv = &argv[0]; 255 oargv = &argv[rmcnt]; 256 257 for (ndx = 0; oargv[ndx]; ndx++) 258 nargv[ndx] = oargv[ndx]; 259 nargv[ndx] = oargv[ndx]; 260 261 argc = (long *)((uintptr_t)argv - sizeof (long *)); 262 *argc -= rmcnt; 263 264 /* 265 * Slide ENVP[], and update the environment array pointer. 266 */ 267 ndx++; 268 nenvp = &nargv[ndx]; 269 oenvp = &oargv[ndx]; 270 *envp = nenvp; 271 272 for (ndx = 0; oenvp[ndx]; ndx++) 273 nenvp[ndx] = oenvp[ndx]; 274 nenvp[ndx] = oenvp[ndx]; 275 276 /* 277 * Slide AUXV[], and update the aux vector pointer. 278 */ 279 ndx++; 280 nauxv = (auxv_t *)&nenvp[ndx]; 281 oauxv = (auxv_t *)&oenvp[ndx]; 282 *auxv = nauxv; 283 284 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 285 nauxv[ndx] = oauxv[ndx]; 286 nauxv[ndx] = oauxv[ndx]; 287 } 288 #else 289 /* 290 * Verify that the above routine is appropriate for any new platforms. 291 */ 292 #error unsupported architecture! 293 #endif 294 295 /* 296 * The only command line argument recognized is -e, followed by a runtime 297 * linker environment variable. 298 */ 299 int 300 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 301 Word *lmtflags, int aout) 302 { 303 int ndx; 304 305 for (ndx = 1; argv[ndx]; ndx++) { 306 char *str; 307 308 if (argv[ndx][0] != '-') 309 break; 310 311 if (argv[ndx][1] == '\0') { 312 ndx++; 313 break; 314 } 315 316 if (argv[ndx][1] != 'e') 317 return (1); 318 319 if (argv[ndx][2] == '\0') { 320 ndx++; 321 if (argv[ndx] == NULL) 322 return (1); 323 str = argv[ndx]; 324 } else 325 str = &argv[ndx][2]; 326 327 /* 328 * If the environment variable starts with LD_, strip the LD_. 329 * Otherwise, take things as is. 330 */ 331 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 332 (str[3] != '\0')) 333 str += 3; 334 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 335 return (1); 336 } 337 338 /* 339 * Make sure an object file has been specified. 340 */ 341 if (argv[ndx] == 0) 342 return (1); 343 344 /* 345 * Having gotten the arguments, clean ourselves off of the stack. 346 */ 347 stack_cleanup(argv, envp, auxv, ndx); 348 return (0); 349 } 350 351 /* 352 * Compare function for FullpathNode AVL tree. 353 */ 354 static int 355 fpavl_compare(const void * n1, const void * n2) 356 { 357 uint_t hash1, hash2; 358 const char *st1, *st2; 359 int rc; 360 361 hash1 = ((FullpathNode *)n1)->fpn_hash; 362 hash2 = ((FullpathNode *)n2)->fpn_hash; 363 364 if (hash1 > hash2) 365 return (1); 366 if (hash1 < hash2) 367 return (-1); 368 369 st1 = ((FullpathNode *)n1)->fpn_name; 370 st2 = ((FullpathNode *)n2)->fpn_name; 371 372 rc = strcmp(st1, st2); 373 if (rc > 0) 374 return (1); 375 if (rc < 0) 376 return (-1); 377 return (0); 378 } 379 380 381 /* 382 * Determine if a given pathname has already been loaded in the AVL tree. 383 * If the pathname does not exist in the AVL tree, the next insertion point 384 * is deposited in "where". This value can be used by fpavl_insert() to 385 * expedite the insertion. 386 */ 387 Rt_map * 388 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where) 389 { 390 FullpathNode fpn, *fpnp; 391 avl_tree_t *avlt; 392 393 /* 394 * Create the avl tree if required. 395 */ 396 if ((avlt = lml->lm_fpavl) == NULL) { 397 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 398 return (0); 399 avl_create(avlt, fpavl_compare, sizeof (FullpathNode), 400 SGSOFFSETOF(FullpathNode, fpn_avl)); 401 lml->lm_fpavl = avlt; 402 } 403 404 fpn.fpn_name = name; 405 fpn.fpn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 414 /* 415 * Insert a name into the FullpathNode AVL tree for the link-map list. The 416 * objects NAME() is the path that would have originally been searched for, and 417 * is therefore the name to associate with any "where" value. If the object has 418 * a different PATHNAME(), perhaps because it has resolved to a different file 419 * (see fullpath), then this name is recorded also. See load_file(). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullpathNode *fpnp; 425 426 if (where == 0) { 427 /* LINTED */ 428 Rt_map *_lmp = fpavl_loaded(lml, name, &where); 429 430 /* 431 * We better not get a hit now, we do not want duplicates in 432 * the tree. 433 */ 434 ASSERT(_lmp == 0); 435 } 436 437 /* 438 * Insert new node in tree 439 */ 440 if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0) 441 return (0); 442 443 fpnp->fpn_name = name; 444 fpnp->fpn_hash = sgs_str_hash(name); 445 fpnp->fpn_lmp = lmp; 446 447 if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *), 448 AL_CNT_FPNODE) == 0) { 449 free(fpnp); 450 return (0); 451 } 452 453 ASSERT(lml->lm_fpavl != NULL); 454 avl_insert(lml->lm_fpavl, fpnp, where); 455 return (1); 456 } 457 458 /* 459 * Remove an object from the Fullpath AVL tree. Note, this is called *before* 460 * the objects link-map is torn down (remove_so), which is where any NAME() and 461 * PATHNAME() strings will be deallocated. 462 */ 463 void 464 fpavl_remove(Rt_map *lmp) 465 { 466 FullpathNode **fpnpp; 467 Aliste off; 468 469 for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) { 470 FullpathNode *fpnp = *fpnpp; 471 472 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 473 free(fpnp); 474 } 475 free(FPNODE(lmp)); 476 FPNODE(lmp) = 0; 477 } 478 479 480 /* 481 * Prior to calling an object, either via a .plt or through dlsym(), make sure 482 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 483 * init's in the correct order, however, this order is typically based on needed 484 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 485 * still occur and result in bindings that were not captured during topological 486 * sorting. This routine compensates for this lack of binding information, and 487 * provides for dynamic .init firing. 488 */ 489 void 490 is_dep_init(Rt_map * dlmp, Rt_map * clmp) 491 { 492 Rt_map ** tobj; 493 494 /* 495 * If the caller is an auditor, and the destination isn't, then don't 496 * run any .inits (see comments in load_completion()). 497 */ 498 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 499 (LIST(clmp) != LIST(dlmp))) 500 return; 501 502 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 503 return; 504 505 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 506 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 507 return; 508 509 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 510 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 511 DBG_CALL(Dbg_util_no_init(dlmp)); 512 return; 513 } 514 515 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 516 tobj[0] = dlmp; 517 call_init(tobj, DBG_INIT_DYN); 518 } 519 } 520 521 /* 522 * In a threaded environment insure the thread responsible for loading an object 523 * has completed .init processing for that object before any new thread is 524 * allowed to access the object. This check is only valid with libthread 525 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 526 * 527 * When a new link-map is created, the thread that causes it to be loaded is 528 * identified by THREADID(dlmp). Compare this with the current thread to 529 * determine if it must be blocked. 530 * 531 * NOTE, there are a number of instances (typically only for .plt processing) 532 * where we must skip this test: 533 * 534 * . any thread id of 0 - threads that call thr_exit() may be in this state 535 * thus we can't deduce what tid they used to be. Also some of the 536 * lib/libthread worker threads have this id and must bind (to themselves 537 * or libc) for libthread to function. 538 * 539 * . libthread itself binds to libc, and as libthread is INITFIRST 540 * libc's .init can't have fired yet. Luckly libc's .init is not required 541 * by libthreads binding. 542 * 543 * . if the caller is an auditor, and the destination isn't, then don't 544 * block (see comments in load_completion()). 545 */ 546 void 547 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what) 548 { 549 thread_t tid; 550 551 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 552 (LIST(clmp) != LIST(dlmp))) 553 return; 554 555 if ((rtld_flags & RT_FL_CONCUR) && 556 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 557 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 558 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 559 while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) { 560 FLAGS1(dlmp) |= FL1_RT_INITWAIT; 561 DBG_CALL(Dbg_util_wait(clmp, dlmp, what)); 562 (void) rt_cond_wait(CONDVAR(dlmp), &rtldlock); 563 } 564 } 565 } 566 567 /* 568 * Execute .{preinit|init|fini}array sections 569 */ 570 void 571 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 572 { 573 int start, stop, incr, ndx; 574 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 575 576 if (array == NULL) 577 return; 578 579 /* 580 * initarray & preinitarray are walked from beginning to end - while 581 * finiarray is walked from end to beginning. 582 */ 583 if (shtype == SHT_FINI_ARRAY) { 584 start = arraycnt - 1; 585 stop = incr = -1; 586 } else { 587 start = 0; 588 stop = arraycnt; 589 incr = 1; 590 } 591 592 /* 593 * Call the .*array[] entries 594 */ 595 for (ndx = start; ndx != stop; ndx += incr) { 596 void (*fptr)(void) = (void(*)())array[ndx]; 597 598 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 599 600 leave(LIST(lmp)); 601 (*fptr)(); 602 (void) enter(); 603 } 604 } 605 606 607 /* 608 * Execute any .init sections. These are passed to us in an lmp array which 609 * (by default) will have been sorted. 610 */ 611 void 612 call_init(Rt_map ** tobj, int flag) 613 { 614 Rt_map ** _tobj, ** _nobj; 615 static List pending = { NULL, NULL }; 616 617 /* 618 * If we're in the middle of an INITFIRST, this must complete before 619 * any new init's are fired. In this case add the object list to the 620 * pending queue and return. We'll pick up the queue after any 621 * INITFIRST objects have their init's fired. 622 */ 623 if (rtld_flags & RT_FL_INITFIRST) { 624 (void) list_append(&pending, tobj); 625 return; 626 } 627 628 /* 629 * Traverse the tobj array firing each objects init. 630 */ 631 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 632 Rt_map * lmp = *_tobj; 633 void (* iptr)() = INIT(lmp); 634 635 if (FLAGS(lmp) & FLG_RT_INITCALL) 636 continue; 637 638 FLAGS(lmp) |= FLG_RT_INITCALL; 639 640 /* 641 * Establish an initfirst state if necessary - no other inits 642 * will be fired (because of additional relocation bindings) 643 * when in this state. 644 */ 645 if (FLAGS(lmp) & FLG_RT_INITFRST) 646 rtld_flags |= RT_FL_INITFIRST; 647 648 if (INITARRAY(lmp) || iptr) { 649 Aliste off; 650 Bnd_desc ** bdpp; 651 652 /* 653 * Make sure that all dependencies that have been 654 * relocated to are initialized before this objects 655 * .init is executed. This insures that a dependency 656 * on an external item that must first be initialized 657 * by its associated object is satisfied. 658 */ 659 for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) { 660 Bnd_desc * bdp = *bdpp; 661 662 if ((bdp->b_flags & BND_REFER) == 0) 663 continue; 664 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 665 } 666 DBG_CALL(Dbg_util_call_init(lmp, flag)); 667 } 668 669 if (iptr) { 670 leave(LIST(lmp)); 671 (*iptr)(); 672 (void) enter(); 673 } 674 675 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 676 SHT_INIT_ARRAY); 677 678 if (INITARRAY(lmp) || iptr) 679 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 680 681 /* 682 * Set the initdone flag regardless of whether this object 683 * actually contains an .init section. This flag prevents us 684 * from processing this section again for an .init and also 685 * signifies that a .fini must be called should it exist. 686 * Clear the sort field for use in later .fini processing. 687 */ 688 FLAGS(lmp) |= FLG_RT_INITDONE; 689 SORTVAL(lmp) = -1; 690 691 /* 692 * Wake anyone up who might be waiting on this .init. 693 */ 694 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 695 DBG_CALL(Dbg_util_broadcast(lmp)); 696 (void) rt_cond_broadcast(CONDVAR(lmp)); 697 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 698 } 699 700 /* 701 * If we're firing an INITFIRST object, and other objects must 702 * be fired which are not INITFIRST, make sure we grab any 703 * pending objects that might have been delayed as this 704 * INITFIRST was processed. 705 */ 706 if ((rtld_flags & RT_FL_INITFIRST) && 707 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 708 Listnode * lnp; 709 Rt_map ** pobj; 710 711 rtld_flags &= ~RT_FL_INITFIRST; 712 713 while ((lnp = pending.head) != NULL) { 714 if ((pending.head = lnp->next) == NULL) 715 pending.tail = NULL; 716 pobj = lnp->data; 717 free(lnp); 718 719 call_init(pobj, DBG_INIT_PEND); 720 } 721 } 722 } 723 free(tobj); 724 } 725 726 /* 727 * Function called by atexit(3C). Calls all .fini sections related with the 728 * mains dependent shared libraries in the order in which the shared libraries 729 * have been loaded. Skip any .fini defined in the main executable, as this 730 * will be called by crt0 (main was never marked as initdone). 731 */ 732 void 733 call_fini(Lm_list * lml, Rt_map ** tobj) 734 { 735 Rt_map **_tobj; 736 737 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 738 Rt_map * clmp, * lmp = *_tobj; 739 Aliste off; 740 Bnd_desc ** bdpp; 741 742 /* 743 * If concurrency checking isn't enabled only fire .fini if 744 * .init has completed. We collect all .fini sections of 745 * objects that had their .init collected, but that doesn't 746 * mean at the time that the .init had completed. 747 */ 748 if ((rtld_flags & RT_FL_CONCUR) || 749 (FLAGS(lmp) & FLG_RT_INITDONE)) { 750 void (*fptr)(void) = FINI(lmp); 751 752 if (FINIARRAY(lmp) || fptr) { 753 /* 754 * If concurrency checking is enabled make sure 755 * this object's .init is completed before 756 * calling any .fini. 757 */ 758 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 759 DBG_CALL(Dbg_util_call_fini(lmp)); 760 } 761 762 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 763 SHT_FINI_ARRAY); 764 765 if (fptr) { 766 leave(LIST(lmp)); 767 (*fptr)(); 768 (void) enter(); 769 } 770 } 771 772 /* 773 * Skip main, this is explicitly called last in atexit_fini(). 774 */ 775 if (FLAGS(lmp) & FLG_RT_ISMAIN) 776 continue; 777 778 /* 779 * Audit `close' operations at this point. The library has 780 * exercised its last instructions (regardless of whether it 781 * will be unmapped or not). 782 * 783 * First call any global auditing. 784 */ 785 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 786 _audit_objclose(&(auditors->ad_list), lmp); 787 788 /* 789 * Finally determine whether this object has local auditing 790 * requirements by inspecting itself and then its dependencies. 791 */ 792 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 793 continue; 794 795 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 796 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 797 798 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 799 Bnd_desc * bdp = *bdpp; 800 801 clmp = bdp->b_caller; 802 803 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 804 _audit_objclose(&(AUDITORS(clmp)->ad_list), 805 lmp); 806 break; 807 } 808 } 809 } 810 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 811 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 812 813 free(tobj); 814 } 815 816 void 817 atexit_fini() 818 { 819 Rt_map ** tobj, * lmp; 820 Lm_list * lml; 821 Listnode * lnp; 822 823 (void) enter(); 824 825 rtld_flags |= RT_FL_ATEXIT; 826 827 lml = &lml_main; 828 lml->lm_flags |= LML_FLG_ATEXIT; 829 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 830 lmp = (Rt_map *)lml->lm_head; 831 832 /* 833 * Display any objects that haven't been referenced so far. 834 */ 835 unused(lml); 836 837 /* 838 * Reverse topologically sort the main link-map for .fini execution. 839 */ 840 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 841 (tobj != (Rt_map **)S_ERROR)) 842 call_fini(lml, tobj); 843 844 /* 845 * Add an explicit close to main and ld.so.1. Although main's .fini is 846 * collected in call_fini() to provide for FINITARRAY processing, its 847 * audit_objclose is explicitly skipped. This provides for it to be 848 * called last, here. This is the reverse of the explicit calls to 849 * audit_objopen() made in setup(). 850 */ 851 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 852 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 853 audit_objclose(lmp, lmp); 854 } 855 856 /* 857 * Now that all .fini code has been run, see what unreferenced objects 858 * remain. Any difference between this and the above unused() would 859 * indicate an object is only being used for .fini processing, which 860 * might be fine, but might also indicate an overhead whose removal 861 * would be worth considering. 862 */ 863 unused(lml); 864 865 /* 866 * Traverse any alternative link-map lists. 867 */ 868 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 869 /* 870 * Ignore the base-link-map list, which has already been 871 * processed, and the runtime linkers link-map list, which is 872 * typically processed last. 873 */ 874 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 875 continue; 876 877 if ((lmp = (Rt_map *)lml->lm_head) == 0) 878 continue; 879 880 lml->lm_flags |= LML_FLG_ATEXIT; 881 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 882 883 /* 884 * Reverse topologically sort the link-map for .fini execution. 885 */ 886 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 887 (tobj != (Rt_map **)S_ERROR)) 888 call_fini(lml, tobj); 889 890 unused(lml); 891 } 892 893 /* 894 * Finally reverse topologically sort the runtime linkers link-map for 895 * .fini execution. 896 */ 897 lml = &lml_rtld; 898 lml->lm_flags |= LML_FLG_ATEXIT; 899 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 900 lmp = (Rt_map *)lml->lm_head; 901 902 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 903 (tobj != (Rt_map **)S_ERROR)) 904 call_fini(lml, tobj); 905 906 leave(&lml_main); 907 } 908 909 910 /* 911 * This routine is called to complete any runtime linker activity which may have 912 * resulted in objects being loaded. This is called from all user entry points 913 * and from any internal dl*() requests. 914 */ 915 void 916 load_completion(Rt_map *nlmp, Rt_map *clmp) 917 { 918 Rt_map **tobj = 0; 919 Lm_list *nlml, *clml; 920 921 /* 922 * Establish any .init processing. Note, in a world of lazy loading, 923 * objects may have been loaded regardless of whether the users request 924 * was fulfilled (i.e., a dlsym() request may have failed to find a 925 * symbol but objects might have been loaded during its search). Thus, 926 * any tsorting starts from the nlmp (new link-maps) pointer and not 927 * necessarily from the link-map that may have satisfied the request. 928 * 929 * Note, the primary link-map has an initialization phase where dynamic 930 * .init firing is suppressed. This provides for a simple and clean 931 * handshake with the primary link-maps libc, which is important for 932 * establishing uberdata. In addition, auditors often obtain handles 933 * to primary link-map objects as the objects are loaded, so as to 934 * inspect the link-map for symbols. This inspection is allowed without 935 * running any code on the primary link-map, as running this code may 936 * reenter the auditor, who may not yet have finished its own 937 * initialization. 938 */ 939 if (nlmp) 940 nlml = LIST(nlmp); 941 if (clmp) 942 clml = LIST(clmp); 943 944 if (nlmp && nlml->lm_init && 945 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 946 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 947 RT_SORT_REV)) == (Rt_map **)S_ERROR) 948 tobj = 0; 949 } 950 951 /* 952 * Make sure any alternative link-map retrieves any external interfaces 953 * and initializes threads. 954 */ 955 if (nlmp && (nlml != &lml_main)) { 956 (void) rt_get_extern(nlml, nlmp); 957 rt_thr_init(nlml); 958 } 959 960 /* 961 * Traverse the list of new link-maps and register any dynamic TLS. 962 * This storage is established for any objects not on the primary 963 * link-map, and for any objects added to the primary link-map after 964 * static TLS has been registered. 965 */ 966 if (nlmp && nlml->lm_tls && 967 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 968 Rt_map *lmp; 969 970 for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) { 971 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 972 tls_modaddrem(lmp, TM_FLG_MODADD); 973 } 974 nlml->lm_tls = 0; 975 } 976 977 /* 978 * Indicate the link-map list is consistent. 979 */ 980 if (clmp && ((clml->lm_tflags | FLAGS1(clmp)) & LML_TFLG_AUD_ACTIVITY)) 981 audit_activity(clmp, LA_ACT_CONSISTENT); 982 983 /* 984 * Fire any .init's. 985 */ 986 if (tobj) 987 call_init(tobj, DBG_INIT_SORT); 988 } 989 990 /* 991 * Append an item to the specified list, and return a pointer to the list 992 * node created. 993 */ 994 Listnode * 995 list_append(List *lst, const void *item) 996 { 997 Listnode * _lnp; 998 999 if ((_lnp = malloc(sizeof (Listnode))) == 0) 1000 return (0); 1001 1002 _lnp->data = (void *)item; 1003 _lnp->next = NULL; 1004 1005 if (lst->head == NULL) 1006 lst->tail = lst->head = _lnp; 1007 else { 1008 lst->tail->next = _lnp; 1009 lst->tail = lst->tail->next; 1010 } 1011 return (_lnp); 1012 } 1013 1014 1015 /* 1016 * Add an item after specified listnode, and return a pointer to the list 1017 * node created. 1018 */ 1019 Listnode * 1020 list_insert(List *lst, const void *item, Listnode *lnp) 1021 { 1022 Listnode * _lnp; 1023 1024 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1025 return (0); 1026 1027 _lnp->data = (void *)item; 1028 _lnp->next = lnp->next; 1029 if (_lnp->next == NULL) 1030 lst->tail = _lnp; 1031 lnp->next = _lnp; 1032 return (_lnp); 1033 } 1034 1035 /* 1036 * Prepend an item to the specified list, and return a pointer to the 1037 * list node created. 1038 */ 1039 Listnode * 1040 list_prepend(List * lst, const void * item) 1041 { 1042 Listnode * _lnp; 1043 1044 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1045 return (0); 1046 1047 _lnp->data = (void *)item; 1048 1049 if (lst->head == NULL) { 1050 _lnp->next = NULL; 1051 lst->tail = lst->head = _lnp; 1052 } else { 1053 _lnp->next = lst->head; 1054 lst->head = _lnp; 1055 } 1056 return (_lnp); 1057 } 1058 1059 1060 /* 1061 * Delete a 'listnode' from a list. 1062 */ 1063 void 1064 list_delete(List *lst, void *item) 1065 { 1066 Listnode *clnp, *plnp; 1067 1068 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1069 if (item == clnp->data) 1070 break; 1071 plnp = clnp; 1072 } 1073 1074 if (clnp == 0) 1075 return; 1076 1077 if (lst->head == clnp) 1078 lst->head = clnp->next; 1079 if (lst->tail == clnp) 1080 lst->tail = plnp; 1081 1082 if (plnp) 1083 plnp->next = clnp->next; 1084 1085 free(clnp); 1086 } 1087 1088 /* 1089 * Append an item to the specified link map control list. 1090 */ 1091 void 1092 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1093 { 1094 Lm_cntl *lmc; 1095 int add = 1; 1096 1097 /* 1098 * Indicate that this link-map list has a new object. 1099 */ 1100 (lml->lm_obj)++; 1101 1102 /* 1103 * If we're about to add a new object to the main link-map control list, 1104 * alert the debuggers that we are about to mess with this list. 1105 * Additions of individual objects to the main link-map control list 1106 * occur during initial setup as the applications immediate dependencies 1107 * are loaded. Individual objects are also loaded on the main link-map 1108 * control list of new alternative link-map control lists. 1109 */ 1110 if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1111 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1112 1113 /* LINTED */ 1114 lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco); 1115 1116 /* 1117 * A link-map list header points to one of more link-map control lists 1118 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1119 * the list of relocated objects. Other lists maintain objects that 1120 * are still being analyzed or relocated. This list provides the core 1121 * link-map list information used by all ld.so.1 routines. 1122 */ 1123 if (lmc->lc_head == NULL) { 1124 /* 1125 * If this is the first link-map for the given control list, 1126 * initialize the list. 1127 */ 1128 lmc->lc_head = lmc->lc_tail = lmp; 1129 add = 0; 1130 1131 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1132 Rt_map *tlmp; 1133 1134 /* 1135 * If this is an interposer then append the link-map following 1136 * any other interposers (these are objects that have been 1137 * previously preloaded, or were identified with -z interpose). 1138 * Interposers can only be inserted on the first link-map 1139 * control list, as once relocation has started, interposition 1140 * from new interposers can't be guaranteed. 1141 * 1142 * NOTE: We do not interpose on the head of a list. This model 1143 * evolved because dynamic executables have already been fully 1144 * relocated within themselves and thus can't be interposed on. 1145 * Nowadays it's possible to have shared objects at the head of 1146 * a list, which conceptually means they could be interposed on. 1147 * But, shared objects can be created via dldump() and may only 1148 * be partially relocated (just relatives), in which case they 1149 * are interposable, but are marked as fixed (ET_EXEC). 1150 * 1151 * Thus we really don't have a clear method of deciding when the 1152 * head of a link-map is interposable. So, to be consistent, 1153 * for now only add interposers after the link-map lists head 1154 * object. 1155 */ 1156 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1157 tlmp = (Rt_map *)NEXT(tlmp)) { 1158 1159 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1160 continue; 1161 1162 /* 1163 * Insert the new link-map before this non-interposer, 1164 * and indicate an interposer is found. 1165 */ 1166 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1167 PREV(lmp) = PREV(tlmp); 1168 1169 NEXT(lmp) = (Link_map *)tlmp; 1170 PREV(tlmp) = (Link_map *)lmp; 1171 1172 lmc->lc_flags |= LMC_FLG_REANALYZE; 1173 add = 0; 1174 break; 1175 } 1176 } 1177 1178 /* 1179 * Fall through to appending the new link map to the tail of the list. 1180 * If we're processing the initial objects of this link-map list, add 1181 * them to the backward compatibility list. 1182 */ 1183 if (add) { 1184 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1185 PREV(lmp) = (Link_map *)lmc->lc_tail; 1186 lmc->lc_tail = lmp; 1187 } 1188 1189 /* 1190 * Having added this link-map to a control list, indicate which control 1191 * list the link-map belongs to. Note, control list information is 1192 * always maintained as an offset, as the Alist can be reallocated. 1193 */ 1194 CNTL(lmp) = lmco; 1195 1196 /* 1197 * Indicate if an interposer is found. Note that the first object on a 1198 * link-map can be explicitly defined as an interposer so that it can 1199 * provide interposition over direct binding requests. 1200 */ 1201 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1202 lml->lm_flags |= LML_FLG_INTRPOSE; 1203 1204 /* 1205 * For backward compatibility with debuggers, the link-map list contains 1206 * pointers to the main control list. 1207 */ 1208 if (lmco == ALO_DATA) { 1209 lml->lm_head = lmc->lc_head; 1210 lml->lm_tail = lmc->lc_tail; 1211 } 1212 } 1213 1214 /* 1215 * Delete an item from the specified link map control list. 1216 */ 1217 void 1218 lm_delete(Lm_list *lml, Rt_map *lmp) 1219 { 1220 Lm_cntl *lmc; 1221 1222 /* 1223 * If the control list pointer hasn't been initialized, this object 1224 * never got added to a link-map list. 1225 */ 1226 if (CNTL(lmp) == 0) 1227 return; 1228 1229 /* 1230 * If we're about to delete an object from the main link-map control 1231 * list, alert the debuggers that we are about to mess with this list. 1232 */ 1233 if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1234 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1235 1236 /* LINTED */ 1237 lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp)); 1238 1239 if (lmc->lc_head == lmp) 1240 lmc->lc_head = (Rt_map *)NEXT(lmp); 1241 else 1242 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1243 1244 if (lmc->lc_tail == lmp) 1245 lmc->lc_tail = (Rt_map *)PREV(lmp); 1246 else 1247 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1248 1249 /* 1250 * For backward compatibility with debuggers, the link-map list contains 1251 * pointers to the main control list. 1252 */ 1253 if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) { 1254 lml->lm_head = lmc->lc_head; 1255 lml->lm_tail = lmc->lc_tail; 1256 } 1257 1258 /* 1259 * Indicate we have one less object on this control list. 1260 */ 1261 (lml->lm_obj)--; 1262 } 1263 1264 /* 1265 * Move a link-map control list to another. Objects that are being relocated 1266 * are maintained on secondary control lists. Once their relocation is 1267 * complete, the entire list is appended to the previous control list, as this 1268 * list must have been the trigger for generating the new control list. 1269 */ 1270 void 1271 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1272 { 1273 Rt_map *lmp; 1274 1275 /* 1276 * If we're about to add a new family of objects to the main link-map 1277 * control list, alert the debuggers that we are about to mess with this 1278 * list. Additions of object families to the main link-map control 1279 * list occur during lazy loading, filtering and dlopen(). 1280 */ 1281 if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1282 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1283 1284 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1285 1286 /* 1287 * Indicate each new link-map has been moved to the previous link-map 1288 * control list. 1289 */ 1290 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1291 CNTL(lmp) = plmco; 1292 1293 /* 1294 * Move the new link-map control list, to the callers link-map control 1295 * list. 1296 */ 1297 if (plmc->lc_head == 0) { 1298 plmc->lc_head = nlmc->lc_head; 1299 PREV(nlmc->lc_head) = 0; 1300 } else { 1301 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1302 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1303 } 1304 1305 plmc->lc_tail = nlmc->lc_tail; 1306 nlmc->lc_head = nlmc->lc_tail = 0; 1307 1308 /* 1309 * For backward compatibility with debuggers, the link-map list contains 1310 * pointers to the main control list. 1311 */ 1312 if (plmco == ALO_DATA) { 1313 lml->lm_head = plmc->lc_head; 1314 lml->lm_tail = plmc->lc_tail; 1315 } 1316 } 1317 1318 /* 1319 * Environment variables can have a variety of defined permutations, and thus 1320 * the following infrastructure exists to allow this variety and to select the 1321 * required definition. 1322 * 1323 * Environment variables can be defined as 32- or 64-bit specific, and if so 1324 * they will take precedence over any instruction set neutral form. Typically 1325 * this is only useful when the environment value is an informational string. 1326 * 1327 * Environment variables may be obtained from the standard user environment or 1328 * from a configuration file. The latter provides a fallback if no user 1329 * environment setting is found, and can take two forms: 1330 * 1331 * . a replaceable definition - this will be used if no user environment 1332 * setting has been seen, or 1333 * 1334 * . an permanent definition - this will be used no matter what user 1335 * environment setting is seen. In the case of list variables it will be 1336 * appended to any process environment setting seen. 1337 * 1338 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1339 * override any replaceable environment variables from a configuration file. 1340 */ 1341 static u_longlong_t rplgen; /* replaceable generic */ 1342 /* variables */ 1343 static u_longlong_t rplisa; /* replaceable ISA specific */ 1344 /* variables */ 1345 static u_longlong_t prmgen; /* permanent generic */ 1346 /* variables */ 1347 static u_longlong_t prmisa; /* permanent ISA specific */ 1348 /* variables */ 1349 1350 /* 1351 * Classify an environment variables type. 1352 */ 1353 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1354 /* the wrong ISA */ 1355 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1356 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1357 /* config file */ 1358 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1359 1360 /* 1361 * Identify all environment variables. 1362 */ 1363 #define ENV_FLG_AUDIT 0x0000000001ULL 1364 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1365 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1366 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1367 #define ENV_FLG_BINDINGS 0x0000000010ULL 1368 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1369 #define ENV_FLG_CONFGEN 0x0000000040ULL 1370 #define ENV_FLG_CONFIG 0x0000000080ULL 1371 #define ENV_FLG_DEBUG 0x0000000100ULL 1372 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1373 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1374 #define ENV_FLG_FLAGS 0x0000000800ULL 1375 #define ENV_FLG_INIT 0x0000001000ULL 1376 #define ENV_FLG_LIBPATH 0x0000002000ULL 1377 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1378 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1379 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1380 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1381 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1382 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1383 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1384 #define ENV_FLG_NODIRECT 0x0000200000ULL 1385 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1386 #define ENV_FLG_NOLAZY 0x0000800000ULL 1387 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1388 #define ENV_FLG_NOVERSION 0x0002000000ULL 1389 #define ENV_FLG_PRELOAD 0x0004000000ULL 1390 #define ENV_FLG_PROFILE 0x0008000000ULL 1391 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1392 #define ENV_FLG_SIGNAL 0x0020000000ULL 1393 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1394 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1395 #define ENV_FLG_UNREF 0x0100000000ULL 1396 #define ENV_FLG_UNUSED 0x0200000000ULL 1397 #define ENV_FLG_VERBOSE 0x0400000000ULL 1398 #define ENV_FLG_WARN 0x0800000000ULL 1399 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1400 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1401 1402 #ifdef SIEBEL_DISABLE 1403 #define ENV_FLG_FIX_1 0x8000000000ULL 1404 #endif 1405 1406 #define SEL_REPLACE 0x0001 1407 #define SEL_PERMANT 0x0002 1408 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1409 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1410 #define SEL_ACT_STR 0x0400 /* setting string value */ 1411 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1412 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1413 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1414 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1415 1416 /* 1417 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1418 * and len specifies its length (comparing a strings length before the string 1419 * itself speed things up). s2 points to the token itself which has already 1420 * had any leading white-space removed. 1421 */ 1422 static void 1423 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1424 Word *lmtflags, uint_t env_flags, int aout) 1425 { 1426 u_longlong_t variable = 0; 1427 ushort_t select = 0; 1428 const char **str; 1429 Word val = 0; 1430 1431 /* 1432 * Determine whether we're dealing with a replaceable or permanent 1433 * string. 1434 */ 1435 if (env_flags & ENV_TYP_PERMANT) { 1436 /* 1437 * If the string is from a configuration file and defined as 1438 * permanent, assign it as permanent. 1439 */ 1440 select |= SEL_PERMANT; 1441 } else 1442 select |= SEL_REPLACE; 1443 1444 /* 1445 * Parse the variable given. 1446 * 1447 * The LD_AUDIT family. 1448 */ 1449 if (*s1 == 'A') { 1450 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1451 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1452 /* 1453 * Replaceable and permanent audit objects can exist. 1454 */ 1455 select |= SEL_ACT_STR; 1456 if (select & SEL_REPLACE) 1457 str = &rpl_audit; 1458 else { 1459 str = &prm_audit; 1460 rpl_audit = 0; 1461 } 1462 variable = ENV_FLG_AUDIT; 1463 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1464 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1465 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1466 /* 1467 * A specialized variable for plt_exit() use, not 1468 * documented for general use. 1469 */ 1470 select |= SEL_ACT_SPEC_2; 1471 variable = ENV_FLG_AUDIT_ARGS; 1472 } 1473 } 1474 /* 1475 * The LD_BIND family and LD_BREADTH (historic). 1476 */ 1477 else if (*s1 == 'B') { 1478 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1479 MSG_ORIG(MSG_LD_BIND_LAZY), 1480 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1481 select |= SEL_ACT_RT2; 1482 val = RT_FL2_BINDLAZY; 1483 variable = ENV_FLG_BIND_LAZY; 1484 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1485 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1486 select |= SEL_ACT_RT2; 1487 val = RT_FL2_BINDNOW; 1488 variable = ENV_FLG_BIND_NOW; 1489 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1490 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1491 /* 1492 * Another trick, enabled to help debug AOUT 1493 * applications under BCP, but not documented for 1494 * general use. 1495 */ 1496 select |= SEL_ACT_RT; 1497 val = RT_FL_NOBIND; 1498 variable = ENV_FLG_BIND_NOT; 1499 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1500 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1501 /* 1502 * This variable is simply for backward compatibility. 1503 * If this and LD_DEBUG are both specified, only one of 1504 * the strings is going to get processed. 1505 */ 1506 select |= SEL_ACT_SPEC_2; 1507 variable = ENV_FLG_BINDINGS; 1508 #ifndef LD_BREADTH_DISABLED 1509 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1510 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1511 /* 1512 * Besides some old patches this is no longer available. 1513 */ 1514 rtld_flags |= RT_FL_BREADTH; 1515 return; 1516 #endif 1517 } 1518 } 1519 /* 1520 * LD_CONCURRENCY and LD_CONFIG family. 1521 */ 1522 else if (*s1 == 'C') { 1523 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1524 MSG_ORIG(MSG_LD_CONCURRENCY), 1525 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1526 /* 1527 * Waiting in the wings, as concurrency checking isn't 1528 * yet enabled. 1529 */ 1530 select |= SEL_ACT_SPEC_2; 1531 variable = ENV_FLG_CONCURRENCY; 1532 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1533 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1534 /* 1535 * Set by crle(1) to indicate it's building a 1536 * configuration file, not documented for general use. 1537 */ 1538 select |= SEL_ACT_SPEC_2; 1539 variable = ENV_FLG_CONFGEN; 1540 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1541 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1542 /* 1543 * Secure applications must use a default configuration 1544 * file. A setting from a configuration file doesn't 1545 * make sense (given we must be reading a configuration 1546 * file to have gotten this). 1547 */ 1548 if ((rtld_flags & RT_FL_SECURE) || 1549 (env_flags & ENV_TYP_CONFIG)) 1550 return; 1551 select |= SEL_ACT_STR; 1552 str = &config->c_name; 1553 variable = ENV_FLG_CONFIG; 1554 } 1555 } 1556 /* 1557 * The LD_DEBUG family and LD_DEMANGLE. 1558 */ 1559 else if (*s1 == 'D') { 1560 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1561 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1562 select |= SEL_ACT_STR; 1563 if (select & SEL_REPLACE) 1564 str = &rpl_debug; 1565 else { 1566 str = &prm_debug; 1567 rpl_debug = 0; 1568 } 1569 variable = ENV_FLG_DEBUG; 1570 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1571 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1572 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1573 select |= SEL_ACT_STR; 1574 str = &dbg_file; 1575 variable = ENV_FLG_DEBUG_OUTPUT; 1576 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1577 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1578 select |= SEL_ACT_RT; 1579 val = RT_FL_DEMANGLE; 1580 variable = ENV_FLG_DEMANGLE; 1581 } 1582 } 1583 /* 1584 * LD_FLAGS - collect the best variable definition. On completion of 1585 * environment variable processing pass the result to ld_flags_env() 1586 * where they'll be decomposed and passed back to this routine. 1587 */ 1588 else if (*s1 == 'F') { 1589 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1590 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1591 select |= SEL_ACT_SPEC_1; 1592 if (select & SEL_REPLACE) 1593 str = &rpl_ldflags; 1594 else { 1595 str = &prm_ldflags; 1596 rpl_ldflags = 0; 1597 } 1598 variable = ENV_FLG_FLAGS; 1599 } 1600 } 1601 /* 1602 * LD_INIT (internal, used by ldd(1)). 1603 */ 1604 else if (*s1 == 'I') { 1605 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1606 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1607 select |= SEL_ACT_LML; 1608 val = LML_FLG_TRC_INIT; 1609 variable = ENV_FLG_INIT; 1610 } 1611 } 1612 /* 1613 * The LD_LIBRARY_PATH and LD_LOAD families. 1614 */ 1615 else if (*s1 == 'L') { 1616 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1617 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1618 select |= SEL_ACT_SPEC_1; 1619 if (select & SEL_REPLACE) 1620 str = &rpl_libpath; 1621 else { 1622 str = &prm_libpath; 1623 rpl_libpath = 0; 1624 } 1625 variable = ENV_FLG_LIBPATH; 1626 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1627 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1628 /* 1629 * Internal use by crle(1), not documented for general 1630 * use. 1631 */ 1632 select |= SEL_ACT_LML; 1633 val = LML_FLG_LOADAVAIL; 1634 variable = ENV_FLG_LOADAVAIL; 1635 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1636 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1637 select |= SEL_ACT_SPEC_2; 1638 variable = ENV_FLG_LOADFLTR; 1639 } 1640 } 1641 /* 1642 * The LD_NO family. 1643 */ 1644 else if (*s1 == 'N') { 1645 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1646 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1647 select |= SEL_ACT_RT; 1648 val = RT_FL_NOAUDIT; 1649 variable = ENV_FLG_NOAUDIT; 1650 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1651 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1652 select |= SEL_ACT_RT; 1653 val = RT_FL_NOAUXFLTR; 1654 variable = ENV_FLG_NOAUXFLTR; 1655 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1656 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1657 select |= SEL_ACT_RT; 1658 val = RT_FL_NOBAPLT; 1659 variable = ENV_FLG_NOBAPLT; 1660 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1661 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1662 select |= SEL_ACT_RT; 1663 val = RT_FL_NOCFG; 1664 variable = ENV_FLG_NOCONFIG; 1665 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1666 MSG_ORIG(MSG_LD_NODIRCONFIG), 1667 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1668 select |= SEL_ACT_RT; 1669 val = RT_FL_NODIRCFG; 1670 variable = ENV_FLG_NODIRCONFIG; 1671 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1672 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1673 select |= SEL_ACT_LMLT; 1674 val = LML_TFLG_NODIRECT; 1675 variable = ENV_FLG_NODIRECT; 1676 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1677 MSG_ORIG(MSG_LD_NOENVCONFIG), 1678 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1679 select |= SEL_ACT_RT; 1680 val = RT_FL_NOENVCFG; 1681 variable = ENV_FLG_NOENVCONFIG; 1682 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1683 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1684 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1685 select |= SEL_ACT_RT2; 1686 val = RT_FL2_NOFLTCFG; 1687 variable = ENV_FLG_NOFLTCONFIG; 1688 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1689 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1690 select |= SEL_ACT_LMLT; 1691 val = LML_TFLG_NOLAZYLD; 1692 variable = ENV_FLG_NOLAZY; 1693 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1694 MSG_ORIG(MSG_LD_NOOBJALTER), 1695 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1696 select |= SEL_ACT_RT; 1697 val = RT_FL_NOOBJALT; 1698 variable = ENV_FLG_NOOBJALTER; 1699 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1700 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1701 select |= SEL_ACT_RT; 1702 val = RT_FL_NOVERSION; 1703 variable = ENV_FLG_NOVERSION; 1704 } 1705 } 1706 /* 1707 * LD_ORIGIN. 1708 */ 1709 else if (*s1 == 'O') { 1710 #ifndef EXPAND_RELATIVE 1711 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1712 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1713 /* 1714 * Besides some old patches this is no longer required. 1715 */ 1716 rtld_flags |= RT_FL_RELATIVE; 1717 } 1718 #endif 1719 return; 1720 } 1721 /* 1722 * LD_PRELOAD and LD_PROFILE family. 1723 */ 1724 else if (*s1 == 'P') { 1725 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1726 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1727 select |= SEL_ACT_STR; 1728 if (select & SEL_REPLACE) 1729 str = &rpl_preload; 1730 else { 1731 str = &prm_preload; 1732 rpl_preload = 0; 1733 } 1734 variable = ENV_FLG_PRELOAD; 1735 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1736 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1737 /* 1738 * Only one user library can be profiled at a time. 1739 */ 1740 select |= SEL_ACT_SPEC_2; 1741 variable = ENV_FLG_PROFILE; 1742 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1743 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1744 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1745 /* 1746 * Only one user library can be profiled at a time. 1747 */ 1748 select |= SEL_ACT_STR; 1749 str = &profile_out; 1750 variable = ENV_FLG_PROFILE_OUTPUT; 1751 } 1752 } 1753 /* 1754 * LD_SIGNAL. 1755 */ 1756 else if (*s1 == 'S') { 1757 if (rtld_flags & RT_FL_SECURE) 1758 return; 1759 if ((len == MSG_LD_SIGNAL_SIZE) && 1760 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1761 MSG_LD_SIGNAL_SIZE) == 0)) { 1762 select |= SEL_ACT_SPEC_2; 1763 variable = ENV_FLG_SIGNAL; 1764 } 1765 } 1766 /* 1767 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1768 * the key to enabling all other ldd(1) specific environment variables. 1769 * In case an auditor is called, which in turn might exec(2) a 1770 * subprocess, this variable is disabled, so that any subprocess 1771 * escapes ldd(1) processing. 1772 */ 1773 else if (*s1 == 'T') { 1774 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1775 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1776 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1777 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1778 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1779 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1780 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1781 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1782 char *s0 = (char *)s1; 1783 1784 select |= SEL_ACT_SPEC_2; 1785 variable = ENV_FLG_TRACE_OBJS; 1786 1787 #if defined(__sparc) || defined(__x86) 1788 /* 1789 * The simplest way to "disable" this variable is to 1790 * truncate this string to "LD_'\0'". This string is 1791 * ignored by any ld.so.1 environment processing. 1792 * Use of such interfaces as unsetenv(3c) are overkill, 1793 * and would drag too much libc implementation detail 1794 * into ld.so.1. 1795 */ 1796 *s0 = '\0'; 1797 #else 1798 /* 1799 * Verify that the above write is appropriate for any new platforms. 1800 */ 1801 #error unsupported architecture! 1802 #endif 1803 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1804 MSG_ORIG(MSG_LD_TRACE_PTHS), 1805 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1806 select |= SEL_ACT_LML; 1807 val = LML_FLG_TRC_SEARCH; 1808 variable = ENV_FLG_TRACE_PTHS; 1809 } 1810 } 1811 /* 1812 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1813 */ 1814 else if (*s1 == 'U') { 1815 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1816 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1817 select |= SEL_ACT_LML; 1818 val = LML_FLG_TRC_UNREF; 1819 variable = ENV_FLG_UNREF; 1820 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1821 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1822 select |= SEL_ACT_LML; 1823 val = LML_FLG_TRC_UNUSED; 1824 variable = ENV_FLG_UNUSED; 1825 } 1826 } 1827 /* 1828 * LD_VERBOSE (internal, used by ldd(1)). 1829 */ 1830 else if (*s1 == 'V') { 1831 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1832 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1833 select |= SEL_ACT_LML; 1834 val = LML_FLG_TRC_VERBOSE; 1835 variable = ENV_FLG_VERBOSE; 1836 } 1837 } 1838 /* 1839 * LD_WARN (internal, used by ldd(1)). 1840 */ 1841 else if (*s1 == 'W') { 1842 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1843 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1844 select |= SEL_ACT_LML; 1845 val = LML_FLG_TRC_WARN; 1846 variable = ENV_FLG_WARN; 1847 } 1848 #ifdef SIEBEL_DISABLE 1849 } 1850 /* 1851 * LD__FIX__ (undocumented, enable future technology that can't be 1852 * delivered in a patch release). 1853 */ 1854 else if (*s1 == '_') { 1855 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1856 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1857 select |= SEL_ACT_RT; 1858 val = RT_FL_DISFIX_1; 1859 variable = ENV_FLG_FIX_1; 1860 } 1861 #endif 1862 } 1863 if (variable == 0) 1864 return; 1865 1866 /* 1867 * If the variable is already processed with ISA specific variable, 1868 * no further processing needed. 1869 */ 1870 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1871 ((select & SEL_PERMANT) && (prmisa & variable))) 1872 return; 1873 1874 /* 1875 * Now mark the appropriate variables. 1876 * If the replaceable variable is already set, then the 1877 * process environment variable must be set. Any replaceable 1878 * variable specified in a configuration file can be ignored. 1879 */ 1880 if (env_flags & ENV_TYP_ISA) { 1881 /* 1882 * This is ISA setting. We do the setting 1883 * even if s2 is NULL. 1884 * If s2 is NULL, we might need to undo 1885 * the setting. 1886 */ 1887 if (select & SEL_REPLACE) { 1888 if (rplisa & variable) 1889 return; 1890 rplisa |= variable; 1891 } else { 1892 prmisa |= variable; 1893 } 1894 } else if (s2) { 1895 /* 1896 * This is non0-ISA setting 1897 */ 1898 if (select & SEL_REPLACE) { 1899 if (rplgen & variable) 1900 return; 1901 rplgen |= variable; 1902 } else 1903 prmgen |= variable; 1904 } else 1905 /* 1906 * This is non-ISA setting which 1907 * can be ignored. 1908 */ 1909 return; 1910 1911 /* 1912 * Now perform the setting. 1913 */ 1914 if (select & SEL_ACT_RT) { 1915 if (s2) 1916 rtld_flags |= val; 1917 else 1918 rtld_flags &= ~val; 1919 } else if (select & SEL_ACT_RT2) { 1920 if (s2) 1921 rtld_flags2 |= val; 1922 else 1923 rtld_flags2 &= ~val; 1924 } else if (select & SEL_ACT_STR) 1925 *str = s2; 1926 else if (select & SEL_ACT_LML) { 1927 if (s2) 1928 *lmflags |= val; 1929 else 1930 *lmflags &= ~val; 1931 } else if (select & SEL_ACT_LMLT) { 1932 if (s2) 1933 *lmtflags |= val; 1934 else 1935 *lmtflags &= ~val; 1936 } else if (select & SEL_ACT_SPEC_1) { 1937 /* 1938 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1939 */ 1940 *str = s2; 1941 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1942 if (s2) { 1943 if (variable == ENV_FLG_FLAGS) 1944 env_info |= ENV_INF_FLAGCFG; 1945 else 1946 env_info |= ENV_INF_PATHCFG; 1947 } else { 1948 if (variable == ENV_FLG_FLAGS) 1949 env_info &= ~ENV_INF_FLAGCFG; 1950 else 1951 env_info &= ~ENV_INF_PATHCFG; 1952 } 1953 } 1954 } else if (select & SEL_ACT_SPEC_2) { 1955 /* 1956 * variables can be: ENV_FLG_ 1957 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1958 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1959 */ 1960 if (variable == ENV_FLG_AUDIT_ARGS) { 1961 if (s2) { 1962 audit_argcnt = atoi(s2); 1963 audit_argcnt += audit_argcnt % 2; 1964 } else 1965 audit_argcnt = 0; 1966 } else if (variable == ENV_FLG_BINDINGS) { 1967 if (s2) 1968 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1969 else 1970 rpl_debug = 0; 1971 } else if (variable == ENV_FLG_CONCURRENCY) { 1972 if (s2) 1973 rtld_flags &= ~RT_FL_NOCONCUR; 1974 else 1975 rtld_flags |= RT_FL_NOCONCUR; 1976 } else if (variable == ENV_FLG_CONFGEN) { 1977 if (s2) { 1978 rtld_flags |= RT_FL_CONFGEN; 1979 *lmflags |= LML_FLG_IGNRELERR; 1980 } else { 1981 rtld_flags &= ~RT_FL_CONFGEN; 1982 *lmflags &= ~LML_FLG_IGNRELERR; 1983 } 1984 } else if (variable == ENV_FLG_LOADFLTR) { 1985 if (s2) { 1986 *lmtflags |= LML_TFLG_LOADFLTR; 1987 if (*s2 == '2') 1988 rtld_flags |= RT_FL_WARNFLTR; 1989 } else { 1990 *lmtflags &= ~LML_TFLG_LOADFLTR; 1991 rtld_flags &= ~RT_FL_WARNFLTR; 1992 } 1993 } else if (variable == ENV_FLG_PROFILE) { 1994 profile_name = s2; 1995 if (s2) { 1996 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 1997 return; 1998 } 1999 /* BEGIN CSTYLED */ 2000 if (rtld_flags & RT_FL_SECURE) { 2001 profile_lib = 2002 #if defined(_ELF64) 2003 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2004 #else 2005 MSG_ORIG(MSG_PTH_LDPROFSE); 2006 #endif 2007 } else { 2008 profile_lib = 2009 #if defined(_ELF64) 2010 MSG_ORIG(MSG_PTH_LDPROF_64); 2011 #else 2012 MSG_ORIG(MSG_PTH_LDPROF); 2013 #endif 2014 } 2015 /* END CSTYLED */ 2016 } else 2017 profile_lib = 0; 2018 } else if (variable == ENV_FLG_SIGNAL) { 2019 killsig = s2 ? atoi(s2) : SIGKILL; 2020 } else if (variable == ENV_FLG_TRACE_OBJS) { 2021 if (s2) { 2022 *lmflags |= LML_FLG_TRC_ENABLE; 2023 if (*s2 == '2') 2024 *lmflags |= LML_FLG_TRC_LDDSTUB; 2025 } else 2026 *lmflags &= 2027 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2028 } 2029 } 2030 } 2031 2032 /* 2033 * Determine whether we have an architecture specific environment variable. 2034 * If we do, and we're the wrong architecture, it'll just get ignored. 2035 * Otherwise the variable is processed in it's architecture neutral form. 2036 */ 2037 static int 2038 ld_arch_env(const char *s1, size_t *len) 2039 { 2040 size_t _len = *len - 3; 2041 2042 if (s1[_len++] == '_') { 2043 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2044 #if defined(_ELF64) 2045 return (ENV_TYP_IGNORE); 2046 #else 2047 *len = *len - 3; 2048 return (ENV_TYP_ISA); 2049 #endif 2050 } 2051 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2052 #if defined(_ELF64) 2053 *len = *len - 3; 2054 return (ENV_TYP_ISA); 2055 #else 2056 return (ENV_TYP_IGNORE); 2057 #endif 2058 } 2059 } 2060 return (0); 2061 } 2062 2063 2064 /* 2065 * Process an LD_FLAGS environment variable. The value can be a comma 2066 * separated set of tokens, which are sent (in upper case) into the generic 2067 * LD_XXXX environment variable engine. For example: 2068 * 2069 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2070 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2071 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2072 * or 2073 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2074 */ 2075 static int 2076 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2077 uint_t env_flags, int aout) 2078 { 2079 char *nstr, *sstr, *estr = 0; 2080 size_t nlen, len; 2081 2082 if (str == 0) 2083 return (0); 2084 2085 /* 2086 * Create a new string as we're going to transform the token(s) into 2087 * uppercase and separate tokens with nulls. 2088 */ 2089 len = strlen(str); 2090 if ((nstr = malloc(len + 1)) == 0) 2091 return (1); 2092 (void) strcpy(nstr, str); 2093 2094 for (sstr = nstr; sstr; sstr++, len--) { 2095 int flags; 2096 2097 if ((*sstr != '\0') && (*sstr != ',')) { 2098 if (estr == 0) { 2099 if (*sstr == '=') 2100 estr = sstr; 2101 else { 2102 /* 2103 * Translate token to uppercase. Don't 2104 * use toupper(3C) as including this 2105 * code doubles the size of ld.so.1. 2106 */ 2107 if ((*sstr >= 'a') && (*sstr <= 'z')) 2108 *sstr = *sstr - ('a' - 'A'); 2109 } 2110 } 2111 continue; 2112 } 2113 2114 *sstr = '\0'; 2115 if (estr) { 2116 nlen = estr - nstr; 2117 if ((*++estr == '\0') || (*estr == ',')) 2118 estr = 0; 2119 } else 2120 nlen = sstr - nstr; 2121 2122 /* 2123 * Fabricate a boolean definition for any unqualified variable. 2124 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2125 * The value is sufficient to assert any boolean variables, plus 2126 * the term "(null)" is specifically chosen in case someone 2127 * mistakenly supplies something like LD_FLAGS=library_path. 2128 */ 2129 if (estr == 0) 2130 estr = (char *)MSG_INTL(MSG_STR_NULL); 2131 2132 /* 2133 * Determine whether the environment variable is 32- or 64-bit 2134 * specific. The length, len, will reflect the architecture 2135 * neutral portion of the string. 2136 */ 2137 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2138 ld_generic_env(nstr, nlen, estr, lmflags, 2139 lmtflags, (env_flags | flags), aout); 2140 } 2141 if (len == 0) 2142 return (0); 2143 2144 nstr = sstr + 1; 2145 estr = 0; 2146 } 2147 return (0); 2148 } 2149 2150 2151 /* 2152 * Process a single environment string. Only strings starting with `LD_' are 2153 * reserved for our use. By convention, all strings should be of the form 2154 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2155 * functionality is enabled. Also pick off applicable locale variables. 2156 */ 2157 #define LOC_LANG 1 2158 #define LOC_MESG 2 2159 #define LOC_ALL 3 2160 2161 static void 2162 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2163 int aout) 2164 { 2165 const char *s2; 2166 static size_t loc = 0; 2167 2168 if (*s1++ != 'L') 2169 return; 2170 2171 /* 2172 * See if we have any locale environment settings. These environment 2173 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2174 * is higher than LANG. 2175 */ 2176 s2 = s1; 2177 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2178 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2179 s2 += MSG_LC_ALL_SIZE; 2180 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2181 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2182 loc = LOC_ALL; 2183 } 2184 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2185 MSG_LC_MESSAGES_SIZE) == 0) { 2186 s2 += MSG_LC_MESSAGES_SIZE; 2187 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2188 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2189 loc = LOC_MESG; 2190 } 2191 } 2192 return; 2193 } 2194 2195 s2 = s1; 2196 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2197 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2198 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2199 loc = LOC_LANG; 2200 return; 2201 } 2202 2203 /* 2204 * Pick off any LD_XXXX environment variables. 2205 */ 2206 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2207 size_t len; 2208 int flags; 2209 2210 /* 2211 * In a branded process we must ignore all LD_XXXX env vars 2212 * because they are intended for the brand's linker. 2213 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2214 */ 2215 if (rtld_flags2 & RT_FL2_BRANDED) { 2216 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2217 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2218 return; 2219 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2220 } 2221 2222 /* 2223 * Environment variables with no value (ie. LD_XXXX=) typically 2224 * have no impact, however if environment variables are defined 2225 * within a configuration file, these null user settings can be 2226 * used to disable any configuration replaceable definitions. 2227 */ 2228 if ((s2 = strchr(s1, '=')) == 0) { 2229 len = strlen(s1); 2230 s2 = 0; 2231 } else if (*++s2 == '\0') { 2232 len = strlen(s1) - 1; 2233 s2 = 0; 2234 } else { 2235 len = s2 - s1 - 1; 2236 while (isspace(*s2)) 2237 s2++; 2238 } 2239 2240 /* 2241 * Determine whether the environment variable is 32- or 64-bit 2242 * specific. The length, len, will reflect the architecture 2243 * neutral portion of the string. 2244 */ 2245 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2246 return; 2247 env_flags |= flags; 2248 2249 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2250 } 2251 } 2252 2253 /* 2254 * Internal getenv routine. Called immediately after ld.so.1 initializes 2255 * itself. 2256 */ 2257 int 2258 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2259 { 2260 char *locale; 2261 2262 if (envp == (const char **)0) 2263 return (0); 2264 2265 while (*envp != (const char *)0) 2266 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2267 2268 /* 2269 * Having collected the best representation of any LD_FLAGS, process 2270 * these strings. 2271 */ 2272 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2273 return (1); 2274 2275 /* 2276 * Don't allow environment controlled auditing when tracing or if 2277 * explicitly disabled. Trigger all tracing modes from 2278 * LML_FLG_TRC_ENABLE. 2279 */ 2280 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2281 rpl_audit = profile_lib = profile_name = 0; 2282 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2283 *lmflags &= ~LML_MSK_TRC; 2284 2285 /* 2286 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2287 */ 2288 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2289 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2290 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2291 2292 /* 2293 * If we have a locale setting make sure its worth processing further. 2294 * C and POSIX locales don't need any processing. In addition, to 2295 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2296 * the locale to contain a segment that leads upward in the file system 2297 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2298 * the /usr/lib/locale hierarchy, there is no need to extensively 2299 * validate the mode or ownership of any message file (as libc's 2300 * generic handling of message files does). Duplicate the string so 2301 * that new locale setting can generically cleanup any previous locales. 2302 */ 2303 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) { 2304 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2305 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2306 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2307 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0; 2308 else 2309 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2310 } 2311 return (0); 2312 } 2313 2314 /* 2315 * Configuration environment processing. Called after the a.out has been 2316 * processed (as the a.out can specify its own configuration file). 2317 */ 2318 int 2319 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2320 { 2321 Word * lmflags = &(lml_main.lm_flags); 2322 Word * lmtflags = &(lml_main.lm_tflags); 2323 2324 if (envtbl == (Rtc_env *)0) 2325 return (0); 2326 2327 while (envtbl->env_str) { 2328 uint_t env_flags = ENV_TYP_CONFIG; 2329 2330 if (envtbl->env_flags & RTC_ENV_PERMANT) 2331 env_flags |= ENV_TYP_PERMANT; 2332 2333 ld_str_env((const char *)(envtbl->env_str + addr), 2334 lmflags, lmtflags, env_flags, 0); 2335 envtbl++; 2336 } 2337 2338 /* 2339 * Having collected the best representation of any LD_FLAGS, process 2340 * these strings. 2341 */ 2342 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2343 return (1); 2344 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2345 aout) == 1) 2346 return (1); 2347 2348 /* 2349 * Don't allow environment controlled auditing when tracing or if 2350 * explicitly disabled. Trigger all tracing modes from 2351 * LML_FLG_TRC_ENABLE. 2352 */ 2353 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2354 prm_audit = profile_lib = profile_name = 0; 2355 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2356 *lmflags &= ~LML_MSK_TRC; 2357 2358 return (0); 2359 } 2360 2361 int 2362 dowrite(Prfbuf * prf) 2363 { 2364 /* 2365 * We do not have a valid file descriptor, so we are unable 2366 * to flush the buffer. 2367 */ 2368 if (prf->pr_fd == -1) 2369 return (0); 2370 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2371 prf->pr_cur = prf->pr_buf; 2372 return (1); 2373 } 2374 2375 /* 2376 * Simplified printing. The following conversion specifications are supported: 2377 * 2378 * % [#] [-] [min field width] [. precision] s|d|x|c 2379 * 2380 * 2381 * dorprf takes the output buffer in the form of Prfbuf which permits 2382 * the verification of the output buffer size and the concatenation 2383 * of data to an already existing output buffer. The Prfbuf 2384 * structure contains the following: 2385 * 2386 * pr_buf pointer to the beginning of the output buffer. 2387 * pr_cur pointer to the next available byte in the output buffer. By 2388 * setting pr_cur ahead of pr_buf you can append to an already 2389 * existing buffer. 2390 * pr_len the size of the output buffer. By setting pr_len to '0' you 2391 * disable protection from overflows in the output buffer. 2392 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2393 * output to. If pr_fd is set to '-1' then it's assumed there is 2394 * no output buffer, and doprf() will return with an error to 2395 * indicate an output buffer overflow. If pr_fd is > -1 then when 2396 * the output buffer is filled it will be flushed to pr_fd and will 2397 * then be available for additional data. 2398 */ 2399 #define FLG_UT_MINUS 0x0001 /* - */ 2400 #define FLG_UT_SHARP 0x0002 /* # */ 2401 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2402 2403 /* 2404 * This macro is for use from within doprf only. It is to be used for checking 2405 * the output buffer size and placing characters into the buffer. 2406 */ 2407 #define PUTC(c) \ 2408 { \ 2409 char tmpc; \ 2410 \ 2411 tmpc = (c); \ 2412 if (bufsiz && (bp >= bufend)) { \ 2413 prf->pr_cur = bp; \ 2414 if (dowrite(prf) == 0) \ 2415 return (0); \ 2416 bp = prf->pr_cur; \ 2417 } \ 2418 *bp++ = tmpc; \ 2419 } 2420 2421 /* 2422 * Define a local buffer size for building a numeric value - large enough to 2423 * hold a 64-bit value. 2424 */ 2425 #define NUM_SIZE 22 2426 2427 size_t 2428 doprf(const char *format, va_list args, Prfbuf *prf) 2429 { 2430 char c; 2431 char *bp = prf->pr_cur; 2432 char *bufend = prf->pr_buf + prf->pr_len; 2433 size_t bufsiz = prf->pr_len; 2434 2435 while ((c = *format++) != '\0') { 2436 if (c != '%') { 2437 PUTC(c); 2438 } else { 2439 int base = 0, flag = 0, width = 0, prec = 0; 2440 size_t _i; 2441 int _c, _n; 2442 char *_s; 2443 int ls = 0; 2444 again: 2445 c = *format++; 2446 switch (c) { 2447 case '-': 2448 flag |= FLG_UT_MINUS; 2449 goto again; 2450 case '#': 2451 flag |= FLG_UT_SHARP; 2452 goto again; 2453 case '.': 2454 flag |= FLG_UT_DOTSEEN; 2455 goto again; 2456 case '0': 2457 case '1': 2458 case '2': 2459 case '3': 2460 case '4': 2461 case '5': 2462 case '6': 2463 case '7': 2464 case '8': 2465 case '9': 2466 if (flag & FLG_UT_DOTSEEN) 2467 prec = (prec * 10) + c - '0'; 2468 else 2469 width = (width * 10) + c - '0'; 2470 goto again; 2471 case 'x': 2472 case 'X': 2473 base = 16; 2474 break; 2475 case 'd': 2476 case 'D': 2477 case 'u': 2478 base = 10; 2479 flag &= ~FLG_UT_SHARP; 2480 break; 2481 case 'l': 2482 base = 10; 2483 ls++; /* number of l's (long or long long) */ 2484 if ((*format == 'l') || 2485 (*format == 'd') || (*format == 'D') || 2486 (*format == 'x') || (*format == 'X') || 2487 (*format == 'o') || (*format == 'O')) 2488 goto again; 2489 break; 2490 case 'o': 2491 case 'O': 2492 base = 8; 2493 break; 2494 case 'c': 2495 _c = va_arg(args, int); 2496 2497 for (_i = 24; _i > 0; _i -= 8) { 2498 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2499 PUTC(c); 2500 } 2501 } 2502 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2503 PUTC(c); 2504 } 2505 break; 2506 case 's': 2507 _s = va_arg(args, char *); 2508 _i = strlen(_s); 2509 /* LINTED */ 2510 _n = (int)(width - _i); 2511 if (!prec) 2512 /* LINTED */ 2513 prec = (int)_i; 2514 2515 if (width && !(flag & FLG_UT_MINUS)) { 2516 while (_n-- > 0) 2517 PUTC(' '); 2518 } 2519 while (((c = *_s++) != 0) && prec--) { 2520 PUTC(c); 2521 } 2522 if (width && (flag & FLG_UT_MINUS)) { 2523 while (_n-- > 0) 2524 PUTC(' '); 2525 } 2526 break; 2527 case '%': 2528 PUTC('%'); 2529 break; 2530 default: 2531 break; 2532 } 2533 2534 /* 2535 * Numeric processing 2536 */ 2537 if (base) { 2538 char local[NUM_SIZE]; 2539 size_t ssize = 0, psize = 0; 2540 const char *string = 2541 MSG_ORIG(MSG_STR_HEXNUM); 2542 const char *prefix = 2543 MSG_ORIG(MSG_STR_EMPTY); 2544 u_longlong_t num; 2545 2546 switch (ls) { 2547 case 0: /* int */ 2548 num = (u_longlong_t) 2549 va_arg(args, uint_t); 2550 break; 2551 case 1: /* long */ 2552 num = (u_longlong_t) 2553 va_arg(args, ulong_t); 2554 break; 2555 case 2: /* long long */ 2556 num = va_arg(args, u_longlong_t); 2557 break; 2558 } 2559 2560 if (flag & FLG_UT_SHARP) { 2561 if (base == 16) { 2562 prefix = MSG_ORIG(MSG_STR_HEX); 2563 psize = 2; 2564 } else { 2565 prefix = MSG_ORIG(MSG_STR_ZERO); 2566 psize = 1; 2567 } 2568 } 2569 if ((base == 10) && (long)num < 0) { 2570 prefix = MSG_ORIG(MSG_STR_NEGATE); 2571 psize = MSG_STR_NEGATE_SIZE; 2572 num = (u_longlong_t)(-(longlong_t)num); 2573 } 2574 2575 /* 2576 * Convert the numeric value into a local 2577 * string (stored in reverse order). 2578 */ 2579 _s = local; 2580 do { 2581 *_s++ = string[num % base]; 2582 num /= base; 2583 ssize++; 2584 } while (num); 2585 2586 ASSERT(ssize < sizeof (local)); 2587 2588 /* 2589 * Provide any precision or width padding. 2590 */ 2591 if (prec) { 2592 /* LINTED */ 2593 _n = (int)(prec - ssize); 2594 while ((_n-- > 0) && 2595 (ssize < sizeof (local))) { 2596 *_s++ = '0'; 2597 ssize++; 2598 } 2599 } 2600 if (width && !(flag & FLG_UT_MINUS)) { 2601 /* LINTED */ 2602 _n = (int)(width - ssize - psize); 2603 while (_n-- > 0) { 2604 PUTC(' '); 2605 } 2606 } 2607 2608 /* 2609 * Print any prefix and the numeric string 2610 */ 2611 while (*prefix) 2612 PUTC(*prefix++); 2613 do { 2614 PUTC(*--_s); 2615 } while (_s > local); 2616 2617 /* 2618 * Provide any width padding. 2619 */ 2620 if (width && (flag & FLG_UT_MINUS)) { 2621 /* LINTED */ 2622 _n = (int)(width - ssize - psize); 2623 while (_n-- > 0) 2624 PUTC(' '); 2625 } 2626 } 2627 } 2628 } 2629 2630 PUTC('\0'); 2631 prf->pr_cur = bp; 2632 return (1); 2633 } 2634 2635 static int 2636 doprintf(const char *format, va_list args, Prfbuf *prf) 2637 { 2638 char *ocur = prf->pr_cur; 2639 2640 if (doprf(format, args, prf) == 0) 2641 return (0); 2642 /* LINTED */ 2643 return ((int)(prf->pr_cur - ocur)); 2644 } 2645 2646 /* VARARGS2 */ 2647 int 2648 sprintf(char *buf, const char *format, ...) 2649 { 2650 va_list args; 2651 int len; 2652 Prfbuf prf; 2653 2654 va_start(args, format); 2655 prf.pr_buf = prf.pr_cur = buf; 2656 prf.pr_len = 0; 2657 prf.pr_fd = -1; 2658 len = doprintf(format, args, &prf); 2659 va_end(args); 2660 2661 /* 2662 * sprintf() return value excludes the terminating null byte. 2663 */ 2664 return (len - 1); 2665 } 2666 2667 /* VARARGS3 */ 2668 int 2669 snprintf(char *buf, size_t n, const char *format, ...) 2670 { 2671 va_list args; 2672 int len; 2673 Prfbuf prf; 2674 2675 va_start(args, format); 2676 prf.pr_buf = prf.pr_cur = buf; 2677 prf.pr_len = n; 2678 prf.pr_fd = -1; 2679 len = doprintf(format, args, &prf); 2680 va_end(args); 2681 2682 return (len); 2683 } 2684 2685 /* VARARGS2 */ 2686 int 2687 bufprint(Prfbuf *prf, const char *format, ...) 2688 { 2689 va_list args; 2690 int len; 2691 2692 va_start(args, format); 2693 len = doprintf(format, args, prf); 2694 va_end(args); 2695 2696 return (len); 2697 } 2698 2699 /*PRINTFLIKE1*/ 2700 int 2701 printf(const char *format, ...) 2702 { 2703 va_list args; 2704 char buffer[ERRSIZE]; 2705 Prfbuf prf; 2706 2707 va_start(args, format); 2708 prf.pr_buf = prf.pr_cur = buffer; 2709 prf.pr_len = ERRSIZE; 2710 prf.pr_fd = 1; 2711 (void) doprf(format, args, &prf); 2712 va_end(args); 2713 /* 2714 * Trim trailing '\0' form buffer 2715 */ 2716 prf.pr_cur--; 2717 return (dowrite(&prf)); 2718 } 2719 2720 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2721 2722 /*PRINTFLIKE3*/ 2723 void 2724 eprintf(Lm_list *lml, Error error, const char *format, ...) 2725 { 2726 va_list args; 2727 int overflow = 0; 2728 static int lock = 0; 2729 Prfbuf prf; 2730 2731 if (lock || (nextptr == (errbuf + ERRSIZE))) 2732 return; 2733 2734 /* 2735 * Note: this lock is here to prevent the same thread from recursively 2736 * entering itself during a eprintf. ie: during eprintf malloc() fails 2737 * and we try and call eprintf ... and then malloc() fails .... 2738 */ 2739 lock = 1; 2740 2741 /* 2742 * If we have completed startup initialization, all error messages 2743 * must be saved. These are reported through dlerror(). If we're 2744 * still in the initialization stage, output the error directly and 2745 * add a newline. 2746 */ 2747 va_start(args, format); 2748 2749 prf.pr_buf = prf.pr_cur = nextptr; 2750 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2751 2752 if (!(rtld_flags & RT_FL_APPLIC)) 2753 prf.pr_fd = 2; 2754 else 2755 prf.pr_fd = -1; 2756 2757 if (error > ERR_NONE) { 2758 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2759 error = ERR_WARNING; 2760 if (error == ERR_WARNING) { 2761 if (err_strs[ERR_WARNING] == 0) 2762 err_strs[ERR_WARNING] = 2763 MSG_INTL(MSG_ERR_WARNING); 2764 } else if (error == ERR_FATAL) { 2765 if (err_strs[ERR_FATAL] == 0) 2766 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2767 } else if (error == ERR_ELF) { 2768 if (err_strs[ERR_ELF] == 0) 2769 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2770 } 2771 if (procname) { 2772 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2773 rtldname, procname, err_strs[error]) == 0) 2774 overflow = 1; 2775 } else { 2776 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2777 rtldname, err_strs[error]) == 0) 2778 overflow = 1; 2779 } 2780 if (overflow == 0) { 2781 /* 2782 * Remove the terminating '\0'. 2783 */ 2784 prf.pr_cur--; 2785 } 2786 } 2787 2788 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2789 overflow = 1; 2790 2791 /* 2792 * If this is an ELF error, it will have been generated by a support 2793 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2794 * ELF error messages as it doesn't interact with libelf. Determine the 2795 * ELF error string. 2796 */ 2797 if ((overflow == 0) && (error == ERR_ELF)) { 2798 static int (*elfeno)() = 0; 2799 static const char *(*elfemg)(); 2800 const char *emsg; 2801 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2802 2803 if (NEXT(lmp) && (elfeno == 0)) { 2804 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2805 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2806 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2807 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2808 elfeno = 0; 2809 } 2810 2811 /* 2812 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2813 */ 2814 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2815 prf.pr_cur--; 2816 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2817 emsg) == 0) 2818 overflow = 1; 2819 } 2820 } 2821 2822 /* 2823 * Push out any message that's been built. Note, in the case of an 2824 * overflow condition, this message may be incomplete, in which case 2825 * make sure any partial string is null terminated. 2826 */ 2827 if (overflow) 2828 *(prf.pr_cur) = '\0'; 2829 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2830 *(prf.pr_cur - 1) = '\n'; 2831 (void) dowrite(&prf); 2832 } 2833 2834 DBG_CALL(Dbg_util_str(lml, nextptr)); 2835 va_end(args); 2836 2837 /* 2838 * Determine if there was insufficient space left in the buffer to 2839 * complete the message. If so, we'll have printed out as much as had 2840 * been processed if we're not yet executing the application. 2841 * Otherwise, there will be some debugging diagnostic indicating 2842 * as much of the error message as possible. Write out a final buffer 2843 * overflow diagnostic - unlocalized, so we don't chance more errors. 2844 */ 2845 if (overflow) { 2846 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2847 2848 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2849 lasterr = str; 2850 2851 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2852 (void) write(2, str, strlen(str)); 2853 (void) write(2, MSG_ORIG(MSG_STR_NL), 2854 MSG_STR_NL_SIZE); 2855 } 2856 } 2857 DBG_CALL(Dbg_util_str(lml, str)); 2858 2859 lock = 0; 2860 nextptr = errbuf + ERRSIZE; 2861 return; 2862 } 2863 2864 /* 2865 * If the application has started, then error messages are being saved 2866 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2867 * the case of a fatal error. In this case, establish the next error 2868 * pointer. If we haven't started the application, the whole message 2869 * buffer can be reused. 2870 */ 2871 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2872 lasterr = nextptr; 2873 2874 /* 2875 * Note, should we encounter an error such as ENOMEM, there may 2876 * be a number of the same error messages (ie. an operation 2877 * fails with ENOMEM, and then the attempts to construct the 2878 * error message itself, which incurs additional ENOMEM errors). 2879 * Compare any previous error message with the one we've just 2880 * created to prevent any duplication clutter. 2881 */ 2882 if ((rtld_flags & RT_FL_APPLIC) && 2883 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2884 prevptr = nextptr; 2885 nextptr = prf.pr_cur; 2886 *nextptr = '\0'; 2887 } 2888 } 2889 lock = 0; 2890 } 2891 2892 2893 #if DEBUG 2894 /* 2895 * Provide assfail() for ASSERT() statements, 2896 * see <sys/debug.h> for further details. 2897 */ 2898 int 2899 assfail(const char *a, const char *f, int l) 2900 { 2901 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2902 (void) _lwp_kill(_lwp_self(), SIGABRT); 2903 return (0); 2904 } 2905 #endif 2906 2907 /* 2908 * Exit. If we arrive here with a non zero status it's because of a fatal 2909 * error condition (most commonly a relocation error). If the application has 2910 * already had control, then the actual fatal error message will have been 2911 * recorded in the dlerror() message buffer. Print the message before really 2912 * exiting. 2913 */ 2914 void 2915 rtldexit(Lm_list * lml, int status) 2916 { 2917 if (status) { 2918 if (rtld_flags & RT_FL_APPLIC) { 2919 /* 2920 * If the error buffer has been used, write out all 2921 * pending messages - lasterr is simply a pointer to 2922 * the last message in this buffer. However, if the 2923 * buffer couldn't be created at all, lasterr points 2924 * to a constant error message string. 2925 */ 2926 if (*errbuf) { 2927 char *errptr = errbuf; 2928 char *errend = errbuf + ERRSIZE; 2929 2930 while ((errptr < errend) && *errptr) { 2931 size_t size = strlen(errptr); 2932 (void) write(2, errptr, size); 2933 (void) write(2, MSG_ORIG(MSG_STR_NL), 2934 MSG_STR_NL_SIZE); 2935 errptr += (size + 1); 2936 } 2937 } 2938 if (lasterr && ((lasterr < errbuf) || 2939 (lasterr > (errbuf + ERRSIZE)))) { 2940 (void) write(2, lasterr, strlen(lasterr)); 2941 (void) write(2, MSG_ORIG(MSG_STR_NL), 2942 MSG_STR_NL_SIZE); 2943 } 2944 } 2945 leave(lml); 2946 (void) _lwp_kill(_lwp_self(), killsig); 2947 } 2948 _exit(status); 2949 } 2950 2951 /* 2952 * Routines to co-ordinate the opening of /dev/zero and /proc. 2953 * dz_fd is exported for possible use by libld.so, and to insure it gets 2954 * closed on leaving ld.so.1. 2955 */ 2956 int dz_fd = FD_UNAVAIL; 2957 2958 void 2959 dz_init(int fd) 2960 { 2961 dz_fd = fd; 2962 } 2963 2964 2965 /* 2966 * mmap() a page from MAP_ANON 2967 * 2968 * Note: MAP_ANON is only on Solaris8++, we use this routine to 2969 * not only mmap(MAP_ANON) but to also probe if it is available 2970 * on the current OS. 2971 */ 2972 Am_ret 2973 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags) 2974 { 2975 #if defined(MAP_ANON) 2976 static int noanon = 0; 2977 caddr_t va; 2978 2979 if (noanon == 0) { 2980 if ((va = (caddr_t)mmap(*addr, len, prot, 2981 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 2982 *addr = va; 2983 return (AM_OK); 2984 } 2985 2986 if ((errno != EBADF) && (errno != EINVAL)) { 2987 int err = errno; 2988 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 2989 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2990 return (AM_ERROR); 2991 } else 2992 noanon = 1; 2993 } 2994 #endif 2995 return (AM_NOSUP); 2996 } 2997 2998 /* 2999 * Map anonymous memory from /dev/zero, or via MAP_ANON. 3000 * 3001 * (MAP_ANON only appears on Solaris 8, so we need fall-back 3002 * behavior for older systems.) 3003 */ 3004 caddr_t 3005 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3006 { 3007 caddr_t va; 3008 int err; 3009 Am_ret amret; 3010 3011 amret = anon_map(lml, &addr, len, prot, flags); 3012 3013 if (amret == AM_OK) 3014 return (addr); 3015 if (amret == AM_ERROR) 3016 return (MAP_FAILED); 3017 3018 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 3019 3020 if (dz_fd == FD_UNAVAIL) { 3021 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 3022 O_RDONLY)) == FD_UNAVAIL) { 3023 err = errno; 3024 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3025 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3026 return (MAP_FAILED); 3027 } 3028 } 3029 3030 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3031 err = errno; 3032 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3033 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3034 } 3035 return (va); 3036 } 3037 3038 static int pr_fd = FD_UNAVAIL; 3039 3040 int 3041 pr_open(Lm_list *lml) 3042 { 3043 char proc[16]; 3044 3045 if (pr_fd == FD_UNAVAIL) { 3046 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3047 (int)getpid()); 3048 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3049 int err = errno; 3050 3051 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3052 strerror(err)); 3053 } 3054 } 3055 return (pr_fd); 3056 } 3057 3058 static int nu_fd = FD_UNAVAIL; 3059 3060 caddr_t 3061 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3062 { 3063 caddr_t va; 3064 int err; 3065 3066 if (nu_fd == FD_UNAVAIL) { 3067 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3068 O_RDONLY)) == FD_UNAVAIL) { 3069 err = errno; 3070 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3071 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3072 return (MAP_FAILED); 3073 } 3074 } 3075 3076 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3077 MAP_FAILED) { 3078 err = errno; 3079 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3080 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3081 } 3082 return (va); 3083 } 3084 3085 /* 3086 * Generic entry point from user code - simply grabs a lock. 3087 */ 3088 int 3089 enter(void) 3090 { 3091 if (rt_bind_guard(THR_FLG_RTLD)) { 3092 (void) rt_mutex_lock(&rtldlock); 3093 return (1); 3094 } 3095 return (0); 3096 } 3097 3098 /* 3099 * Generate diagnostics as to whether an object has been used. A symbolic 3100 * reference that gets bound to an object marks it as used. Dependencies that 3101 * are unused when RTLD_NOW is in effect should be removed from future builds 3102 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3103 * candidates for lazy-loading. 3104 * Unreferenced objects identify objects that are defined as dependencies but 3105 * are unreferenced by the caller (they may however be referenced by other 3106 * objects within the process, and therefore don't qualify as completely unused. 3107 */ 3108 void 3109 unused(Lm_list *lml) 3110 { 3111 Rt_map *lmp; 3112 int nl = 0; 3113 Word tracing; 3114 3115 /* 3116 * If we're not tracing unused references or dependencies, or debugging 3117 * there's nothing to do. 3118 */ 3119 tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED); 3120 3121 if ((tracing == 0) && (DBG_ENABLED == 0)) 3122 return; 3123 3124 /* 3125 * Traverse the link-maps looking for unreferenced or unused 3126 * dependencies. Ignore the first object on a link-map list, as this 3127 * is effectively always used. 3128 */ 3129 for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp; 3130 lmp = (Rt_map *)NEXT(lmp)) { 3131 /* 3132 * If tracing unreferenced objects, or under debugging, 3133 * determine whether any of this objects callers haven't 3134 * referenced it. 3135 */ 3136 if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) { 3137 Bnd_desc ** bdpp; 3138 Aliste off; 3139 3140 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 3141 Bnd_desc * bdp = *bdpp; 3142 Rt_map * clmp; 3143 3144 if (bdp->b_flags & BND_REFER) 3145 continue; 3146 3147 clmp = bdp->b_caller; 3148 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3149 continue; 3150 3151 /* BEGIN CSTYLED */ 3152 if (nl++ == 0) { 3153 if (tracing & LML_FLG_TRC_UNREF) 3154 (void) printf(MSG_ORIG(MSG_STR_NL)); 3155 else 3156 DBG_CALL(Dbg_util_nl(lml, 3157 DBG_NL_STD)); 3158 } 3159 3160 if (tracing & LML_FLG_TRC_UNREF) 3161 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3162 NAME(lmp), NAME(clmp)); 3163 else 3164 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3165 /* END CSTYLED */ 3166 } 3167 } 3168 3169 /* 3170 * If tracing unused objects simply display those objects that 3171 * haven't been referenced by anyone. 3172 */ 3173 if (FLAGS1(lmp) & FL1_RT_USED) 3174 continue; 3175 3176 if (nl++ == 0) { 3177 if (tracing) 3178 (void) printf(MSG_ORIG(MSG_STR_NL)); 3179 else 3180 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3181 } 3182 if (CYCGROUP(lmp)) { 3183 if (tracing) 3184 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3185 NAME(lmp), CYCGROUP(lmp)); 3186 else 3187 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3188 CYCGROUP(lmp))); 3189 } else { 3190 if (tracing) 3191 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3192 NAME(lmp)); 3193 else 3194 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3195 } 3196 } 3197 3198 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3199 } 3200 3201 /* 3202 * Initialization routine for the Fmap structure. If the fmap structure is 3203 * already in use, any mapping is released. The structure is then initialized 3204 * in preparation for further use. 3205 */ 3206 void 3207 fmap_setup() 3208 { 3209 #if defined(MAP_ALIGN) 3210 /* 3211 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3212 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3213 * should now be freed. 3214 */ 3215 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3216 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3217 3218 /* 3219 * Providing we haven't determined that this system doesn't support 3220 * MAP_ALIGN, initialize the mapping address with the default segment 3221 * alignment. 3222 */ 3223 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3224 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3225 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3226 } else { 3227 fmap->fm_maddr = 0; 3228 fmap->fm_mflags = MAP_PRIVATE; 3229 } 3230 #else 3231 if (fmap->fm_maddr) 3232 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3233 3234 fmap->fm_maddr = 0; 3235 fmap->fm_mflags = MAP_PRIVATE; 3236 #endif 3237 3238 fmap->fm_msize = FMAP_SIZE; 3239 fmap->fm_hwptr = 0; 3240 } 3241 3242 /* 3243 * Generic cleanup routine called prior to returning control to the user. 3244 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3245 * released, and any locks dropped. 3246 */ 3247 void 3248 leave(Lm_list *lml) 3249 { 3250 Lm_list *elml = lml; 3251 3252 /* 3253 * Alert the debuggers that the link-maps are consistent. Note, in the 3254 * case of tearing down a whole link-map list, lml will be null. In 3255 * this case use the main link-map list to test for a notification. 3256 */ 3257 if (elml == 0) 3258 elml = &lml_main; 3259 if (elml->lm_flags & LML_FLG_DBNOTIF) 3260 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3261 3262 if (dz_fd != FD_UNAVAIL) { 3263 (void) close(dz_fd); 3264 dz_fd = FD_UNAVAIL; 3265 } 3266 3267 if (pr_fd != FD_UNAVAIL) { 3268 (void) close(pr_fd); 3269 pr_fd = FD_UNAVAIL; 3270 } 3271 3272 if (nu_fd != FD_UNAVAIL) { 3273 (void) close(nu_fd); 3274 nu_fd = FD_UNAVAIL; 3275 } 3276 3277 fmap_setup(); 3278 3279 /* 3280 * Reinitialize error message pointer, and any overflow indication. 3281 */ 3282 nextptr = errbuf; 3283 prevptr = 0; 3284 3285 /* 3286 * Don't drop our lock if we are running on our link-map list as 3287 * there's little point in doing so since we are single-threaded. 3288 * 3289 * LML_FLG_HOLDLOCK is set for: 3290 * *) The ld.so.1's link-map list. 3291 * *) The auditor's link-map if the environment is 3292 * libc/libthread un-unified. 3293 */ 3294 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3295 return; 3296 3297 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3298 (void) rt_mutex_unlock(&rtldlock); 3299 (void) rt_bind_clear(THR_FLG_RTLD); 3300 } 3301 } 3302 3303 int 3304 callable(Rt_map * clmp, Rt_map * dlmp, Grp_hdl * ghp) 3305 { 3306 Alist * calp, * dalp; 3307 Aliste cnt1, cnt2; 3308 Grp_hdl ** ghpp1, ** ghpp2; 3309 3310 /* 3311 * An object can always find symbols within itself. 3312 */ 3313 if (clmp == dlmp) 3314 return (1); 3315 3316 /* 3317 * Don't allow an object to bind to an object that is being deleted 3318 * unless the binder is also being deleted. 3319 */ 3320 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3321 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3322 return (0); 3323 3324 /* 3325 * An object with world access can always bind to an object with global 3326 * visibility. 3327 */ 3328 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3329 return (1); 3330 3331 /* 3332 * An object with local access can only bind to an object that is a 3333 * member of the same group. 3334 */ 3335 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3336 ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0)) 3337 return (0); 3338 3339 /* 3340 * Traverse the list of groups the caller is a part of. 3341 */ 3342 for (ALIST_TRAVERSE(calp, cnt1, ghpp1)) { 3343 /* 3344 * If we're testing for the ability of two objects to bind to 3345 * each other regardless of a specific group, ignore that group. 3346 */ 3347 if (ghp && (*ghpp1 == ghp)) 3348 continue; 3349 3350 /* 3351 * Traverse the list of groups the destination is a part of. 3352 */ 3353 for (ALIST_TRAVERSE(dalp, cnt2, ghpp2)) { 3354 if (*ghpp1 == *ghpp2) 3355 return (1); 3356 } 3357 } 3358 return (0); 3359 } 3360 3361 /* 3362 * Initialize the environ symbol. Traditionally this is carried out by the crt 3363 * code prior to jumping to main. However, init sections get fired before this 3364 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3365 * information. In addition, a process may have multiple link-maps (ld.so.1's 3366 * debugging and preloading objects), and link auditing, and each may need an 3367 * environ variable set. 3368 * 3369 * This routine is called after a relocation() pass, and thus provides for: 3370 * 3371 * o setting environ on the main link-map after the initial application and 3372 * its dependencies have been established. Typically environ lives in the 3373 * application (provided by its crt), but in older applications it might 3374 * be in libc. Who knows what's expected of applications not built on 3375 * Solaris. 3376 * 3377 * o after loading a new shared object. We can add shared objects to various 3378 * link-maps, and any link-map dependencies requiring getopt() require 3379 * their own environ. In addition, lazy loading might bring in the 3380 * supplier of environ (libc used to be a lazy loading candidate) after 3381 * the link-map has been established and other objects are present. 3382 * 3383 * This routine handles all these scenarios, without adding unnecessary overhead 3384 * to ld.so.1. 3385 */ 3386 void 3387 set_environ(Lm_list *lml) 3388 { 3389 Rt_map * dlmp; 3390 Sym * sym; 3391 Slookup sl; 3392 uint_t binfo; 3393 3394 sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON); 3395 sl.sl_cmap = lml->lm_head; 3396 sl.sl_imap = lml->lm_head; 3397 sl.sl_hash = 0; 3398 sl.sl_rsymndx = 0; 3399 sl.sl_flags = LKUP_WEAK; 3400 3401 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) { 3402 lml->lm_environ = (char ***)sym->st_value; 3403 3404 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3405 lml->lm_environ = 3406 (char ***)((uintptr_t)lml->lm_environ + 3407 (uintptr_t)ADDR(dlmp)); 3408 *(lml->lm_environ) = (char **)environ; 3409 lml->lm_flags |= LML_FLG_ENVIRON; 3410 } 3411 } 3412 3413 /* 3414 * Determine whether we have a secure executable. Uid and gid information 3415 * can be passed to us via the aux vector, however if these values are -1 3416 * then use the appropriate system call to obtain them. 3417 * 3418 * o If the user is the root they can do anything 3419 * 3420 * o If the real and effective uid's don't match, or the real and 3421 * effective gid's don't match then this is determined to be a `secure' 3422 * application. 3423 * 3424 * This function is called prior to any dependency processing (see _setup.c). 3425 * Any secure setting will remain in effect for the life of the process. 3426 */ 3427 void 3428 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3429 { 3430 #ifdef AT_SUN_AUXFLAGS 3431 if (auxflags != -1) { 3432 if ((auxflags & AF_SUN_SETUGID) != 0) 3433 rtld_flags |= RT_FL_SECURE; 3434 return; 3435 } 3436 #endif 3437 if (uid == (uid_t)-1) 3438 uid = getuid(); 3439 if (uid) { 3440 if (euid == (uid_t)-1) 3441 euid = geteuid(); 3442 if (uid != euid) 3443 rtld_flags |= RT_FL_SECURE; 3444 else { 3445 if (gid == (gid_t)-1) 3446 gid = getgid(); 3447 if (egid == (gid_t)-1) 3448 egid = getegid(); 3449 if (gid != egid) 3450 rtld_flags |= RT_FL_SECURE; 3451 } 3452 } 3453 } 3454 3455 /* 3456 * _REENTRANT code gets errno redefined to a function so provide for return 3457 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3458 * is basically singled threaded. Provide the interface for our dependencies. 3459 */ 3460 #undef errno 3461 #pragma weak _private___errno = ___errno 3462 int * 3463 ___errno() 3464 { 3465 extern int errno; 3466 3467 return (&errno); 3468 } 3469 3470 /* 3471 * The interface with the c library which is supplied through libdl.so.1. 3472 * A non-null argument allows a function pointer array to be passed to us which 3473 * is used to re-initialize the linker libc table. 3474 */ 3475 void 3476 _ld_libc(void * ptr) 3477 { 3478 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3479 } 3480 3481 /* 3482 * Determine whether a symbol name should be demangled. 3483 */ 3484 const char * 3485 demangle(const char *name) 3486 { 3487 if (rtld_flags & RT_FL_DEMANGLE) 3488 return (conv_demangle_name(name)); 3489 else 3490 return (name); 3491 } 3492