1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1988 AT&T 29 * All Rights Reserved 30 */ 31 32 /* 33 * Utility routines for run-time linker. some are duplicated here from libc 34 * (with different names) to avoid name space collisions. 35 */ 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <limits.h> 49 #include <sys/auxv.h> 50 #include <debug.h> 51 #include <conv.h> 52 #include "_rtld.h" 53 #include "_audit.h" 54 #include "_elf.h" 55 #include "msg.h" 56 57 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 58 59 /* 60 * All error messages go through eprintf(). During process initialization these 61 * messages should be directed to the standard error, however once control has 62 * been passed to the applications code these messages should be stored in an 63 * internal buffer for use with dlerror(). Note, fatal error conditions that 64 * may occur while running the application will still cause a standard error 65 * message, see rtldexit() in this file for details. 66 * The `application' flag serves to indicate the transition between process 67 * initialization and when the applications code is running. 68 */ 69 70 /* 71 * Null function used as place where a debugger can set a breakpoint. 72 */ 73 void 74 rtld_db_dlactivity(Lm_list *lml) 75 { 76 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a pre .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_preinit(Lm_list *lml) 86 { 87 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 /* 92 * Null function used as place where debugger can set a post .init 93 * processing breakpoint. 94 */ 95 void 96 rtld_db_postinit(Lm_list *lml) 97 { 98 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 99 r_debug.rtd_rdebug.r_state)); 100 } 101 102 /* 103 * Debugger Event Notification 104 * 105 * This function centralizes all debugger event notification (ala rtld_db). 106 * 107 * There's a simple intent, focused on insuring the primary link-map control 108 * list (or each link-map list) is consistent, and the indication that objects 109 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 110 * event are posted for each of these, most debuggers don't care, as their 111 * view is that these events simply convey an "inconsistent" state. 112 * 113 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 114 * enter ld.so.1. 115 * 116 * With auditors, we may be in the process of relocating a collection of 117 * objects, and will leave() ld.so.1 to call the auditor. At this point we 118 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 119 * object to the debuggers until relocation processing has been completed on it. 120 * To allow for the collection of these objects that are pending relocation, an 121 * RD_ADD event is set after completing a series of relocations on the primary 122 * link-map control list. 123 * 124 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 125 * required later (LML_FLG_DBNOTIF): 126 * 127 * i the first time we add or delete an object to the primary link-map 128 * control list. 129 * ii the first time we move a secondary link-map control list to the primary 130 * link-map control list (effectively, this is like adding a group of 131 * objects to the primary link-map control list). 132 * 133 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 134 * 135 * i each time we leave the runtime linker. 136 */ 137 void 138 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 139 { 140 void (*fptr)(Lm_list *); 141 142 switch (event) { 143 case RD_PREINIT: 144 fptr = rtld_db_preinit; 145 break; 146 case RD_POSTINIT: 147 fptr = rtld_db_postinit; 148 break; 149 case RD_DLACTIVITY: 150 switch (state) { 151 case RT_CONSISTENT: 152 lml->lm_flags &= ~LML_FLG_DBNOTIF; 153 154 /* 155 * Do we need to send a notification? 156 */ 157 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 158 return; 159 rtld_flags &= ~RT_FL_DBNOTIF; 160 break; 161 case RT_ADD: 162 case RT_DELETE: 163 lml->lm_flags |= LML_FLG_DBNOTIF; 164 165 /* 166 * If we are already in an inconsistent state, no 167 * notification is required. 168 */ 169 if (rtld_flags & RT_FL_DBNOTIF) 170 return; 171 rtld_flags |= RT_FL_DBNOTIF; 172 break; 173 }; 174 fptr = rtld_db_dlactivity; 175 break; 176 default: 177 /* 178 * RD_NONE - do nothing 179 */ 180 break; 181 }; 182 183 /* 184 * Set event state and call 'notification' function. 185 * 186 * The debugging clients have previously been told about these 187 * notification functions and have set breakpoints on them if they 188 * are interested in the notification. 189 */ 190 r_debug.rtd_rdebug.r_state = state; 191 r_debug.rtd_rdebug.r_rdevent = event; 192 fptr(lml); 193 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 194 } 195 196 #if defined(__sparc) || defined(__x86) 197 /* 198 * Stack Cleanup. 199 * 200 * This function is invoked to 'remove' arguments that were passed in on the 201 * stack. This is most likely if ld.so.1 was invoked directly. In that case 202 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 203 * Which means we then need to slide everything above it on the stack down 204 * accordingly. 205 * 206 * While the stack layout is platform specific - it just so happens that __x86, 207 * and __sparc platforms share the following initial stack layout. 208 * 209 * !_______________________! high addresses 210 * ! ! 211 * ! Information ! 212 * ! Block ! 213 * ! (size varies) ! 214 * !_______________________! 215 * ! 0 word ! 216 * !_______________________! 217 * ! Auxiliary ! 218 * ! vector ! 219 * ! 2 word entries ! 220 * ! ! 221 * !_______________________! 222 * ! 0 word ! 223 * !_______________________! 224 * ! Environment ! 225 * ! pointers ! 226 * ! ... ! 227 * ! (one word each) ! 228 * !_______________________! 229 * ! 0 word ! 230 * !_______________________! 231 * ! Argument ! low addresses 232 * ! pointers ! 233 * ! Argc words ! 234 * !_______________________! 235 * ! ! 236 * ! Argc ! 237 * !_______________________! 238 * ! ... ! 239 * 240 */ 241 static void 242 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 243 { 244 int ndx; 245 long *argc; 246 char **oargv, **nargv; 247 char **oenvp, **nenvp; 248 auxv_t *oauxv, *nauxv; 249 250 /* 251 * Slide ARGV[] and update argc. The argv pointer remains the same, 252 * however slide the applications arguments over the arguments to 253 * ld.so.1. 254 */ 255 nargv = &argv[0]; 256 oargv = &argv[rmcnt]; 257 258 for (ndx = 0; oargv[ndx]; ndx++) 259 nargv[ndx] = oargv[ndx]; 260 nargv[ndx] = oargv[ndx]; 261 262 argc = (long *)((uintptr_t)argv - sizeof (long *)); 263 *argc -= rmcnt; 264 265 /* 266 * Slide ENVP[], and update the environment array pointer. 267 */ 268 ndx++; 269 nenvp = &nargv[ndx]; 270 oenvp = &oargv[ndx]; 271 *envp = nenvp; 272 273 for (ndx = 0; oenvp[ndx]; ndx++) 274 nenvp[ndx] = oenvp[ndx]; 275 nenvp[ndx] = oenvp[ndx]; 276 277 /* 278 * Slide AUXV[], and update the aux vector pointer. 279 */ 280 ndx++; 281 nauxv = (auxv_t *)&nenvp[ndx]; 282 oauxv = (auxv_t *)&oenvp[ndx]; 283 *auxv = nauxv; 284 285 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 286 nauxv[ndx] = oauxv[ndx]; 287 nauxv[ndx] = oauxv[ndx]; 288 } 289 #else 290 /* 291 * Verify that the above routine is appropriate for any new platforms. 292 */ 293 #error unsupported architecture! 294 #endif 295 296 /* 297 * The only command line argument recognized is -e, followed by a runtime 298 * linker environment variable. 299 */ 300 int 301 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 302 Word *lmtflags, int aout) 303 { 304 int ndx; 305 306 for (ndx = 1; argv[ndx]; ndx++) { 307 char *str; 308 309 if (argv[ndx][0] != '-') 310 break; 311 312 if (argv[ndx][1] == '\0') { 313 ndx++; 314 break; 315 } 316 317 if (argv[ndx][1] != 'e') 318 return (1); 319 320 if (argv[ndx][2] == '\0') { 321 ndx++; 322 if (argv[ndx] == NULL) 323 return (1); 324 str = argv[ndx]; 325 } else 326 str = &argv[ndx][2]; 327 328 /* 329 * If the environment variable starts with LD_, strip the LD_. 330 * Otherwise, take things as is. 331 */ 332 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 333 (str[3] != '\0')) 334 str += 3; 335 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 336 return (1); 337 } 338 339 /* 340 * Make sure an object file has been specified. 341 */ 342 if (argv[ndx] == 0) 343 return (1); 344 345 /* 346 * Having gotten the arguments, clean ourselves off of the stack. 347 */ 348 stack_cleanup(argv, envp, auxv, ndx); 349 return (0); 350 } 351 352 /* 353 * Compare function for PathNode AVL tree. 354 */ 355 static int 356 pnavl_compare(const void *n1, const void *n2) 357 { 358 uint_t hash1, hash2; 359 const char *st1, *st2; 360 int rc; 361 362 hash1 = ((PathNode *)n1)->pn_hash; 363 hash2 = ((PathNode *)n2)->pn_hash; 364 365 if (hash1 > hash2) 366 return (1); 367 if (hash1 < hash2) 368 return (-1); 369 370 st1 = ((PathNode *)n1)->pn_name; 371 st2 = ((PathNode *)n2)->pn_name; 372 373 rc = strcmp(st1, st2); 374 if (rc > 0) 375 return (1); 376 if (rc < 0) 377 return (-1); 378 return (0); 379 } 380 381 /* 382 * Create an AVL tree. 383 */ 384 static avl_tree_t * 385 pnavl_create(size_t size) 386 { 387 avl_tree_t *avlt; 388 389 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 390 return (NULL); 391 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 392 return (avlt); 393 } 394 395 /* 396 * Determine if a pathname has already been recorded on the full path name 397 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 398 * successfully loaded. If the path name does not exist in this AVL tree, then 399 * the next insertion point is deposited in "where". This value can be used by 400 * fpavl_insert() to expedite the insertion. 401 */ 402 Rt_map * 403 fpavl_recorded(Lm_list *lml, const char *name, avl_index_t *where) 404 { 405 FullPathNode fpn, *fpnp; 406 407 /* 408 * Create the avl tree if required. 409 */ 410 if ((lml->lm_fpavl == NULL) && 411 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 412 return (NULL); 413 414 fpn.fpn_node.pn_name = name; 415 fpn.fpn_node.pn_hash = sgs_str_hash(name); 416 417 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 418 return (NULL); 419 420 return (fpnp->fpn_lmp); 421 } 422 423 /* 424 * Insert a name into the FullPathNode AVL tree for the link-map list. The 425 * objects NAME() is the path that would have originally been searched for, and 426 * is therefore the name to associate with any "where" value. If the object has 427 * a different PATHNAME(), perhaps because it has resolved to a different file 428 * (see fullpath()), then this name will be recorded as a separate FullPathNode 429 * (see load_file()). 430 */ 431 int 432 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 433 { 434 FullPathNode *fpnp; 435 436 if (where == 0) { 437 /* LINTED */ 438 Rt_map *_lmp = fpavl_recorded(lml, name, &where); 439 440 /* 441 * We better not get a hit now, we do not want duplicates in 442 * the tree. 443 */ 444 ASSERT(_lmp == 0); 445 } 446 447 /* 448 * Insert new node in tree. 449 */ 450 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) 451 return (0); 452 453 fpnp->fpn_node.pn_name = name; 454 fpnp->fpn_node.pn_hash = sgs_str_hash(name); 455 fpnp->fpn_lmp = lmp; 456 457 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 458 free(fpnp); 459 return (0); 460 } 461 462 ASSERT(lml->lm_fpavl != NULL); 463 avl_insert(lml->lm_fpavl, fpnp, where); 464 return (1); 465 } 466 467 /* 468 * Remove an object from the FullPath AVL tree. Note, this is called *before* 469 * the objects link-map is torn down (remove_so), which is where any NAME() and 470 * PATHNAME() strings will be deallocated. 471 */ 472 void 473 fpavl_remove(Rt_map *lmp) 474 { 475 FullPathNode *fpnp; 476 Aliste idx; 477 478 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 479 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 480 free(fpnp); 481 } 482 free(FPNODE(lmp)); 483 FPNODE(lmp) = NULL; 484 } 485 486 /* 487 * Determine if a pathname has already been recorded on the not-found AVL tree. 488 * This tree maintains a node for each path name that ld.so.1 has explicitly 489 * inspected, but has failed to load during a single ld.so.1 operation. If the 490 * path name does not exist in this AVL tree, then the next insertion point is 491 * deposited in "where". This value can be used by nfavl_insert() to expedite 492 * the insertion. 493 */ 494 int 495 nfavl_recorded(const char *name, avl_index_t *where) 496 { 497 PathNode pn; 498 499 /* 500 * Create the avl tree if required. 501 */ 502 if ((nfavl == NULL) && 503 ((nfavl = pnavl_create(sizeof (PathNode))) == NULL)) 504 return (0); 505 506 pn.pn_name = name; 507 pn.pn_hash = sgs_str_hash(name); 508 509 if (avl_find(nfavl, &pn, where) == NULL) 510 return (0); 511 512 return (1); 513 } 514 515 /* 516 * Insert a name into the not-found AVL tree. 517 */ 518 void 519 nfavl_insert(const char *name, avl_index_t where) 520 { 521 PathNode *pnp; 522 523 if (where == 0) { 524 /* LINTED */ 525 int in_nfavl = nfavl_recorded(name, &where); 526 527 /* 528 * We better not get a hit now, we do not want duplicates in 529 * the tree. 530 */ 531 ASSERT(in_nfavl == 0); 532 } 533 534 /* 535 * Insert new node in tree. 536 */ 537 if ((pnp = calloc(sizeof (PathNode), 1)) != 0) { 538 pnp->pn_name = name; 539 pnp->pn_hash = sgs_str_hash(name); 540 avl_insert(nfavl, pnp, where); 541 } 542 } 543 544 static avl_tree_t *spavl = NULL; 545 546 /* 547 * Search for a path name within the secure path AVL tree. This tree is used 548 * to maintain a list of directories in which the dependencies of a secure 549 * process have been found. This list provides a fall-back in the case that a 550 * $ORIGIN expansion is deemed insecure, when the expansion results in a path 551 * name that has already provided dependencies. 552 */ 553 int 554 spavl_recorded(const char *name, avl_index_t *where) 555 { 556 PathNode pn; 557 558 /* 559 * Create the avl tree if required. 560 */ 561 if ((spavl == NULL) && 562 ((spavl = pnavl_create(sizeof (PathNode))) == NULL)) 563 return (0); 564 565 pn.pn_name = name; 566 pn.pn_hash = sgs_str_hash(name); 567 568 if (avl_find(spavl, &pn, where) == NULL) 569 return (0); 570 571 return (1); 572 } 573 574 /* 575 * Insert the directory name, of a full path name, into the secure path AVL 576 * tree. 577 */ 578 void 579 spavl_insert(const char *name) 580 { 581 char buffer[PATH_MAX], *str; 582 size_t size; 583 avl_index_t where; 584 PathNode *pnp; 585 586 /* 587 * Separate the directory name from the path name. 588 */ 589 if ((str = strrchr(name, '/')) == name) 590 size = 1; 591 else 592 size = str - name; 593 594 (void) strncpy(buffer, name, size); 595 buffer[size] = '\0'; 596 597 /* 598 * Determine whether this directory name is already recorded, or if 599 * not, 'where" will provide the insertion point for the new string. 600 */ 601 if (spavl_recorded(buffer, &where)) 602 return; 603 604 /* 605 * Insert new node in tree. 606 */ 607 if ((pnp = calloc(sizeof (PathNode), 1)) != 0) { 608 pnp->pn_name = strdup(buffer); 609 pnp->pn_hash = sgs_str_hash(buffer); 610 avl_insert(spavl, pnp, where); 611 } 612 } 613 614 /* 615 * Prior to calling an object, either via a .plt or through dlsym(), make sure 616 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 617 * init's in the correct order, however, this order is typically based on needed 618 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 619 * still occur and result in bindings that were not captured during topological 620 * sorting. This routine compensates for this lack of binding information, and 621 * provides for dynamic .init firing. 622 */ 623 void 624 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 625 { 626 Rt_map **tobj; 627 628 /* 629 * If the caller is an auditor, and the destination isn't, then don't 630 * run any .inits (see comments in load_completion()). 631 */ 632 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 633 (LIST(clmp) != LIST(dlmp))) 634 return; 635 636 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 637 return; 638 639 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 640 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 641 return; 642 643 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 644 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 645 DBG_CALL(Dbg_util_no_init(dlmp)); 646 return; 647 } 648 649 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 650 tobj[0] = dlmp; 651 call_init(tobj, DBG_INIT_DYN); 652 } 653 } 654 655 /* 656 * In a threaded environment insure the thread responsible for loading an object 657 * has completed .init processing for that object before any new thread is 658 * allowed to access the object. This check is only valid with libthread 659 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 660 * 661 * When a new link-map is created, the thread that causes it to be loaded is 662 * identified by THREADID(dlmp). Compare this with the current thread to 663 * determine if it must be blocked. 664 * 665 * NOTE, there are a number of instances (typically only for .plt processing) 666 * where we must skip this test: 667 * 668 * . any thread id of 0 - threads that call thr_exit() may be in this state 669 * thus we can't deduce what tid they used to be. Also some of the 670 * lib/libthread worker threads have this id and must bind (to themselves 671 * or libc) for libthread to function. 672 * 673 * . libthread itself binds to libc, and as libthread is INITFIRST 674 * libc's .init can't have fired yet. Luckly libc's .init is not required 675 * by libthreads binding. 676 * 677 * . if the caller is an auditor, and the destination isn't, then don't 678 * block (see comments in load_completion()). 679 */ 680 void 681 /* ARGSUSED2 */ 682 is_dep_ready(Rt_map *dlmp, Rt_map *clmp, int what) 683 { 684 thread_t tid; 685 686 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 687 (LIST(clmp) != LIST(dlmp))) 688 return; 689 690 if ((rtld_flags & RT_FL_CONCUR) && 691 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 692 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 693 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 694 rtldexit(LIST(dlmp), 1); 695 } 696 } 697 698 /* 699 * Execute .{preinit|init|fini}array sections 700 */ 701 void 702 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 703 { 704 int start, stop, incr, ndx; 705 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 706 707 if (array == NULL) 708 return; 709 710 /* 711 * initarray & preinitarray are walked from beginning to end - while 712 * finiarray is walked from end to beginning. 713 */ 714 if (shtype == SHT_FINI_ARRAY) { 715 start = arraycnt - 1; 716 stop = incr = -1; 717 } else { 718 start = 0; 719 stop = arraycnt; 720 incr = 1; 721 } 722 723 /* 724 * Call the .*array[] entries 725 */ 726 for (ndx = start; ndx != stop; ndx += incr) { 727 void (*fptr)(void) = (void(*)())array[ndx]; 728 729 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 730 731 leave(LIST(lmp), 0); 732 (*fptr)(); 733 (void) enter(0); 734 } 735 } 736 737 738 /* 739 * Execute any .init sections. These are passed to us in an lmp array which 740 * (by default) will have been sorted. 741 */ 742 void 743 call_init(Rt_map **tobj, int flag) 744 { 745 Rt_map **_tobj, **_nobj; 746 static List pending = { NULL, NULL }; 747 748 /* 749 * If we're in the middle of an INITFIRST, this must complete before 750 * any new init's are fired. In this case add the object list to the 751 * pending queue and return. We'll pick up the queue after any 752 * INITFIRST objects have their init's fired. 753 */ 754 if (rtld_flags & RT_FL_INITFIRST) { 755 (void) list_append(&pending, tobj); 756 return; 757 } 758 759 /* 760 * Traverse the tobj array firing each objects init. 761 */ 762 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 763 Rt_map *lmp = *_tobj; 764 void (*iptr)() = INIT(lmp); 765 766 if (FLAGS(lmp) & FLG_RT_INITCALL) 767 continue; 768 769 FLAGS(lmp) |= FLG_RT_INITCALL; 770 771 /* 772 * Establish an initfirst state if necessary - no other inits 773 * will be fired (because of additional relocation bindings) 774 * when in this state. 775 */ 776 if (FLAGS(lmp) & FLG_RT_INITFRST) 777 rtld_flags |= RT_FL_INITFIRST; 778 779 if (INITARRAY(lmp) || iptr) { 780 Aliste idx; 781 Bnd_desc *bdp; 782 783 /* 784 * Make sure that all dependencies that have been 785 * relocated to are initialized before this objects 786 * .init is executed. This insures that a dependency 787 * on an external item that must first be initialized 788 * by its associated object is satisfied. 789 */ 790 for (APLIST_TRAVERSE(DEPENDS(lmp), idx, bdp)) { 791 if ((bdp->b_flags & BND_REFER) == 0) 792 continue; 793 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 794 } 795 DBG_CALL(Dbg_util_call_init(lmp, flag)); 796 } 797 798 if (iptr) { 799 leave(LIST(lmp), 0); 800 (*iptr)(); 801 (void) enter(0); 802 } 803 804 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 805 SHT_INIT_ARRAY); 806 807 if (INITARRAY(lmp) || iptr) 808 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 809 810 /* 811 * Set the initdone flag regardless of whether this object 812 * actually contains an .init section. This flag prevents us 813 * from processing this section again for an .init and also 814 * signifies that a .fini must be called should it exist. 815 * Clear the sort field for use in later .fini processing. 816 */ 817 FLAGS(lmp) |= FLG_RT_INITDONE; 818 SORTVAL(lmp) = -1; 819 820 /* 821 * Wake anyone up who might be waiting on this .init. 822 */ 823 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 824 DBG_CALL(Dbg_util_broadcast(lmp)); 825 (void) rt_cond_broadcast(CONDVAR(lmp)); 826 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 827 } 828 829 /* 830 * If we're firing an INITFIRST object, and other objects must 831 * be fired which are not INITFIRST, make sure we grab any 832 * pending objects that might have been delayed as this 833 * INITFIRST was processed. 834 */ 835 if ((rtld_flags & RT_FL_INITFIRST) && 836 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 837 Listnode *lnp; 838 Rt_map **pobj; 839 840 rtld_flags &= ~RT_FL_INITFIRST; 841 842 while ((lnp = pending.head) != NULL) { 843 if ((pending.head = lnp->next) == NULL) 844 pending.tail = NULL; 845 pobj = lnp->data; 846 free(lnp); 847 848 call_init(pobj, DBG_INIT_PEND); 849 } 850 } 851 } 852 free(tobj); 853 } 854 855 /* 856 * Function called by atexit(3C). Calls all .fini sections related with the 857 * mains dependent shared libraries in the order in which the shared libraries 858 * have been loaded. Skip any .fini defined in the main executable, as this 859 * will be called by crt0 (main was never marked as initdone). 860 */ 861 void 862 call_fini(Lm_list * lml, Rt_map ** tobj) 863 { 864 Rt_map **_tobj; 865 866 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 867 Rt_map *clmp, * lmp = *_tobj; 868 Aliste idx; 869 Bnd_desc *bdp; 870 871 /* 872 * If concurrency checking isn't enabled only fire .fini if 873 * .init has completed. We collect all .fini sections of 874 * objects that had their .init collected, but that doesn't 875 * mean at the time that the .init had completed. 876 */ 877 if ((rtld_flags & RT_FL_CONCUR) || 878 (FLAGS(lmp) & FLG_RT_INITDONE)) { 879 void (*fptr)(void) = FINI(lmp); 880 881 if (FINIARRAY(lmp) || fptr) { 882 /* 883 * If concurrency checking is enabled make sure 884 * this object's .init is completed before 885 * calling any .fini. 886 */ 887 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 888 DBG_CALL(Dbg_util_call_fini(lmp)); 889 } 890 891 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 892 SHT_FINI_ARRAY); 893 894 if (fptr) { 895 leave(LIST(lmp), 0); 896 (*fptr)(); 897 (void) enter(0); 898 } 899 } 900 901 /* 902 * Skip main, this is explicitly called last in atexit_fini(). 903 */ 904 if (FLAGS(lmp) & FLG_RT_ISMAIN) 905 continue; 906 907 /* 908 * Audit `close' operations at this point. The library has 909 * exercised its last instructions (regardless of whether it 910 * will be unmapped or not). 911 * 912 * First call any global auditing. 913 */ 914 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 915 _audit_objclose(&(auditors->ad_list), lmp); 916 917 /* 918 * Finally determine whether this object has local auditing 919 * requirements by inspecting itself and then its dependencies. 920 */ 921 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 922 continue; 923 924 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 925 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 926 927 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 928 clmp = bdp->b_caller; 929 930 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 931 _audit_objclose(&(AUDITORS(clmp)->ad_list), 932 lmp); 933 break; 934 } 935 } 936 } 937 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 938 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 939 940 free(tobj); 941 } 942 943 void 944 atexit_fini() 945 { 946 Rt_map **tobj, *lmp; 947 Lm_list *lml; 948 Listnode *lnp; 949 950 (void) enter(0); 951 952 rtld_flags |= RT_FL_ATEXIT; 953 954 lml = &lml_main; 955 lml->lm_flags |= LML_FLG_ATEXIT; 956 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 957 lmp = (Rt_map *)lml->lm_head; 958 959 /* 960 * Reverse topologically sort the main link-map for .fini execution. 961 */ 962 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 963 (tobj != (Rt_map **)S_ERROR)) 964 call_fini(lml, tobj); 965 966 /* 967 * Add an explicit close to main and ld.so.1. Although main's .fini is 968 * collected in call_fini() to provide for FINITARRAY processing, its 969 * audit_objclose is explicitly skipped. This provides for it to be 970 * called last, here. This is the reverse of the explicit calls to 971 * audit_objopen() made in setup(). 972 */ 973 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 974 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 975 audit_objclose(lmp, lmp); 976 } 977 978 /* 979 * Now that all .fini code has been run, see what unreferenced objects 980 * remain. 981 */ 982 unused(lml); 983 984 /* 985 * Traverse any alternative link-map lists. 986 */ 987 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 988 /* 989 * Ignore the base-link-map list, which has already been 990 * processed, and the runtime linkers link-map list, which is 991 * typically processed last. 992 */ 993 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 994 continue; 995 996 if ((lmp = (Rt_map *)lml->lm_head) == 0) 997 continue; 998 999 lml->lm_flags |= LML_FLG_ATEXIT; 1000 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1001 1002 /* 1003 * Reverse topologically sort the link-map for .fini execution. 1004 */ 1005 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 1006 (tobj != (Rt_map **)S_ERROR)) 1007 call_fini(lml, tobj); 1008 1009 unused(lml); 1010 } 1011 1012 /* 1013 * Finally reverse topologically sort the runtime linkers link-map for 1014 * .fini execution. 1015 */ 1016 lml = &lml_rtld; 1017 lml->lm_flags |= LML_FLG_ATEXIT; 1018 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1019 lmp = (Rt_map *)lml->lm_head; 1020 1021 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 1022 (tobj != (Rt_map **)S_ERROR)) 1023 call_fini(lml, tobj); 1024 1025 leave(&lml_main, 0); 1026 } 1027 1028 1029 /* 1030 * This routine is called to complete any runtime linker activity which may have 1031 * resulted in objects being loaded. This is called from all user entry points 1032 * and from any internal dl*() requests. 1033 */ 1034 void 1035 load_completion(Rt_map *nlmp) 1036 { 1037 Rt_map **tobj = 0; 1038 Lm_list *nlml; 1039 1040 /* 1041 * Establish any .init processing. Note, in a world of lazy loading, 1042 * objects may have been loaded regardless of whether the users request 1043 * was fulfilled (i.e., a dlsym() request may have failed to find a 1044 * symbol but objects might have been loaded during its search). Thus, 1045 * any tsorting starts from the nlmp (new link-maps) pointer and not 1046 * necessarily from the link-map that may have satisfied the request. 1047 * 1048 * Note, the primary link-map has an initialization phase where dynamic 1049 * .init firing is suppressed. This provides for a simple and clean 1050 * handshake with the primary link-maps libc, which is important for 1051 * establishing uberdata. In addition, auditors often obtain handles 1052 * to primary link-map objects as the objects are loaded, so as to 1053 * inspect the link-map for symbols. This inspection is allowed without 1054 * running any code on the primary link-map, as running this code may 1055 * reenter the auditor, who may not yet have finished its own 1056 * initialization. 1057 */ 1058 if (nlmp) 1059 nlml = LIST(nlmp); 1060 1061 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 1062 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1063 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 1064 RT_SORT_REV)) == (Rt_map **)S_ERROR) 1065 tobj = 0; 1066 } 1067 1068 /* 1069 * Make sure any alternative link-map retrieves any external interfaces 1070 * and initializes threads. 1071 */ 1072 if (nlmp && (nlml != &lml_main)) { 1073 (void) rt_get_extern(nlml, nlmp); 1074 rt_thr_init(nlml); 1075 } 1076 1077 /* 1078 * Traverse the list of new link-maps and register any dynamic TLS. 1079 * This storage is established for any objects not on the primary 1080 * link-map, and for any objects added to the primary link-map after 1081 * static TLS has been registered. 1082 */ 1083 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1084 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1085 Rt_map *lmp; 1086 1087 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1088 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1089 tls_modaddrem(lmp, TM_FLG_MODADD); 1090 } 1091 nlml->lm_tls = 0; 1092 } 1093 1094 /* 1095 * Fire any .init's. 1096 */ 1097 if (tobj) 1098 call_init(tobj, DBG_INIT_SORT); 1099 } 1100 1101 /* 1102 * Append an item to the specified list, and return a pointer to the list 1103 * node created. 1104 */ 1105 Listnode * 1106 list_append(List *lst, const void *item) 1107 { 1108 Listnode *_lnp; 1109 1110 if ((_lnp = malloc(sizeof (Listnode))) == NULL) 1111 return (NULL); 1112 1113 _lnp->data = (void *)item; 1114 _lnp->next = NULL; 1115 1116 if (lst->head == NULL) 1117 lst->tail = lst->head = _lnp; 1118 else { 1119 lst->tail->next = _lnp; 1120 lst->tail = lst->tail->next; 1121 } 1122 return (_lnp); 1123 } 1124 1125 1126 /* 1127 * Add an item after specified listnode, and return a pointer to the list 1128 * node created. 1129 */ 1130 Listnode * 1131 list_insert(List *lst, const void *item, Listnode *lnp) 1132 { 1133 Listnode *_lnp; 1134 1135 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1136 return (0); 1137 1138 _lnp->data = (void *)item; 1139 _lnp->next = lnp->next; 1140 if (_lnp->next == NULL) 1141 lst->tail = _lnp; 1142 lnp->next = _lnp; 1143 return (_lnp); 1144 } 1145 1146 /* 1147 * Prepend an item to the specified list, and return a pointer to the 1148 * list node created. 1149 */ 1150 Listnode * 1151 list_prepend(List * lst, const void * item) 1152 { 1153 Listnode *_lnp; 1154 1155 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1156 return (0); 1157 1158 _lnp->data = (void *)item; 1159 1160 if (lst->head == NULL) { 1161 _lnp->next = NULL; 1162 lst->tail = lst->head = _lnp; 1163 } else { 1164 _lnp->next = lst->head; 1165 lst->head = _lnp; 1166 } 1167 return (_lnp); 1168 } 1169 1170 1171 /* 1172 * Delete a 'listnode' from a list. 1173 */ 1174 void 1175 list_delete(List *lst, void *item) 1176 { 1177 Listnode *clnp, *plnp; 1178 1179 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1180 if (item == clnp->data) 1181 break; 1182 plnp = clnp; 1183 } 1184 1185 if (clnp == NULL) 1186 return; 1187 1188 if (lst->head == clnp) 1189 lst->head = clnp->next; 1190 if (lst->tail == clnp) 1191 lst->tail = plnp; 1192 1193 if (plnp) 1194 plnp->next = clnp->next; 1195 1196 free(clnp); 1197 } 1198 1199 /* 1200 * Append an item to the specified link map control list. 1201 */ 1202 void 1203 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1204 { 1205 Lm_cntl *lmc; 1206 int add = 1; 1207 1208 /* 1209 * Indicate that this link-map list has a new object. 1210 */ 1211 (lml->lm_obj)++; 1212 1213 /* 1214 * If we're about to add a new object to the main link-map control list, 1215 * alert the debuggers that we are about to mess with this list. 1216 * Additions of individual objects to the main link-map control list 1217 * occur during initial setup as the applications immediate dependencies 1218 * are loaded. Individual objects are also loaded on the main link-map 1219 * control list of new alternative link-map control lists. 1220 */ 1221 if ((lmco == ALIST_OFF_DATA) && 1222 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1223 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1224 1225 /* LINTED */ 1226 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1227 1228 /* 1229 * A link-map list header points to one of more link-map control lists 1230 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1231 * the list of relocated objects. Other lists maintain objects that 1232 * are still being analyzed or relocated. This list provides the core 1233 * link-map list information used by all ld.so.1 routines. 1234 */ 1235 if (lmc->lc_head == NULL) { 1236 /* 1237 * If this is the first link-map for the given control list, 1238 * initialize the list. 1239 */ 1240 lmc->lc_head = lmc->lc_tail = lmp; 1241 add = 0; 1242 1243 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1244 Rt_map *tlmp; 1245 1246 /* 1247 * If this is an interposer then append the link-map following 1248 * any other interposers (these are objects that have been 1249 * previously preloaded, or were identified with -z interpose). 1250 * Interposers can only be inserted on the first link-map 1251 * control list, as once relocation has started, interposition 1252 * from new interposers can't be guaranteed. 1253 * 1254 * NOTE: We do not interpose on the head of a list. This model 1255 * evolved because dynamic executables have already been fully 1256 * relocated within themselves and thus can't be interposed on. 1257 * Nowadays it's possible to have shared objects at the head of 1258 * a list, which conceptually means they could be interposed on. 1259 * But, shared objects can be created via dldump() and may only 1260 * be partially relocated (just relatives), in which case they 1261 * are interposable, but are marked as fixed (ET_EXEC). 1262 * 1263 * Thus we really don't have a clear method of deciding when the 1264 * head of a link-map is interposable. So, to be consistent, 1265 * for now only add interposers after the link-map lists head 1266 * object. 1267 */ 1268 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1269 tlmp = NEXT_RT_MAP(tlmp)) { 1270 1271 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1272 continue; 1273 1274 /* 1275 * Insert the new link-map before this non-interposer, 1276 * and indicate an interposer is found. 1277 */ 1278 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1279 PREV(lmp) = PREV(tlmp); 1280 1281 NEXT(lmp) = (Link_map *)tlmp; 1282 PREV(tlmp) = (Link_map *)lmp; 1283 1284 lmc->lc_flags |= LMC_FLG_REANALYZE; 1285 add = 0; 1286 break; 1287 } 1288 } 1289 1290 /* 1291 * Fall through to appending the new link map to the tail of the list. 1292 * If we're processing the initial objects of this link-map list, add 1293 * them to the backward compatibility list. 1294 */ 1295 if (add) { 1296 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1297 PREV(lmp) = (Link_map *)lmc->lc_tail; 1298 lmc->lc_tail = lmp; 1299 } 1300 1301 /* 1302 * Having added this link-map to a control list, indicate which control 1303 * list the link-map belongs to. Note, control list information is 1304 * always maintained as an offset, as the Alist can be reallocated. 1305 */ 1306 CNTL(lmp) = lmco; 1307 1308 /* 1309 * Indicate if an interposer is found. Note that the first object on a 1310 * link-map can be explicitly defined as an interposer so that it can 1311 * provide interposition over direct binding requests. 1312 */ 1313 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1314 lml->lm_flags |= LML_FLG_INTRPOSE; 1315 1316 /* 1317 * For backward compatibility with debuggers, the link-map list contains 1318 * pointers to the main control list. 1319 */ 1320 if (lmco == ALIST_OFF_DATA) { 1321 lml->lm_head = lmc->lc_head; 1322 lml->lm_tail = lmc->lc_tail; 1323 } 1324 } 1325 1326 /* 1327 * Delete an item from the specified link map control list. 1328 */ 1329 void 1330 lm_delete(Lm_list *lml, Rt_map *lmp) 1331 { 1332 Lm_cntl *lmc; 1333 1334 /* 1335 * If the control list pointer hasn't been initialized, this object 1336 * never got added to a link-map list. 1337 */ 1338 if (CNTL(lmp) == 0) 1339 return; 1340 1341 /* 1342 * If we're about to delete an object from the main link-map control 1343 * list, alert the debuggers that we are about to mess with this list. 1344 */ 1345 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1346 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1347 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1348 1349 /* LINTED */ 1350 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1351 1352 if (lmc->lc_head == lmp) 1353 lmc->lc_head = NEXT_RT_MAP(lmp); 1354 else 1355 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1356 1357 if (lmc->lc_tail == lmp) 1358 lmc->lc_tail = PREV_RT_MAP(lmp); 1359 else 1360 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1361 1362 /* 1363 * For backward compatibility with debuggers, the link-map list contains 1364 * pointers to the main control list. 1365 */ 1366 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1367 lml->lm_head = lmc->lc_head; 1368 lml->lm_tail = lmc->lc_tail; 1369 } 1370 1371 /* 1372 * Indicate we have one less object on this control list. 1373 */ 1374 (lml->lm_obj)--; 1375 } 1376 1377 /* 1378 * Move a link-map control list to another. Objects that are being relocated 1379 * are maintained on secondary control lists. Once their relocation is 1380 * complete, the entire list is appended to the previous control list, as this 1381 * list must have been the trigger for generating the new control list. 1382 */ 1383 void 1384 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1385 { 1386 Rt_map *lmp; 1387 1388 /* 1389 * If we're about to add a new family of objects to the main link-map 1390 * control list, alert the debuggers that we are about to mess with this 1391 * list. Additions of object families to the main link-map control 1392 * list occur during lazy loading, filtering and dlopen(). 1393 */ 1394 if ((plmco == ALIST_OFF_DATA) && 1395 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1396 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1397 1398 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1399 1400 /* 1401 * Indicate each new link-map has been moved to the previous link-map 1402 * control list. 1403 */ 1404 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) 1405 CNTL(lmp) = plmco; 1406 1407 /* 1408 * Move the new link-map control list, to the callers link-map control 1409 * list. 1410 */ 1411 if (plmc->lc_head == NULL) { 1412 plmc->lc_head = nlmc->lc_head; 1413 PREV(nlmc->lc_head) = NULL; 1414 } else { 1415 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1416 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1417 } 1418 1419 plmc->lc_tail = nlmc->lc_tail; 1420 nlmc->lc_head = nlmc->lc_tail = NULL; 1421 1422 /* 1423 * For backward compatibility with debuggers, the link-map list contains 1424 * pointers to the main control list. 1425 */ 1426 if (plmco == ALIST_OFF_DATA) { 1427 lml->lm_head = plmc->lc_head; 1428 lml->lm_tail = plmc->lc_tail; 1429 } 1430 } 1431 1432 /* 1433 * Environment variables can have a variety of defined permutations, and thus 1434 * the following infrastructure exists to allow this variety and to select the 1435 * required definition. 1436 * 1437 * Environment variables can be defined as 32- or 64-bit specific, and if so 1438 * they will take precedence over any instruction set neutral form. Typically 1439 * this is only useful when the environment value is an informational string. 1440 * 1441 * Environment variables may be obtained from the standard user environment or 1442 * from a configuration file. The latter provides a fallback if no user 1443 * environment setting is found, and can take two forms: 1444 * 1445 * . a replaceable definition - this will be used if no user environment 1446 * setting has been seen, or 1447 * 1448 * . an permanent definition - this will be used no matter what user 1449 * environment setting is seen. In the case of list variables it will be 1450 * appended to any process environment setting seen. 1451 * 1452 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1453 * override any replaceable environment variables from a configuration file. 1454 */ 1455 static u_longlong_t rplgen; /* replaceable generic */ 1456 /* variables */ 1457 static u_longlong_t rplisa; /* replaceable ISA specific */ 1458 /* variables */ 1459 static u_longlong_t prmgen; /* permanent generic */ 1460 /* variables */ 1461 static u_longlong_t prmisa; /* permanent ISA specific */ 1462 /* variables */ 1463 1464 /* 1465 * Classify an environment variables type. 1466 */ 1467 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1468 /* the wrong ISA */ 1469 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1470 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1471 /* config file */ 1472 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1473 1474 /* 1475 * Identify all environment variables. 1476 */ 1477 #define ENV_FLG_AUDIT 0x0000000001ULL 1478 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1479 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1480 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1481 #define ENV_FLG_BINDINGS 0x0000000010ULL 1482 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1483 #define ENV_FLG_CONFGEN 0x0000000040ULL 1484 #define ENV_FLG_CONFIG 0x0000000080ULL 1485 #define ENV_FLG_DEBUG 0x0000000100ULL 1486 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1487 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1488 #define ENV_FLG_FLAGS 0x0000000800ULL 1489 #define ENV_FLG_INIT 0x0000001000ULL 1490 #define ENV_FLG_LIBPATH 0x0000002000ULL 1491 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1492 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1493 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1494 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1495 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1496 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1497 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1498 #define ENV_FLG_NODIRECT 0x0000200000ULL 1499 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1500 #define ENV_FLG_NOLAZY 0x0000800000ULL 1501 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1502 #define ENV_FLG_NOVERSION 0x0002000000ULL 1503 #define ENV_FLG_PRELOAD 0x0004000000ULL 1504 #define ENV_FLG_PROFILE 0x0008000000ULL 1505 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1506 #define ENV_FLG_SIGNAL 0x0020000000ULL 1507 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1508 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1509 #define ENV_FLG_UNREF 0x0100000000ULL 1510 #define ENV_FLG_UNUSED 0x0200000000ULL 1511 #define ENV_FLG_VERBOSE 0x0400000000ULL 1512 #define ENV_FLG_WARN 0x0800000000ULL 1513 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1514 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1515 #define ENV_FLG_NOUNRESWEAK 0x4000000000ULL 1516 #define ENV_FLG_NOPAREXT 0x8000000000ULL 1517 1518 #ifdef SIEBEL_DISABLE 1519 #define ENV_FLG_FIX_1 0x8000000000ULL 1520 #endif 1521 1522 #define SEL_REPLACE 0x0001 1523 #define SEL_PERMANT 0x0002 1524 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1525 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1526 #define SEL_ACT_STR 0x0400 /* setting string value */ 1527 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1528 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1529 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1530 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1531 1532 /* 1533 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1534 * and len specifies its length (comparing a strings length before the string 1535 * itself speed things up). s2 points to the token itself which has already 1536 * had any leading white-space removed. 1537 */ 1538 static void 1539 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1540 Word *lmtflags, uint_t env_flags, int aout) 1541 { 1542 u_longlong_t variable = 0; 1543 ushort_t select = 0; 1544 const char **str; 1545 Word val = 0; 1546 1547 /* 1548 * Determine whether we're dealing with a replaceable or permanent 1549 * string. 1550 */ 1551 if (env_flags & ENV_TYP_PERMANT) { 1552 /* 1553 * If the string is from a configuration file and defined as 1554 * permanent, assign it as permanent. 1555 */ 1556 select |= SEL_PERMANT; 1557 } else 1558 select |= SEL_REPLACE; 1559 1560 /* 1561 * Parse the variable given. 1562 * 1563 * The LD_AUDIT family. 1564 */ 1565 if (*s1 == 'A') { 1566 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1567 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1568 /* 1569 * Replaceable and permanent audit objects can exist. 1570 */ 1571 select |= SEL_ACT_STR; 1572 if (select & SEL_REPLACE) 1573 str = &rpl_audit; 1574 else { 1575 str = &prm_audit; 1576 rpl_audit = 0; 1577 } 1578 variable = ENV_FLG_AUDIT; 1579 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1580 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1581 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1582 /* 1583 * A specialized variable for plt_exit() use, not 1584 * documented for general use. 1585 */ 1586 select |= SEL_ACT_SPEC_2; 1587 variable = ENV_FLG_AUDIT_ARGS; 1588 } 1589 } 1590 /* 1591 * The LD_BIND family and LD_BREADTH (historic). 1592 */ 1593 else if (*s1 == 'B') { 1594 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1595 MSG_ORIG(MSG_LD_BIND_LAZY), 1596 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1597 select |= SEL_ACT_RT2; 1598 val = RT_FL2_BINDLAZY; 1599 variable = ENV_FLG_BIND_LAZY; 1600 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1601 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1602 select |= SEL_ACT_RT2; 1603 val = RT_FL2_BINDNOW; 1604 variable = ENV_FLG_BIND_NOW; 1605 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1606 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1607 /* 1608 * Another trick, enabled to help debug AOUT 1609 * applications under BCP, but not documented for 1610 * general use. 1611 */ 1612 select |= SEL_ACT_RT; 1613 val = RT_FL_NOBIND; 1614 variable = ENV_FLG_BIND_NOT; 1615 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1616 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1617 /* 1618 * This variable is simply for backward compatibility. 1619 * If this and LD_DEBUG are both specified, only one of 1620 * the strings is going to get processed. 1621 */ 1622 select |= SEL_ACT_SPEC_2; 1623 variable = ENV_FLG_BINDINGS; 1624 #ifndef LD_BREADTH_DISABLED 1625 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1626 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1627 /* 1628 * Besides some old patches this is no longer available. 1629 */ 1630 rtld_flags |= RT_FL_BREADTH; 1631 return; 1632 #endif 1633 } 1634 } 1635 /* 1636 * LD_CONCURRENCY and LD_CONFIG family. 1637 */ 1638 else if (*s1 == 'C') { 1639 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1640 MSG_ORIG(MSG_LD_CONCURRENCY), 1641 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1642 /* 1643 * Waiting in the wings, as concurrency checking isn't 1644 * yet enabled. 1645 */ 1646 select |= SEL_ACT_SPEC_2; 1647 variable = ENV_FLG_CONCURRENCY; 1648 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1649 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1650 /* 1651 * Set by crle(1) to indicate it's building a 1652 * configuration file, not documented for general use. 1653 */ 1654 select |= SEL_ACT_SPEC_2; 1655 variable = ENV_FLG_CONFGEN; 1656 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1657 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1658 /* 1659 * Secure applications must use a default configuration 1660 * file. A setting from a configuration file doesn't 1661 * make sense (given we must be reading a configuration 1662 * file to have gotten this). 1663 */ 1664 if ((rtld_flags & RT_FL_SECURE) || 1665 (env_flags & ENV_TYP_CONFIG)) 1666 return; 1667 select |= SEL_ACT_STR; 1668 str = &config->c_name; 1669 variable = ENV_FLG_CONFIG; 1670 } 1671 } 1672 /* 1673 * The LD_DEBUG family and LD_DEMANGLE. 1674 */ 1675 else if (*s1 == 'D') { 1676 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1677 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1678 select |= SEL_ACT_STR; 1679 if (select & SEL_REPLACE) 1680 str = &rpl_debug; 1681 else { 1682 str = &prm_debug; 1683 rpl_debug = 0; 1684 } 1685 variable = ENV_FLG_DEBUG; 1686 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1687 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1688 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1689 select |= SEL_ACT_STR; 1690 str = &dbg_file; 1691 variable = ENV_FLG_DEBUG_OUTPUT; 1692 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1693 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1694 select |= SEL_ACT_RT; 1695 val = RT_FL_DEMANGLE; 1696 variable = ENV_FLG_DEMANGLE; 1697 } 1698 } 1699 /* 1700 * LD_FLAGS - collect the best variable definition. On completion of 1701 * environment variable processing pass the result to ld_flags_env() 1702 * where they'll be decomposed and passed back to this routine. 1703 */ 1704 else if (*s1 == 'F') { 1705 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1706 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1707 select |= SEL_ACT_SPEC_1; 1708 if (select & SEL_REPLACE) 1709 str = &rpl_ldflags; 1710 else { 1711 str = &prm_ldflags; 1712 rpl_ldflags = 0; 1713 } 1714 variable = ENV_FLG_FLAGS; 1715 } 1716 } 1717 /* 1718 * LD_INIT (internal, used by ldd(1)). 1719 */ 1720 else if (*s1 == 'I') { 1721 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1722 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1723 select |= SEL_ACT_LML; 1724 val = LML_FLG_TRC_INIT; 1725 variable = ENV_FLG_INIT; 1726 } 1727 } 1728 /* 1729 * The LD_LIBRARY_PATH and LD_LOAD families. 1730 */ 1731 else if (*s1 == 'L') { 1732 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1733 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1734 select |= SEL_ACT_SPEC_1; 1735 if (select & SEL_REPLACE) 1736 str = &rpl_libpath; 1737 else { 1738 str = &prm_libpath; 1739 rpl_libpath = 0; 1740 } 1741 variable = ENV_FLG_LIBPATH; 1742 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1743 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1744 /* 1745 * Internal use by crle(1), not documented for general 1746 * use. 1747 */ 1748 select |= SEL_ACT_LML; 1749 val = LML_FLG_LOADAVAIL; 1750 variable = ENV_FLG_LOADAVAIL; 1751 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1752 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1753 select |= SEL_ACT_SPEC_2; 1754 variable = ENV_FLG_LOADFLTR; 1755 } 1756 } 1757 /* 1758 * The LD_NO family. 1759 */ 1760 else if (*s1 == 'N') { 1761 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1762 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1763 select |= SEL_ACT_RT; 1764 val = RT_FL_NOAUDIT; 1765 variable = ENV_FLG_NOAUDIT; 1766 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1767 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1768 select |= SEL_ACT_RT; 1769 val = RT_FL_NOAUXFLTR; 1770 variable = ENV_FLG_NOAUXFLTR; 1771 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1772 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1773 select |= SEL_ACT_RT; 1774 val = RT_FL_NOBAPLT; 1775 variable = ENV_FLG_NOBAPLT; 1776 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1777 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1778 select |= SEL_ACT_RT; 1779 val = RT_FL_NOCFG; 1780 variable = ENV_FLG_NOCONFIG; 1781 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1782 MSG_ORIG(MSG_LD_NODIRCONFIG), 1783 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1784 select |= SEL_ACT_RT; 1785 val = RT_FL_NODIRCFG; 1786 variable = ENV_FLG_NODIRCONFIG; 1787 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1788 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1789 select |= SEL_ACT_LMLT; 1790 val = LML_TFLG_NODIRECT; 1791 variable = ENV_FLG_NODIRECT; 1792 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1793 MSG_ORIG(MSG_LD_NOENVCONFIG), 1794 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1795 select |= SEL_ACT_RT; 1796 val = RT_FL_NOENVCFG; 1797 variable = ENV_FLG_NOENVCONFIG; 1798 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1799 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1800 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1801 select |= SEL_ACT_RT2; 1802 val = RT_FL2_NOFLTCFG; 1803 variable = ENV_FLG_NOFLTCONFIG; 1804 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1805 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1806 select |= SEL_ACT_LMLT; 1807 val = LML_TFLG_NOLAZYLD; 1808 variable = ENV_FLG_NOLAZY; 1809 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1810 MSG_ORIG(MSG_LD_NOOBJALTER), 1811 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1812 select |= SEL_ACT_RT; 1813 val = RT_FL_NOOBJALT; 1814 variable = ENV_FLG_NOOBJALTER; 1815 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1816 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1817 select |= SEL_ACT_RT; 1818 val = RT_FL_NOVERSION; 1819 variable = ENV_FLG_NOVERSION; 1820 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1821 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1822 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1823 /* 1824 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1825 */ 1826 select |= SEL_ACT_LML; 1827 val = LML_FLG_TRC_NOUNRESWEAK; 1828 variable = ENV_FLG_NOUNRESWEAK; 1829 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1830 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1831 select |= SEL_ACT_LML; 1832 val = LML_FLG_TRC_NOPAREXT; 1833 variable = ENV_FLG_NOPAREXT; 1834 } 1835 } 1836 /* 1837 * LD_ORIGIN. 1838 */ 1839 else if (*s1 == 'O') { 1840 #ifndef EXPAND_RELATIVE 1841 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1842 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1843 /* 1844 * Besides some old patches this is no longer required. 1845 */ 1846 rtld_flags |= RT_FL_RELATIVE; 1847 } 1848 #endif 1849 return; 1850 } 1851 /* 1852 * LD_PRELOAD and LD_PROFILE family. 1853 */ 1854 else if (*s1 == 'P') { 1855 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1856 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1857 select |= SEL_ACT_STR; 1858 if (select & SEL_REPLACE) 1859 str = &rpl_preload; 1860 else { 1861 str = &prm_preload; 1862 rpl_preload = 0; 1863 } 1864 variable = ENV_FLG_PRELOAD; 1865 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1866 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1867 /* 1868 * Only one user library can be profiled at a time. 1869 */ 1870 select |= SEL_ACT_SPEC_2; 1871 variable = ENV_FLG_PROFILE; 1872 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1873 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1874 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1875 /* 1876 * Only one user library can be profiled at a time. 1877 */ 1878 select |= SEL_ACT_STR; 1879 str = &profile_out; 1880 variable = ENV_FLG_PROFILE_OUTPUT; 1881 } 1882 } 1883 /* 1884 * LD_SIGNAL. 1885 */ 1886 else if (*s1 == 'S') { 1887 if (rtld_flags & RT_FL_SECURE) 1888 return; 1889 if ((len == MSG_LD_SIGNAL_SIZE) && 1890 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1891 MSG_LD_SIGNAL_SIZE) == 0)) { 1892 select |= SEL_ACT_SPEC_2; 1893 variable = ENV_FLG_SIGNAL; 1894 } 1895 } 1896 /* 1897 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1898 * the key to enabling all other ldd(1) specific environment variables. 1899 * In case an auditor is called, which in turn might exec(2) a 1900 * subprocess, this variable is disabled, so that any subprocess 1901 * escapes ldd(1) processing. 1902 */ 1903 else if (*s1 == 'T') { 1904 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1905 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1906 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1907 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1908 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1909 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1910 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1911 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1912 char *s0 = (char *)s1; 1913 1914 select |= SEL_ACT_SPEC_2; 1915 variable = ENV_FLG_TRACE_OBJS; 1916 1917 #if defined(__sparc) || defined(__x86) 1918 /* 1919 * The simplest way to "disable" this variable is to 1920 * truncate this string to "LD_'\0'". This string is 1921 * ignored by any ld.so.1 environment processing. 1922 * Use of such interfaces as unsetenv(3c) are overkill, 1923 * and would drag too much libc implementation detail 1924 * into ld.so.1. 1925 */ 1926 *s0 = '\0'; 1927 #else 1928 /* 1929 * Verify that the above write is appropriate for any new platforms. 1930 */ 1931 #error unsupported architecture! 1932 #endif 1933 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1934 MSG_ORIG(MSG_LD_TRACE_PTHS), 1935 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1936 select |= SEL_ACT_LML; 1937 val = LML_FLG_TRC_SEARCH; 1938 variable = ENV_FLG_TRACE_PTHS; 1939 } 1940 } 1941 /* 1942 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1943 */ 1944 else if (*s1 == 'U') { 1945 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1946 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1947 select |= SEL_ACT_LML; 1948 val = LML_FLG_TRC_UNREF; 1949 variable = ENV_FLG_UNREF; 1950 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1951 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1952 select |= SEL_ACT_LML; 1953 val = LML_FLG_TRC_UNUSED; 1954 variable = ENV_FLG_UNUSED; 1955 } 1956 } 1957 /* 1958 * LD_VERBOSE (internal, used by ldd(1)). 1959 */ 1960 else if (*s1 == 'V') { 1961 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1962 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1963 select |= SEL_ACT_LML; 1964 val = LML_FLG_TRC_VERBOSE; 1965 variable = ENV_FLG_VERBOSE; 1966 } 1967 } 1968 /* 1969 * LD_WARN (internal, used by ldd(1)). 1970 */ 1971 else if (*s1 == 'W') { 1972 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1973 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1974 select |= SEL_ACT_LML; 1975 val = LML_FLG_TRC_WARN; 1976 variable = ENV_FLG_WARN; 1977 } 1978 #ifdef SIEBEL_DISABLE 1979 } 1980 /* 1981 * LD__FIX__ (undocumented, enable future technology that can't be 1982 * delivered in a patch release). 1983 */ 1984 else if (*s1 == '_') { 1985 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1986 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1987 select |= SEL_ACT_RT; 1988 val = RT_FL_DISFIX_1; 1989 variable = ENV_FLG_FIX_1; 1990 } 1991 #endif 1992 } 1993 if (variable == 0) 1994 return; 1995 1996 /* 1997 * If the variable is already processed with ISA specific variable, 1998 * no further processing needed. 1999 */ 2000 if (((select & SEL_REPLACE) && (rplisa & variable)) || 2001 ((select & SEL_PERMANT) && (prmisa & variable))) 2002 return; 2003 2004 /* 2005 * Now mark the appropriate variables. 2006 * If the replaceable variable is already set, then the 2007 * process environment variable must be set. Any replaceable 2008 * variable specified in a configuration file can be ignored. 2009 */ 2010 if (env_flags & ENV_TYP_ISA) { 2011 /* 2012 * This is ISA setting. We do the setting 2013 * even if s2 is NULL. 2014 * If s2 is NULL, we might need to undo 2015 * the setting. 2016 */ 2017 if (select & SEL_REPLACE) { 2018 if (rplisa & variable) 2019 return; 2020 rplisa |= variable; 2021 } else { 2022 prmisa |= variable; 2023 } 2024 } else if (s2) { 2025 /* 2026 * This is non0-ISA setting 2027 */ 2028 if (select & SEL_REPLACE) { 2029 if (rplgen & variable) 2030 return; 2031 rplgen |= variable; 2032 } else 2033 prmgen |= variable; 2034 } else 2035 /* 2036 * This is non-ISA setting which 2037 * can be ignored. 2038 */ 2039 return; 2040 2041 /* 2042 * Now perform the setting. 2043 */ 2044 if (select & SEL_ACT_RT) { 2045 if (s2) 2046 rtld_flags |= val; 2047 else 2048 rtld_flags &= ~val; 2049 } else if (select & SEL_ACT_RT2) { 2050 if (s2) 2051 rtld_flags2 |= val; 2052 else 2053 rtld_flags2 &= ~val; 2054 } else if (select & SEL_ACT_STR) 2055 *str = s2; 2056 else if (select & SEL_ACT_LML) { 2057 if (s2) 2058 *lmflags |= val; 2059 else 2060 *lmflags &= ~val; 2061 } else if (select & SEL_ACT_LMLT) { 2062 if (s2) 2063 *lmtflags |= val; 2064 else 2065 *lmtflags &= ~val; 2066 } else if (select & SEL_ACT_SPEC_1) { 2067 /* 2068 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 2069 */ 2070 *str = s2; 2071 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 2072 if (s2) { 2073 if (variable == ENV_FLG_FLAGS) 2074 env_info |= ENV_INF_FLAGCFG; 2075 else 2076 env_info |= ENV_INF_PATHCFG; 2077 } else { 2078 if (variable == ENV_FLG_FLAGS) 2079 env_info &= ~ENV_INF_FLAGCFG; 2080 else 2081 env_info &= ~ENV_INF_PATHCFG; 2082 } 2083 } 2084 } else if (select & SEL_ACT_SPEC_2) { 2085 /* 2086 * variables can be: ENV_FLG_ 2087 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 2088 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 2089 */ 2090 if (variable == ENV_FLG_AUDIT_ARGS) { 2091 if (s2) { 2092 audit_argcnt = atoi(s2); 2093 audit_argcnt += audit_argcnt % 2; 2094 } else 2095 audit_argcnt = 0; 2096 } else if (variable == ENV_FLG_BINDINGS) { 2097 if (s2) 2098 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 2099 else 2100 rpl_debug = 0; 2101 } else if (variable == ENV_FLG_CONCURRENCY) { 2102 if (s2) 2103 rtld_flags &= ~RT_FL_NOCONCUR; 2104 else 2105 rtld_flags |= RT_FL_NOCONCUR; 2106 } else if (variable == ENV_FLG_CONFGEN) { 2107 if (s2) { 2108 rtld_flags |= RT_FL_CONFGEN; 2109 *lmflags |= LML_FLG_IGNRELERR; 2110 } else { 2111 rtld_flags &= ~RT_FL_CONFGEN; 2112 *lmflags &= ~LML_FLG_IGNRELERR; 2113 } 2114 } else if (variable == ENV_FLG_LOADFLTR) { 2115 if (s2) { 2116 *lmtflags |= LML_TFLG_LOADFLTR; 2117 if (*s2 == '2') 2118 rtld_flags |= RT_FL_WARNFLTR; 2119 } else { 2120 *lmtflags &= ~LML_TFLG_LOADFLTR; 2121 rtld_flags &= ~RT_FL_WARNFLTR; 2122 } 2123 } else if (variable == ENV_FLG_PROFILE) { 2124 profile_name = s2; 2125 if (s2) { 2126 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2127 return; 2128 } 2129 /* BEGIN CSTYLED */ 2130 if (rtld_flags & RT_FL_SECURE) { 2131 profile_lib = 2132 #if defined(_ELF64) 2133 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2134 #else 2135 MSG_ORIG(MSG_PTH_LDPROFSE); 2136 #endif 2137 } else { 2138 profile_lib = 2139 #if defined(_ELF64) 2140 MSG_ORIG(MSG_PTH_LDPROF_64); 2141 #else 2142 MSG_ORIG(MSG_PTH_LDPROF); 2143 #endif 2144 } 2145 /* END CSTYLED */ 2146 } else 2147 profile_lib = 0; 2148 } else if (variable == ENV_FLG_SIGNAL) { 2149 killsig = s2 ? atoi(s2) : SIGKILL; 2150 } else if (variable == ENV_FLG_TRACE_OBJS) { 2151 if (s2) { 2152 *lmflags |= LML_FLG_TRC_ENABLE; 2153 if (*s2 == '2') 2154 *lmflags |= LML_FLG_TRC_LDDSTUB; 2155 } else 2156 *lmflags &= 2157 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2158 } 2159 } 2160 } 2161 2162 /* 2163 * Determine whether we have an architecture specific environment variable. 2164 * If we do, and we're the wrong architecture, it'll just get ignored. 2165 * Otherwise the variable is processed in it's architecture neutral form. 2166 */ 2167 static int 2168 ld_arch_env(const char *s1, size_t *len) 2169 { 2170 size_t _len = *len - 3; 2171 2172 if (s1[_len++] == '_') { 2173 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2174 #if defined(_ELF64) 2175 return (ENV_TYP_IGNORE); 2176 #else 2177 *len = *len - 3; 2178 return (ENV_TYP_ISA); 2179 #endif 2180 } 2181 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2182 #if defined(_ELF64) 2183 *len = *len - 3; 2184 return (ENV_TYP_ISA); 2185 #else 2186 return (ENV_TYP_IGNORE); 2187 #endif 2188 } 2189 } 2190 return (0); 2191 } 2192 2193 2194 /* 2195 * Process an LD_FLAGS environment variable. The value can be a comma 2196 * separated set of tokens, which are sent (in upper case) into the generic 2197 * LD_XXXX environment variable engine. For example: 2198 * 2199 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2200 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2201 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2202 * or 2203 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2204 */ 2205 static int 2206 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2207 uint_t env_flags, int aout) 2208 { 2209 char *nstr, *sstr, *estr = NULL; 2210 size_t nlen, len; 2211 2212 if (str == NULL) 2213 return (0); 2214 2215 /* 2216 * Create a new string as we're going to transform the token(s) into 2217 * uppercase and separate tokens with nulls. 2218 */ 2219 len = strlen(str); 2220 if ((nstr = malloc(len + 1)) == NULL) 2221 return (1); 2222 (void) strcpy(nstr, str); 2223 2224 for (sstr = nstr; sstr; sstr++, len--) { 2225 int flags; 2226 2227 if ((*sstr != '\0') && (*sstr != ',')) { 2228 if (estr == NULL) { 2229 if (*sstr == '=') 2230 estr = sstr; 2231 else { 2232 /* 2233 * Translate token to uppercase. Don't 2234 * use toupper(3C) as including this 2235 * code doubles the size of ld.so.1. 2236 */ 2237 if ((*sstr >= 'a') && (*sstr <= 'z')) 2238 *sstr = *sstr - ('a' - 'A'); 2239 } 2240 } 2241 continue; 2242 } 2243 2244 *sstr = '\0'; 2245 if (estr) { 2246 nlen = estr - nstr; 2247 if ((*++estr == '\0') || (*estr == ',')) 2248 estr = 0; 2249 } else 2250 nlen = sstr - nstr; 2251 2252 /* 2253 * Fabricate a boolean definition for any unqualified variable. 2254 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2255 * The value is sufficient to assert any boolean variables, plus 2256 * the term "(null)" is specifically chosen in case someone 2257 * mistakenly supplies something like LD_FLAGS=library_path. 2258 */ 2259 if (estr == NULL) 2260 estr = (char *)MSG_INTL(MSG_STR_NULL); 2261 2262 /* 2263 * Determine whether the environment variable is 32- or 64-bit 2264 * specific. The length, len, will reflect the architecture 2265 * neutral portion of the string. 2266 */ 2267 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2268 ld_generic_env(nstr, nlen, estr, lmflags, 2269 lmtflags, (env_flags | flags), aout); 2270 } 2271 if (len == 0) 2272 return (0); 2273 2274 nstr = sstr + 1; 2275 estr = 0; 2276 } 2277 return (0); 2278 } 2279 2280 2281 /* 2282 * Process a single environment string. Only strings starting with `LD_' are 2283 * reserved for our use. By convention, all strings should be of the form 2284 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2285 * functionality is enabled. Also pick off applicable locale variables. 2286 */ 2287 #define LOC_LANG 1 2288 #define LOC_MESG 2 2289 #define LOC_ALL 3 2290 2291 static void 2292 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2293 int aout) 2294 { 2295 const char *s2; 2296 static size_t loc = 0; 2297 2298 if (*s1++ != 'L') 2299 return; 2300 2301 /* 2302 * See if we have any locale environment settings. These environment 2303 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2304 * is higher than LANG. 2305 */ 2306 s2 = s1; 2307 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2308 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2309 s2 += MSG_LC_ALL_SIZE; 2310 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2311 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2312 loc = LOC_ALL; 2313 } 2314 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2315 MSG_LC_MESSAGES_SIZE) == 0) { 2316 s2 += MSG_LC_MESSAGES_SIZE; 2317 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2318 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2319 loc = LOC_MESG; 2320 } 2321 } 2322 return; 2323 } 2324 2325 s2 = s1; 2326 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2327 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2328 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2329 loc = LOC_LANG; 2330 return; 2331 } 2332 2333 /* 2334 * Pick off any LD_XXXX environment variables. 2335 */ 2336 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2337 size_t len; 2338 int flags; 2339 2340 /* 2341 * In a branded process we must ignore all LD_XXXX env vars 2342 * because they are intended for the brand's linker. 2343 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2344 */ 2345 if (rtld_flags2 & RT_FL2_BRANDED) { 2346 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2347 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2348 return; 2349 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2350 } 2351 2352 /* 2353 * Environment variables with no value (ie. LD_XXXX=) typically 2354 * have no impact, however if environment variables are defined 2355 * within a configuration file, these null user settings can be 2356 * used to disable any configuration replaceable definitions. 2357 */ 2358 if ((s2 = strchr(s1, '=')) == NULL) { 2359 len = strlen(s1); 2360 s2 = 0; 2361 } else if (*++s2 == '\0') { 2362 len = strlen(s1) - 1; 2363 s2 = 0; 2364 } else { 2365 len = s2 - s1 - 1; 2366 while (isspace(*s2)) 2367 s2++; 2368 } 2369 2370 /* 2371 * Determine whether the environment variable is 32- or 64-bit 2372 * specific. The length, len, will reflect the architecture 2373 * neutral portion of the string. 2374 */ 2375 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2376 return; 2377 env_flags |= flags; 2378 2379 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2380 } 2381 } 2382 2383 /* 2384 * Internal getenv routine. Called immediately after ld.so.1 initializes 2385 * itself. 2386 */ 2387 int 2388 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2389 { 2390 char *locale; 2391 2392 if (envp == (const char **)0) 2393 return (0); 2394 2395 while (*envp != (const char *)0) 2396 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2397 2398 /* 2399 * Having collected the best representation of any LD_FLAGS, process 2400 * these strings. 2401 */ 2402 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2403 return (1); 2404 2405 /* 2406 * Don't allow environment controlled auditing when tracing or if 2407 * explicitly disabled. Trigger all tracing modes from 2408 * LML_FLG_TRC_ENABLE. 2409 */ 2410 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2411 rpl_audit = profile_lib = profile_name = 0; 2412 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2413 *lmflags &= ~LML_MSK_TRC; 2414 2415 /* 2416 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2417 */ 2418 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2419 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2420 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2421 2422 /* 2423 * When using ldd(1) -r or -d against an executable, assert -p. 2424 */ 2425 if ((*lmflags & 2426 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2427 *lmflags |= LML_FLG_TRC_NOPAREXT; 2428 2429 /* 2430 * If we have a locale setting make sure its worth processing further. 2431 * C and POSIX locales don't need any processing. In addition, to 2432 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2433 * the locale to contain a segment that leads upward in the file system 2434 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2435 * the /usr/lib/locale hierarchy, there is no need to extensively 2436 * validate the mode or ownership of any message file (as libc's 2437 * generic handling of message files does). Duplicate the string so 2438 * that new locale setting can generically cleanup any previous locales. 2439 */ 2440 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) { 2441 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2442 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2443 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2444 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0; 2445 else 2446 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2447 } 2448 return (0); 2449 } 2450 2451 /* 2452 * Configuration environment processing. Called after the a.out has been 2453 * processed (as the a.out can specify its own configuration file). 2454 */ 2455 int 2456 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2457 { 2458 Word *lmflags = &(lml_main.lm_flags); 2459 Word *lmtflags = &(lml_main.lm_tflags); 2460 2461 if (envtbl == (Rtc_env *)0) 2462 return (0); 2463 2464 while (envtbl->env_str) { 2465 uint_t env_flags = ENV_TYP_CONFIG; 2466 2467 if (envtbl->env_flags & RTC_ENV_PERMANT) 2468 env_flags |= ENV_TYP_PERMANT; 2469 2470 ld_str_env((const char *)(envtbl->env_str + addr), 2471 lmflags, lmtflags, env_flags, 0); 2472 envtbl++; 2473 } 2474 2475 /* 2476 * Having collected the best representation of any LD_FLAGS, process 2477 * these strings. 2478 */ 2479 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2480 return (1); 2481 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2482 aout) == 1) 2483 return (1); 2484 2485 /* 2486 * Don't allow environment controlled auditing when tracing or if 2487 * explicitly disabled. Trigger all tracing modes from 2488 * LML_FLG_TRC_ENABLE. 2489 */ 2490 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2491 prm_audit = profile_lib = profile_name = 0; 2492 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2493 *lmflags &= ~LML_MSK_TRC; 2494 2495 return (0); 2496 } 2497 2498 int 2499 dowrite(Prfbuf * prf) 2500 { 2501 /* 2502 * We do not have a valid file descriptor, so we are unable 2503 * to flush the buffer. 2504 */ 2505 if (prf->pr_fd == -1) 2506 return (0); 2507 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2508 prf->pr_cur = prf->pr_buf; 2509 return (1); 2510 } 2511 2512 /* 2513 * Simplified printing. The following conversion specifications are supported: 2514 * 2515 * % [#] [-] [min field width] [. precision] s|d|x|c 2516 * 2517 * 2518 * dorprf takes the output buffer in the form of Prfbuf which permits 2519 * the verification of the output buffer size and the concatenation 2520 * of data to an already existing output buffer. The Prfbuf 2521 * structure contains the following: 2522 * 2523 * pr_buf pointer to the beginning of the output buffer. 2524 * pr_cur pointer to the next available byte in the output buffer. By 2525 * setting pr_cur ahead of pr_buf you can append to an already 2526 * existing buffer. 2527 * pr_len the size of the output buffer. By setting pr_len to '0' you 2528 * disable protection from overflows in the output buffer. 2529 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2530 * output to. If pr_fd is set to '-1' then it's assumed there is 2531 * no output buffer, and doprf() will return with an error to 2532 * indicate an output buffer overflow. If pr_fd is > -1 then when 2533 * the output buffer is filled it will be flushed to pr_fd and will 2534 * then be available for additional data. 2535 */ 2536 #define FLG_UT_MINUS 0x0001 /* - */ 2537 #define FLG_UT_SHARP 0x0002 /* # */ 2538 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2539 2540 /* 2541 * This macro is for use from within doprf only. It is to be used for checking 2542 * the output buffer size and placing characters into the buffer. 2543 */ 2544 #define PUTC(c) \ 2545 { \ 2546 char tmpc; \ 2547 \ 2548 tmpc = (c); \ 2549 if (bufsiz && (bp >= bufend)) { \ 2550 prf->pr_cur = bp; \ 2551 if (dowrite(prf) == 0) \ 2552 return (0); \ 2553 bp = prf->pr_cur; \ 2554 } \ 2555 *bp++ = tmpc; \ 2556 } 2557 2558 /* 2559 * Define a local buffer size for building a numeric value - large enough to 2560 * hold a 64-bit value. 2561 */ 2562 #define NUM_SIZE 22 2563 2564 size_t 2565 doprf(const char *format, va_list args, Prfbuf *prf) 2566 { 2567 char c; 2568 char *bp = prf->pr_cur; 2569 char *bufend = prf->pr_buf + prf->pr_len; 2570 size_t bufsiz = prf->pr_len; 2571 2572 while ((c = *format++) != '\0') { 2573 if (c != '%') { 2574 PUTC(c); 2575 } else { 2576 int base = 0, flag = 0, width = 0, prec = 0; 2577 size_t _i; 2578 int _c, _n; 2579 char *_s; 2580 int ls = 0; 2581 again: 2582 c = *format++; 2583 switch (c) { 2584 case '-': 2585 flag |= FLG_UT_MINUS; 2586 goto again; 2587 case '#': 2588 flag |= FLG_UT_SHARP; 2589 goto again; 2590 case '.': 2591 flag |= FLG_UT_DOTSEEN; 2592 goto again; 2593 case '0': 2594 case '1': 2595 case '2': 2596 case '3': 2597 case '4': 2598 case '5': 2599 case '6': 2600 case '7': 2601 case '8': 2602 case '9': 2603 if (flag & FLG_UT_DOTSEEN) 2604 prec = (prec * 10) + c - '0'; 2605 else 2606 width = (width * 10) + c - '0'; 2607 goto again; 2608 case 'x': 2609 case 'X': 2610 base = 16; 2611 break; 2612 case 'd': 2613 case 'D': 2614 case 'u': 2615 base = 10; 2616 flag &= ~FLG_UT_SHARP; 2617 break; 2618 case 'l': 2619 base = 10; 2620 ls++; /* number of l's (long or long long) */ 2621 if ((*format == 'l') || 2622 (*format == 'd') || (*format == 'D') || 2623 (*format == 'x') || (*format == 'X') || 2624 (*format == 'o') || (*format == 'O')) 2625 goto again; 2626 break; 2627 case 'o': 2628 case 'O': 2629 base = 8; 2630 break; 2631 case 'c': 2632 _c = va_arg(args, int); 2633 2634 for (_i = 24; _i > 0; _i -= 8) { 2635 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2636 PUTC(c); 2637 } 2638 } 2639 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2640 PUTC(c); 2641 } 2642 break; 2643 case 's': 2644 _s = va_arg(args, char *); 2645 _i = strlen(_s); 2646 /* LINTED */ 2647 _n = (int)(width - _i); 2648 if (!prec) 2649 /* LINTED */ 2650 prec = (int)_i; 2651 2652 if (width && !(flag & FLG_UT_MINUS)) { 2653 while (_n-- > 0) 2654 PUTC(' '); 2655 } 2656 while (((c = *_s++) != 0) && prec--) { 2657 PUTC(c); 2658 } 2659 if (width && (flag & FLG_UT_MINUS)) { 2660 while (_n-- > 0) 2661 PUTC(' '); 2662 } 2663 break; 2664 case '%': 2665 PUTC('%'); 2666 break; 2667 default: 2668 break; 2669 } 2670 2671 /* 2672 * Numeric processing 2673 */ 2674 if (base) { 2675 char local[NUM_SIZE]; 2676 size_t ssize = 0, psize = 0; 2677 const char *string = 2678 MSG_ORIG(MSG_STR_HEXNUM); 2679 const char *prefix = 2680 MSG_ORIG(MSG_STR_EMPTY); 2681 u_longlong_t num; 2682 2683 switch (ls) { 2684 case 0: /* int */ 2685 num = (u_longlong_t) 2686 va_arg(args, uint_t); 2687 break; 2688 case 1: /* long */ 2689 num = (u_longlong_t) 2690 va_arg(args, ulong_t); 2691 break; 2692 case 2: /* long long */ 2693 num = va_arg(args, u_longlong_t); 2694 break; 2695 } 2696 2697 if (flag & FLG_UT_SHARP) { 2698 if (base == 16) { 2699 prefix = MSG_ORIG(MSG_STR_HEX); 2700 psize = 2; 2701 } else { 2702 prefix = MSG_ORIG(MSG_STR_ZERO); 2703 psize = 1; 2704 } 2705 } 2706 if ((base == 10) && (long)num < 0) { 2707 prefix = MSG_ORIG(MSG_STR_NEGATE); 2708 psize = MSG_STR_NEGATE_SIZE; 2709 num = (u_longlong_t)(-(longlong_t)num); 2710 } 2711 2712 /* 2713 * Convert the numeric value into a local 2714 * string (stored in reverse order). 2715 */ 2716 _s = local; 2717 do { 2718 *_s++ = string[num % base]; 2719 num /= base; 2720 ssize++; 2721 } while (num); 2722 2723 ASSERT(ssize < sizeof (local)); 2724 2725 /* 2726 * Provide any precision or width padding. 2727 */ 2728 if (prec) { 2729 /* LINTED */ 2730 _n = (int)(prec - ssize); 2731 while ((_n-- > 0) && 2732 (ssize < sizeof (local))) { 2733 *_s++ = '0'; 2734 ssize++; 2735 } 2736 } 2737 if (width && !(flag & FLG_UT_MINUS)) { 2738 /* LINTED */ 2739 _n = (int)(width - ssize - psize); 2740 while (_n-- > 0) { 2741 PUTC(' '); 2742 } 2743 } 2744 2745 /* 2746 * Print any prefix and the numeric string 2747 */ 2748 while (*prefix) 2749 PUTC(*prefix++); 2750 do { 2751 PUTC(*--_s); 2752 } while (_s > local); 2753 2754 /* 2755 * Provide any width padding. 2756 */ 2757 if (width && (flag & FLG_UT_MINUS)) { 2758 /* LINTED */ 2759 _n = (int)(width - ssize - psize); 2760 while (_n-- > 0) 2761 PUTC(' '); 2762 } 2763 } 2764 } 2765 } 2766 2767 PUTC('\0'); 2768 prf->pr_cur = bp; 2769 return (1); 2770 } 2771 2772 static int 2773 doprintf(const char *format, va_list args, Prfbuf *prf) 2774 { 2775 char *ocur = prf->pr_cur; 2776 2777 if (doprf(format, args, prf) == 0) 2778 return (0); 2779 /* LINTED */ 2780 return ((int)(prf->pr_cur - ocur)); 2781 } 2782 2783 /* VARARGS2 */ 2784 int 2785 sprintf(char *buf, const char *format, ...) 2786 { 2787 va_list args; 2788 int len; 2789 Prfbuf prf; 2790 2791 va_start(args, format); 2792 prf.pr_buf = prf.pr_cur = buf; 2793 prf.pr_len = 0; 2794 prf.pr_fd = -1; 2795 len = doprintf(format, args, &prf); 2796 va_end(args); 2797 2798 /* 2799 * sprintf() return value excludes the terminating null byte. 2800 */ 2801 return (len - 1); 2802 } 2803 2804 /* VARARGS3 */ 2805 int 2806 snprintf(char *buf, size_t n, const char *format, ...) 2807 { 2808 va_list args; 2809 int len; 2810 Prfbuf prf; 2811 2812 va_start(args, format); 2813 prf.pr_buf = prf.pr_cur = buf; 2814 prf.pr_len = n; 2815 prf.pr_fd = -1; 2816 len = doprintf(format, args, &prf); 2817 va_end(args); 2818 2819 return (len); 2820 } 2821 2822 /* VARARGS2 */ 2823 int 2824 bufprint(Prfbuf *prf, const char *format, ...) 2825 { 2826 va_list args; 2827 int len; 2828 2829 va_start(args, format); 2830 len = doprintf(format, args, prf); 2831 va_end(args); 2832 2833 return (len); 2834 } 2835 2836 /*PRINTFLIKE1*/ 2837 int 2838 printf(const char *format, ...) 2839 { 2840 va_list args; 2841 char buffer[ERRSIZE]; 2842 Prfbuf prf; 2843 2844 va_start(args, format); 2845 prf.pr_buf = prf.pr_cur = buffer; 2846 prf.pr_len = ERRSIZE; 2847 prf.pr_fd = 1; 2848 (void) doprf(format, args, &prf); 2849 va_end(args); 2850 /* 2851 * Trim trailing '\0' form buffer 2852 */ 2853 prf.pr_cur--; 2854 return (dowrite(&prf)); 2855 } 2856 2857 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2858 2859 /*PRINTFLIKE3*/ 2860 void 2861 eprintf(Lm_list *lml, Error error, const char *format, ...) 2862 { 2863 va_list args; 2864 int overflow = 0; 2865 static int lock = 0; 2866 Prfbuf prf; 2867 2868 if (lock || (nextptr == (errbuf + ERRSIZE))) 2869 return; 2870 2871 /* 2872 * Note: this lock is here to prevent the same thread from recursively 2873 * entering itself during a eprintf. ie: during eprintf malloc() fails 2874 * and we try and call eprintf ... and then malloc() fails .... 2875 */ 2876 lock = 1; 2877 2878 /* 2879 * If we have completed startup initialization, all error messages 2880 * must be saved. These are reported through dlerror(). If we're 2881 * still in the initialization stage, output the error directly and 2882 * add a newline. 2883 */ 2884 va_start(args, format); 2885 2886 prf.pr_buf = prf.pr_cur = nextptr; 2887 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2888 2889 if (!(rtld_flags & RT_FL_APPLIC)) 2890 prf.pr_fd = 2; 2891 else 2892 prf.pr_fd = -1; 2893 2894 if (error > ERR_NONE) { 2895 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2896 error = ERR_WARNING; 2897 if (error == ERR_WARNING) { 2898 if (err_strs[ERR_WARNING] == 0) 2899 err_strs[ERR_WARNING] = 2900 MSG_INTL(MSG_ERR_WARNING); 2901 } else if (error == ERR_FATAL) { 2902 if (err_strs[ERR_FATAL] == 0) 2903 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2904 } else if (error == ERR_ELF) { 2905 if (err_strs[ERR_ELF] == 0) 2906 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2907 } 2908 if (procname) { 2909 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2910 rtldname, procname, err_strs[error]) == 0) 2911 overflow = 1; 2912 } else { 2913 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2914 rtldname, err_strs[error]) == 0) 2915 overflow = 1; 2916 } 2917 if (overflow == 0) { 2918 /* 2919 * Remove the terminating '\0'. 2920 */ 2921 prf.pr_cur--; 2922 } 2923 } 2924 2925 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2926 overflow = 1; 2927 2928 /* 2929 * If this is an ELF error, it will have been generated by a support 2930 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2931 * ELF error messages as it doesn't interact with libelf. Determine the 2932 * ELF error string. 2933 */ 2934 if ((overflow == 0) && (error == ERR_ELF)) { 2935 static int (*elfeno)() = 0; 2936 static const char *(*elfemg)(); 2937 const char *emsg; 2938 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2939 2940 if (NEXT(lmp) && (elfeno == 0)) { 2941 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2942 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2943 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2944 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2945 elfeno = 0; 2946 } 2947 2948 /* 2949 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2950 */ 2951 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2952 prf.pr_cur--; 2953 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2954 emsg) == 0) 2955 overflow = 1; 2956 } 2957 } 2958 2959 /* 2960 * Push out any message that's been built. Note, in the case of an 2961 * overflow condition, this message may be incomplete, in which case 2962 * make sure any partial string is null terminated. 2963 */ 2964 if (overflow) 2965 *(prf.pr_cur) = '\0'; 2966 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2967 *(prf.pr_cur - 1) = '\n'; 2968 (void) dowrite(&prf); 2969 } 2970 2971 DBG_CALL(Dbg_util_str(lml, nextptr)); 2972 va_end(args); 2973 2974 /* 2975 * Determine if there was insufficient space left in the buffer to 2976 * complete the message. If so, we'll have printed out as much as had 2977 * been processed if we're not yet executing the application. 2978 * Otherwise, there will be some debugging diagnostic indicating 2979 * as much of the error message as possible. Write out a final buffer 2980 * overflow diagnostic - unlocalized, so we don't chance more errors. 2981 */ 2982 if (overflow) { 2983 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2984 2985 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2986 lasterr = str; 2987 2988 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2989 (void) write(2, str, strlen(str)); 2990 (void) write(2, MSG_ORIG(MSG_STR_NL), 2991 MSG_STR_NL_SIZE); 2992 } 2993 } 2994 DBG_CALL(Dbg_util_str(lml, str)); 2995 2996 lock = 0; 2997 nextptr = errbuf + ERRSIZE; 2998 return; 2999 } 3000 3001 /* 3002 * If the application has started, then error messages are being saved 3003 * for retrieval by dlerror(), or possible flushing from rtldexit() in 3004 * the case of a fatal error. In this case, establish the next error 3005 * pointer. If we haven't started the application, the whole message 3006 * buffer can be reused. 3007 */ 3008 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 3009 lasterr = nextptr; 3010 3011 /* 3012 * Note, should we encounter an error such as ENOMEM, there may 3013 * be a number of the same error messages (ie. an operation 3014 * fails with ENOMEM, and then the attempts to construct the 3015 * error message itself, which incurs additional ENOMEM errors). 3016 * Compare any previous error message with the one we've just 3017 * created to prevent any duplication clutter. 3018 */ 3019 if ((rtld_flags & RT_FL_APPLIC) && 3020 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 3021 prevptr = nextptr; 3022 nextptr = prf.pr_cur; 3023 *nextptr = '\0'; 3024 } 3025 } 3026 lock = 0; 3027 } 3028 3029 3030 #if DEBUG 3031 /* 3032 * Provide assfail() for ASSERT() statements, 3033 * see <sys/debug.h> for further details. 3034 */ 3035 int 3036 assfail(const char *a, const char *f, int l) 3037 { 3038 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 3039 (void) _lwp_kill(_lwp_self(), SIGABRT); 3040 return (0); 3041 } 3042 #endif 3043 3044 /* 3045 * Exit. If we arrive here with a non zero status it's because of a fatal 3046 * error condition (most commonly a relocation error). If the application has 3047 * already had control, then the actual fatal error message will have been 3048 * recorded in the dlerror() message buffer. Print the message before really 3049 * exiting. 3050 */ 3051 void 3052 rtldexit(Lm_list * lml, int status) 3053 { 3054 if (status) { 3055 if (rtld_flags & RT_FL_APPLIC) { 3056 /* 3057 * If the error buffer has been used, write out all 3058 * pending messages - lasterr is simply a pointer to 3059 * the last message in this buffer. However, if the 3060 * buffer couldn't be created at all, lasterr points 3061 * to a constant error message string. 3062 */ 3063 if (*errbuf) { 3064 char *errptr = errbuf; 3065 char *errend = errbuf + ERRSIZE; 3066 3067 while ((errptr < errend) && *errptr) { 3068 size_t size = strlen(errptr); 3069 (void) write(2, errptr, size); 3070 (void) write(2, MSG_ORIG(MSG_STR_NL), 3071 MSG_STR_NL_SIZE); 3072 errptr += (size + 1); 3073 } 3074 } 3075 if (lasterr && ((lasterr < errbuf) || 3076 (lasterr > (errbuf + ERRSIZE)))) { 3077 (void) write(2, lasterr, strlen(lasterr)); 3078 (void) write(2, MSG_ORIG(MSG_STR_NL), 3079 MSG_STR_NL_SIZE); 3080 } 3081 } 3082 leave(lml, 0); 3083 (void) _lwp_kill(_lwp_self(), killsig); 3084 } 3085 _exit(status); 3086 } 3087 3088 /* 3089 * Routines to co-ordinate the opening of /dev/zero and /proc. 3090 * dz_fd is exported for possible use by libld.so, and to insure it gets 3091 * closed on leaving ld.so.1. 3092 */ 3093 int dz_fd = FD_UNAVAIL; 3094 3095 void 3096 dz_init(int fd) 3097 { 3098 dz_fd = fd; 3099 } 3100 3101 3102 /* 3103 * mmap() a page from MAP_ANON 3104 * 3105 * Note: MAP_ANON is only on Solaris8++, we use this routine to 3106 * not only mmap(MAP_ANON) but to also probe if it is available 3107 * on the current OS. 3108 */ 3109 Am_ret 3110 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags) 3111 { 3112 #if defined(MAP_ANON) 3113 static int noanon = 0; 3114 caddr_t va; 3115 3116 if (noanon == 0) { 3117 if ((va = (caddr_t)mmap(*addr, len, prot, 3118 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 3119 *addr = va; 3120 return (AM_OK); 3121 } 3122 3123 if ((errno != EBADF) && (errno != EINVAL)) { 3124 int err = errno; 3125 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3126 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3127 return (AM_ERROR); 3128 } else 3129 noanon = 1; 3130 } 3131 #endif 3132 return (AM_NOSUP); 3133 } 3134 3135 /* 3136 * Map anonymous memory from /dev/zero, or via MAP_ANON. 3137 * 3138 * (MAP_ANON only appears on Solaris 8, so we need fall-back 3139 * behavior for older systems.) 3140 */ 3141 caddr_t 3142 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3143 { 3144 caddr_t va; 3145 int err; 3146 Am_ret amret; 3147 3148 amret = anon_map(lml, &addr, len, prot, flags); 3149 3150 if (amret == AM_OK) 3151 return (addr); 3152 if (amret == AM_ERROR) 3153 return (MAP_FAILED); 3154 3155 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 3156 3157 if (dz_fd == FD_UNAVAIL) { 3158 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 3159 O_RDONLY)) == FD_UNAVAIL) { 3160 err = errno; 3161 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3162 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3163 return (MAP_FAILED); 3164 } 3165 } 3166 3167 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3168 err = errno; 3169 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3170 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3171 } 3172 return (va); 3173 } 3174 3175 static int pr_fd = FD_UNAVAIL; 3176 3177 int 3178 pr_open(Lm_list *lml) 3179 { 3180 char proc[16]; 3181 3182 if (pr_fd == FD_UNAVAIL) { 3183 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3184 (int)getpid()); 3185 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3186 int err = errno; 3187 3188 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3189 strerror(err)); 3190 } 3191 } 3192 return (pr_fd); 3193 } 3194 3195 static int nu_fd = FD_UNAVAIL; 3196 3197 caddr_t 3198 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3199 { 3200 caddr_t va; 3201 int err; 3202 3203 if (nu_fd == FD_UNAVAIL) { 3204 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3205 O_RDONLY)) == FD_UNAVAIL) { 3206 err = errno; 3207 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3208 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3209 return (MAP_FAILED); 3210 } 3211 } 3212 3213 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3214 MAP_FAILED) { 3215 err = errno; 3216 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3217 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3218 } 3219 return (va); 3220 } 3221 3222 /* 3223 * Generic entry point from user code - simply grabs a lock, and bumps the 3224 * entrance count. 3225 */ 3226 int 3227 enter(int flags) 3228 { 3229 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3230 if (!thr_flg_nolock) 3231 (void) rt_mutex_lock(&rtldlock); 3232 if (rtld_flags & RT_FL_OPERATION) 3233 ld_entry_cnt++; 3234 return (1); 3235 } 3236 return (0); 3237 } 3238 3239 /* 3240 * Determine whether a search path has been used. 3241 */ 3242 static void 3243 is_path_used(Lm_list *lml, Word unref, int *nl, Pnode *pnp, const char *obj) 3244 { 3245 for (; pnp; pnp = pnp->p_next) { 3246 const char *fmt, *name; 3247 3248 if ((pnp->p_len == 0) || (pnp->p_orig & PN_FLG_USED)) 3249 continue; 3250 3251 /* 3252 * If this pathname originated from an expanded token, use the 3253 * original for any diagnostic output. 3254 */ 3255 if ((name = pnp->p_oname) == NULL) 3256 name = pnp->p_name; 3257 3258 if (unref == 0) { 3259 if ((*nl)++ == 0) 3260 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3261 DBG_CALL(Dbg_unused_path(lml, name, pnp->p_orig, 3262 (pnp->p_orig & PN_FLG_DUPLICAT), obj)); 3263 continue; 3264 } 3265 3266 if (pnp->p_orig & LA_SER_LIBPATH) { 3267 if (pnp->p_orig & LA_SER_CONFIG) { 3268 if (pnp->p_orig & PN_FLG_DUPLICAT) 3269 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3270 else 3271 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3272 } else { 3273 if (pnp->p_orig & PN_FLG_DUPLICAT) 3274 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3275 else 3276 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3277 } 3278 } else if (pnp->p_orig & LA_SER_RUNPATH) { 3279 fmt = MSG_INTL(MSG_USD_RUNPATH); 3280 } else 3281 continue; 3282 3283 if ((*nl)++ == 0) 3284 (void) printf(MSG_ORIG(MSG_STR_NL)); 3285 (void) printf(fmt, name, obj); 3286 } 3287 } 3288 3289 /* 3290 * Generate diagnostics as to whether an object has been used. A symbolic 3291 * reference that gets bound to an object marks it as used. Dependencies that 3292 * are unused when RTLD_NOW is in effect should be removed from future builds 3293 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3294 * candidates for lazy-loading. 3295 * 3296 * Unreferenced objects identify objects that are defined as dependencies but 3297 * are unreferenced by the caller. These unreferenced objects may however be 3298 * referenced by other objects within the process, and therefore don't qualify 3299 * as completely unused. They are still an unnecessary overhead. 3300 * 3301 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3302 * debugging. 3303 */ 3304 void 3305 unused(Lm_list *lml) 3306 { 3307 Rt_map *lmp; 3308 int nl = 0; 3309 Word unref, unuse; 3310 3311 /* 3312 * If we're not tracing unused references or dependencies, or debugging 3313 * there's nothing to do. 3314 */ 3315 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3316 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3317 3318 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3319 return; 3320 3321 /* 3322 * Detect unused global search paths. 3323 */ 3324 if (rpl_libdirs) 3325 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3326 if (prm_libdirs) 3327 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3328 3329 nl = 0; 3330 lmp = lml->lm_head; 3331 if (RLIST(lmp)) 3332 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3333 3334 /* 3335 * Traverse the link-maps looking for unreferenced or unused 3336 * dependencies. Ignore the first object on a link-map list, as this 3337 * is always used. 3338 */ 3339 nl = 0; 3340 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3341 /* 3342 * Determine if this object contains any runpaths that have 3343 * not been used. 3344 */ 3345 if (RLIST(lmp)) 3346 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3347 3348 /* 3349 * If tracing unreferenced objects, or under debugging, 3350 * determine whether any of this objects callers haven't 3351 * referenced it. 3352 */ 3353 if (unref || DBG_ENABLED) { 3354 Bnd_desc *bdp; 3355 Aliste idx; 3356 3357 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3358 Rt_map *clmp; 3359 3360 if (bdp->b_flags & BND_REFER) 3361 continue; 3362 3363 clmp = bdp->b_caller; 3364 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3365 continue; 3366 3367 /* BEGIN CSTYLED */ 3368 if (nl++ == 0) { 3369 if (unref) 3370 (void) printf(MSG_ORIG(MSG_STR_NL)); 3371 else 3372 DBG_CALL(Dbg_util_nl(lml, 3373 DBG_NL_STD)); 3374 } 3375 3376 if (unref) 3377 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3378 NAME(lmp), NAME(clmp)); 3379 else 3380 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3381 /* END CSTYLED */ 3382 } 3383 } 3384 3385 /* 3386 * If tracing unused objects simply display those objects that 3387 * haven't been referenced by anyone. 3388 */ 3389 if (FLAGS1(lmp) & FL1_RT_USED) 3390 continue; 3391 3392 if (nl++ == 0) { 3393 if (unref || unuse) 3394 (void) printf(MSG_ORIG(MSG_STR_NL)); 3395 else 3396 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3397 } 3398 if (CYCGROUP(lmp)) { 3399 if (unref || unuse) 3400 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3401 NAME(lmp), CYCGROUP(lmp)); 3402 else 3403 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3404 CYCGROUP(lmp))); 3405 } else { 3406 if (unref || unuse) 3407 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3408 NAME(lmp)); 3409 else 3410 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3411 } 3412 } 3413 3414 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3415 } 3416 3417 /* 3418 * Initialization routine for the Fmap structure. If the fmap structure is 3419 * already in use, any mapping is released. The structure is then initialized 3420 * in preparation for further use. 3421 */ 3422 void 3423 fmap_setup() 3424 { 3425 #if defined(MAP_ALIGN) 3426 /* 3427 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3428 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3429 * should now be freed. 3430 */ 3431 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3432 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3433 3434 /* 3435 * Providing we haven't determined that this system doesn't support 3436 * MAP_ALIGN, initialize the mapping address with the default segment 3437 * alignment. 3438 */ 3439 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3440 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3441 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3442 } else { 3443 fmap->fm_maddr = 0; 3444 fmap->fm_mflags = MAP_PRIVATE; 3445 } 3446 #else 3447 if (fmap->fm_maddr) 3448 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3449 3450 fmap->fm_maddr = 0; 3451 fmap->fm_mflags = MAP_PRIVATE; 3452 #endif 3453 3454 fmap->fm_msize = FMAP_SIZE; 3455 fmap->fm_hwptr = 0; 3456 } 3457 3458 /* 3459 * Generic cleanup routine called prior to returning control to the user. 3460 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3461 * released, and any locks dropped. 3462 */ 3463 void 3464 leave(Lm_list *lml, int flags) 3465 { 3466 Lm_list *elml = lml; 3467 Rt_map *clmp; 3468 Aliste idx; 3469 3470 /* 3471 * Alert the debuggers that the link-maps are consistent. Note, in the 3472 * case of tearing down a whole link-map list, lml will be null. In 3473 * this case use the main link-map list to test for a notification. 3474 */ 3475 if (elml == NULL) 3476 elml = &lml_main; 3477 if (elml->lm_flags & LML_FLG_DBNOTIF) 3478 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3479 3480 /* 3481 * Alert any auditors that the link-maps are consistent. 3482 */ 3483 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3484 audit_activity(clmp, LA_ACT_CONSISTENT); 3485 3486 aplist_delete(elml->lm_actaudit, &idx); 3487 } 3488 3489 if (dz_fd != FD_UNAVAIL) { 3490 (void) close(dz_fd); 3491 dz_fd = FD_UNAVAIL; 3492 } 3493 3494 if (pr_fd != FD_UNAVAIL) { 3495 (void) close(pr_fd); 3496 pr_fd = FD_UNAVAIL; 3497 } 3498 3499 if (nu_fd != FD_UNAVAIL) { 3500 (void) close(nu_fd); 3501 nu_fd = FD_UNAVAIL; 3502 } 3503 3504 fmap_setup(); 3505 3506 /* 3507 * Reinitialize error message pointer, and any overflow indication. 3508 */ 3509 nextptr = errbuf; 3510 prevptr = 0; 3511 3512 /* 3513 * Don't drop our lock if we are running on our link-map list as 3514 * there's little point in doing so since we are single-threaded. 3515 * 3516 * LML_FLG_HOLDLOCK is set for: 3517 * *) The ld.so.1's link-map list. 3518 * *) The auditor's link-map if the environment is 3519 * libc/libthread un-unified. 3520 */ 3521 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3522 return; 3523 3524 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3525 if (!thr_flg_nolock) 3526 (void) rt_mutex_unlock(&rtldlock); 3527 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3528 } 3529 } 3530 3531 int 3532 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3533 { 3534 APlist *calp, *dalp; 3535 Aliste idx1, idx2; 3536 Grp_hdl *ghp1, *ghp2; 3537 3538 /* 3539 * An object can always find symbols within itself. 3540 */ 3541 if (clmp == dlmp) 3542 return (1); 3543 3544 /* 3545 * The search for a singleton must look in every loaded object. 3546 */ 3547 if (slflags & LKUP_SINGLETON) 3548 return (1); 3549 3550 /* 3551 * Don't allow an object to bind to an object that is being deleted 3552 * unless the binder is also being deleted. 3553 */ 3554 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3555 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3556 return (0); 3557 3558 /* 3559 * An object with world access can always bind to an object with global 3560 * visibility. 3561 */ 3562 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3563 (MODE(dlmp) & RTLD_GLOBAL)) 3564 return (1); 3565 3566 /* 3567 * An object with local access can only bind to an object that is a 3568 * member of the same group. 3569 */ 3570 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3571 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3572 return (0); 3573 3574 /* 3575 * Traverse the list of groups the caller is a part of. 3576 */ 3577 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3578 /* 3579 * If we're testing for the ability of two objects to bind to 3580 * each other regardless of a specific group, ignore that group. 3581 */ 3582 if (ghp && (ghp1 == ghp)) 3583 continue; 3584 3585 /* 3586 * Traverse the list of groups the destination is a part of. 3587 */ 3588 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3589 Grp_desc *gdp; 3590 Aliste idx3; 3591 3592 if (ghp1 != ghp2) 3593 continue; 3594 3595 /* 3596 * Make sure the relationship between the destination 3597 * and the caller provide symbols for relocation. 3598 * Parents are maintained as callers, but unless the 3599 * destination object was opened with RTLD_PARENT, the 3600 * parent doesn't provide symbols for the destination 3601 * to relocate against. 3602 */ 3603 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3604 if (dlmp != gdp->gd_depend) 3605 continue; 3606 3607 if (gdp->gd_flags & GPD_RELOC) 3608 return (1); 3609 } 3610 } 3611 } 3612 return (0); 3613 } 3614 3615 /* 3616 * Initialize the environ symbol. Traditionally this is carried out by the crt 3617 * code prior to jumping to main. However, init sections get fired before this 3618 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3619 * information. In addition, a process may have multiple link-maps (ld.so.1's 3620 * debugging and preloading objects), and link auditing, and each may need an 3621 * environ variable set. 3622 * 3623 * This routine is called after a relocation() pass, and thus provides for: 3624 * 3625 * o setting environ on the main link-map after the initial application and 3626 * its dependencies have been established. Typically environ lives in the 3627 * application (provided by its crt), but in older applications it might 3628 * be in libc. Who knows what's expected of applications not built on 3629 * Solaris. 3630 * 3631 * o after loading a new shared object. We can add shared objects to various 3632 * link-maps, and any link-map dependencies requiring getopt() require 3633 * their own environ. In addition, lazy loading might bring in the 3634 * supplier of environ (libc used to be a lazy loading candidate) after 3635 * the link-map has been established and other objects are present. 3636 * 3637 * This routine handles all these scenarios, without adding unnecessary overhead 3638 * to ld.so.1. 3639 */ 3640 void 3641 set_environ(Lm_list *lml) 3642 { 3643 Rt_map *dlmp; 3644 Sym *sym; 3645 Slookup sl; 3646 uint_t binfo; 3647 3648 /* 3649 * Initialize the symbol lookup data structure. 3650 */ 3651 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3652 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3653 3654 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo, 0)) { 3655 lml->lm_environ = (char ***)sym->st_value; 3656 3657 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3658 lml->lm_environ = 3659 (char ***)((uintptr_t)lml->lm_environ + 3660 (uintptr_t)ADDR(dlmp)); 3661 *(lml->lm_environ) = (char **)environ; 3662 lml->lm_flags |= LML_FLG_ENVIRON; 3663 } 3664 } 3665 3666 /* 3667 * Determine whether we have a secure executable. Uid and gid information 3668 * can be passed to us via the aux vector, however if these values are -1 3669 * then use the appropriate system call to obtain them. 3670 * 3671 * o If the user is the root they can do anything 3672 * 3673 * o If the real and effective uid's don't match, or the real and 3674 * effective gid's don't match then this is determined to be a `secure' 3675 * application. 3676 * 3677 * This function is called prior to any dependency processing (see _setup.c). 3678 * Any secure setting will remain in effect for the life of the process. 3679 */ 3680 void 3681 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3682 { 3683 #ifdef AT_SUN_AUXFLAGS 3684 if (auxflags != -1) { 3685 if ((auxflags & AF_SUN_SETUGID) != 0) 3686 rtld_flags |= RT_FL_SECURE; 3687 return; 3688 } 3689 #endif 3690 if (uid == (uid_t)-1) 3691 uid = getuid(); 3692 if (uid) { 3693 if (euid == (uid_t)-1) 3694 euid = geteuid(); 3695 if (uid != euid) 3696 rtld_flags |= RT_FL_SECURE; 3697 else { 3698 if (gid == (gid_t)-1) 3699 gid = getgid(); 3700 if (egid == (gid_t)-1) 3701 egid = getegid(); 3702 if (gid != egid) 3703 rtld_flags |= RT_FL_SECURE; 3704 } 3705 } 3706 } 3707 3708 /* 3709 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3710 */ 3711 int 3712 is_rtld_setuid() 3713 { 3714 rtld_stat_t status; 3715 3716 if ((rtld_flags2 & RT_FL2_SETUID) || 3717 ((rtld_stat(NAME(lml_rtld.lm_head), &status) == 0) && 3718 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3719 rtld_flags2 |= RT_FL2_SETUID; 3720 return (1); 3721 } 3722 return (0); 3723 } 3724 3725 /* 3726 * _REENTRANT code gets errno redefined to a function so provide for return 3727 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3728 * is basically singled threaded. Provide the interface for our dependencies. 3729 */ 3730 #undef errno 3731 int * 3732 ___errno() 3733 { 3734 extern int errno; 3735 3736 return (&errno); 3737 } 3738 3739 /* 3740 * The interface with the c library which is supplied through libdl.so.1. 3741 * A non-null argument allows a function pointer array to be passed to us which 3742 * is used to re-initialize the linker libc table. 3743 */ 3744 void 3745 _ld_libc(void * ptr) 3746 { 3747 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3748 } 3749 3750 /* 3751 * Determine whether a symbol name should be demangled. 3752 */ 3753 const char * 3754 demangle(const char *name) 3755 { 3756 if (rtld_flags & RT_FL_DEMANGLE) 3757 return (conv_demangle_name(name)); 3758 else 3759 return (name); 3760 } 3761 3762 3763 #ifndef _LP64 3764 /* 3765 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3766 * underneath while preserving the object size limits of a non-largefile 3767 * enabled 32-bit process. The purpose of this is to prevent large inode 3768 * values from causing stat() to fail. 3769 */ 3770 inline static int 3771 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3772 { 3773 extern int errno; 3774 3775 /* 3776 * Although we used a 64-bit capable stat(), the 32-bit rtld 3777 * can only handle objects < 2GB in size. If this object is 3778 * too big, turn the success into an overflow error. 3779 */ 3780 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3781 errno = EOVERFLOW; 3782 return (-1); 3783 } 3784 3785 /* 3786 * Transfer the information needed by rtld into a rtld_stat_t 3787 * structure that preserves the non-largile types for everything 3788 * except inode. 3789 */ 3790 buf->st_dev = lbuf->st_dev; 3791 buf->st_ino = lbuf->st_ino; 3792 buf->st_mode = lbuf->st_mode; 3793 buf->st_uid = lbuf->st_uid; 3794 buf->st_size = (off_t)lbuf->st_size; 3795 buf->st_mtim = lbuf->st_mtim; 3796 #ifdef sparc 3797 buf->st_blksize = lbuf->st_blksize; 3798 #endif 3799 3800 return (r); 3801 } 3802 3803 int 3804 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3805 { 3806 struct stat64 lbuf; 3807 int r; 3808 3809 r = stat64(path, &lbuf); 3810 if (r != -1) 3811 r = rtld_stat_process(r, &lbuf, buf); 3812 return (r); 3813 } 3814 3815 int 3816 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3817 { 3818 struct stat64 lbuf; 3819 int r; 3820 3821 r = fstat64(fildes, &lbuf); 3822 if (r != -1) 3823 r = rtld_stat_process(r, &lbuf, buf); 3824 return (r); 3825 } 3826 #endif 3827