1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Utility routines for run-time linker. some are duplicated here from libc 33 * (with different names) to avoid name space collisions. 34 */ 35 #include "_synonyms.h" 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <debug.h> 50 #include <conv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "_elf.h" 54 #include "msg.h" 55 56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 57 58 /* 59 * All error messages go through eprintf(). During process initialization these 60 * messages should be directed to the standard error, however once control has 61 * been passed to the applications code these messages should be stored in an 62 * internal buffer for use with dlerror(). Note, fatal error conditions that 63 * may occur while running the application will still cause a standard error 64 * message, see rtldexit() in this file for details. 65 * The `application' flag serves to indicate the transition between process 66 * initialization and when the applications code is running. 67 */ 68 69 /* 70 * Null function used as place where a debugger can set a breakpoint. 71 */ 72 void 73 rtld_db_dlactivity(Lm_list *lml) 74 { 75 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 76 r_debug.rtd_rdebug.r_state)); 77 } 78 79 /* 80 * Null function used as place where debugger can set a pre .init 81 * processing breakpoint. 82 */ 83 void 84 rtld_db_preinit(Lm_list *lml) 85 { 86 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 87 r_debug.rtd_rdebug.r_state)); 88 } 89 90 /* 91 * Null function used as place where debugger can set a post .init 92 * processing breakpoint. 93 */ 94 void 95 rtld_db_postinit(Lm_list *lml) 96 { 97 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 98 r_debug.rtd_rdebug.r_state)); 99 } 100 101 /* 102 * Debugger Event Notification 103 * 104 * This function centralizes all debugger event notification (ala rtld_db). 105 * 106 * There's a simple intent, focused on insuring the primary link-map control 107 * list (or each link-map list) is consistent, and the indication that objects 108 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 109 * event are posted for each of these, most debuggers don't care, as their 110 * view is that these events simply convey an "inconsistent" state. 111 * 112 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 113 * enter ld.so.1. 114 * 115 * With auditors, we may be in the process of relocating a collection of 116 * objects, and will leave() ld.so.1 to call the auditor. At this point we 117 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 118 * object to the debuggers until relocation processing has been completed on it. 119 * To allow for the collection of these objects that are pending relocation, an 120 * RD_ADD event is set after completing a series of relocations on the primary 121 * link-map control list. 122 * 123 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 124 * required later (LML_FLG_DBNOTIF): 125 * 126 * i the first time we add or delete an object to the primary link-map 127 * control list. 128 * ii the first time we move a secondary link-map control list to the primary 129 * link-map control list (effectively, this is like adding a group of 130 * objects to the primary link-map control list). 131 * 132 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 133 * 134 * i each time we leave the runtime linker. 135 */ 136 void 137 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 138 { 139 void (*fptr)(Lm_list *); 140 141 switch (event) { 142 case RD_PREINIT: 143 fptr = rtld_db_preinit; 144 break; 145 case RD_POSTINIT: 146 fptr = rtld_db_postinit; 147 break; 148 case RD_DLACTIVITY: 149 switch (state) { 150 case RT_CONSISTENT: 151 lml->lm_flags &= ~LML_FLG_DBNOTIF; 152 153 /* 154 * Do we need to send a notification? 155 */ 156 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 157 return; 158 rtld_flags &= ~RT_FL_DBNOTIF; 159 break; 160 case RT_ADD: 161 case RT_DELETE: 162 lml->lm_flags |= LML_FLG_DBNOTIF; 163 164 /* 165 * If we are already in an inconsistent state, no 166 * notification is required. 167 */ 168 if (rtld_flags & RT_FL_DBNOTIF) 169 return; 170 rtld_flags |= RT_FL_DBNOTIF; 171 break; 172 }; 173 fptr = rtld_db_dlactivity; 174 break; 175 default: 176 /* 177 * RD_NONE - do nothing 178 */ 179 break; 180 }; 181 182 /* 183 * Set event state and call 'notification' function. 184 * 185 * The debugging clients have previously been told about these 186 * notification functions and have set breakpoints on them if they 187 * are interested in the notification. 188 */ 189 r_debug.rtd_rdebug.r_state = state; 190 r_debug.rtd_rdebug.r_rdevent = event; 191 fptr(lml); 192 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 193 } 194 195 #if defined(__sparc) || defined(__x86) 196 /* 197 * Stack Cleanup. 198 * 199 * This function is invoked to 'remove' arguments that were passed in on the 200 * stack. This is most likely if ld.so.1 was invoked directly. In that case 201 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 202 * Which means we then need to slide everything above it on the stack down 203 * accordingly. 204 * 205 * While the stack layout is platform specific - it just so happens that __x86, 206 * and __sparc platforms share the following initial stack layout. 207 * 208 * !_______________________! high addresses 209 * ! ! 210 * ! Information ! 211 * ! Block ! 212 * ! (size varies) ! 213 * !_______________________! 214 * ! 0 word ! 215 * !_______________________! 216 * ! Auxiliary ! 217 * ! vector ! 218 * ! 2 word entries ! 219 * ! ! 220 * !_______________________! 221 * ! 0 word ! 222 * !_______________________! 223 * ! Environment ! 224 * ! pointers ! 225 * ! ... ! 226 * ! (one word each) ! 227 * !_______________________! 228 * ! 0 word ! 229 * !_______________________! 230 * ! Argument ! low addresses 231 * ! pointers ! 232 * ! Argc words ! 233 * !_______________________! 234 * ! ! 235 * ! Argc ! 236 * !_______________________! 237 * ! ... ! 238 * 239 */ 240 static void 241 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 242 { 243 int ndx; 244 long *argc; 245 char **oargv, **nargv; 246 char **oenvp, **nenvp; 247 auxv_t *oauxv, *nauxv; 248 249 /* 250 * Slide ARGV[] and update argc. The argv pointer remains the same, 251 * however slide the applications arguments over the arguments to 252 * ld.so.1. 253 */ 254 nargv = &argv[0]; 255 oargv = &argv[rmcnt]; 256 257 for (ndx = 0; oargv[ndx]; ndx++) 258 nargv[ndx] = oargv[ndx]; 259 nargv[ndx] = oargv[ndx]; 260 261 argc = (long *)((uintptr_t)argv - sizeof (long *)); 262 *argc -= rmcnt; 263 264 /* 265 * Slide ENVP[], and update the environment array pointer. 266 */ 267 ndx++; 268 nenvp = &nargv[ndx]; 269 oenvp = &oargv[ndx]; 270 *envp = nenvp; 271 272 for (ndx = 0; oenvp[ndx]; ndx++) 273 nenvp[ndx] = oenvp[ndx]; 274 nenvp[ndx] = oenvp[ndx]; 275 276 /* 277 * Slide AUXV[], and update the aux vector pointer. 278 */ 279 ndx++; 280 nauxv = (auxv_t *)&nenvp[ndx]; 281 oauxv = (auxv_t *)&oenvp[ndx]; 282 *auxv = nauxv; 283 284 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 285 nauxv[ndx] = oauxv[ndx]; 286 nauxv[ndx] = oauxv[ndx]; 287 } 288 #else 289 /* 290 * Verify that the above routine is appropriate for any new platforms. 291 */ 292 #error unsupported architecture! 293 #endif 294 295 /* 296 * The only command line argument recognized is -e, followed by a runtime 297 * linker environment variable. 298 */ 299 int 300 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 301 Word *lmtflags, int aout) 302 { 303 int ndx; 304 305 for (ndx = 1; argv[ndx]; ndx++) { 306 char *str; 307 308 if (argv[ndx][0] != '-') 309 break; 310 311 if (argv[ndx][1] == '\0') { 312 ndx++; 313 break; 314 } 315 316 if (argv[ndx][1] != 'e') 317 return (1); 318 319 if (argv[ndx][2] == '\0') { 320 ndx++; 321 if (argv[ndx] == NULL) 322 return (1); 323 str = argv[ndx]; 324 } else 325 str = &argv[ndx][2]; 326 327 /* 328 * If the environment variable starts with LD_, strip the LD_. 329 * Otherwise, take things as is. 330 */ 331 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 332 (str[3] != '\0')) 333 str += 3; 334 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 335 return (1); 336 } 337 338 /* 339 * Make sure an object file has been specified. 340 */ 341 if (argv[ndx] == 0) 342 return (1); 343 344 /* 345 * Having gotten the arguments, clean ourselves off of the stack. 346 */ 347 stack_cleanup(argv, envp, auxv, ndx); 348 return (0); 349 } 350 351 /* 352 * Compare function for PathNode AVL tree. 353 */ 354 static int 355 pnavl_compare(const void *n1, const void *n2) 356 { 357 uint_t hash1, hash2; 358 const char *st1, *st2; 359 int rc; 360 361 hash1 = ((PathNode *)n1)->pn_hash; 362 hash2 = ((PathNode *)n2)->pn_hash; 363 364 if (hash1 > hash2) 365 return (1); 366 if (hash1 < hash2) 367 return (-1); 368 369 st1 = ((PathNode *)n1)->pn_name; 370 st2 = ((PathNode *)n2)->pn_name; 371 372 rc = strcmp(st1, st2); 373 if (rc > 0) 374 return (1); 375 if (rc < 0) 376 return (-1); 377 return (0); 378 } 379 380 /* 381 * Determine if a pathname has already been recorded on the full path name 382 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 383 * successfully loaded. If the path name does not exist in this AVL tree, then 384 * the next insertion point is deposited in "where". This value can be used by 385 * fpavl_insert() to expedite the insertion. 386 */ 387 Rt_map * 388 fpavl_recorded(Lm_list *lml, const char *name, avl_index_t *where) 389 { 390 FullPathNode fpn, *fpnp; 391 avl_tree_t *avlt; 392 393 /* 394 * Create the avl tree if required. 395 */ 396 if ((avlt = lml->lm_fpavl) == NULL) { 397 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 398 return (0); 399 avl_create(avlt, pnavl_compare, sizeof (FullPathNode), 400 SGSOFFSETOF(FullPathNode, fpn_node.pn_avl)); 401 lml->lm_fpavl = avlt; 402 } 403 404 fpn.fpn_node.pn_name = name; 405 fpn.fpn_node.pn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 /* 414 * Insert a name into the FullPathNode AVL tree for the link-map list. The 415 * objects NAME() is the path that would have originally been searched for, and 416 * is therefore the name to associate with any "where" value. If the object has 417 * a different PATHNAME(), perhaps because it has resolved to a different file 418 * (see fullpath()), then this name will be recorded as a separate FullPathNode 419 * (see load_file()). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullPathNode *fpnp; 425 426 if (where == 0) { 427 /* LINTED */ 428 Rt_map *_lmp = fpavl_recorded(lml, name, &where); 429 430 /* 431 * We better not get a hit now, we do not want duplicates in 432 * the tree. 433 */ 434 ASSERT(_lmp == 0); 435 } 436 437 /* 438 * Insert new node in tree. 439 */ 440 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == 0) 441 return (0); 442 443 fpnp->fpn_node.pn_name = name; 444 fpnp->fpn_node.pn_hash = sgs_str_hash(name); 445 fpnp->fpn_lmp = lmp; 446 447 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 448 free(fpnp); 449 return (0); 450 } 451 452 ASSERT(lml->lm_fpavl != NULL); 453 avl_insert(lml->lm_fpavl, fpnp, where); 454 return (1); 455 } 456 457 /* 458 * Remove an object from the FullPath AVL tree. Note, this is called *before* 459 * the objects link-map is torn down (remove_so), which is where any NAME() and 460 * PATHNAME() strings will be deallocated. 461 */ 462 void 463 fpavl_remove(Rt_map *lmp) 464 { 465 FullPathNode *fpnp; 466 Aliste idx; 467 468 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 469 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 470 free(fpnp); 471 } 472 free(FPNODE(lmp)); 473 FPNODE(lmp) = NULL; 474 } 475 476 /* 477 * Determine if a pathname has already been recorded on the not-found AVL tree. 478 * This tree maintains a node for each path name that ld.so.1 has explicitly 479 * inspected, but has failed to load during a single ld.so.1 operation. If the 480 * path name does not exist in this AVL tree, then the next insertion point is 481 * deposited in "where". This value can be used by nfavl_insert() to expedite 482 * the insertion. 483 */ 484 int 485 nfavl_recorded(const char *name, avl_index_t *where) 486 { 487 PathNode pn; 488 avl_tree_t *avlt; 489 490 /* 491 * Create the avl tree if required. 492 */ 493 if ((avlt = nfavl) == NULL) { 494 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 495 return (0); 496 avl_create(avlt, pnavl_compare, sizeof (PathNode), 497 SGSOFFSETOF(PathNode, pn_avl)); 498 nfavl = avlt; 499 } 500 501 pn.pn_name = name; 502 pn.pn_hash = sgs_str_hash(name); 503 504 if (avl_find(avlt, &pn, where) == NULL) 505 return (0); 506 507 return (1); 508 } 509 510 /* 511 * Insert a name into the not-found AVL tree. 512 */ 513 void 514 nfavl_insert(const char *name, avl_index_t where) 515 { 516 PathNode *pnp; 517 518 if (where == 0) { 519 /* LINTED */ 520 int in_nfavl = nfavl_recorded(name, &where); 521 522 /* 523 * We better not get a hit now, we do not want duplicates in 524 * the tree. 525 */ 526 ASSERT(in_nfavl == 0); 527 } 528 529 /* 530 * Insert new node in tree. 531 */ 532 if ((pnp = calloc(sizeof (PathNode), 1)) != 0) { 533 pnp->pn_name = name; 534 pnp->pn_hash = sgs_str_hash(name); 535 avl_insert(nfavl, pnp, where); 536 } 537 } 538 539 /* 540 * Prior to calling an object, either via a .plt or through dlsym(), make sure 541 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 542 * init's in the correct order, however, this order is typically based on needed 543 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 544 * still occur and result in bindings that were not captured during topological 545 * sorting. This routine compensates for this lack of binding information, and 546 * provides for dynamic .init firing. 547 */ 548 void 549 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 550 { 551 Rt_map **tobj; 552 553 /* 554 * If the caller is an auditor, and the destination isn't, then don't 555 * run any .inits (see comments in load_completion()). 556 */ 557 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 558 (LIST(clmp) != LIST(dlmp))) 559 return; 560 561 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 562 return; 563 564 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 565 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 566 return; 567 568 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 569 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 570 DBG_CALL(Dbg_util_no_init(dlmp)); 571 return; 572 } 573 574 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 575 tobj[0] = dlmp; 576 call_init(tobj, DBG_INIT_DYN); 577 } 578 } 579 580 /* 581 * In a threaded environment insure the thread responsible for loading an object 582 * has completed .init processing for that object before any new thread is 583 * allowed to access the object. This check is only valid with libthread 584 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 585 * 586 * When a new link-map is created, the thread that causes it to be loaded is 587 * identified by THREADID(dlmp). Compare this with the current thread to 588 * determine if it must be blocked. 589 * 590 * NOTE, there are a number of instances (typically only for .plt processing) 591 * where we must skip this test: 592 * 593 * . any thread id of 0 - threads that call thr_exit() may be in this state 594 * thus we can't deduce what tid they used to be. Also some of the 595 * lib/libthread worker threads have this id and must bind (to themselves 596 * or libc) for libthread to function. 597 * 598 * . libthread itself binds to libc, and as libthread is INITFIRST 599 * libc's .init can't have fired yet. Luckly libc's .init is not required 600 * by libthreads binding. 601 * 602 * . if the caller is an auditor, and the destination isn't, then don't 603 * block (see comments in load_completion()). 604 */ 605 void 606 is_dep_ready(Rt_map *dlmp, Rt_map *clmp, int what) 607 { 608 thread_t tid; 609 610 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 611 (LIST(clmp) != LIST(dlmp))) 612 return; 613 614 if ((rtld_flags & RT_FL_CONCUR) && 615 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 616 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 617 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 618 rtldexit(LIST(dlmp), 1); 619 } 620 } 621 622 /* 623 * Execute .{preinit|init|fini}array sections 624 */ 625 void 626 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 627 { 628 int start, stop, incr, ndx; 629 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 630 631 if (array == NULL) 632 return; 633 634 /* 635 * initarray & preinitarray are walked from beginning to end - while 636 * finiarray is walked from end to beginning. 637 */ 638 if (shtype == SHT_FINI_ARRAY) { 639 start = arraycnt - 1; 640 stop = incr = -1; 641 } else { 642 start = 0; 643 stop = arraycnt; 644 incr = 1; 645 } 646 647 /* 648 * Call the .*array[] entries 649 */ 650 for (ndx = start; ndx != stop; ndx += incr) { 651 void (*fptr)(void) = (void(*)())array[ndx]; 652 653 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 654 655 leave(LIST(lmp), 0); 656 (*fptr)(); 657 (void) enter(0); 658 } 659 } 660 661 662 /* 663 * Execute any .init sections. These are passed to us in an lmp array which 664 * (by default) will have been sorted. 665 */ 666 void 667 call_init(Rt_map **tobj, int flag) 668 { 669 Rt_map **_tobj, **_nobj; 670 static List pending = { NULL, NULL }; 671 672 /* 673 * If we're in the middle of an INITFIRST, this must complete before 674 * any new init's are fired. In this case add the object list to the 675 * pending queue and return. We'll pick up the queue after any 676 * INITFIRST objects have their init's fired. 677 */ 678 if (rtld_flags & RT_FL_INITFIRST) { 679 (void) list_append(&pending, tobj); 680 return; 681 } 682 683 /* 684 * Traverse the tobj array firing each objects init. 685 */ 686 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 687 Rt_map *lmp = *_tobj; 688 void (*iptr)() = INIT(lmp); 689 690 if (FLAGS(lmp) & FLG_RT_INITCALL) 691 continue; 692 693 FLAGS(lmp) |= FLG_RT_INITCALL; 694 695 /* 696 * Establish an initfirst state if necessary - no other inits 697 * will be fired (because of additional relocation bindings) 698 * when in this state. 699 */ 700 if (FLAGS(lmp) & FLG_RT_INITFRST) 701 rtld_flags |= RT_FL_INITFIRST; 702 703 if (INITARRAY(lmp) || iptr) { 704 Aliste idx; 705 Bnd_desc *bdp; 706 707 /* 708 * Make sure that all dependencies that have been 709 * relocated to are initialized before this objects 710 * .init is executed. This insures that a dependency 711 * on an external item that must first be initialized 712 * by its associated object is satisfied. 713 */ 714 for (APLIST_TRAVERSE(DEPENDS(lmp), idx, bdp)) { 715 if ((bdp->b_flags & BND_REFER) == 0) 716 continue; 717 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 718 } 719 DBG_CALL(Dbg_util_call_init(lmp, flag)); 720 } 721 722 if (iptr) { 723 leave(LIST(lmp), 0); 724 (*iptr)(); 725 (void) enter(0); 726 } 727 728 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 729 SHT_INIT_ARRAY); 730 731 if (INITARRAY(lmp) || iptr) 732 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 733 734 /* 735 * Set the initdone flag regardless of whether this object 736 * actually contains an .init section. This flag prevents us 737 * from processing this section again for an .init and also 738 * signifies that a .fini must be called should it exist. 739 * Clear the sort field for use in later .fini processing. 740 */ 741 FLAGS(lmp) |= FLG_RT_INITDONE; 742 SORTVAL(lmp) = -1; 743 744 /* 745 * Wake anyone up who might be waiting on this .init. 746 */ 747 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 748 DBG_CALL(Dbg_util_broadcast(lmp)); 749 (void) rt_cond_broadcast(CONDVAR(lmp)); 750 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 751 } 752 753 /* 754 * If we're firing an INITFIRST object, and other objects must 755 * be fired which are not INITFIRST, make sure we grab any 756 * pending objects that might have been delayed as this 757 * INITFIRST was processed. 758 */ 759 if ((rtld_flags & RT_FL_INITFIRST) && 760 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 761 Listnode *lnp; 762 Rt_map **pobj; 763 764 rtld_flags &= ~RT_FL_INITFIRST; 765 766 while ((lnp = pending.head) != NULL) { 767 if ((pending.head = lnp->next) == NULL) 768 pending.tail = NULL; 769 pobj = lnp->data; 770 free(lnp); 771 772 call_init(pobj, DBG_INIT_PEND); 773 } 774 } 775 } 776 free(tobj); 777 } 778 779 /* 780 * Function called by atexit(3C). Calls all .fini sections related with the 781 * mains dependent shared libraries in the order in which the shared libraries 782 * have been loaded. Skip any .fini defined in the main executable, as this 783 * will be called by crt0 (main was never marked as initdone). 784 */ 785 void 786 call_fini(Lm_list * lml, Rt_map ** tobj) 787 { 788 Rt_map **_tobj; 789 790 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 791 Rt_map *clmp, * lmp = *_tobj; 792 Aliste idx; 793 Bnd_desc *bdp; 794 795 /* 796 * If concurrency checking isn't enabled only fire .fini if 797 * .init has completed. We collect all .fini sections of 798 * objects that had their .init collected, but that doesn't 799 * mean at the time that the .init had completed. 800 */ 801 if ((rtld_flags & RT_FL_CONCUR) || 802 (FLAGS(lmp) & FLG_RT_INITDONE)) { 803 void (*fptr)(void) = FINI(lmp); 804 805 if (FINIARRAY(lmp) || fptr) { 806 /* 807 * If concurrency checking is enabled make sure 808 * this object's .init is completed before 809 * calling any .fini. 810 */ 811 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 812 DBG_CALL(Dbg_util_call_fini(lmp)); 813 } 814 815 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 816 SHT_FINI_ARRAY); 817 818 if (fptr) { 819 leave(LIST(lmp), 0); 820 (*fptr)(); 821 (void) enter(0); 822 } 823 } 824 825 /* 826 * Skip main, this is explicitly called last in atexit_fini(). 827 */ 828 if (FLAGS(lmp) & FLG_RT_ISMAIN) 829 continue; 830 831 /* 832 * Audit `close' operations at this point. The library has 833 * exercised its last instructions (regardless of whether it 834 * will be unmapped or not). 835 * 836 * First call any global auditing. 837 */ 838 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 839 _audit_objclose(&(auditors->ad_list), lmp); 840 841 /* 842 * Finally determine whether this object has local auditing 843 * requirements by inspecting itself and then its dependencies. 844 */ 845 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 846 continue; 847 848 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 849 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 850 851 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 852 clmp = bdp->b_caller; 853 854 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 855 _audit_objclose(&(AUDITORS(clmp)->ad_list), 856 lmp); 857 break; 858 } 859 } 860 } 861 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 862 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 863 864 free(tobj); 865 } 866 867 void 868 atexit_fini() 869 { 870 Rt_map **tobj, *lmp; 871 Lm_list *lml; 872 Listnode *lnp; 873 874 (void) enter(0); 875 876 rtld_flags |= RT_FL_ATEXIT; 877 878 lml = &lml_main; 879 lml->lm_flags |= LML_FLG_ATEXIT; 880 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 881 lmp = (Rt_map *)lml->lm_head; 882 883 /* 884 * Reverse topologically sort the main link-map for .fini execution. 885 */ 886 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 887 (tobj != (Rt_map **)S_ERROR)) 888 call_fini(lml, tobj); 889 890 /* 891 * Add an explicit close to main and ld.so.1. Although main's .fini is 892 * collected in call_fini() to provide for FINITARRAY processing, its 893 * audit_objclose is explicitly skipped. This provides for it to be 894 * called last, here. This is the reverse of the explicit calls to 895 * audit_objopen() made in setup(). 896 */ 897 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 898 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 899 audit_objclose(lmp, lmp); 900 } 901 902 /* 903 * Now that all .fini code has been run, see what unreferenced objects 904 * remain. 905 */ 906 unused(lml); 907 908 /* 909 * Traverse any alternative link-map lists. 910 */ 911 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 912 /* 913 * Ignore the base-link-map list, which has already been 914 * processed, and the runtime linkers link-map list, which is 915 * typically processed last. 916 */ 917 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 918 continue; 919 920 if ((lmp = (Rt_map *)lml->lm_head) == 0) 921 continue; 922 923 lml->lm_flags |= LML_FLG_ATEXIT; 924 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 925 926 /* 927 * Reverse topologically sort the link-map for .fini execution. 928 */ 929 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 930 (tobj != (Rt_map **)S_ERROR)) 931 call_fini(lml, tobj); 932 933 unused(lml); 934 } 935 936 /* 937 * Finally reverse topologically sort the runtime linkers link-map for 938 * .fini execution. 939 */ 940 lml = &lml_rtld; 941 lml->lm_flags |= LML_FLG_ATEXIT; 942 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 943 lmp = (Rt_map *)lml->lm_head; 944 945 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 946 (tobj != (Rt_map **)S_ERROR)) 947 call_fini(lml, tobj); 948 949 leave(&lml_main, 0); 950 } 951 952 953 /* 954 * This routine is called to complete any runtime linker activity which may have 955 * resulted in objects being loaded. This is called from all user entry points 956 * and from any internal dl*() requests. 957 */ 958 void 959 load_completion(Rt_map *nlmp) 960 { 961 Rt_map **tobj = 0; 962 Lm_list *nlml; 963 964 /* 965 * Establish any .init processing. Note, in a world of lazy loading, 966 * objects may have been loaded regardless of whether the users request 967 * was fulfilled (i.e., a dlsym() request may have failed to find a 968 * symbol but objects might have been loaded during its search). Thus, 969 * any tsorting starts from the nlmp (new link-maps) pointer and not 970 * necessarily from the link-map that may have satisfied the request. 971 * 972 * Note, the primary link-map has an initialization phase where dynamic 973 * .init firing is suppressed. This provides for a simple and clean 974 * handshake with the primary link-maps libc, which is important for 975 * establishing uberdata. In addition, auditors often obtain handles 976 * to primary link-map objects as the objects are loaded, so as to 977 * inspect the link-map for symbols. This inspection is allowed without 978 * running any code on the primary link-map, as running this code may 979 * reenter the auditor, who may not yet have finished its own 980 * initialization. 981 */ 982 if (nlmp) 983 nlml = LIST(nlmp); 984 985 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 986 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 987 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 988 RT_SORT_REV)) == (Rt_map **)S_ERROR) 989 tobj = 0; 990 } 991 992 /* 993 * Make sure any alternative link-map retrieves any external interfaces 994 * and initializes threads. 995 */ 996 if (nlmp && (nlml != &lml_main)) { 997 (void) rt_get_extern(nlml, nlmp); 998 rt_thr_init(nlml); 999 } 1000 1001 /* 1002 * Traverse the list of new link-maps and register any dynamic TLS. 1003 * This storage is established for any objects not on the primary 1004 * link-map, and for any objects added to the primary link-map after 1005 * static TLS has been registered. 1006 */ 1007 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1008 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1009 Rt_map *lmp; 1010 1011 for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) { 1012 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1013 tls_modaddrem(lmp, TM_FLG_MODADD); 1014 } 1015 nlml->lm_tls = 0; 1016 } 1017 1018 /* 1019 * Fire any .init's. 1020 */ 1021 if (tobj) 1022 call_init(tobj, DBG_INIT_SORT); 1023 } 1024 1025 /* 1026 * Append an item to the specified list, and return a pointer to the list 1027 * node created. 1028 */ 1029 Listnode * 1030 list_append(List *lst, const void *item) 1031 { 1032 Listnode *_lnp; 1033 1034 if ((_lnp = malloc(sizeof (Listnode))) == 0) 1035 return (0); 1036 1037 _lnp->data = (void *)item; 1038 _lnp->next = NULL; 1039 1040 if (lst->head == NULL) 1041 lst->tail = lst->head = _lnp; 1042 else { 1043 lst->tail->next = _lnp; 1044 lst->tail = lst->tail->next; 1045 } 1046 return (_lnp); 1047 } 1048 1049 1050 /* 1051 * Add an item after specified listnode, and return a pointer to the list 1052 * node created. 1053 */ 1054 Listnode * 1055 list_insert(List *lst, const void *item, Listnode *lnp) 1056 { 1057 Listnode *_lnp; 1058 1059 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1060 return (0); 1061 1062 _lnp->data = (void *)item; 1063 _lnp->next = lnp->next; 1064 if (_lnp->next == NULL) 1065 lst->tail = _lnp; 1066 lnp->next = _lnp; 1067 return (_lnp); 1068 } 1069 1070 /* 1071 * Prepend an item to the specified list, and return a pointer to the 1072 * list node created. 1073 */ 1074 Listnode * 1075 list_prepend(List * lst, const void * item) 1076 { 1077 Listnode *_lnp; 1078 1079 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1080 return (0); 1081 1082 _lnp->data = (void *)item; 1083 1084 if (lst->head == NULL) { 1085 _lnp->next = NULL; 1086 lst->tail = lst->head = _lnp; 1087 } else { 1088 _lnp->next = lst->head; 1089 lst->head = _lnp; 1090 } 1091 return (_lnp); 1092 } 1093 1094 1095 /* 1096 * Delete a 'listnode' from a list. 1097 */ 1098 void 1099 list_delete(List *lst, void *item) 1100 { 1101 Listnode *clnp, *plnp; 1102 1103 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1104 if (item == clnp->data) 1105 break; 1106 plnp = clnp; 1107 } 1108 1109 if (clnp == 0) 1110 return; 1111 1112 if (lst->head == clnp) 1113 lst->head = clnp->next; 1114 if (lst->tail == clnp) 1115 lst->tail = plnp; 1116 1117 if (plnp) 1118 plnp->next = clnp->next; 1119 1120 free(clnp); 1121 } 1122 1123 /* 1124 * Append an item to the specified link map control list. 1125 */ 1126 void 1127 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1128 { 1129 Lm_cntl *lmc; 1130 int add = 1; 1131 1132 /* 1133 * Indicate that this link-map list has a new object. 1134 */ 1135 (lml->lm_obj)++; 1136 1137 /* 1138 * If we're about to add a new object to the main link-map control list, 1139 * alert the debuggers that we are about to mess with this list. 1140 * Additions of individual objects to the main link-map control list 1141 * occur during initial setup as the applications immediate dependencies 1142 * are loaded. Individual objects are also loaded on the main link-map 1143 * control list of new alternative link-map control lists. 1144 */ 1145 if ((lmco == ALIST_OFF_DATA) && 1146 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1147 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1148 1149 /* LINTED */ 1150 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1151 1152 /* 1153 * A link-map list header points to one of more link-map control lists 1154 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1155 * the list of relocated objects. Other lists maintain objects that 1156 * are still being analyzed or relocated. This list provides the core 1157 * link-map list information used by all ld.so.1 routines. 1158 */ 1159 if (lmc->lc_head == NULL) { 1160 /* 1161 * If this is the first link-map for the given control list, 1162 * initialize the list. 1163 */ 1164 lmc->lc_head = lmc->lc_tail = lmp; 1165 add = 0; 1166 1167 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1168 Rt_map *tlmp; 1169 1170 /* 1171 * If this is an interposer then append the link-map following 1172 * any other interposers (these are objects that have been 1173 * previously preloaded, or were identified with -z interpose). 1174 * Interposers can only be inserted on the first link-map 1175 * control list, as once relocation has started, interposition 1176 * from new interposers can't be guaranteed. 1177 * 1178 * NOTE: We do not interpose on the head of a list. This model 1179 * evolved because dynamic executables have already been fully 1180 * relocated within themselves and thus can't be interposed on. 1181 * Nowadays it's possible to have shared objects at the head of 1182 * a list, which conceptually means they could be interposed on. 1183 * But, shared objects can be created via dldump() and may only 1184 * be partially relocated (just relatives), in which case they 1185 * are interposable, but are marked as fixed (ET_EXEC). 1186 * 1187 * Thus we really don't have a clear method of deciding when the 1188 * head of a link-map is interposable. So, to be consistent, 1189 * for now only add interposers after the link-map lists head 1190 * object. 1191 */ 1192 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1193 tlmp = (Rt_map *)NEXT(tlmp)) { 1194 1195 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1196 continue; 1197 1198 /* 1199 * Insert the new link-map before this non-interposer, 1200 * and indicate an interposer is found. 1201 */ 1202 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1203 PREV(lmp) = PREV(tlmp); 1204 1205 NEXT(lmp) = (Link_map *)tlmp; 1206 PREV(tlmp) = (Link_map *)lmp; 1207 1208 lmc->lc_flags |= LMC_FLG_REANALYZE; 1209 add = 0; 1210 break; 1211 } 1212 } 1213 1214 /* 1215 * Fall through to appending the new link map to the tail of the list. 1216 * If we're processing the initial objects of this link-map list, add 1217 * them to the backward compatibility list. 1218 */ 1219 if (add) { 1220 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1221 PREV(lmp) = (Link_map *)lmc->lc_tail; 1222 lmc->lc_tail = lmp; 1223 } 1224 1225 /* 1226 * Having added this link-map to a control list, indicate which control 1227 * list the link-map belongs to. Note, control list information is 1228 * always maintained as an offset, as the Alist can be reallocated. 1229 */ 1230 CNTL(lmp) = lmco; 1231 1232 /* 1233 * Indicate if an interposer is found. Note that the first object on a 1234 * link-map can be explicitly defined as an interposer so that it can 1235 * provide interposition over direct binding requests. 1236 */ 1237 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1238 lml->lm_flags |= LML_FLG_INTRPOSE; 1239 1240 /* 1241 * For backward compatibility with debuggers, the link-map list contains 1242 * pointers to the main control list. 1243 */ 1244 if (lmco == ALIST_OFF_DATA) { 1245 lml->lm_head = lmc->lc_head; 1246 lml->lm_tail = lmc->lc_tail; 1247 } 1248 } 1249 1250 /* 1251 * Delete an item from the specified link map control list. 1252 */ 1253 void 1254 lm_delete(Lm_list *lml, Rt_map *lmp) 1255 { 1256 Lm_cntl *lmc; 1257 1258 /* 1259 * If the control list pointer hasn't been initialized, this object 1260 * never got added to a link-map list. 1261 */ 1262 if (CNTL(lmp) == 0) 1263 return; 1264 1265 /* 1266 * If we're about to delete an object from the main link-map control 1267 * list, alert the debuggers that we are about to mess with this list. 1268 */ 1269 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1270 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1271 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1272 1273 /* LINTED */ 1274 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1275 1276 if (lmc->lc_head == lmp) 1277 lmc->lc_head = (Rt_map *)NEXT(lmp); 1278 else 1279 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1280 1281 if (lmc->lc_tail == lmp) 1282 lmc->lc_tail = (Rt_map *)PREV(lmp); 1283 else 1284 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1285 1286 /* 1287 * For backward compatibility with debuggers, the link-map list contains 1288 * pointers to the main control list. 1289 */ 1290 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1291 lml->lm_head = lmc->lc_head; 1292 lml->lm_tail = lmc->lc_tail; 1293 } 1294 1295 /* 1296 * Indicate we have one less object on this control list. 1297 */ 1298 (lml->lm_obj)--; 1299 } 1300 1301 /* 1302 * Move a link-map control list to another. Objects that are being relocated 1303 * are maintained on secondary control lists. Once their relocation is 1304 * complete, the entire list is appended to the previous control list, as this 1305 * list must have been the trigger for generating the new control list. 1306 */ 1307 void 1308 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1309 { 1310 Rt_map *lmp; 1311 1312 /* 1313 * If we're about to add a new family of objects to the main link-map 1314 * control list, alert the debuggers that we are about to mess with this 1315 * list. Additions of object families to the main link-map control 1316 * list occur during lazy loading, filtering and dlopen(). 1317 */ 1318 if ((plmco == ALIST_OFF_DATA) && 1319 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1320 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1321 1322 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1323 1324 /* 1325 * Indicate each new link-map has been moved to the previous link-map 1326 * control list. 1327 */ 1328 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1329 CNTL(lmp) = plmco; 1330 1331 /* 1332 * Move the new link-map control list, to the callers link-map control 1333 * list. 1334 */ 1335 if (plmc->lc_head == 0) { 1336 plmc->lc_head = nlmc->lc_head; 1337 PREV(nlmc->lc_head) = 0; 1338 } else { 1339 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1340 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1341 } 1342 1343 plmc->lc_tail = nlmc->lc_tail; 1344 nlmc->lc_head = nlmc->lc_tail = 0; 1345 1346 /* 1347 * For backward compatibility with debuggers, the link-map list contains 1348 * pointers to the main control list. 1349 */ 1350 if (plmco == ALIST_OFF_DATA) { 1351 lml->lm_head = plmc->lc_head; 1352 lml->lm_tail = plmc->lc_tail; 1353 } 1354 } 1355 1356 /* 1357 * Environment variables can have a variety of defined permutations, and thus 1358 * the following infrastructure exists to allow this variety and to select the 1359 * required definition. 1360 * 1361 * Environment variables can be defined as 32- or 64-bit specific, and if so 1362 * they will take precedence over any instruction set neutral form. Typically 1363 * this is only useful when the environment value is an informational string. 1364 * 1365 * Environment variables may be obtained from the standard user environment or 1366 * from a configuration file. The latter provides a fallback if no user 1367 * environment setting is found, and can take two forms: 1368 * 1369 * . a replaceable definition - this will be used if no user environment 1370 * setting has been seen, or 1371 * 1372 * . an permanent definition - this will be used no matter what user 1373 * environment setting is seen. In the case of list variables it will be 1374 * appended to any process environment setting seen. 1375 * 1376 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1377 * override any replaceable environment variables from a configuration file. 1378 */ 1379 static u_longlong_t rplgen; /* replaceable generic */ 1380 /* variables */ 1381 static u_longlong_t rplisa; /* replaceable ISA specific */ 1382 /* variables */ 1383 static u_longlong_t prmgen; /* permanent generic */ 1384 /* variables */ 1385 static u_longlong_t prmisa; /* permanent ISA specific */ 1386 /* variables */ 1387 1388 /* 1389 * Classify an environment variables type. 1390 */ 1391 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1392 /* the wrong ISA */ 1393 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1394 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1395 /* config file */ 1396 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1397 1398 /* 1399 * Identify all environment variables. 1400 */ 1401 #define ENV_FLG_AUDIT 0x0000000001ULL 1402 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1403 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1404 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1405 #define ENV_FLG_BINDINGS 0x0000000010ULL 1406 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1407 #define ENV_FLG_CONFGEN 0x0000000040ULL 1408 #define ENV_FLG_CONFIG 0x0000000080ULL 1409 #define ENV_FLG_DEBUG 0x0000000100ULL 1410 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1411 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1412 #define ENV_FLG_FLAGS 0x0000000800ULL 1413 #define ENV_FLG_INIT 0x0000001000ULL 1414 #define ENV_FLG_LIBPATH 0x0000002000ULL 1415 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1416 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1417 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1418 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1419 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1420 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1421 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1422 #define ENV_FLG_NODIRECT 0x0000200000ULL 1423 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1424 #define ENV_FLG_NOLAZY 0x0000800000ULL 1425 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1426 #define ENV_FLG_NOVERSION 0x0002000000ULL 1427 #define ENV_FLG_PRELOAD 0x0004000000ULL 1428 #define ENV_FLG_PROFILE 0x0008000000ULL 1429 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1430 #define ENV_FLG_SIGNAL 0x0020000000ULL 1431 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1432 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1433 #define ENV_FLG_UNREF 0x0100000000ULL 1434 #define ENV_FLG_UNUSED 0x0200000000ULL 1435 #define ENV_FLG_VERBOSE 0x0400000000ULL 1436 #define ENV_FLG_WARN 0x0800000000ULL 1437 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1438 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1439 #define ENV_FLG_NOUNRESWEAK 0x4000000000ULL 1440 #define ENV_FLG_NOPAREXT 0x8000000000ULL 1441 1442 #ifdef SIEBEL_DISABLE 1443 #define ENV_FLG_FIX_1 0x8000000000ULL 1444 #endif 1445 1446 #define SEL_REPLACE 0x0001 1447 #define SEL_PERMANT 0x0002 1448 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1449 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1450 #define SEL_ACT_STR 0x0400 /* setting string value */ 1451 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1452 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1453 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1454 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1455 1456 /* 1457 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1458 * and len specifies its length (comparing a strings length before the string 1459 * itself speed things up). s2 points to the token itself which has already 1460 * had any leading white-space removed. 1461 */ 1462 static void 1463 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1464 Word *lmtflags, uint_t env_flags, int aout) 1465 { 1466 u_longlong_t variable = 0; 1467 ushort_t select = 0; 1468 const char **str; 1469 Word val = 0; 1470 1471 /* 1472 * Determine whether we're dealing with a replaceable or permanent 1473 * string. 1474 */ 1475 if (env_flags & ENV_TYP_PERMANT) { 1476 /* 1477 * If the string is from a configuration file and defined as 1478 * permanent, assign it as permanent. 1479 */ 1480 select |= SEL_PERMANT; 1481 } else 1482 select |= SEL_REPLACE; 1483 1484 /* 1485 * Parse the variable given. 1486 * 1487 * The LD_AUDIT family. 1488 */ 1489 if (*s1 == 'A') { 1490 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1491 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1492 /* 1493 * Replaceable and permanent audit objects can exist. 1494 */ 1495 select |= SEL_ACT_STR; 1496 if (select & SEL_REPLACE) 1497 str = &rpl_audit; 1498 else { 1499 str = &prm_audit; 1500 rpl_audit = 0; 1501 } 1502 variable = ENV_FLG_AUDIT; 1503 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1504 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1505 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1506 /* 1507 * A specialized variable for plt_exit() use, not 1508 * documented for general use. 1509 */ 1510 select |= SEL_ACT_SPEC_2; 1511 variable = ENV_FLG_AUDIT_ARGS; 1512 } 1513 } 1514 /* 1515 * The LD_BIND family and LD_BREADTH (historic). 1516 */ 1517 else if (*s1 == 'B') { 1518 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1519 MSG_ORIG(MSG_LD_BIND_LAZY), 1520 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1521 select |= SEL_ACT_RT2; 1522 val = RT_FL2_BINDLAZY; 1523 variable = ENV_FLG_BIND_LAZY; 1524 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1525 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1526 select |= SEL_ACT_RT2; 1527 val = RT_FL2_BINDNOW; 1528 variable = ENV_FLG_BIND_NOW; 1529 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1530 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1531 /* 1532 * Another trick, enabled to help debug AOUT 1533 * applications under BCP, but not documented for 1534 * general use. 1535 */ 1536 select |= SEL_ACT_RT; 1537 val = RT_FL_NOBIND; 1538 variable = ENV_FLG_BIND_NOT; 1539 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1540 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1541 /* 1542 * This variable is simply for backward compatibility. 1543 * If this and LD_DEBUG are both specified, only one of 1544 * the strings is going to get processed. 1545 */ 1546 select |= SEL_ACT_SPEC_2; 1547 variable = ENV_FLG_BINDINGS; 1548 #ifndef LD_BREADTH_DISABLED 1549 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1550 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1551 /* 1552 * Besides some old patches this is no longer available. 1553 */ 1554 rtld_flags |= RT_FL_BREADTH; 1555 return; 1556 #endif 1557 } 1558 } 1559 /* 1560 * LD_CONCURRENCY and LD_CONFIG family. 1561 */ 1562 else if (*s1 == 'C') { 1563 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1564 MSG_ORIG(MSG_LD_CONCURRENCY), 1565 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1566 /* 1567 * Waiting in the wings, as concurrency checking isn't 1568 * yet enabled. 1569 */ 1570 select |= SEL_ACT_SPEC_2; 1571 variable = ENV_FLG_CONCURRENCY; 1572 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1573 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1574 /* 1575 * Set by crle(1) to indicate it's building a 1576 * configuration file, not documented for general use. 1577 */ 1578 select |= SEL_ACT_SPEC_2; 1579 variable = ENV_FLG_CONFGEN; 1580 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1581 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1582 /* 1583 * Secure applications must use a default configuration 1584 * file. A setting from a configuration file doesn't 1585 * make sense (given we must be reading a configuration 1586 * file to have gotten this). 1587 */ 1588 if ((rtld_flags & RT_FL_SECURE) || 1589 (env_flags & ENV_TYP_CONFIG)) 1590 return; 1591 select |= SEL_ACT_STR; 1592 str = &config->c_name; 1593 variable = ENV_FLG_CONFIG; 1594 } 1595 } 1596 /* 1597 * The LD_DEBUG family and LD_DEMANGLE. 1598 */ 1599 else if (*s1 == 'D') { 1600 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1601 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1602 select |= SEL_ACT_STR; 1603 if (select & SEL_REPLACE) 1604 str = &rpl_debug; 1605 else { 1606 str = &prm_debug; 1607 rpl_debug = 0; 1608 } 1609 variable = ENV_FLG_DEBUG; 1610 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1611 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1612 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1613 select |= SEL_ACT_STR; 1614 str = &dbg_file; 1615 variable = ENV_FLG_DEBUG_OUTPUT; 1616 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1617 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1618 select |= SEL_ACT_RT; 1619 val = RT_FL_DEMANGLE; 1620 variable = ENV_FLG_DEMANGLE; 1621 } 1622 } 1623 /* 1624 * LD_FLAGS - collect the best variable definition. On completion of 1625 * environment variable processing pass the result to ld_flags_env() 1626 * where they'll be decomposed and passed back to this routine. 1627 */ 1628 else if (*s1 == 'F') { 1629 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1630 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1631 select |= SEL_ACT_SPEC_1; 1632 if (select & SEL_REPLACE) 1633 str = &rpl_ldflags; 1634 else { 1635 str = &prm_ldflags; 1636 rpl_ldflags = 0; 1637 } 1638 variable = ENV_FLG_FLAGS; 1639 } 1640 } 1641 /* 1642 * LD_INIT (internal, used by ldd(1)). 1643 */ 1644 else if (*s1 == 'I') { 1645 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1646 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1647 select |= SEL_ACT_LML; 1648 val = LML_FLG_TRC_INIT; 1649 variable = ENV_FLG_INIT; 1650 } 1651 } 1652 /* 1653 * The LD_LIBRARY_PATH and LD_LOAD families. 1654 */ 1655 else if (*s1 == 'L') { 1656 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1657 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1658 select |= SEL_ACT_SPEC_1; 1659 if (select & SEL_REPLACE) 1660 str = &rpl_libpath; 1661 else { 1662 str = &prm_libpath; 1663 rpl_libpath = 0; 1664 } 1665 variable = ENV_FLG_LIBPATH; 1666 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1667 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1668 /* 1669 * Internal use by crle(1), not documented for general 1670 * use. 1671 */ 1672 select |= SEL_ACT_LML; 1673 val = LML_FLG_LOADAVAIL; 1674 variable = ENV_FLG_LOADAVAIL; 1675 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1676 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1677 select |= SEL_ACT_SPEC_2; 1678 variable = ENV_FLG_LOADFLTR; 1679 } 1680 } 1681 /* 1682 * The LD_NO family. 1683 */ 1684 else if (*s1 == 'N') { 1685 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1686 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1687 select |= SEL_ACT_RT; 1688 val = RT_FL_NOAUDIT; 1689 variable = ENV_FLG_NOAUDIT; 1690 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1691 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1692 select |= SEL_ACT_RT; 1693 val = RT_FL_NOAUXFLTR; 1694 variable = ENV_FLG_NOAUXFLTR; 1695 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1696 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1697 select |= SEL_ACT_RT; 1698 val = RT_FL_NOBAPLT; 1699 variable = ENV_FLG_NOBAPLT; 1700 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1701 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1702 select |= SEL_ACT_RT; 1703 val = RT_FL_NOCFG; 1704 variable = ENV_FLG_NOCONFIG; 1705 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1706 MSG_ORIG(MSG_LD_NODIRCONFIG), 1707 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1708 select |= SEL_ACT_RT; 1709 val = RT_FL_NODIRCFG; 1710 variable = ENV_FLG_NODIRCONFIG; 1711 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1712 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1713 select |= SEL_ACT_LMLT; 1714 val = LML_TFLG_NODIRECT; 1715 variable = ENV_FLG_NODIRECT; 1716 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1717 MSG_ORIG(MSG_LD_NOENVCONFIG), 1718 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1719 select |= SEL_ACT_RT; 1720 val = RT_FL_NOENVCFG; 1721 variable = ENV_FLG_NOENVCONFIG; 1722 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1723 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1724 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1725 select |= SEL_ACT_RT2; 1726 val = RT_FL2_NOFLTCFG; 1727 variable = ENV_FLG_NOFLTCONFIG; 1728 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1729 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1730 select |= SEL_ACT_LMLT; 1731 val = LML_TFLG_NOLAZYLD; 1732 variable = ENV_FLG_NOLAZY; 1733 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1734 MSG_ORIG(MSG_LD_NOOBJALTER), 1735 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1736 select |= SEL_ACT_RT; 1737 val = RT_FL_NOOBJALT; 1738 variable = ENV_FLG_NOOBJALTER; 1739 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1740 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1741 select |= SEL_ACT_RT; 1742 val = RT_FL_NOVERSION; 1743 variable = ENV_FLG_NOVERSION; 1744 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1745 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1746 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1747 /* 1748 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1749 */ 1750 select |= SEL_ACT_LML; 1751 val = LML_FLG_TRC_NOUNRESWEAK; 1752 variable = ENV_FLG_NOUNRESWEAK; 1753 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1754 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1755 select |= SEL_ACT_LML; 1756 val = LML_FLG_TRC_NOPAREXT; 1757 variable = ENV_FLG_NOPAREXT; 1758 } 1759 } 1760 /* 1761 * LD_ORIGIN. 1762 */ 1763 else if (*s1 == 'O') { 1764 #ifndef EXPAND_RELATIVE 1765 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1766 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1767 /* 1768 * Besides some old patches this is no longer required. 1769 */ 1770 rtld_flags |= RT_FL_RELATIVE; 1771 } 1772 #endif 1773 return; 1774 } 1775 /* 1776 * LD_PRELOAD and LD_PROFILE family. 1777 */ 1778 else if (*s1 == 'P') { 1779 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1780 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1781 select |= SEL_ACT_STR; 1782 if (select & SEL_REPLACE) 1783 str = &rpl_preload; 1784 else { 1785 str = &prm_preload; 1786 rpl_preload = 0; 1787 } 1788 variable = ENV_FLG_PRELOAD; 1789 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1790 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1791 /* 1792 * Only one user library can be profiled at a time. 1793 */ 1794 select |= SEL_ACT_SPEC_2; 1795 variable = ENV_FLG_PROFILE; 1796 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1797 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1798 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1799 /* 1800 * Only one user library can be profiled at a time. 1801 */ 1802 select |= SEL_ACT_STR; 1803 str = &profile_out; 1804 variable = ENV_FLG_PROFILE_OUTPUT; 1805 } 1806 } 1807 /* 1808 * LD_SIGNAL. 1809 */ 1810 else if (*s1 == 'S') { 1811 if (rtld_flags & RT_FL_SECURE) 1812 return; 1813 if ((len == MSG_LD_SIGNAL_SIZE) && 1814 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1815 MSG_LD_SIGNAL_SIZE) == 0)) { 1816 select |= SEL_ACT_SPEC_2; 1817 variable = ENV_FLG_SIGNAL; 1818 } 1819 } 1820 /* 1821 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1822 * the key to enabling all other ldd(1) specific environment variables. 1823 * In case an auditor is called, which in turn might exec(2) a 1824 * subprocess, this variable is disabled, so that any subprocess 1825 * escapes ldd(1) processing. 1826 */ 1827 else if (*s1 == 'T') { 1828 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1829 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1830 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1831 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1832 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1833 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1834 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1835 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1836 char *s0 = (char *)s1; 1837 1838 select |= SEL_ACT_SPEC_2; 1839 variable = ENV_FLG_TRACE_OBJS; 1840 1841 #if defined(__sparc) || defined(__x86) 1842 /* 1843 * The simplest way to "disable" this variable is to 1844 * truncate this string to "LD_'\0'". This string is 1845 * ignored by any ld.so.1 environment processing. 1846 * Use of such interfaces as unsetenv(3c) are overkill, 1847 * and would drag too much libc implementation detail 1848 * into ld.so.1. 1849 */ 1850 *s0 = '\0'; 1851 #else 1852 /* 1853 * Verify that the above write is appropriate for any new platforms. 1854 */ 1855 #error unsupported architecture! 1856 #endif 1857 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1858 MSG_ORIG(MSG_LD_TRACE_PTHS), 1859 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1860 select |= SEL_ACT_LML; 1861 val = LML_FLG_TRC_SEARCH; 1862 variable = ENV_FLG_TRACE_PTHS; 1863 } 1864 } 1865 /* 1866 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1867 */ 1868 else if (*s1 == 'U') { 1869 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1870 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1871 select |= SEL_ACT_LML; 1872 val = LML_FLG_TRC_UNREF; 1873 variable = ENV_FLG_UNREF; 1874 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1875 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1876 select |= SEL_ACT_LML; 1877 val = LML_FLG_TRC_UNUSED; 1878 variable = ENV_FLG_UNUSED; 1879 } 1880 } 1881 /* 1882 * LD_VERBOSE (internal, used by ldd(1)). 1883 */ 1884 else if (*s1 == 'V') { 1885 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1886 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1887 select |= SEL_ACT_LML; 1888 val = LML_FLG_TRC_VERBOSE; 1889 variable = ENV_FLG_VERBOSE; 1890 } 1891 } 1892 /* 1893 * LD_WARN (internal, used by ldd(1)). 1894 */ 1895 else if (*s1 == 'W') { 1896 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1897 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1898 select |= SEL_ACT_LML; 1899 val = LML_FLG_TRC_WARN; 1900 variable = ENV_FLG_WARN; 1901 } 1902 #ifdef SIEBEL_DISABLE 1903 } 1904 /* 1905 * LD__FIX__ (undocumented, enable future technology that can't be 1906 * delivered in a patch release). 1907 */ 1908 else if (*s1 == '_') { 1909 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1910 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1911 select |= SEL_ACT_RT; 1912 val = RT_FL_DISFIX_1; 1913 variable = ENV_FLG_FIX_1; 1914 } 1915 #endif 1916 } 1917 if (variable == 0) 1918 return; 1919 1920 /* 1921 * If the variable is already processed with ISA specific variable, 1922 * no further processing needed. 1923 */ 1924 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1925 ((select & SEL_PERMANT) && (prmisa & variable))) 1926 return; 1927 1928 /* 1929 * Now mark the appropriate variables. 1930 * If the replaceable variable is already set, then the 1931 * process environment variable must be set. Any replaceable 1932 * variable specified in a configuration file can be ignored. 1933 */ 1934 if (env_flags & ENV_TYP_ISA) { 1935 /* 1936 * This is ISA setting. We do the setting 1937 * even if s2 is NULL. 1938 * If s2 is NULL, we might need to undo 1939 * the setting. 1940 */ 1941 if (select & SEL_REPLACE) { 1942 if (rplisa & variable) 1943 return; 1944 rplisa |= variable; 1945 } else { 1946 prmisa |= variable; 1947 } 1948 } else if (s2) { 1949 /* 1950 * This is non0-ISA setting 1951 */ 1952 if (select & SEL_REPLACE) { 1953 if (rplgen & variable) 1954 return; 1955 rplgen |= variable; 1956 } else 1957 prmgen |= variable; 1958 } else 1959 /* 1960 * This is non-ISA setting which 1961 * can be ignored. 1962 */ 1963 return; 1964 1965 /* 1966 * Now perform the setting. 1967 */ 1968 if (select & SEL_ACT_RT) { 1969 if (s2) 1970 rtld_flags |= val; 1971 else 1972 rtld_flags &= ~val; 1973 } else if (select & SEL_ACT_RT2) { 1974 if (s2) 1975 rtld_flags2 |= val; 1976 else 1977 rtld_flags2 &= ~val; 1978 } else if (select & SEL_ACT_STR) 1979 *str = s2; 1980 else if (select & SEL_ACT_LML) { 1981 if (s2) 1982 *lmflags |= val; 1983 else 1984 *lmflags &= ~val; 1985 } else if (select & SEL_ACT_LMLT) { 1986 if (s2) 1987 *lmtflags |= val; 1988 else 1989 *lmtflags &= ~val; 1990 } else if (select & SEL_ACT_SPEC_1) { 1991 /* 1992 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1993 */ 1994 *str = s2; 1995 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1996 if (s2) { 1997 if (variable == ENV_FLG_FLAGS) 1998 env_info |= ENV_INF_FLAGCFG; 1999 else 2000 env_info |= ENV_INF_PATHCFG; 2001 } else { 2002 if (variable == ENV_FLG_FLAGS) 2003 env_info &= ~ENV_INF_FLAGCFG; 2004 else 2005 env_info &= ~ENV_INF_PATHCFG; 2006 } 2007 } 2008 } else if (select & SEL_ACT_SPEC_2) { 2009 /* 2010 * variables can be: ENV_FLG_ 2011 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 2012 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 2013 */ 2014 if (variable == ENV_FLG_AUDIT_ARGS) { 2015 if (s2) { 2016 audit_argcnt = atoi(s2); 2017 audit_argcnt += audit_argcnt % 2; 2018 } else 2019 audit_argcnt = 0; 2020 } else if (variable == ENV_FLG_BINDINGS) { 2021 if (s2) 2022 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 2023 else 2024 rpl_debug = 0; 2025 } else if (variable == ENV_FLG_CONCURRENCY) { 2026 if (s2) 2027 rtld_flags &= ~RT_FL_NOCONCUR; 2028 else 2029 rtld_flags |= RT_FL_NOCONCUR; 2030 } else if (variable == ENV_FLG_CONFGEN) { 2031 if (s2) { 2032 rtld_flags |= RT_FL_CONFGEN; 2033 *lmflags |= LML_FLG_IGNRELERR; 2034 } else { 2035 rtld_flags &= ~RT_FL_CONFGEN; 2036 *lmflags &= ~LML_FLG_IGNRELERR; 2037 } 2038 } else if (variable == ENV_FLG_LOADFLTR) { 2039 if (s2) { 2040 *lmtflags |= LML_TFLG_LOADFLTR; 2041 if (*s2 == '2') 2042 rtld_flags |= RT_FL_WARNFLTR; 2043 } else { 2044 *lmtflags &= ~LML_TFLG_LOADFLTR; 2045 rtld_flags &= ~RT_FL_WARNFLTR; 2046 } 2047 } else if (variable == ENV_FLG_PROFILE) { 2048 profile_name = s2; 2049 if (s2) { 2050 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2051 return; 2052 } 2053 /* BEGIN CSTYLED */ 2054 if (rtld_flags & RT_FL_SECURE) { 2055 profile_lib = 2056 #if defined(_ELF64) 2057 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2058 #else 2059 MSG_ORIG(MSG_PTH_LDPROFSE); 2060 #endif 2061 } else { 2062 profile_lib = 2063 #if defined(_ELF64) 2064 MSG_ORIG(MSG_PTH_LDPROF_64); 2065 #else 2066 MSG_ORIG(MSG_PTH_LDPROF); 2067 #endif 2068 } 2069 /* END CSTYLED */ 2070 } else 2071 profile_lib = 0; 2072 } else if (variable == ENV_FLG_SIGNAL) { 2073 killsig = s2 ? atoi(s2) : SIGKILL; 2074 } else if (variable == ENV_FLG_TRACE_OBJS) { 2075 if (s2) { 2076 *lmflags |= LML_FLG_TRC_ENABLE; 2077 if (*s2 == '2') 2078 *lmflags |= LML_FLG_TRC_LDDSTUB; 2079 } else 2080 *lmflags &= 2081 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2082 } 2083 } 2084 } 2085 2086 /* 2087 * Determine whether we have an architecture specific environment variable. 2088 * If we do, and we're the wrong architecture, it'll just get ignored. 2089 * Otherwise the variable is processed in it's architecture neutral form. 2090 */ 2091 static int 2092 ld_arch_env(const char *s1, size_t *len) 2093 { 2094 size_t _len = *len - 3; 2095 2096 if (s1[_len++] == '_') { 2097 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2098 #if defined(_ELF64) 2099 return (ENV_TYP_IGNORE); 2100 #else 2101 *len = *len - 3; 2102 return (ENV_TYP_ISA); 2103 #endif 2104 } 2105 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2106 #if defined(_ELF64) 2107 *len = *len - 3; 2108 return (ENV_TYP_ISA); 2109 #else 2110 return (ENV_TYP_IGNORE); 2111 #endif 2112 } 2113 } 2114 return (0); 2115 } 2116 2117 2118 /* 2119 * Process an LD_FLAGS environment variable. The value can be a comma 2120 * separated set of tokens, which are sent (in upper case) into the generic 2121 * LD_XXXX environment variable engine. For example: 2122 * 2123 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2124 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2125 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2126 * or 2127 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2128 */ 2129 static int 2130 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2131 uint_t env_flags, int aout) 2132 { 2133 char *nstr, *sstr, *estr = 0; 2134 size_t nlen, len; 2135 2136 if (str == 0) 2137 return (0); 2138 2139 /* 2140 * Create a new string as we're going to transform the token(s) into 2141 * uppercase and separate tokens with nulls. 2142 */ 2143 len = strlen(str); 2144 if ((nstr = malloc(len + 1)) == 0) 2145 return (1); 2146 (void) strcpy(nstr, str); 2147 2148 for (sstr = nstr; sstr; sstr++, len--) { 2149 int flags; 2150 2151 if ((*sstr != '\0') && (*sstr != ',')) { 2152 if (estr == 0) { 2153 if (*sstr == '=') 2154 estr = sstr; 2155 else { 2156 /* 2157 * Translate token to uppercase. Don't 2158 * use toupper(3C) as including this 2159 * code doubles the size of ld.so.1. 2160 */ 2161 if ((*sstr >= 'a') && (*sstr <= 'z')) 2162 *sstr = *sstr - ('a' - 'A'); 2163 } 2164 } 2165 continue; 2166 } 2167 2168 *sstr = '\0'; 2169 if (estr) { 2170 nlen = estr - nstr; 2171 if ((*++estr == '\0') || (*estr == ',')) 2172 estr = 0; 2173 } else 2174 nlen = sstr - nstr; 2175 2176 /* 2177 * Fabricate a boolean definition for any unqualified variable. 2178 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2179 * The value is sufficient to assert any boolean variables, plus 2180 * the term "(null)" is specifically chosen in case someone 2181 * mistakenly supplies something like LD_FLAGS=library_path. 2182 */ 2183 if (estr == 0) 2184 estr = (char *)MSG_INTL(MSG_STR_NULL); 2185 2186 /* 2187 * Determine whether the environment variable is 32- or 64-bit 2188 * specific. The length, len, will reflect the architecture 2189 * neutral portion of the string. 2190 */ 2191 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2192 ld_generic_env(nstr, nlen, estr, lmflags, 2193 lmtflags, (env_flags | flags), aout); 2194 } 2195 if (len == 0) 2196 return (0); 2197 2198 nstr = sstr + 1; 2199 estr = 0; 2200 } 2201 return (0); 2202 } 2203 2204 2205 /* 2206 * Process a single environment string. Only strings starting with `LD_' are 2207 * reserved for our use. By convention, all strings should be of the form 2208 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2209 * functionality is enabled. Also pick off applicable locale variables. 2210 */ 2211 #define LOC_LANG 1 2212 #define LOC_MESG 2 2213 #define LOC_ALL 3 2214 2215 static void 2216 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2217 int aout) 2218 { 2219 const char *s2; 2220 static size_t loc = 0; 2221 2222 if (*s1++ != 'L') 2223 return; 2224 2225 /* 2226 * See if we have any locale environment settings. These environment 2227 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2228 * is higher than LANG. 2229 */ 2230 s2 = s1; 2231 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2232 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2233 s2 += MSG_LC_ALL_SIZE; 2234 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2235 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2236 loc = LOC_ALL; 2237 } 2238 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2239 MSG_LC_MESSAGES_SIZE) == 0) { 2240 s2 += MSG_LC_MESSAGES_SIZE; 2241 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2242 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2243 loc = LOC_MESG; 2244 } 2245 } 2246 return; 2247 } 2248 2249 s2 = s1; 2250 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2251 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2252 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2253 loc = LOC_LANG; 2254 return; 2255 } 2256 2257 /* 2258 * Pick off any LD_XXXX environment variables. 2259 */ 2260 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2261 size_t len; 2262 int flags; 2263 2264 /* 2265 * In a branded process we must ignore all LD_XXXX env vars 2266 * because they are intended for the brand's linker. 2267 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2268 */ 2269 if (rtld_flags2 & RT_FL2_BRANDED) { 2270 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2271 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2272 return; 2273 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2274 } 2275 2276 /* 2277 * Environment variables with no value (ie. LD_XXXX=) typically 2278 * have no impact, however if environment variables are defined 2279 * within a configuration file, these null user settings can be 2280 * used to disable any configuration replaceable definitions. 2281 */ 2282 if ((s2 = strchr(s1, '=')) == 0) { 2283 len = strlen(s1); 2284 s2 = 0; 2285 } else if (*++s2 == '\0') { 2286 len = strlen(s1) - 1; 2287 s2 = 0; 2288 } else { 2289 len = s2 - s1 - 1; 2290 while (isspace(*s2)) 2291 s2++; 2292 } 2293 2294 /* 2295 * Determine whether the environment variable is 32- or 64-bit 2296 * specific. The length, len, will reflect the architecture 2297 * neutral portion of the string. 2298 */ 2299 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2300 return; 2301 env_flags |= flags; 2302 2303 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2304 } 2305 } 2306 2307 /* 2308 * Internal getenv routine. Called immediately after ld.so.1 initializes 2309 * itself. 2310 */ 2311 int 2312 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2313 { 2314 char *locale; 2315 2316 if (envp == (const char **)0) 2317 return (0); 2318 2319 while (*envp != (const char *)0) 2320 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2321 2322 /* 2323 * Having collected the best representation of any LD_FLAGS, process 2324 * these strings. 2325 */ 2326 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2327 return (1); 2328 2329 /* 2330 * Don't allow environment controlled auditing when tracing or if 2331 * explicitly disabled. Trigger all tracing modes from 2332 * LML_FLG_TRC_ENABLE. 2333 */ 2334 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2335 rpl_audit = profile_lib = profile_name = 0; 2336 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2337 *lmflags &= ~LML_MSK_TRC; 2338 2339 /* 2340 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2341 */ 2342 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2343 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2344 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2345 2346 /* 2347 * When using ldd(1) -r or -d against an executable, assert -p. 2348 */ 2349 if ((*lmflags & 2350 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2351 *lmflags |= LML_FLG_TRC_NOPAREXT; 2352 2353 /* 2354 * If we have a locale setting make sure its worth processing further. 2355 * C and POSIX locales don't need any processing. In addition, to 2356 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2357 * the locale to contain a segment that leads upward in the file system 2358 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2359 * the /usr/lib/locale hierarchy, there is no need to extensively 2360 * validate the mode or ownership of any message file (as libc's 2361 * generic handling of message files does). Duplicate the string so 2362 * that new locale setting can generically cleanup any previous locales. 2363 */ 2364 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) { 2365 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2366 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2367 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2368 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0; 2369 else 2370 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2371 } 2372 return (0); 2373 } 2374 2375 /* 2376 * Configuration environment processing. Called after the a.out has been 2377 * processed (as the a.out can specify its own configuration file). 2378 */ 2379 int 2380 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2381 { 2382 Word *lmflags = &(lml_main.lm_flags); 2383 Word *lmtflags = &(lml_main.lm_tflags); 2384 2385 if (envtbl == (Rtc_env *)0) 2386 return (0); 2387 2388 while (envtbl->env_str) { 2389 uint_t env_flags = ENV_TYP_CONFIG; 2390 2391 if (envtbl->env_flags & RTC_ENV_PERMANT) 2392 env_flags |= ENV_TYP_PERMANT; 2393 2394 ld_str_env((const char *)(envtbl->env_str + addr), 2395 lmflags, lmtflags, env_flags, 0); 2396 envtbl++; 2397 } 2398 2399 /* 2400 * Having collected the best representation of any LD_FLAGS, process 2401 * these strings. 2402 */ 2403 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2404 return (1); 2405 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2406 aout) == 1) 2407 return (1); 2408 2409 /* 2410 * Don't allow environment controlled auditing when tracing or if 2411 * explicitly disabled. Trigger all tracing modes from 2412 * LML_FLG_TRC_ENABLE. 2413 */ 2414 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2415 prm_audit = profile_lib = profile_name = 0; 2416 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2417 *lmflags &= ~LML_MSK_TRC; 2418 2419 return (0); 2420 } 2421 2422 int 2423 dowrite(Prfbuf * prf) 2424 { 2425 /* 2426 * We do not have a valid file descriptor, so we are unable 2427 * to flush the buffer. 2428 */ 2429 if (prf->pr_fd == -1) 2430 return (0); 2431 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2432 prf->pr_cur = prf->pr_buf; 2433 return (1); 2434 } 2435 2436 /* 2437 * Simplified printing. The following conversion specifications are supported: 2438 * 2439 * % [#] [-] [min field width] [. precision] s|d|x|c 2440 * 2441 * 2442 * dorprf takes the output buffer in the form of Prfbuf which permits 2443 * the verification of the output buffer size and the concatenation 2444 * of data to an already existing output buffer. The Prfbuf 2445 * structure contains the following: 2446 * 2447 * pr_buf pointer to the beginning of the output buffer. 2448 * pr_cur pointer to the next available byte in the output buffer. By 2449 * setting pr_cur ahead of pr_buf you can append to an already 2450 * existing buffer. 2451 * pr_len the size of the output buffer. By setting pr_len to '0' you 2452 * disable protection from overflows in the output buffer. 2453 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2454 * output to. If pr_fd is set to '-1' then it's assumed there is 2455 * no output buffer, and doprf() will return with an error to 2456 * indicate an output buffer overflow. If pr_fd is > -1 then when 2457 * the output buffer is filled it will be flushed to pr_fd and will 2458 * then be available for additional data. 2459 */ 2460 #define FLG_UT_MINUS 0x0001 /* - */ 2461 #define FLG_UT_SHARP 0x0002 /* # */ 2462 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2463 2464 /* 2465 * This macro is for use from within doprf only. It is to be used for checking 2466 * the output buffer size and placing characters into the buffer. 2467 */ 2468 #define PUTC(c) \ 2469 { \ 2470 char tmpc; \ 2471 \ 2472 tmpc = (c); \ 2473 if (bufsiz && (bp >= bufend)) { \ 2474 prf->pr_cur = bp; \ 2475 if (dowrite(prf) == 0) \ 2476 return (0); \ 2477 bp = prf->pr_cur; \ 2478 } \ 2479 *bp++ = tmpc; \ 2480 } 2481 2482 /* 2483 * Define a local buffer size for building a numeric value - large enough to 2484 * hold a 64-bit value. 2485 */ 2486 #define NUM_SIZE 22 2487 2488 size_t 2489 doprf(const char *format, va_list args, Prfbuf *prf) 2490 { 2491 char c; 2492 char *bp = prf->pr_cur; 2493 char *bufend = prf->pr_buf + prf->pr_len; 2494 size_t bufsiz = prf->pr_len; 2495 2496 while ((c = *format++) != '\0') { 2497 if (c != '%') { 2498 PUTC(c); 2499 } else { 2500 int base = 0, flag = 0, width = 0, prec = 0; 2501 size_t _i; 2502 int _c, _n; 2503 char *_s; 2504 int ls = 0; 2505 again: 2506 c = *format++; 2507 switch (c) { 2508 case '-': 2509 flag |= FLG_UT_MINUS; 2510 goto again; 2511 case '#': 2512 flag |= FLG_UT_SHARP; 2513 goto again; 2514 case '.': 2515 flag |= FLG_UT_DOTSEEN; 2516 goto again; 2517 case '0': 2518 case '1': 2519 case '2': 2520 case '3': 2521 case '4': 2522 case '5': 2523 case '6': 2524 case '7': 2525 case '8': 2526 case '9': 2527 if (flag & FLG_UT_DOTSEEN) 2528 prec = (prec * 10) + c - '0'; 2529 else 2530 width = (width * 10) + c - '0'; 2531 goto again; 2532 case 'x': 2533 case 'X': 2534 base = 16; 2535 break; 2536 case 'd': 2537 case 'D': 2538 case 'u': 2539 base = 10; 2540 flag &= ~FLG_UT_SHARP; 2541 break; 2542 case 'l': 2543 base = 10; 2544 ls++; /* number of l's (long or long long) */ 2545 if ((*format == 'l') || 2546 (*format == 'd') || (*format == 'D') || 2547 (*format == 'x') || (*format == 'X') || 2548 (*format == 'o') || (*format == 'O')) 2549 goto again; 2550 break; 2551 case 'o': 2552 case 'O': 2553 base = 8; 2554 break; 2555 case 'c': 2556 _c = va_arg(args, int); 2557 2558 for (_i = 24; _i > 0; _i -= 8) { 2559 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2560 PUTC(c); 2561 } 2562 } 2563 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2564 PUTC(c); 2565 } 2566 break; 2567 case 's': 2568 _s = va_arg(args, char *); 2569 _i = strlen(_s); 2570 /* LINTED */ 2571 _n = (int)(width - _i); 2572 if (!prec) 2573 /* LINTED */ 2574 prec = (int)_i; 2575 2576 if (width && !(flag & FLG_UT_MINUS)) { 2577 while (_n-- > 0) 2578 PUTC(' '); 2579 } 2580 while (((c = *_s++) != 0) && prec--) { 2581 PUTC(c); 2582 } 2583 if (width && (flag & FLG_UT_MINUS)) { 2584 while (_n-- > 0) 2585 PUTC(' '); 2586 } 2587 break; 2588 case '%': 2589 PUTC('%'); 2590 break; 2591 default: 2592 break; 2593 } 2594 2595 /* 2596 * Numeric processing 2597 */ 2598 if (base) { 2599 char local[NUM_SIZE]; 2600 size_t ssize = 0, psize = 0; 2601 const char *string = 2602 MSG_ORIG(MSG_STR_HEXNUM); 2603 const char *prefix = 2604 MSG_ORIG(MSG_STR_EMPTY); 2605 u_longlong_t num; 2606 2607 switch (ls) { 2608 case 0: /* int */ 2609 num = (u_longlong_t) 2610 va_arg(args, uint_t); 2611 break; 2612 case 1: /* long */ 2613 num = (u_longlong_t) 2614 va_arg(args, ulong_t); 2615 break; 2616 case 2: /* long long */ 2617 num = va_arg(args, u_longlong_t); 2618 break; 2619 } 2620 2621 if (flag & FLG_UT_SHARP) { 2622 if (base == 16) { 2623 prefix = MSG_ORIG(MSG_STR_HEX); 2624 psize = 2; 2625 } else { 2626 prefix = MSG_ORIG(MSG_STR_ZERO); 2627 psize = 1; 2628 } 2629 } 2630 if ((base == 10) && (long)num < 0) { 2631 prefix = MSG_ORIG(MSG_STR_NEGATE); 2632 psize = MSG_STR_NEGATE_SIZE; 2633 num = (u_longlong_t)(-(longlong_t)num); 2634 } 2635 2636 /* 2637 * Convert the numeric value into a local 2638 * string (stored in reverse order). 2639 */ 2640 _s = local; 2641 do { 2642 *_s++ = string[num % base]; 2643 num /= base; 2644 ssize++; 2645 } while (num); 2646 2647 ASSERT(ssize < sizeof (local)); 2648 2649 /* 2650 * Provide any precision or width padding. 2651 */ 2652 if (prec) { 2653 /* LINTED */ 2654 _n = (int)(prec - ssize); 2655 while ((_n-- > 0) && 2656 (ssize < sizeof (local))) { 2657 *_s++ = '0'; 2658 ssize++; 2659 } 2660 } 2661 if (width && !(flag & FLG_UT_MINUS)) { 2662 /* LINTED */ 2663 _n = (int)(width - ssize - psize); 2664 while (_n-- > 0) { 2665 PUTC(' '); 2666 } 2667 } 2668 2669 /* 2670 * Print any prefix and the numeric string 2671 */ 2672 while (*prefix) 2673 PUTC(*prefix++); 2674 do { 2675 PUTC(*--_s); 2676 } while (_s > local); 2677 2678 /* 2679 * Provide any width padding. 2680 */ 2681 if (width && (flag & FLG_UT_MINUS)) { 2682 /* LINTED */ 2683 _n = (int)(width - ssize - psize); 2684 while (_n-- > 0) 2685 PUTC(' '); 2686 } 2687 } 2688 } 2689 } 2690 2691 PUTC('\0'); 2692 prf->pr_cur = bp; 2693 return (1); 2694 } 2695 2696 static int 2697 doprintf(const char *format, va_list args, Prfbuf *prf) 2698 { 2699 char *ocur = prf->pr_cur; 2700 2701 if (doprf(format, args, prf) == 0) 2702 return (0); 2703 /* LINTED */ 2704 return ((int)(prf->pr_cur - ocur)); 2705 } 2706 2707 /* VARARGS2 */ 2708 int 2709 sprintf(char *buf, const char *format, ...) 2710 { 2711 va_list args; 2712 int len; 2713 Prfbuf prf; 2714 2715 va_start(args, format); 2716 prf.pr_buf = prf.pr_cur = buf; 2717 prf.pr_len = 0; 2718 prf.pr_fd = -1; 2719 len = doprintf(format, args, &prf); 2720 va_end(args); 2721 2722 /* 2723 * sprintf() return value excludes the terminating null byte. 2724 */ 2725 return (len - 1); 2726 } 2727 2728 /* VARARGS3 */ 2729 int 2730 snprintf(char *buf, size_t n, const char *format, ...) 2731 { 2732 va_list args; 2733 int len; 2734 Prfbuf prf; 2735 2736 va_start(args, format); 2737 prf.pr_buf = prf.pr_cur = buf; 2738 prf.pr_len = n; 2739 prf.pr_fd = -1; 2740 len = doprintf(format, args, &prf); 2741 va_end(args); 2742 2743 return (len); 2744 } 2745 2746 /* VARARGS2 */ 2747 int 2748 bufprint(Prfbuf *prf, const char *format, ...) 2749 { 2750 va_list args; 2751 int len; 2752 2753 va_start(args, format); 2754 len = doprintf(format, args, prf); 2755 va_end(args); 2756 2757 return (len); 2758 } 2759 2760 /*PRINTFLIKE1*/ 2761 int 2762 printf(const char *format, ...) 2763 { 2764 va_list args; 2765 char buffer[ERRSIZE]; 2766 Prfbuf prf; 2767 2768 va_start(args, format); 2769 prf.pr_buf = prf.pr_cur = buffer; 2770 prf.pr_len = ERRSIZE; 2771 prf.pr_fd = 1; 2772 (void) doprf(format, args, &prf); 2773 va_end(args); 2774 /* 2775 * Trim trailing '\0' form buffer 2776 */ 2777 prf.pr_cur--; 2778 return (dowrite(&prf)); 2779 } 2780 2781 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2782 2783 /*PRINTFLIKE3*/ 2784 void 2785 eprintf(Lm_list *lml, Error error, const char *format, ...) 2786 { 2787 va_list args; 2788 int overflow = 0; 2789 static int lock = 0; 2790 Prfbuf prf; 2791 2792 if (lock || (nextptr == (errbuf + ERRSIZE))) 2793 return; 2794 2795 /* 2796 * Note: this lock is here to prevent the same thread from recursively 2797 * entering itself during a eprintf. ie: during eprintf malloc() fails 2798 * and we try and call eprintf ... and then malloc() fails .... 2799 */ 2800 lock = 1; 2801 2802 /* 2803 * If we have completed startup initialization, all error messages 2804 * must be saved. These are reported through dlerror(). If we're 2805 * still in the initialization stage, output the error directly and 2806 * add a newline. 2807 */ 2808 va_start(args, format); 2809 2810 prf.pr_buf = prf.pr_cur = nextptr; 2811 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2812 2813 if (!(rtld_flags & RT_FL_APPLIC)) 2814 prf.pr_fd = 2; 2815 else 2816 prf.pr_fd = -1; 2817 2818 if (error > ERR_NONE) { 2819 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2820 error = ERR_WARNING; 2821 if (error == ERR_WARNING) { 2822 if (err_strs[ERR_WARNING] == 0) 2823 err_strs[ERR_WARNING] = 2824 MSG_INTL(MSG_ERR_WARNING); 2825 } else if (error == ERR_FATAL) { 2826 if (err_strs[ERR_FATAL] == 0) 2827 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2828 } else if (error == ERR_ELF) { 2829 if (err_strs[ERR_ELF] == 0) 2830 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2831 } 2832 if (procname) { 2833 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2834 rtldname, procname, err_strs[error]) == 0) 2835 overflow = 1; 2836 } else { 2837 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2838 rtldname, err_strs[error]) == 0) 2839 overflow = 1; 2840 } 2841 if (overflow == 0) { 2842 /* 2843 * Remove the terminating '\0'. 2844 */ 2845 prf.pr_cur--; 2846 } 2847 } 2848 2849 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2850 overflow = 1; 2851 2852 /* 2853 * If this is an ELF error, it will have been generated by a support 2854 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2855 * ELF error messages as it doesn't interact with libelf. Determine the 2856 * ELF error string. 2857 */ 2858 if ((overflow == 0) && (error == ERR_ELF)) { 2859 static int (*elfeno)() = 0; 2860 static const char *(*elfemg)(); 2861 const char *emsg; 2862 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2863 2864 if (NEXT(lmp) && (elfeno == 0)) { 2865 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2866 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2867 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2868 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2869 elfeno = 0; 2870 } 2871 2872 /* 2873 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2874 */ 2875 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2876 prf.pr_cur--; 2877 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2878 emsg) == 0) 2879 overflow = 1; 2880 } 2881 } 2882 2883 /* 2884 * Push out any message that's been built. Note, in the case of an 2885 * overflow condition, this message may be incomplete, in which case 2886 * make sure any partial string is null terminated. 2887 */ 2888 if (overflow) 2889 *(prf.pr_cur) = '\0'; 2890 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2891 *(prf.pr_cur - 1) = '\n'; 2892 (void) dowrite(&prf); 2893 } 2894 2895 DBG_CALL(Dbg_util_str(lml, nextptr)); 2896 va_end(args); 2897 2898 /* 2899 * Determine if there was insufficient space left in the buffer to 2900 * complete the message. If so, we'll have printed out as much as had 2901 * been processed if we're not yet executing the application. 2902 * Otherwise, there will be some debugging diagnostic indicating 2903 * as much of the error message as possible. Write out a final buffer 2904 * overflow diagnostic - unlocalized, so we don't chance more errors. 2905 */ 2906 if (overflow) { 2907 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2908 2909 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2910 lasterr = str; 2911 2912 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2913 (void) write(2, str, strlen(str)); 2914 (void) write(2, MSG_ORIG(MSG_STR_NL), 2915 MSG_STR_NL_SIZE); 2916 } 2917 } 2918 DBG_CALL(Dbg_util_str(lml, str)); 2919 2920 lock = 0; 2921 nextptr = errbuf + ERRSIZE; 2922 return; 2923 } 2924 2925 /* 2926 * If the application has started, then error messages are being saved 2927 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2928 * the case of a fatal error. In this case, establish the next error 2929 * pointer. If we haven't started the application, the whole message 2930 * buffer can be reused. 2931 */ 2932 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2933 lasterr = nextptr; 2934 2935 /* 2936 * Note, should we encounter an error such as ENOMEM, there may 2937 * be a number of the same error messages (ie. an operation 2938 * fails with ENOMEM, and then the attempts to construct the 2939 * error message itself, which incurs additional ENOMEM errors). 2940 * Compare any previous error message with the one we've just 2941 * created to prevent any duplication clutter. 2942 */ 2943 if ((rtld_flags & RT_FL_APPLIC) && 2944 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2945 prevptr = nextptr; 2946 nextptr = prf.pr_cur; 2947 *nextptr = '\0'; 2948 } 2949 } 2950 lock = 0; 2951 } 2952 2953 2954 #if DEBUG 2955 /* 2956 * Provide assfail() for ASSERT() statements, 2957 * see <sys/debug.h> for further details. 2958 */ 2959 int 2960 assfail(const char *a, const char *f, int l) 2961 { 2962 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2963 (void) _lwp_kill(_lwp_self(), SIGABRT); 2964 return (0); 2965 } 2966 #endif 2967 2968 /* 2969 * Exit. If we arrive here with a non zero status it's because of a fatal 2970 * error condition (most commonly a relocation error). If the application has 2971 * already had control, then the actual fatal error message will have been 2972 * recorded in the dlerror() message buffer. Print the message before really 2973 * exiting. 2974 */ 2975 void 2976 rtldexit(Lm_list * lml, int status) 2977 { 2978 if (status) { 2979 if (rtld_flags & RT_FL_APPLIC) { 2980 /* 2981 * If the error buffer has been used, write out all 2982 * pending messages - lasterr is simply a pointer to 2983 * the last message in this buffer. However, if the 2984 * buffer couldn't be created at all, lasterr points 2985 * to a constant error message string. 2986 */ 2987 if (*errbuf) { 2988 char *errptr = errbuf; 2989 char *errend = errbuf + ERRSIZE; 2990 2991 while ((errptr < errend) && *errptr) { 2992 size_t size = strlen(errptr); 2993 (void) write(2, errptr, size); 2994 (void) write(2, MSG_ORIG(MSG_STR_NL), 2995 MSG_STR_NL_SIZE); 2996 errptr += (size + 1); 2997 } 2998 } 2999 if (lasterr && ((lasterr < errbuf) || 3000 (lasterr > (errbuf + ERRSIZE)))) { 3001 (void) write(2, lasterr, strlen(lasterr)); 3002 (void) write(2, MSG_ORIG(MSG_STR_NL), 3003 MSG_STR_NL_SIZE); 3004 } 3005 } 3006 leave(lml, 0); 3007 (void) _lwp_kill(_lwp_self(), killsig); 3008 } 3009 _exit(status); 3010 } 3011 3012 /* 3013 * Routines to co-ordinate the opening of /dev/zero and /proc. 3014 * dz_fd is exported for possible use by libld.so, and to insure it gets 3015 * closed on leaving ld.so.1. 3016 */ 3017 int dz_fd = FD_UNAVAIL; 3018 3019 void 3020 dz_init(int fd) 3021 { 3022 dz_fd = fd; 3023 } 3024 3025 3026 /* 3027 * mmap() a page from MAP_ANON 3028 * 3029 * Note: MAP_ANON is only on Solaris8++, we use this routine to 3030 * not only mmap(MAP_ANON) but to also probe if it is available 3031 * on the current OS. 3032 */ 3033 Am_ret 3034 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags) 3035 { 3036 #if defined(MAP_ANON) 3037 static int noanon = 0; 3038 caddr_t va; 3039 3040 if (noanon == 0) { 3041 if ((va = (caddr_t)mmap(*addr, len, prot, 3042 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 3043 *addr = va; 3044 return (AM_OK); 3045 } 3046 3047 if ((errno != EBADF) && (errno != EINVAL)) { 3048 int err = errno; 3049 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3050 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3051 return (AM_ERROR); 3052 } else 3053 noanon = 1; 3054 } 3055 #endif 3056 return (AM_NOSUP); 3057 } 3058 3059 /* 3060 * Map anonymous memory from /dev/zero, or via MAP_ANON. 3061 * 3062 * (MAP_ANON only appears on Solaris 8, so we need fall-back 3063 * behavior for older systems.) 3064 */ 3065 caddr_t 3066 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3067 { 3068 caddr_t va; 3069 int err; 3070 Am_ret amret; 3071 3072 amret = anon_map(lml, &addr, len, prot, flags); 3073 3074 if (amret == AM_OK) 3075 return (addr); 3076 if (amret == AM_ERROR) 3077 return (MAP_FAILED); 3078 3079 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 3080 3081 if (dz_fd == FD_UNAVAIL) { 3082 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 3083 O_RDONLY)) == FD_UNAVAIL) { 3084 err = errno; 3085 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3086 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3087 return (MAP_FAILED); 3088 } 3089 } 3090 3091 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3092 err = errno; 3093 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3094 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3095 } 3096 return (va); 3097 } 3098 3099 static int pr_fd = FD_UNAVAIL; 3100 3101 int 3102 pr_open(Lm_list *lml) 3103 { 3104 char proc[16]; 3105 3106 if (pr_fd == FD_UNAVAIL) { 3107 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3108 (int)getpid()); 3109 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3110 int err = errno; 3111 3112 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3113 strerror(err)); 3114 } 3115 } 3116 return (pr_fd); 3117 } 3118 3119 static int nu_fd = FD_UNAVAIL; 3120 3121 caddr_t 3122 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3123 { 3124 caddr_t va; 3125 int err; 3126 3127 if (nu_fd == FD_UNAVAIL) { 3128 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3129 O_RDONLY)) == FD_UNAVAIL) { 3130 err = errno; 3131 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3132 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3133 return (MAP_FAILED); 3134 } 3135 } 3136 3137 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3138 MAP_FAILED) { 3139 err = errno; 3140 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3141 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3142 } 3143 return (va); 3144 } 3145 3146 /* 3147 * Generic entry point from user code - simply grabs a lock, and bumps the 3148 * entrance count. 3149 */ 3150 int 3151 enter(int flags) 3152 { 3153 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3154 if (!thr_flg_nolock) 3155 (void) rt_mutex_lock(&rtldlock); 3156 if (rtld_flags & RT_FL_OPERATION) 3157 ld_entry_cnt++; 3158 return (1); 3159 } 3160 return (0); 3161 } 3162 3163 /* 3164 * Determine whether a search path has been used. 3165 */ 3166 static void 3167 is_path_used(Lm_list *lml, Word unref, int *nl, Pnode *pnp, const char *obj) 3168 { 3169 for (; pnp; pnp = pnp->p_next) { 3170 const char *fmt, *name; 3171 3172 if ((pnp->p_len == 0) || (pnp->p_orig & PN_FLG_USED)) 3173 continue; 3174 3175 /* 3176 * If this pathname originated from an expanded token, use the 3177 * original for any diagnostic output. 3178 */ 3179 if ((name = pnp->p_oname) == 0) 3180 name = pnp->p_name; 3181 3182 if (unref == 0) { 3183 if ((*nl)++ == 0) 3184 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3185 DBG_CALL(Dbg_unused_path(lml, name, pnp->p_orig, 3186 (pnp->p_orig & PN_FLG_DUPLICAT), obj)); 3187 continue; 3188 } 3189 3190 /* 3191 * For now, disable any unused search path processing that has 3192 * been triggered for ldd(1). 3193 */ 3194 if (unref) 3195 continue; 3196 3197 if (pnp->p_orig & LA_SER_LIBPATH) { 3198 if (pnp->p_orig & LA_SER_CONFIG) { 3199 if (pnp->p_orig & PN_FLG_DUPLICAT) 3200 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3201 else 3202 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3203 } else { 3204 if (pnp->p_orig & PN_FLG_DUPLICAT) 3205 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3206 else 3207 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3208 } 3209 } else if (pnp->p_orig & LA_SER_RUNPATH) { 3210 fmt = MSG_INTL(MSG_USD_RUNPATH); 3211 } else 3212 continue; 3213 3214 if ((*nl)++ == 0) 3215 (void) printf(MSG_ORIG(MSG_STR_NL)); 3216 (void) printf(fmt, name, obj); 3217 } 3218 } 3219 3220 /* 3221 * Generate diagnostics as to whether an object has been used. A symbolic 3222 * reference that gets bound to an object marks it as used. Dependencies that 3223 * are unused when RTLD_NOW is in effect should be removed from future builds 3224 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3225 * candidates for lazy-loading. 3226 * 3227 * Unreferenced objects identify objects that are defined as dependencies but 3228 * are unreferenced by the caller. These unreferenced objects may however be 3229 * referenced by other objects within the process, and therefore don't qualify 3230 * as completely unused. They are still an unnecessary overhead. 3231 * 3232 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3233 * debugging. 3234 */ 3235 void 3236 unused(Lm_list *lml) 3237 { 3238 Rt_map *lmp; 3239 int nl = 0; 3240 Word unref, unuse; 3241 3242 /* 3243 * If we're not tracing unused references or dependencies, or debugging 3244 * there's nothing to do. 3245 */ 3246 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3247 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3248 3249 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3250 return; 3251 3252 /* 3253 * Detect unused global search paths. 3254 */ 3255 if (rpl_libdirs) 3256 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3257 if (prm_libdirs) 3258 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3259 3260 nl = 0; 3261 lmp = lml->lm_head; 3262 if (RLIST(lmp)) 3263 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3264 3265 /* 3266 * Traverse the link-maps looking for unreferenced or unused 3267 * dependencies. Ignore the first object on a link-map list, as this 3268 * is always used. 3269 */ 3270 nl = 0; 3271 for (lmp = (Rt_map *)NEXT(lmp); lmp; lmp = (Rt_map *)NEXT(lmp)) { 3272 /* 3273 * Determine if this object contains any runpaths that have 3274 * not been used. 3275 */ 3276 if (RLIST(lmp)) 3277 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3278 3279 /* 3280 * If tracing unreferenced objects, or under debugging, 3281 * determine whether any of this objects callers haven't 3282 * referenced it. 3283 */ 3284 if (unref || DBG_ENABLED) { 3285 Bnd_desc *bdp; 3286 Aliste idx; 3287 3288 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3289 Rt_map *clmp; 3290 3291 if (bdp->b_flags & BND_REFER) 3292 continue; 3293 3294 clmp = bdp->b_caller; 3295 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3296 continue; 3297 3298 /* BEGIN CSTYLED */ 3299 if (nl++ == 0) { 3300 if (unref) 3301 (void) printf(MSG_ORIG(MSG_STR_NL)); 3302 else 3303 DBG_CALL(Dbg_util_nl(lml, 3304 DBG_NL_STD)); 3305 } 3306 3307 if (unref) 3308 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3309 NAME(lmp), NAME(clmp)); 3310 else 3311 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3312 /* END CSTYLED */ 3313 } 3314 } 3315 3316 /* 3317 * If tracing unused objects simply display those objects that 3318 * haven't been referenced by anyone. 3319 */ 3320 if (FLAGS1(lmp) & FL1_RT_USED) 3321 continue; 3322 3323 if (nl++ == 0) { 3324 if (unref || unuse) 3325 (void) printf(MSG_ORIG(MSG_STR_NL)); 3326 else 3327 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3328 } 3329 if (CYCGROUP(lmp)) { 3330 if (unref || unuse) 3331 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3332 NAME(lmp), CYCGROUP(lmp)); 3333 else 3334 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3335 CYCGROUP(lmp))); 3336 } else { 3337 if (unref || unuse) 3338 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3339 NAME(lmp)); 3340 else 3341 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3342 } 3343 } 3344 3345 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3346 } 3347 3348 /* 3349 * Initialization routine for the Fmap structure. If the fmap structure is 3350 * already in use, any mapping is released. The structure is then initialized 3351 * in preparation for further use. 3352 */ 3353 void 3354 fmap_setup() 3355 { 3356 #if defined(MAP_ALIGN) 3357 /* 3358 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3359 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3360 * should now be freed. 3361 */ 3362 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3363 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3364 3365 /* 3366 * Providing we haven't determined that this system doesn't support 3367 * MAP_ALIGN, initialize the mapping address with the default segment 3368 * alignment. 3369 */ 3370 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3371 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3372 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3373 } else { 3374 fmap->fm_maddr = 0; 3375 fmap->fm_mflags = MAP_PRIVATE; 3376 } 3377 #else 3378 if (fmap->fm_maddr) 3379 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3380 3381 fmap->fm_maddr = 0; 3382 fmap->fm_mflags = MAP_PRIVATE; 3383 #endif 3384 3385 fmap->fm_msize = FMAP_SIZE; 3386 fmap->fm_hwptr = 0; 3387 } 3388 3389 /* 3390 * Generic cleanup routine called prior to returning control to the user. 3391 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3392 * released, and any locks dropped. 3393 */ 3394 void 3395 leave(Lm_list *lml, int flags) 3396 { 3397 Lm_list *elml = lml; 3398 Rt_map *clmp; 3399 Aliste idx; 3400 3401 /* 3402 * Alert the debuggers that the link-maps are consistent. Note, in the 3403 * case of tearing down a whole link-map list, lml will be null. In 3404 * this case use the main link-map list to test for a notification. 3405 */ 3406 if (elml == 0) 3407 elml = &lml_main; 3408 if (elml->lm_flags & LML_FLG_DBNOTIF) 3409 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3410 3411 /* 3412 * Alert any auditors that the link-maps are consistent. 3413 */ 3414 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3415 audit_activity(clmp, LA_ACT_CONSISTENT); 3416 3417 aplist_delete(elml->lm_actaudit, &idx); 3418 } 3419 3420 if (dz_fd != FD_UNAVAIL) { 3421 (void) close(dz_fd); 3422 dz_fd = FD_UNAVAIL; 3423 } 3424 3425 if (pr_fd != FD_UNAVAIL) { 3426 (void) close(pr_fd); 3427 pr_fd = FD_UNAVAIL; 3428 } 3429 3430 if (nu_fd != FD_UNAVAIL) { 3431 (void) close(nu_fd); 3432 nu_fd = FD_UNAVAIL; 3433 } 3434 3435 fmap_setup(); 3436 3437 /* 3438 * Reinitialize error message pointer, and any overflow indication. 3439 */ 3440 nextptr = errbuf; 3441 prevptr = 0; 3442 3443 /* 3444 * Don't drop our lock if we are running on our link-map list as 3445 * there's little point in doing so since we are single-threaded. 3446 * 3447 * LML_FLG_HOLDLOCK is set for: 3448 * *) The ld.so.1's link-map list. 3449 * *) The auditor's link-map if the environment is 3450 * libc/libthread un-unified. 3451 */ 3452 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3453 return; 3454 3455 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3456 if (!thr_flg_nolock) 3457 (void) rt_mutex_unlock(&rtldlock); 3458 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3459 } 3460 } 3461 3462 int 3463 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3464 { 3465 APlist *calp, *dalp; 3466 Aliste idx1, idx2; 3467 Grp_hdl *ghp1, *ghp2; 3468 3469 /* 3470 * An object can always find symbols within itself. 3471 */ 3472 if (clmp == dlmp) 3473 return (1); 3474 3475 /* 3476 * The search for a singleton must look in every loaded object. 3477 */ 3478 if (slflags & LKUP_SINGLETON) 3479 return (1); 3480 3481 /* 3482 * Don't allow an object to bind to an object that is being deleted 3483 * unless the binder is also being deleted. 3484 */ 3485 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3486 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3487 return (0); 3488 3489 /* 3490 * An object with world access can always bind to an object with global 3491 * visibility. 3492 */ 3493 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3494 return (1); 3495 3496 /* 3497 * An object with local access can only bind to an object that is a 3498 * member of the same group. 3499 */ 3500 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3501 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3502 return (0); 3503 3504 /* 3505 * Traverse the list of groups the caller is a part of. 3506 */ 3507 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3508 /* 3509 * If we're testing for the ability of two objects to bind to 3510 * each other regardless of a specific group, ignore that group. 3511 */ 3512 if (ghp && (ghp1 == ghp)) 3513 continue; 3514 3515 /* 3516 * Traverse the list of groups the destination is a part of. 3517 */ 3518 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3519 Grp_desc *gdp; 3520 Aliste idx3; 3521 3522 if (ghp1 != ghp2) 3523 continue; 3524 3525 /* 3526 * Make sure the relationship between the destination 3527 * and the caller provide symbols for relocation. 3528 * Parents are maintained as callers, but unless the 3529 * destination object was opened with RTLD_PARENT, the 3530 * parent doesn't provide symbols for the destination 3531 * to relocate against. 3532 */ 3533 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3534 if (dlmp != gdp->gd_depend) 3535 continue; 3536 3537 if (gdp->gd_flags & GPD_RELOC) 3538 return (1); 3539 } 3540 } 3541 } 3542 return (0); 3543 } 3544 3545 /* 3546 * Initialize the environ symbol. Traditionally this is carried out by the crt 3547 * code prior to jumping to main. However, init sections get fired before this 3548 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3549 * information. In addition, a process may have multiple link-maps (ld.so.1's 3550 * debugging and preloading objects), and link auditing, and each may need an 3551 * environ variable set. 3552 * 3553 * This routine is called after a relocation() pass, and thus provides for: 3554 * 3555 * o setting environ on the main link-map after the initial application and 3556 * its dependencies have been established. Typically environ lives in the 3557 * application (provided by its crt), but in older applications it might 3558 * be in libc. Who knows what's expected of applications not built on 3559 * Solaris. 3560 * 3561 * o after loading a new shared object. We can add shared objects to various 3562 * link-maps, and any link-map dependencies requiring getopt() require 3563 * their own environ. In addition, lazy loading might bring in the 3564 * supplier of environ (libc used to be a lazy loading candidate) after 3565 * the link-map has been established and other objects are present. 3566 * 3567 * This routine handles all these scenarios, without adding unnecessary overhead 3568 * to ld.so.1. 3569 */ 3570 void 3571 set_environ(Lm_list *lml) 3572 { 3573 Rt_map *dlmp; 3574 Sym *sym; 3575 Slookup sl; 3576 uint_t binfo; 3577 3578 /* 3579 * Initialize the symbol lookup data structure. 3580 */ 3581 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3582 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3583 3584 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo, 0)) { 3585 lml->lm_environ = (char ***)sym->st_value; 3586 3587 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3588 lml->lm_environ = 3589 (char ***)((uintptr_t)lml->lm_environ + 3590 (uintptr_t)ADDR(dlmp)); 3591 *(lml->lm_environ) = (char **)environ; 3592 lml->lm_flags |= LML_FLG_ENVIRON; 3593 } 3594 } 3595 3596 /* 3597 * Determine whether we have a secure executable. Uid and gid information 3598 * can be passed to us via the aux vector, however if these values are -1 3599 * then use the appropriate system call to obtain them. 3600 * 3601 * o If the user is the root they can do anything 3602 * 3603 * o If the real and effective uid's don't match, or the real and 3604 * effective gid's don't match then this is determined to be a `secure' 3605 * application. 3606 * 3607 * This function is called prior to any dependency processing (see _setup.c). 3608 * Any secure setting will remain in effect for the life of the process. 3609 */ 3610 void 3611 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3612 { 3613 #ifdef AT_SUN_AUXFLAGS 3614 if (auxflags != -1) { 3615 if ((auxflags & AF_SUN_SETUGID) != 0) 3616 rtld_flags |= RT_FL_SECURE; 3617 return; 3618 } 3619 #endif 3620 if (uid == (uid_t)-1) 3621 uid = getuid(); 3622 if (uid) { 3623 if (euid == (uid_t)-1) 3624 euid = geteuid(); 3625 if (uid != euid) 3626 rtld_flags |= RT_FL_SECURE; 3627 else { 3628 if (gid == (gid_t)-1) 3629 gid = getgid(); 3630 if (egid == (gid_t)-1) 3631 egid = getegid(); 3632 if (gid != egid) 3633 rtld_flags |= RT_FL_SECURE; 3634 } 3635 } 3636 } 3637 3638 /* 3639 * _REENTRANT code gets errno redefined to a function so provide for return 3640 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3641 * is basically singled threaded. Provide the interface for our dependencies. 3642 */ 3643 #undef errno 3644 #pragma weak _private___errno = ___errno 3645 int * 3646 ___errno() 3647 { 3648 extern int errno; 3649 3650 return (&errno); 3651 } 3652 3653 /* 3654 * The interface with the c library which is supplied through libdl.so.1. 3655 * A non-null argument allows a function pointer array to be passed to us which 3656 * is used to re-initialize the linker libc table. 3657 */ 3658 void 3659 _ld_libc(void * ptr) 3660 { 3661 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3662 } 3663 3664 /* 3665 * Determine whether a symbol name should be demangled. 3666 */ 3667 const char * 3668 demangle(const char *name) 3669 { 3670 if (rtld_flags & RT_FL_DEMANGLE) 3671 return (conv_demangle_name(name)); 3672 else 3673 return (name); 3674 } 3675