xref: /titanic_51/usr/src/cmd/sgs/rtld/common/util.c (revision 60c45ed01d4f99571d468c42f609d11a099fab1e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  *	Copyright (c) 1988 AT&T
24  *	  All Rights Reserved
25  *
26  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 /*
32  * Utility routines for run-time linker.  some are duplicated here from libc
33  * (with different names) to avoid name space collisions.
34  */
35 #include	"_synonyms.h"
36 #include	<stdio.h>
37 #include	<sys/types.h>
38 #include	<sys/mman.h>
39 #include	<sys/lwp.h>
40 #include	<sys/debug.h>
41 #include	<stdarg.h>
42 #include	<fcntl.h>
43 #include	<string.h>
44 #include	<ctype.h>
45 #include	<dlfcn.h>
46 #include	<unistd.h>
47 #include	<stdlib.h>
48 #include	<sys/auxv.h>
49 #include	<debug.h>
50 #include	<conv.h>
51 #include	"_rtld.h"
52 #include	"_audit.h"
53 #include	"_elf.h"
54 #include	"msg.h"
55 
56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int);
57 
58 /*
59  * All error messages go through eprintf().  During process initialization these
60  * messages should be directed to the standard error, however once control has
61  * been passed to the applications code these messages should be stored in an
62  * internal buffer for use with dlerror().  Note, fatal error conditions that
63  * may occur while running the application will still cause a standard error
64  * message, see rtldexit() in this file for details.
65  * The `application' flag serves to indicate the transition between process
66  * initialization and when the applications code is running.
67  */
68 
69 /*
70  * Null function used as place where a debugger can set a breakpoint.
71  */
72 void
73 rtld_db_dlactivity(Lm_list *lml)
74 {
75 	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
76 	    r_debug.rtd_rdebug.r_state));
77 }
78 
79 /*
80  * Null function used as place where debugger can set a pre .init
81  * processing breakpoint.
82  */
83 void
84 rtld_db_preinit(Lm_list *lml)
85 {
86 	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
87 	    r_debug.rtd_rdebug.r_state));
88 }
89 
90 /*
91  * Null function used as place where debugger can set a post .init
92  * processing breakpoint.
93  */
94 void
95 rtld_db_postinit(Lm_list *lml)
96 {
97 	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
98 	    r_debug.rtd_rdebug.r_state));
99 }
100 
101 /*
102  * Debugger Event Notification
103  *
104  * This function centralizes all debugger event notification (ala rtld_db).
105  *
106  * There's a simple intent, focused on insuring the primary link-map control
107  * list (or each link-map list) is consistent, and the indication that objects
108  * have been added or deleted from this list.  Although an RD_ADD and RD_DELETE
109  * event are posted for each of these, most debuggers don't care, as their
110  * view is that these events simply convey an "inconsistent" state.
111  *
112  * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we
113  * enter ld.so.1.
114  *
115  * With auditors, we may be in the process of relocating a collection of
116  * objects, and will leave() ld.so.1 to call the auditor.  At this point we
117  * must indicate an RD_CONSISTENT event, but librtld_db will not report an
118  * object to the debuggers until relocation processing has been completed on it.
119  * To allow for the collection of these objects that are pending relocation, an
120  * RD_ADD event is set after completing a series of relocations on the primary
121  * link-map control list.
122  *
123  * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is
124  * required later (LML_FLG_DBNOTIF):
125  *
126  *  i	the first time we add or delete an object to the primary link-map
127  *	control list.
128  *  ii	the first time we move a secondary link-map control list to the primary
129  *	link-map control list (effectively, this is like adding a group of
130  *	objects to the primary link-map control list).
131  *
132  * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and
133  *
134  *  i	each time we leave the runtime linker.
135  */
136 void
137 rd_event(Lm_list *lml, rd_event_e event, r_state_e state)
138 {
139 	void	(*fptr)(Lm_list *);
140 
141 	switch (event) {
142 	case RD_PREINIT:
143 		fptr = rtld_db_preinit;
144 		break;
145 	case RD_POSTINIT:
146 		fptr = rtld_db_postinit;
147 		break;
148 	case RD_DLACTIVITY:
149 		switch (state) {
150 		case RT_CONSISTENT:
151 			lml->lm_flags &= ~LML_FLG_DBNOTIF;
152 
153 			/*
154 			 * Do we need to send a notification?
155 			 */
156 			if ((rtld_flags & RT_FL_DBNOTIF) == 0)
157 				return;
158 			rtld_flags &= ~RT_FL_DBNOTIF;
159 			break;
160 		case RT_ADD:
161 		case RT_DELETE:
162 			lml->lm_flags |= LML_FLG_DBNOTIF;
163 
164 			/*
165 			 * If we are already in an inconsistent state, no
166 			 * notification is required.
167 			 */
168 			if (rtld_flags & RT_FL_DBNOTIF)
169 				return;
170 			rtld_flags |= RT_FL_DBNOTIF;
171 			break;
172 		};
173 		fptr = rtld_db_dlactivity;
174 		break;
175 	default:
176 		/*
177 		 * RD_NONE - do nothing
178 		 */
179 		break;
180 	};
181 
182 	/*
183 	 * Set event state and call 'notification' function.
184 	 *
185 	 * The debugging clients have previously been told about these
186 	 * notification functions and have set breakpoints on them if they
187 	 * are interested in the notification.
188 	 */
189 	r_debug.rtd_rdebug.r_state = state;
190 	r_debug.rtd_rdebug.r_rdevent = event;
191 	fptr(lml);
192 	r_debug.rtd_rdebug.r_rdevent = RD_NONE;
193 }
194 
195 #if	defined(__sparc) || defined(__x86)
196 /*
197  * Stack Cleanup.
198  *
199  * This function is invoked to 'remove' arguments that were passed in on the
200  * stack.  This is most likely if ld.so.1 was invoked directly.  In that case
201  * we want to remove ld.so.1 as well as it's arguments from the argv[] array.
202  * Which means we then need to slide everything above it on the stack down
203  * accordingly.
204  *
205  * While the stack layout is platform specific - it just so happens that __x86,
206  * and __sparc platforms share the following initial stack layout.
207  *
208  *	!_______________________!  high addresses
209  *	!			!
210  *	!	Information	!
211  *	!	Block		!
212  *	!	(size varies)	!
213  *	!_______________________!
214  *	!	0 word		!
215  *	!_______________________!
216  *	!	Auxiliary	!
217  *	!	vector		!
218  *	!	2 word entries	!
219  *	!			!
220  *	!_______________________!
221  *	!	0 word		!
222  *	!_______________________!
223  *	!	Environment	!
224  *	!	pointers	!
225  *	!	...		!
226  *	!	(one word each)	!
227  *	!_______________________!
228  *	!	0 word		!
229  *	!_______________________!
230  *	!	Argument	! low addresses
231  *	!	pointers	!
232  *	!	Argc words	!
233  *	!_______________________!
234  *	!			!
235  *	!	Argc		!
236  *	!_______________________!
237  *	!	...		!
238  *
239  */
240 static void
241 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt)
242 {
243 	int		ndx;
244 	long		*argc;
245 	char		**oargv, **nargv;
246 	char		**oenvp, **nenvp;
247 	auxv_t		*oauxv, *nauxv;
248 
249 	/*
250 	 * Slide ARGV[] and update argc.  The argv pointer remains the same,
251 	 * however slide the applications arguments over the arguments to
252 	 * ld.so.1.
253 	 */
254 	nargv = &argv[0];
255 	oargv = &argv[rmcnt];
256 
257 	for (ndx = 0; oargv[ndx]; ndx++)
258 		nargv[ndx] = oargv[ndx];
259 	nargv[ndx] = oargv[ndx];
260 
261 	argc = (long *)((uintptr_t)argv - sizeof (long *));
262 	*argc -= rmcnt;
263 
264 	/*
265 	 * Slide ENVP[], and update the environment array pointer.
266 	 */
267 	ndx++;
268 	nenvp = &nargv[ndx];
269 	oenvp = &oargv[ndx];
270 	*envp = nenvp;
271 
272 	for (ndx = 0; oenvp[ndx]; ndx++)
273 		nenvp[ndx] = oenvp[ndx];
274 	nenvp[ndx] = oenvp[ndx];
275 
276 	/*
277 	 * Slide AUXV[], and update the aux vector pointer.
278 	 */
279 	ndx++;
280 	nauxv = (auxv_t *)&nenvp[ndx];
281 	oauxv = (auxv_t *)&oenvp[ndx];
282 	*auxv = nauxv;
283 
284 	for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++)
285 		nauxv[ndx] = oauxv[ndx];
286 	nauxv[ndx] = oauxv[ndx];
287 }
288 #else
289 /*
290  * Verify that the above routine is appropriate for any new platforms.
291  */
292 #error	unsupported architecture!
293 #endif
294 
295 /*
296  * The only command line argument recognized is -e, followed by a runtime
297  * linker environment variable.
298  */
299 int
300 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags,
301     Word *lmtflags, int aout)
302 {
303 	int	ndx;
304 
305 	for (ndx = 1; argv[ndx]; ndx++) {
306 		char	*str;
307 
308 		if (argv[ndx][0] != '-')
309 			break;
310 
311 		if (argv[ndx][1] == '\0') {
312 			ndx++;
313 			break;
314 		}
315 
316 		if (argv[ndx][1] != 'e')
317 			return (1);
318 
319 		if (argv[ndx][2] == '\0') {
320 			ndx++;
321 			if (argv[ndx] == NULL)
322 				return (1);
323 			str = argv[ndx];
324 		} else
325 			str = &argv[ndx][2];
326 
327 		/*
328 		 * If the environment variable starts with LD_, strip the LD_.
329 		 * Otherwise, take things as is.
330 		 */
331 		if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') &&
332 		    (str[3] != '\0'))
333 			str += 3;
334 		if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1)
335 			return (1);
336 	}
337 
338 	/*
339 	 * Make sure an object file has been specified.
340 	 */
341 	if (argv[ndx] == 0)
342 		return (1);
343 
344 	/*
345 	 * Having gotten the arguments, clean ourselves off of the stack.
346 	 */
347 	stack_cleanup(argv, envp, auxv, ndx);
348 	return (0);
349 }
350 
351 /*
352  * Compare function for PathNode AVL tree.
353  */
354 static int
355 pnavl_compare(const void *n1, const void *n2)
356 {
357 	uint_t		hash1, hash2;
358 	const char	*st1, *st2;
359 	int		rc;
360 
361 	hash1 = ((PathNode *)n1)->pn_hash;
362 	hash2 = ((PathNode *)n2)->pn_hash;
363 
364 	if (hash1 > hash2)
365 		return (1);
366 	if (hash1 < hash2)
367 		return (-1);
368 
369 	st1 = ((PathNode *)n1)->pn_name;
370 	st2 = ((PathNode *)n2)->pn_name;
371 
372 	rc = strcmp(st1, st2);
373 	if (rc > 0)
374 		return (1);
375 	if (rc < 0)
376 		return (-1);
377 	return (0);
378 }
379 
380 /*
381  * Determine if a pathname has already been recorded on the full path name
382  * AVL tree.  This tree maintains a node for each path name that ld.so.1 has
383  * successfully loaded.  If the path name does not exist in this AVL tree, then
384  * the next insertion point is deposited in "where".  This value can be used by
385  * fpavl_insert() to expedite the insertion.
386  */
387 Rt_map *
388 fpavl_recorded(Lm_list *lml, const char *name, avl_index_t *where)
389 {
390 	FullPathNode	fpn, *fpnp;
391 	avl_tree_t	*avlt;
392 
393 	/*
394 	 * Create the avl tree if required.
395 	 */
396 	if ((avlt = lml->lm_fpavl) == NULL) {
397 		if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0)
398 			return (0);
399 		avl_create(avlt, pnavl_compare, sizeof (FullPathNode),
400 		    SGSOFFSETOF(FullPathNode, fpn_node.pn_avl));
401 		lml->lm_fpavl = avlt;
402 	}
403 
404 	fpn.fpn_node.pn_name = name;
405 	fpn.fpn_node.pn_hash = sgs_str_hash(name);
406 
407 	if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL)
408 		return (NULL);
409 
410 	return (fpnp->fpn_lmp);
411 }
412 
413 /*
414  * Insert a name into the FullPathNode AVL tree for the link-map list.  The
415  * objects NAME() is the path that would have originally been searched for, and
416  * is therefore the name to associate with any "where" value.  If the object has
417  * a different PATHNAME(), perhaps because it has resolved to a different file
418  * (see fullpath()), then this name will be recorded as a separate FullPathNode
419  * (see load_file()).
420  */
421 int
422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where)
423 {
424 	FullPathNode	*fpnp;
425 
426 	if (where == 0) {
427 		/* LINTED */
428 		Rt_map	*_lmp = fpavl_recorded(lml, name, &where);
429 
430 		/*
431 		 * We better not get a hit now, we do not want duplicates in
432 		 * the tree.
433 		 */
434 		ASSERT(_lmp == 0);
435 	}
436 
437 	/*
438 	 * Insert new node in tree.
439 	 */
440 	if ((fpnp = calloc(sizeof (FullPathNode), 1)) == 0)
441 		return (0);
442 
443 	fpnp->fpn_node.pn_name = name;
444 	fpnp->fpn_node.pn_hash = sgs_str_hash(name);
445 	fpnp->fpn_lmp = lmp;
446 
447 	if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) {
448 		free(fpnp);
449 		return (0);
450 	}
451 
452 	ASSERT(lml->lm_fpavl != NULL);
453 	avl_insert(lml->lm_fpavl, fpnp, where);
454 	return (1);
455 }
456 
457 /*
458  * Remove an object from the FullPath AVL tree.  Note, this is called *before*
459  * the objects link-map is torn down (remove_so), which is where any NAME() and
460  * PATHNAME() strings will be deallocated.
461  */
462 void
463 fpavl_remove(Rt_map *lmp)
464 {
465 	FullPathNode	*fpnp;
466 	Aliste		idx;
467 
468 	for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) {
469 		avl_remove(LIST(lmp)->lm_fpavl, fpnp);
470 		free(fpnp);
471 	}
472 	free(FPNODE(lmp));
473 	FPNODE(lmp) = NULL;
474 }
475 
476 /*
477  * Determine if a pathname has already been recorded on the not-found AVL tree.
478  * This tree maintains a node for each path name that ld.so.1 has explicitly
479  * inspected, but has failed to load during a single ld.so.1 operation.  If the
480  * path name does not exist in this AVL tree, then the next insertion point is
481  * deposited in "where".  This value can be used by nfavl_insert() to expedite
482  * the insertion.
483  */
484 int
485 nfavl_recorded(const char *name, avl_index_t *where)
486 {
487 	PathNode	pn;
488 	avl_tree_t	*avlt;
489 
490 	/*
491 	 * Create the avl tree if required.
492 	 */
493 	if ((avlt = nfavl) == NULL) {
494 		if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0)
495 			return (0);
496 		avl_create(avlt, pnavl_compare, sizeof (PathNode),
497 		    SGSOFFSETOF(PathNode, pn_avl));
498 		nfavl = avlt;
499 	}
500 
501 	pn.pn_name = name;
502 	pn.pn_hash = sgs_str_hash(name);
503 
504 	if (avl_find(avlt, &pn, where) == NULL)
505 		return (0);
506 
507 	return (1);
508 }
509 
510 /*
511  * Insert a name into the not-found AVL tree.
512  */
513 void
514 nfavl_insert(const char *name, avl_index_t where)
515 {
516 	PathNode	*pnp;
517 
518 	if (where == 0) {
519 		/* LINTED */
520 		int	in_nfavl = nfavl_recorded(name, &where);
521 
522 		/*
523 		 * We better not get a hit now, we do not want duplicates in
524 		 * the tree.
525 		 */
526 		ASSERT(in_nfavl == 0);
527 	}
528 
529 	/*
530 	 * Insert new node in tree.
531 	 */
532 	if ((pnp = calloc(sizeof (PathNode), 1)) != 0) {
533 		pnp->pn_name = name;
534 		pnp->pn_hash = sgs_str_hash(name);
535 		avl_insert(nfavl, pnp, where);
536 	}
537 }
538 
539 /*
540  * Prior to calling an object, either via a .plt or through dlsym(), make sure
541  * its .init has fired.  Through topological sorting, ld.so.1 attempts to fire
542  * init's in the correct order, however, this order is typically based on needed
543  * dependencies and non-lazy relocation bindings.  Lazy relocations (.plts) can
544  * still occur and result in bindings that were not captured during topological
545  * sorting.  This routine compensates for this lack of binding information, and
546  * provides for dynamic .init firing.
547  */
548 void
549 is_dep_init(Rt_map *dlmp, Rt_map *clmp)
550 {
551 	Rt_map	**tobj;
552 
553 	/*
554 	 * If the caller is an auditor, and the destination isn't, then don't
555 	 * run any .inits (see comments in load_completion()).
556 	 */
557 	if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) &&
558 	    (LIST(clmp) != LIST(dlmp)))
559 		return;
560 
561 	if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST)))
562 		return;
563 
564 	if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) ==
565 	    (FLG_RT_RELOCED | FLG_RT_INITDONE))
566 		return;
567 
568 	if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) ==
569 	    (FLG_RT_RELOCED | FLG_RT_INITCALL)) {
570 		DBG_CALL(Dbg_util_no_init(dlmp));
571 		return;
572 	}
573 
574 	if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) {
575 		tobj[0] = dlmp;
576 		call_init(tobj, DBG_INIT_DYN);
577 	}
578 }
579 
580 /*
581  * In a threaded environment insure the thread responsible for loading an object
582  * has completed .init processing for that object before any new thread is
583  * allowed to access the object.  This check is only valid with libthread
584  * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes.
585  *
586  * When a new link-map is created, the thread that causes it to be loaded is
587  * identified by THREADID(dlmp).  Compare this with the current thread to
588  * determine if it must be blocked.
589  *
590  * NOTE, there are a number of instances (typically only for .plt processing)
591  * where we must skip this test:
592  *
593  *   .	any thread id of 0 - threads that call thr_exit() may be in this state
594  *	thus we can't deduce what tid they used to be.  Also some of the
595  *	lib/libthread worker threads have this id and must bind (to themselves
596  *	or libc) for libthread to function.
597  *
598  *   .	libthread itself binds to libc, and as libthread is INITFIRST
599  *	libc's .init can't have fired yet.  Luckly libc's .init is not required
600  *	by libthreads binding.
601  *
602  *   .	if the caller is an auditor, and the destination isn't, then don't
603  *	block (see comments in load_completion()).
604  */
605 void
606 is_dep_ready(Rt_map *dlmp, Rt_map *clmp, int what)
607 {
608 	thread_t	tid;
609 
610 	if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) &&
611 	    (LIST(clmp) != LIST(dlmp)))
612 		return;
613 
614 	if ((rtld_flags & RT_FL_CONCUR) &&
615 	    ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) &&
616 	    ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) &&
617 	    ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) {
618 		while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) {
619 			FLAGS1(dlmp) |= FL1_RT_INITWAIT;
620 			DBG_CALL(Dbg_util_wait(clmp, dlmp, what));
621 			(void) rt_cond_wait(CONDVAR(dlmp), &rtldlock);
622 		}
623 	}
624 }
625 
626 /*
627  * Execute .{preinit|init|fini}array sections
628  */
629 void
630 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype)
631 {
632 	int	start, stop, incr, ndx;
633 	uint_t	arraycnt = (uint_t)(arraysz / sizeof (Addr));
634 
635 	if (array == NULL)
636 		return;
637 
638 	/*
639 	 * initarray & preinitarray are walked from beginning to end - while
640 	 * finiarray is walked from end to beginning.
641 	 */
642 	if (shtype == SHT_FINI_ARRAY) {
643 		start = arraycnt - 1;
644 		stop = incr = -1;
645 	} else {
646 		start = 0;
647 		stop = arraycnt;
648 		incr = 1;
649 	}
650 
651 	/*
652 	 * Call the .*array[] entries
653 	 */
654 	for (ndx = start; ndx != stop; ndx += incr) {
655 		void (*fptr)(void) = (void(*)())array[ndx];
656 
657 		DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype));
658 
659 		leave(LIST(lmp));
660 		(*fptr)();
661 		(void) enter();
662 	}
663 }
664 
665 
666 /*
667  * Execute any .init sections.  These are passed to us in an lmp array which
668  * (by default) will have been sorted.
669  */
670 void
671 call_init(Rt_map **tobj, int flag)
672 {
673 	Rt_map		**_tobj, **_nobj;
674 	static List	pending = { NULL, NULL };
675 
676 	/*
677 	 * If we're in the middle of an INITFIRST, this must complete before
678 	 * any new init's are fired.  In this case add the object list to the
679 	 * pending queue and return.  We'll pick up the queue after any
680 	 * INITFIRST objects have their init's fired.
681 	 */
682 	if (rtld_flags & RT_FL_INITFIRST) {
683 		(void) list_append(&pending, tobj);
684 		return;
685 	}
686 
687 	/*
688 	 * Traverse the tobj array firing each objects init.
689 	 */
690 	for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) {
691 		Rt_map	*lmp = *_tobj;
692 		void	(*iptr)() = INIT(lmp);
693 
694 		if (FLAGS(lmp) & FLG_RT_INITCALL)
695 			continue;
696 
697 		FLAGS(lmp) |= FLG_RT_INITCALL;
698 
699 		/*
700 		 * Establish an initfirst state if necessary - no other inits
701 		 * will be fired (because of additional relocation bindings)
702 		 * when in this state.
703 		 */
704 		if (FLAGS(lmp) & FLG_RT_INITFRST)
705 			rtld_flags |= RT_FL_INITFIRST;
706 
707 		if (INITARRAY(lmp) || iptr) {
708 			Aliste		idx;
709 			Bnd_desc 	*bdp;
710 
711 			/*
712 			 * Make sure that all dependencies that have been
713 			 * relocated to are initialized before this objects
714 			 * .init is executed.  This insures that a dependency
715 			 * on an external item that must first be initialized
716 			 * by its associated object is satisfied.
717 			 */
718 			for (APLIST_TRAVERSE(DEPENDS(lmp), idx, bdp)) {
719 				if ((bdp->b_flags & BND_REFER) == 0)
720 					continue;
721 				is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT);
722 			}
723 			DBG_CALL(Dbg_util_call_init(lmp, flag));
724 		}
725 
726 		if (iptr) {
727 			leave(LIST(lmp));
728 			(*iptr)();
729 			(void) enter();
730 		}
731 
732 		call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp,
733 		    SHT_INIT_ARRAY);
734 
735 		if (INITARRAY(lmp) || iptr)
736 			DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE));
737 
738 		/*
739 		 * Set the initdone flag regardless of whether this object
740 		 * actually contains an .init section.  This flag prevents us
741 		 * from processing this section again for an .init and also
742 		 * signifies that a .fini must be called should it exist.
743 		 * Clear the sort field for use in later .fini processing.
744 		 */
745 		FLAGS(lmp) |= FLG_RT_INITDONE;
746 		SORTVAL(lmp) = -1;
747 
748 		/*
749 		 * Wake anyone up who might be waiting on this .init.
750 		 */
751 		if (FLAGS1(lmp) & FL1_RT_INITWAIT) {
752 			DBG_CALL(Dbg_util_broadcast(lmp));
753 			(void) rt_cond_broadcast(CONDVAR(lmp));
754 			FLAGS1(lmp) &= ~FL1_RT_INITWAIT;
755 		}
756 
757 		/*
758 		 * If we're firing an INITFIRST object, and other objects must
759 		 * be fired which are not INITFIRST, make sure we grab any
760 		 * pending objects that might have been delayed as this
761 		 * INITFIRST was processed.
762 		 */
763 		if ((rtld_flags & RT_FL_INITFIRST) &&
764 		    ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) {
765 			Listnode	*lnp;
766 			Rt_map		**pobj;
767 
768 			rtld_flags &= ~RT_FL_INITFIRST;
769 
770 			while ((lnp = pending.head) != NULL) {
771 				if ((pending.head = lnp->next) == NULL)
772 					pending.tail = NULL;
773 				pobj = lnp->data;
774 				free(lnp);
775 
776 				call_init(pobj, DBG_INIT_PEND);
777 			}
778 		}
779 	}
780 	free(tobj);
781 }
782 
783 /*
784  * Function called by atexit(3C).  Calls all .fini sections related with the
785  * mains dependent shared libraries in the order in which the shared libraries
786  * have been loaded.  Skip any .fini defined in the main executable, as this
787  * will be called by crt0 (main was never marked as initdone).
788  */
789 void
790 call_fini(Lm_list * lml, Rt_map ** tobj)
791 {
792 	Rt_map **_tobj;
793 
794 	for (_tobj = tobj; *_tobj != NULL; _tobj++) {
795 		Rt_map		*clmp, * lmp = *_tobj;
796 		Aliste		idx;
797 		Bnd_desc	*bdp;
798 
799 		/*
800 		 * If concurrency checking isn't enabled only fire .fini if
801 		 * .init has completed.  We collect all .fini sections of
802 		 * objects that had their .init collected, but that doesn't
803 		 * mean at the time that the .init had completed.
804 		 */
805 		if ((rtld_flags & RT_FL_CONCUR) ||
806 		    (FLAGS(lmp) & FLG_RT_INITDONE)) {
807 			void	(*fptr)(void) = FINI(lmp);
808 
809 			if (FINIARRAY(lmp) || fptr) {
810 				/*
811 				 * If concurrency checking is enabled make sure
812 				 * this object's .init is completed before
813 				 * calling any .fini.
814 				 */
815 				is_dep_ready(lmp, lmp, DBG_WAIT_FINI);
816 				DBG_CALL(Dbg_util_call_fini(lmp));
817 			}
818 
819 			call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp,
820 			    SHT_FINI_ARRAY);
821 
822 			if (fptr) {
823 				leave(LIST(lmp));
824 				(*fptr)();
825 				(void) enter();
826 			}
827 		}
828 
829 		/*
830 		 * Skip main, this is explicitly called last in atexit_fini().
831 		 */
832 		if (FLAGS(lmp) & FLG_RT_ISMAIN)
833 			continue;
834 
835 		/*
836 		 * Audit `close' operations at this point.  The library has
837 		 * exercised its last instructions (regardless of whether it
838 		 * will be unmapped or not).
839 		 *
840 		 * First call any global auditing.
841 		 */
842 		if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE)
843 			_audit_objclose(&(auditors->ad_list), lmp);
844 
845 		/*
846 		 * Finally determine whether this object has local auditing
847 		 * requirements by inspecting itself and then its dependencies.
848 		 */
849 		if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0)
850 			continue;
851 
852 		if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE)
853 			_audit_objclose(&(AUDITORS(lmp)->ad_list), lmp);
854 
855 		for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) {
856 			clmp = bdp->b_caller;
857 
858 			if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) {
859 				_audit_objclose(&(AUDITORS(clmp)->ad_list),
860 				    lmp);
861 				break;
862 			}
863 		}
864 	}
865 	DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d,
866 	    pltcntu32, pltcntu44, pltcntfull, pltcntfar));
867 
868 	free(tobj);
869 }
870 
871 void
872 atexit_fini()
873 {
874 	Rt_map		**tobj, *lmp;
875 	Lm_list		*lml;
876 	Listnode	*lnp;
877 
878 	(void) enter();
879 
880 	rtld_flags |= RT_FL_ATEXIT;
881 
882 	lml = &lml_main;
883 	lml->lm_flags |= LML_FLG_ATEXIT;
884 	lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
885 	lmp = (Rt_map *)lml->lm_head;
886 
887 	/*
888 	 * Reverse topologically sort the main link-map for .fini execution.
889 	 */
890 	if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
891 	    (tobj != (Rt_map **)S_ERROR))
892 		call_fini(lml, tobj);
893 
894 	/*
895 	 * Add an explicit close to main and ld.so.1.  Although main's .fini is
896 	 * collected in call_fini() to provide for FINITARRAY processing, its
897 	 * audit_objclose is explicitly skipped.  This provides for it to be
898 	 * called last, here.  This is the reverse of the explicit calls to
899 	 * audit_objopen() made in setup().
900 	 */
901 	if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) {
902 		audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head);
903 		audit_objclose(lmp, lmp);
904 	}
905 
906 	/*
907 	 * Now that all .fini code has been run, see what unreferenced objects
908 	 * remain.
909 	 */
910 	unused(lml);
911 
912 	/*
913 	 * Traverse any alternative link-map lists.
914 	 */
915 	for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) {
916 		/*
917 		 * Ignore the base-link-map list, which has already been
918 		 * processed, and the runtime linkers link-map list, which is
919 		 * typically processed last.
920 		 */
921 		if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM))
922 			continue;
923 
924 		if ((lmp = (Rt_map *)lml->lm_head) == 0)
925 			continue;
926 
927 		lml->lm_flags |= LML_FLG_ATEXIT;
928 		lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
929 
930 		/*
931 		 * Reverse topologically sort the link-map for .fini execution.
932 		 */
933 		if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
934 		    (tobj != (Rt_map **)S_ERROR))
935 			call_fini(lml, tobj);
936 
937 		unused(lml);
938 	}
939 
940 	/*
941 	 * Finally reverse topologically sort the runtime linkers link-map for
942 	 * .fini execution.
943 	 */
944 	lml = &lml_rtld;
945 	lml->lm_flags |= LML_FLG_ATEXIT;
946 	lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
947 	lmp = (Rt_map *)lml->lm_head;
948 
949 	if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
950 	    (tobj != (Rt_map **)S_ERROR))
951 		call_fini(lml, tobj);
952 
953 	leave(&lml_main);
954 }
955 
956 
957 /*
958  * This routine is called to complete any runtime linker activity which may have
959  * resulted in objects being loaded.  This is called from all user entry points
960  * and from any internal dl*() requests.
961  */
962 void
963 load_completion(Rt_map *nlmp)
964 {
965 	Rt_map	**tobj = 0;
966 	Lm_list	*nlml;
967 
968 	/*
969 	 * Establish any .init processing.  Note, in a world of lazy loading,
970 	 * objects may have been loaded regardless of whether the users request
971 	 * was fulfilled (i.e., a dlsym() request may have failed to find a
972 	 * symbol but objects might have been loaded during its search).  Thus,
973 	 * any tsorting starts from the nlmp (new link-maps) pointer and not
974 	 * necessarily from the link-map that may have satisfied the request.
975 	 *
976 	 * Note, the primary link-map has an initialization phase where dynamic
977 	 * .init firing is suppressed.  This provides for a simple and clean
978 	 * handshake with the primary link-maps libc, which is important for
979 	 * establishing uberdata.  In addition, auditors often obtain handles
980 	 * to primary link-map objects as the objects are loaded, so as to
981 	 * inspect the link-map for symbols.  This inspection is allowed without
982 	 * running any code on the primary link-map, as running this code may
983 	 * reenter the auditor, who may not yet have finished its own
984 	 * initialization.
985 	 */
986 	if (nlmp)
987 		nlml = LIST(nlmp);
988 
989 	if (nlmp && nlml->lm_init && ((nlml != &lml_main) ||
990 	    (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
991 		if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init,
992 		    RT_SORT_REV)) == (Rt_map **)S_ERROR)
993 			tobj = 0;
994 	}
995 
996 	/*
997 	 * Make sure any alternative link-map retrieves any external interfaces
998 	 * and initializes threads.
999 	 */
1000 	if (nlmp && (nlml != &lml_main)) {
1001 		(void) rt_get_extern(nlml, nlmp);
1002 		rt_thr_init(nlml);
1003 	}
1004 
1005 	/*
1006 	 * Traverse the list of new link-maps and register any dynamic TLS.
1007 	 * This storage is established for any objects not on the primary
1008 	 * link-map, and for any objects added to the primary link-map after
1009 	 * static TLS has been registered.
1010 	 */
1011 	if (nlmp && nlml->lm_tls && ((nlml != &lml_main) ||
1012 	    (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
1013 		Rt_map	*lmp;
1014 
1015 		for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) {
1016 			if (PTTLS(lmp) && PTTLS(lmp)->p_memsz)
1017 				tls_modaddrem(lmp, TM_FLG_MODADD);
1018 		}
1019 		nlml->lm_tls = 0;
1020 	}
1021 
1022 	/*
1023 	 * Fire any .init's.
1024 	 */
1025 	if (tobj)
1026 		call_init(tobj, DBG_INIT_SORT);
1027 }
1028 
1029 /*
1030  * Append an item to the specified list, and return a pointer to the list
1031  * node created.
1032  */
1033 Listnode *
1034 list_append(List *lst, const void *item)
1035 {
1036 	Listnode	*_lnp;
1037 
1038 	if ((_lnp = malloc(sizeof (Listnode))) == 0)
1039 		return (0);
1040 
1041 	_lnp->data = (void *)item;
1042 	_lnp->next = NULL;
1043 
1044 	if (lst->head == NULL)
1045 		lst->tail = lst->head = _lnp;
1046 	else {
1047 		lst->tail->next = _lnp;
1048 		lst->tail = lst->tail->next;
1049 	}
1050 	return (_lnp);
1051 }
1052 
1053 
1054 /*
1055  * Add an item after specified listnode, and return a pointer to the list
1056  * node created.
1057  */
1058 Listnode *
1059 list_insert(List *lst, const void *item, Listnode *lnp)
1060 {
1061 	Listnode	*_lnp;
1062 
1063 	if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0)
1064 		return (0);
1065 
1066 	_lnp->data = (void *)item;
1067 	_lnp->next = lnp->next;
1068 	if (_lnp->next == NULL)
1069 		lst->tail = _lnp;
1070 	lnp->next = _lnp;
1071 	return (_lnp);
1072 }
1073 
1074 /*
1075  * Prepend an item to the specified list, and return a pointer to the
1076  * list node created.
1077  */
1078 Listnode *
1079 list_prepend(List * lst, const void * item)
1080 {
1081 	Listnode	*_lnp;
1082 
1083 	if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0)
1084 		return (0);
1085 
1086 	_lnp->data = (void *)item;
1087 
1088 	if (lst->head == NULL) {
1089 		_lnp->next = NULL;
1090 		lst->tail = lst->head = _lnp;
1091 	} else {
1092 		_lnp->next = lst->head;
1093 		lst->head = _lnp;
1094 	}
1095 	return (_lnp);
1096 }
1097 
1098 
1099 /*
1100  * Delete a 'listnode' from a list.
1101  */
1102 void
1103 list_delete(List *lst, void *item)
1104 {
1105 	Listnode	*clnp, *plnp;
1106 
1107 	for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) {
1108 		if (item == clnp->data)
1109 			break;
1110 		plnp = clnp;
1111 	}
1112 
1113 	if (clnp == 0)
1114 		return;
1115 
1116 	if (lst->head == clnp)
1117 		lst->head = clnp->next;
1118 	if (lst->tail == clnp)
1119 		lst->tail = plnp;
1120 
1121 	if (plnp)
1122 		plnp->next = clnp->next;
1123 
1124 	free(clnp);
1125 }
1126 
1127 /*
1128  * Append an item to the specified link map control list.
1129  */
1130 void
1131 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp)
1132 {
1133 	Lm_cntl	*lmc;
1134 	int	add = 1;
1135 
1136 	/*
1137 	 * Indicate that this link-map list has a new object.
1138 	 */
1139 	(lml->lm_obj)++;
1140 
1141 	/*
1142 	 * If we're about to add a new object to the main link-map control list,
1143 	 * alert the debuggers that we are about to mess with this list.
1144 	 * Additions of individual objects to the main link-map control list
1145 	 * occur during initial setup as the applications immediate dependencies
1146 	 * are loaded.  Individual objects are also loaded on the main link-map
1147 	 * control list of new alternative link-map control lists.
1148 	 */
1149 	if ((lmco == ALIST_OFF_DATA) &&
1150 	    ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1151 		rd_event(lml, RD_DLACTIVITY, RT_ADD);
1152 
1153 	/* LINTED */
1154 	lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco);
1155 
1156 	/*
1157 	 * A link-map list header points to one of more link-map control lists
1158 	 * (see include/rtld.h).  The initial list, pointed to by lm_cntl, is
1159 	 * the list of relocated objects.  Other lists maintain objects that
1160 	 * are still being analyzed or relocated.  This list provides the core
1161 	 * link-map list information used by all ld.so.1 routines.
1162 	 */
1163 	if (lmc->lc_head == NULL) {
1164 		/*
1165 		 * If this is the first link-map for the given control list,
1166 		 * initialize the list.
1167 		 */
1168 		lmc->lc_head = lmc->lc_tail = lmp;
1169 		add = 0;
1170 
1171 	} else if (FLAGS(lmp) & FLG_RT_OBJINTPO) {
1172 		Rt_map	*tlmp;
1173 
1174 		/*
1175 		 * If this is an interposer then append the link-map following
1176 		 * any other interposers (these are objects that have been
1177 		 * previously preloaded, or were identified with -z interpose).
1178 		 * Interposers can only be inserted on the first link-map
1179 		 * control list, as once relocation has started, interposition
1180 		 * from new interposers can't be guaranteed.
1181 		 *
1182 		 * NOTE: We do not interpose on the head of a list.  This model
1183 		 * evolved because dynamic executables have already been fully
1184 		 * relocated within themselves and thus can't be interposed on.
1185 		 * Nowadays it's possible to have shared objects at the head of
1186 		 * a list, which conceptually means they could be interposed on.
1187 		 * But, shared objects can be created via dldump() and may only
1188 		 * be partially relocated (just relatives), in which case they
1189 		 * are interposable, but are marked as fixed (ET_EXEC).
1190 		 *
1191 		 * Thus we really don't have a clear method of deciding when the
1192 		 * head of a link-map is interposable.  So, to be consistent,
1193 		 * for now only add interposers after the link-map lists head
1194 		 * object.
1195 		 */
1196 		for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp;
1197 		    tlmp = (Rt_map *)NEXT(tlmp)) {
1198 
1199 			if (FLAGS(tlmp) & FLG_RT_OBJINTPO)
1200 				continue;
1201 
1202 			/*
1203 			 * Insert the new link-map before this non-interposer,
1204 			 * and indicate an interposer is found.
1205 			 */
1206 			NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp;
1207 			PREV(lmp) = PREV(tlmp);
1208 
1209 			NEXT(lmp) = (Link_map *)tlmp;
1210 			PREV(tlmp) = (Link_map *)lmp;
1211 
1212 			lmc->lc_flags |= LMC_FLG_REANALYZE;
1213 			add = 0;
1214 			break;
1215 		}
1216 	}
1217 
1218 	/*
1219 	 * Fall through to appending the new link map to the tail of the list.
1220 	 * If we're processing the initial objects of this link-map list, add
1221 	 * them to the backward compatibility list.
1222 	 */
1223 	if (add) {
1224 		NEXT(lmc->lc_tail) = (Link_map *)lmp;
1225 		PREV(lmp) = (Link_map *)lmc->lc_tail;
1226 		lmc->lc_tail = lmp;
1227 	}
1228 
1229 	/*
1230 	 * Having added this link-map to a control list, indicate which control
1231 	 * list the link-map belongs to.  Note, control list information is
1232 	 * always maintained as an offset, as the Alist can be reallocated.
1233 	 */
1234 	CNTL(lmp) = lmco;
1235 
1236 	/*
1237 	 * Indicate if an interposer is found.  Note that the first object on a
1238 	 * link-map can be explicitly defined as an interposer so that it can
1239 	 * provide interposition over direct binding requests.
1240 	 */
1241 	if (FLAGS(lmp) & MSK_RT_INTPOSE)
1242 		lml->lm_flags |= LML_FLG_INTRPOSE;
1243 
1244 	/*
1245 	 * For backward compatibility with debuggers, the link-map list contains
1246 	 * pointers to the main control list.
1247 	 */
1248 	if (lmco == ALIST_OFF_DATA) {
1249 		lml->lm_head = lmc->lc_head;
1250 		lml->lm_tail = lmc->lc_tail;
1251 	}
1252 }
1253 
1254 /*
1255  * Delete an item from the specified link map control list.
1256  */
1257 void
1258 lm_delete(Lm_list *lml, Rt_map *lmp)
1259 {
1260 	Lm_cntl	*lmc;
1261 
1262 	/*
1263 	 * If the control list pointer hasn't been initialized, this object
1264 	 * never got added to a link-map list.
1265 	 */
1266 	if (CNTL(lmp) == 0)
1267 		return;
1268 
1269 	/*
1270 	 * If we're about to delete an object from the main link-map control
1271 	 * list, alert the debuggers that we are about to mess with this list.
1272 	 */
1273 	if ((CNTL(lmp) == ALIST_OFF_DATA) &&
1274 	    ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1275 		rd_event(lml, RD_DLACTIVITY, RT_DELETE);
1276 
1277 	/* LINTED */
1278 	lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp));
1279 
1280 	if (lmc->lc_head == lmp)
1281 		lmc->lc_head = (Rt_map *)NEXT(lmp);
1282 	else
1283 		NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp);
1284 
1285 	if (lmc->lc_tail == lmp)
1286 		lmc->lc_tail = (Rt_map *)PREV(lmp);
1287 	else
1288 		PREV((Rt_map *)NEXT(lmp)) = PREV(lmp);
1289 
1290 	/*
1291 	 * For backward compatibility with debuggers, the link-map list contains
1292 	 * pointers to the main control list.
1293 	 */
1294 	if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) {
1295 		lml->lm_head = lmc->lc_head;
1296 		lml->lm_tail = lmc->lc_tail;
1297 	}
1298 
1299 	/*
1300 	 * Indicate we have one less object on this control list.
1301 	 */
1302 	(lml->lm_obj)--;
1303 }
1304 
1305 /*
1306  * Move a link-map control list to another.  Objects that are being relocated
1307  * are maintained on secondary control lists.  Once their relocation is
1308  * complete, the entire list is appended to the previous control list, as this
1309  * list must have been the trigger for generating the new control list.
1310  */
1311 void
1312 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc)
1313 {
1314 	Rt_map	*lmp;
1315 
1316 	/*
1317 	 * If we're about to add a new family of objects to the main link-map
1318 	 * control list, alert the debuggers that we are about to mess with this
1319 	 * list.  Additions of object families to the main link-map control
1320 	 * list occur during lazy loading, filtering and dlopen().
1321 	 */
1322 	if ((plmco == ALIST_OFF_DATA) &&
1323 	    ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1324 		rd_event(lml, RD_DLACTIVITY, RT_ADD);
1325 
1326 	DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco));
1327 
1328 	/*
1329 	 * Indicate each new link-map has been moved to the previous link-map
1330 	 * control list.
1331 	 */
1332 	for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp))
1333 		CNTL(lmp) = plmco;
1334 
1335 	/*
1336 	 * Move the new link-map control list, to the callers link-map control
1337 	 * list.
1338 	 */
1339 	if (plmc->lc_head == 0) {
1340 		plmc->lc_head = nlmc->lc_head;
1341 		PREV(nlmc->lc_head) = 0;
1342 	} else {
1343 		NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head;
1344 		PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail;
1345 	}
1346 
1347 	plmc->lc_tail = nlmc->lc_tail;
1348 	nlmc->lc_head = nlmc->lc_tail = 0;
1349 
1350 	/*
1351 	 * For backward compatibility with debuggers, the link-map list contains
1352 	 * pointers to the main control list.
1353 	 */
1354 	if (plmco == ALIST_OFF_DATA) {
1355 		lml->lm_head = plmc->lc_head;
1356 		lml->lm_tail = plmc->lc_tail;
1357 	}
1358 }
1359 
1360 /*
1361  * Environment variables can have a variety of defined permutations, and thus
1362  * the following infrastructure exists to allow this variety and to select the
1363  * required definition.
1364  *
1365  * Environment variables can be defined as 32- or 64-bit specific, and if so
1366  * they will take precedence over any instruction set neutral form.  Typically
1367  * this is only useful when the environment value is an informational string.
1368  *
1369  * Environment variables may be obtained from the standard user environment or
1370  * from a configuration file.  The latter provides a fallback if no user
1371  * environment setting is found, and can take two forms:
1372  *
1373  *  .	a replaceable definition - this will be used if no user environment
1374  *	setting has been seen, or
1375  *
1376  *  .	an permanent definition - this will be used no matter what user
1377  *	environment setting is seen.  In the case of list variables it will be
1378  *	appended to any process environment setting seen.
1379  *
1380  * Environment variables can be defined without a value (ie. LD_XXXX=) so as to
1381  * override any replaceable environment variables from a configuration file.
1382  */
1383 static	u_longlong_t		rplgen;		/* replaceable generic */
1384 						/*	variables */
1385 static	u_longlong_t		rplisa;		/* replaceable ISA specific */
1386 						/*	variables */
1387 static	u_longlong_t		prmgen;		/* permanent generic */
1388 						/*	variables */
1389 static	u_longlong_t		prmisa;		/* permanent ISA specific */
1390 						/*	variables */
1391 
1392 /*
1393  * Classify an environment variables type.
1394  */
1395 #define	ENV_TYP_IGNORE		0x1		/* ignore - variable is for */
1396 						/*	the wrong ISA */
1397 #define	ENV_TYP_ISA		0x2		/* variable is ISA specific */
1398 #define	ENV_TYP_CONFIG		0x4		/* variable obtained from a */
1399 						/*	config file */
1400 #define	ENV_TYP_PERMANT		0x8		/* variable is permanent */
1401 
1402 /*
1403  * Identify all environment variables.
1404  */
1405 #define	ENV_FLG_AUDIT		0x0000000001ULL
1406 #define	ENV_FLG_AUDIT_ARGS	0x0000000002ULL
1407 #define	ENV_FLG_BIND_NOW	0x0000000004ULL
1408 #define	ENV_FLG_BIND_NOT	0x0000000008ULL
1409 #define	ENV_FLG_BINDINGS	0x0000000010ULL
1410 #define	ENV_FLG_CONCURRENCY	0x0000000020ULL
1411 #define	ENV_FLG_CONFGEN		0x0000000040ULL
1412 #define	ENV_FLG_CONFIG		0x0000000080ULL
1413 #define	ENV_FLG_DEBUG		0x0000000100ULL
1414 #define	ENV_FLG_DEBUG_OUTPUT	0x0000000200ULL
1415 #define	ENV_FLG_DEMANGLE	0x0000000400ULL
1416 #define	ENV_FLG_FLAGS		0x0000000800ULL
1417 #define	ENV_FLG_INIT		0x0000001000ULL
1418 #define	ENV_FLG_LIBPATH		0x0000002000ULL
1419 #define	ENV_FLG_LOADAVAIL	0x0000004000ULL
1420 #define	ENV_FLG_LOADFLTR	0x0000008000ULL
1421 #define	ENV_FLG_NOAUDIT		0x0000010000ULL
1422 #define	ENV_FLG_NOAUXFLTR	0x0000020000ULL
1423 #define	ENV_FLG_NOBAPLT		0x0000040000ULL
1424 #define	ENV_FLG_NOCONFIG	0x0000080000ULL
1425 #define	ENV_FLG_NODIRCONFIG	0x0000100000ULL
1426 #define	ENV_FLG_NODIRECT	0x0000200000ULL
1427 #define	ENV_FLG_NOENVCONFIG	0x0000400000ULL
1428 #define	ENV_FLG_NOLAZY		0x0000800000ULL
1429 #define	ENV_FLG_NOOBJALTER	0x0001000000ULL
1430 #define	ENV_FLG_NOVERSION	0x0002000000ULL
1431 #define	ENV_FLG_PRELOAD		0x0004000000ULL
1432 #define	ENV_FLG_PROFILE		0x0008000000ULL
1433 #define	ENV_FLG_PROFILE_OUTPUT	0x0010000000ULL
1434 #define	ENV_FLG_SIGNAL		0x0020000000ULL
1435 #define	ENV_FLG_TRACE_OBJS	0x0040000000ULL
1436 #define	ENV_FLG_TRACE_PTHS	0x0080000000ULL
1437 #define	ENV_FLG_UNREF		0x0100000000ULL
1438 #define	ENV_FLG_UNUSED		0x0200000000ULL
1439 #define	ENV_FLG_VERBOSE		0x0400000000ULL
1440 #define	ENV_FLG_WARN		0x0800000000ULL
1441 #define	ENV_FLG_NOFLTCONFIG	0x1000000000ULL
1442 #define	ENV_FLG_BIND_LAZY	0x2000000000ULL
1443 #define	ENV_FLG_NOUNRESWEAK	0x4000000000ULL
1444 #define	ENV_FLG_NOPAREXT	0x8000000000ULL
1445 
1446 #ifdef	SIEBEL_DISABLE
1447 #define	ENV_FLG_FIX_1		0x8000000000ULL
1448 #endif
1449 
1450 #define	SEL_REPLACE		0x0001
1451 #define	SEL_PERMANT		0x0002
1452 #define	SEL_ACT_RT		0x0100	/* setting rtld_flags */
1453 #define	SEL_ACT_RT2		0x0200	/* setting rtld_flags2 */
1454 #define	SEL_ACT_STR		0x0400	/* setting string value */
1455 #define	SEL_ACT_LML		0x0800	/* setting lml_flags */
1456 #define	SEL_ACT_LMLT		0x1000	/* setting lml_tflags */
1457 #define	SEL_ACT_SPEC_1		0x2000	/* For FLG_{FLAGS, LIBPATH} */
1458 #define	SEL_ACT_SPEC_2		0x4000	/* need special handling */
1459 
1460 /*
1461  * Pattern match an LD_XXXX environment variable.  s1 points to the XXXX part
1462  * and len specifies its length (comparing a strings length before the string
1463  * itself speed things up).  s2 points to the token itself which has already
1464  * had any leading white-space removed.
1465  */
1466 static void
1467 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags,
1468     Word *lmtflags, uint_t env_flags, int aout)
1469 {
1470 	u_longlong_t	variable = 0;
1471 	ushort_t	select = 0;
1472 	const char	**str;
1473 	Word		val = 0;
1474 
1475 	/*
1476 	 * Determine whether we're dealing with a replaceable or permanent
1477 	 * string.
1478 	 */
1479 	if (env_flags & ENV_TYP_PERMANT) {
1480 		/*
1481 		 * If the string is from a configuration file and defined as
1482 		 * permanent, assign it as permanent.
1483 		 */
1484 		select |= SEL_PERMANT;
1485 	} else
1486 		select |= SEL_REPLACE;
1487 
1488 	/*
1489 	 * Parse the variable given.
1490 	 *
1491 	 * The LD_AUDIT family.
1492 	 */
1493 	if (*s1 == 'A') {
1494 		if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1,
1495 		    MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) {
1496 			/*
1497 			 * Replaceable and permanent audit objects can exist.
1498 			 */
1499 			select |= SEL_ACT_STR;
1500 			if (select & SEL_REPLACE)
1501 				str = &rpl_audit;
1502 			else {
1503 				str = &prm_audit;
1504 				rpl_audit = 0;
1505 			}
1506 			variable = ENV_FLG_AUDIT;
1507 		} else if ((len == MSG_LD_AUDIT_ARGS_SIZE) &&
1508 		    (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS),
1509 		    MSG_LD_AUDIT_ARGS_SIZE) == 0)) {
1510 			/*
1511 			 * A specialized variable for plt_exit() use, not
1512 			 * documented for general use.
1513 			 */
1514 			select |= SEL_ACT_SPEC_2;
1515 			variable = ENV_FLG_AUDIT_ARGS;
1516 		}
1517 	}
1518 	/*
1519 	 * The LD_BIND family and LD_BREADTH (historic).
1520 	 */
1521 	else if (*s1 == 'B') {
1522 		if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1,
1523 		    MSG_ORIG(MSG_LD_BIND_LAZY),
1524 		    MSG_LD_BIND_LAZY_SIZE) == 0)) {
1525 			select |= SEL_ACT_RT2;
1526 			val = RT_FL2_BINDLAZY;
1527 			variable = ENV_FLG_BIND_LAZY;
1528 		} else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1,
1529 		    MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) {
1530 			select |= SEL_ACT_RT2;
1531 			val = RT_FL2_BINDNOW;
1532 			variable = ENV_FLG_BIND_NOW;
1533 		} else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1,
1534 		    MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) {
1535 			/*
1536 			 * Another trick, enabled to help debug AOUT
1537 			 * applications under BCP, but not documented for
1538 			 * general use.
1539 			 */
1540 			select |= SEL_ACT_RT;
1541 			val = RT_FL_NOBIND;
1542 			variable = ENV_FLG_BIND_NOT;
1543 		} else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1,
1544 		    MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) {
1545 			/*
1546 			 * This variable is simply for backward compatibility.
1547 			 * If this and LD_DEBUG are both specified, only one of
1548 			 * the strings is going to get processed.
1549 			 */
1550 			select |= SEL_ACT_SPEC_2;
1551 			variable = ENV_FLG_BINDINGS;
1552 #ifndef LD_BREADTH_DISABLED
1553 		} else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1,
1554 		    MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) {
1555 			/*
1556 			 * Besides some old patches this is no longer available.
1557 			 */
1558 			rtld_flags |= RT_FL_BREADTH;
1559 			return;
1560 #endif
1561 		}
1562 	}
1563 	/*
1564 	 * LD_CONCURRENCY and LD_CONFIG family.
1565 	 */
1566 	else if (*s1 == 'C') {
1567 		if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1,
1568 		    MSG_ORIG(MSG_LD_CONCURRENCY),
1569 		    MSG_LD_CONCURRENCY_SIZE) == 0)) {
1570 			/*
1571 			 * Waiting in the wings, as concurrency checking isn't
1572 			 * yet enabled.
1573 			 */
1574 			select |= SEL_ACT_SPEC_2;
1575 			variable = ENV_FLG_CONCURRENCY;
1576 		} else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1,
1577 		    MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) {
1578 			/*
1579 			 * Set by crle(1) to indicate it's building a
1580 			 * configuration file, not documented for general use.
1581 			 */
1582 			select |= SEL_ACT_SPEC_2;
1583 			variable = ENV_FLG_CONFGEN;
1584 		} else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1,
1585 		    MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) {
1586 			/*
1587 			 * Secure applications must use a default configuration
1588 			 * file.  A setting from a configuration file doesn't
1589 			 * make sense (given we must be reading a configuration
1590 			 * file to have gotten this).
1591 			 */
1592 			if ((rtld_flags & RT_FL_SECURE) ||
1593 			    (env_flags & ENV_TYP_CONFIG))
1594 				return;
1595 			select |= SEL_ACT_STR;
1596 			str = &config->c_name;
1597 			variable = ENV_FLG_CONFIG;
1598 		}
1599 	}
1600 	/*
1601 	 * The LD_DEBUG family and LD_DEMANGLE.
1602 	 */
1603 	else if (*s1 == 'D') {
1604 		if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1,
1605 		    MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) {
1606 			select |= SEL_ACT_STR;
1607 			if (select & SEL_REPLACE)
1608 				str = &rpl_debug;
1609 			else {
1610 				str = &prm_debug;
1611 				rpl_debug = 0;
1612 			}
1613 			variable = ENV_FLG_DEBUG;
1614 		} else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1,
1615 		    MSG_ORIG(MSG_LD_DEBUG_OUTPUT),
1616 		    MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) {
1617 			select |= SEL_ACT_STR;
1618 			str = &dbg_file;
1619 			variable = ENV_FLG_DEBUG_OUTPUT;
1620 		} else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1,
1621 		    MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) {
1622 			select |= SEL_ACT_RT;
1623 			val = RT_FL_DEMANGLE;
1624 			variable = ENV_FLG_DEMANGLE;
1625 		}
1626 	}
1627 	/*
1628 	 * LD_FLAGS - collect the best variable definition.  On completion of
1629 	 * environment variable processing pass the result to ld_flags_env()
1630 	 * where they'll be decomposed and passed back to this routine.
1631 	 */
1632 	else if (*s1 == 'F') {
1633 		if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1,
1634 		    MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) {
1635 			select |= SEL_ACT_SPEC_1;
1636 			if (select & SEL_REPLACE)
1637 				str = &rpl_ldflags;
1638 			else {
1639 				str = &prm_ldflags;
1640 				rpl_ldflags = 0;
1641 			}
1642 			variable = ENV_FLG_FLAGS;
1643 		}
1644 	}
1645 	/*
1646 	 * LD_INIT (internal, used by ldd(1)).
1647 	 */
1648 	else if (*s1 == 'I') {
1649 		if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1,
1650 		    MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) {
1651 			select |= SEL_ACT_LML;
1652 			val = LML_FLG_TRC_INIT;
1653 			variable = ENV_FLG_INIT;
1654 		}
1655 	}
1656 	/*
1657 	 * The LD_LIBRARY_PATH and LD_LOAD families.
1658 	 */
1659 	else if (*s1 == 'L') {
1660 		if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1,
1661 		    MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) {
1662 			select |= SEL_ACT_SPEC_1;
1663 			if (select & SEL_REPLACE)
1664 				str = &rpl_libpath;
1665 			else {
1666 				str = &prm_libpath;
1667 				rpl_libpath = 0;
1668 			}
1669 			variable = ENV_FLG_LIBPATH;
1670 		} else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1,
1671 		    MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) {
1672 			/*
1673 			 * Internal use by crle(1), not documented for general
1674 			 * use.
1675 			 */
1676 			select |= SEL_ACT_LML;
1677 			val = LML_FLG_LOADAVAIL;
1678 			variable = ENV_FLG_LOADAVAIL;
1679 		} else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1,
1680 		    MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) {
1681 			select |= SEL_ACT_SPEC_2;
1682 			variable = ENV_FLG_LOADFLTR;
1683 		}
1684 	}
1685 	/*
1686 	 * The LD_NO family.
1687 	 */
1688 	else if (*s1 == 'N') {
1689 		if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1,
1690 		    MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) {
1691 			select |= SEL_ACT_RT;
1692 			val = RT_FL_NOAUDIT;
1693 			variable = ENV_FLG_NOAUDIT;
1694 		} else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1,
1695 		    MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) {
1696 			select |= SEL_ACT_RT;
1697 			val = RT_FL_NOAUXFLTR;
1698 			variable = ENV_FLG_NOAUXFLTR;
1699 		} else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1,
1700 		    MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) {
1701 			select |= SEL_ACT_RT;
1702 			val = RT_FL_NOBAPLT;
1703 			variable = ENV_FLG_NOBAPLT;
1704 		} else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1,
1705 		    MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) {
1706 			select |= SEL_ACT_RT;
1707 			val = RT_FL_NOCFG;
1708 			variable = ENV_FLG_NOCONFIG;
1709 		} else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1,
1710 		    MSG_ORIG(MSG_LD_NODIRCONFIG),
1711 		    MSG_LD_NODIRCONFIG_SIZE) == 0)) {
1712 			select |= SEL_ACT_RT;
1713 			val = RT_FL_NODIRCFG;
1714 			variable = ENV_FLG_NODIRCONFIG;
1715 		} else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1,
1716 		    MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) {
1717 			select |= SEL_ACT_LMLT;
1718 			val = LML_TFLG_NODIRECT;
1719 			variable = ENV_FLG_NODIRECT;
1720 		} else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1,
1721 		    MSG_ORIG(MSG_LD_NOENVCONFIG),
1722 		    MSG_LD_NOENVCONFIG_SIZE) == 0)) {
1723 			select |= SEL_ACT_RT;
1724 			val = RT_FL_NOENVCFG;
1725 			variable = ENV_FLG_NOENVCONFIG;
1726 		} else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1,
1727 		    MSG_ORIG(MSG_LD_NOFLTCONFIG),
1728 		    MSG_LD_NOFLTCONFIG_SIZE) == 0)) {
1729 			select |= SEL_ACT_RT2;
1730 			val = RT_FL2_NOFLTCFG;
1731 			variable = ENV_FLG_NOFLTCONFIG;
1732 		} else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1,
1733 		    MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) {
1734 			select |= SEL_ACT_LMLT;
1735 			val = LML_TFLG_NOLAZYLD;
1736 			variable = ENV_FLG_NOLAZY;
1737 		} else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1,
1738 		    MSG_ORIG(MSG_LD_NOOBJALTER),
1739 		    MSG_LD_NOOBJALTER_SIZE) == 0)) {
1740 			select |= SEL_ACT_RT;
1741 			val = RT_FL_NOOBJALT;
1742 			variable = ENV_FLG_NOOBJALTER;
1743 		} else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1,
1744 		    MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) {
1745 			select |= SEL_ACT_RT;
1746 			val = RT_FL_NOVERSION;
1747 			variable = ENV_FLG_NOVERSION;
1748 		} else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1,
1749 		    MSG_ORIG(MSG_LD_NOUNRESWEAK),
1750 		    MSG_LD_NOUNRESWEAK_SIZE) == 0)) {
1751 			/*
1752 			 * LD_NOUNRESWEAK (internal, used by ldd(1)).
1753 			 */
1754 			select |= SEL_ACT_LML;
1755 			val = LML_FLG_TRC_NOUNRESWEAK;
1756 			variable = ENV_FLG_NOUNRESWEAK;
1757 		} else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1,
1758 		    MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) {
1759 			select |= SEL_ACT_LML;
1760 			val = LML_FLG_TRC_NOPAREXT;
1761 			variable = ENV_FLG_NOPAREXT;
1762 		}
1763 	}
1764 	/*
1765 	 * LD_ORIGIN.
1766 	 */
1767 	else if (*s1 == 'O') {
1768 #ifndef	EXPAND_RELATIVE
1769 		if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1,
1770 		    MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) {
1771 			/*
1772 			 * Besides some old patches this is no longer required.
1773 			 */
1774 			rtld_flags |= RT_FL_RELATIVE;
1775 		}
1776 #endif
1777 		return;
1778 	}
1779 	/*
1780 	 * LD_PRELOAD and LD_PROFILE family.
1781 	 */
1782 	else if (*s1 == 'P') {
1783 		if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1,
1784 		    MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) {
1785 			select |= SEL_ACT_STR;
1786 			if (select & SEL_REPLACE)
1787 				str = &rpl_preload;
1788 			else  {
1789 				str = &prm_preload;
1790 				rpl_preload = 0;
1791 			}
1792 			variable = ENV_FLG_PRELOAD;
1793 		} else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1,
1794 		    MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) {
1795 			/*
1796 			 * Only one user library can be profiled at a time.
1797 			 */
1798 			select |= SEL_ACT_SPEC_2;
1799 			variable = ENV_FLG_PROFILE;
1800 		} else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1,
1801 		    MSG_ORIG(MSG_LD_PROFILE_OUTPUT),
1802 		    MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) {
1803 			/*
1804 			 * Only one user library can be profiled at a time.
1805 			 */
1806 			select |= SEL_ACT_STR;
1807 			str = &profile_out;
1808 			variable = ENV_FLG_PROFILE_OUTPUT;
1809 		}
1810 	}
1811 	/*
1812 	 * LD_SIGNAL.
1813 	 */
1814 	else if (*s1 == 'S') {
1815 		if (rtld_flags & RT_FL_SECURE)
1816 			return;
1817 		if ((len == MSG_LD_SIGNAL_SIZE) &&
1818 		    (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL),
1819 		    MSG_LD_SIGNAL_SIZE) == 0)) {
1820 			select |= SEL_ACT_SPEC_2;
1821 			variable = ENV_FLG_SIGNAL;
1822 		}
1823 	}
1824 	/*
1825 	 * The LD_TRACE family (internal, used by ldd(1)).  This definition is
1826 	 * the key to enabling all other ldd(1) specific environment variables.
1827 	 * In case an auditor is called, which in turn might exec(2) a
1828 	 * subprocess, this variable is disabled, so that any subprocess
1829 	 * escapes ldd(1) processing.
1830 	 */
1831 	else if (*s1 == 'T') {
1832 		if (((len == MSG_LD_TRACE_OBJS_SIZE) &&
1833 		    (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS),
1834 		    MSG_LD_TRACE_OBJS_SIZE) == 0)) ||
1835 		    ((len == MSG_LD_TRACE_OBJS_E_SIZE) &&
1836 		    (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E),
1837 		    MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) ||
1838 		    ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A),
1839 		    MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) {
1840 			char	*s0 = (char *)s1;
1841 
1842 			select |= SEL_ACT_SPEC_2;
1843 			variable = ENV_FLG_TRACE_OBJS;
1844 
1845 #if	defined(__sparc) || defined(__x86)
1846 			/*
1847 			 * The simplest way to "disable" this variable is to
1848 			 * truncate this string to "LD_'\0'". This string is
1849 			 * ignored by any ld.so.1 environment processing.
1850 			 * Use of such interfaces as unsetenv(3c) are overkill,
1851 			 * and would drag too much libc implementation detail
1852 			 * into ld.so.1.
1853 			 */
1854 			*s0 = '\0';
1855 #else
1856 /*
1857  * Verify that the above write is appropriate for any new platforms.
1858  */
1859 #error	unsupported architecture!
1860 #endif
1861 		} else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1,
1862 		    MSG_ORIG(MSG_LD_TRACE_PTHS),
1863 		    MSG_LD_TRACE_PTHS_SIZE) == 0)) {
1864 			select |= SEL_ACT_LML;
1865 			val = LML_FLG_TRC_SEARCH;
1866 			variable = ENV_FLG_TRACE_PTHS;
1867 		}
1868 	}
1869 	/*
1870 	 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)).
1871 	 */
1872 	else if (*s1 == 'U') {
1873 		if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1,
1874 		    MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) {
1875 			select |= SEL_ACT_LML;
1876 			val = LML_FLG_TRC_UNREF;
1877 			variable = ENV_FLG_UNREF;
1878 		} else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1,
1879 		    MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) {
1880 			select |= SEL_ACT_LML;
1881 			val = LML_FLG_TRC_UNUSED;
1882 			variable = ENV_FLG_UNUSED;
1883 		}
1884 	}
1885 	/*
1886 	 * LD_VERBOSE (internal, used by ldd(1)).
1887 	 */
1888 	else if (*s1 == 'V') {
1889 		if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1,
1890 		    MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) {
1891 			select |= SEL_ACT_LML;
1892 			val = LML_FLG_TRC_VERBOSE;
1893 			variable = ENV_FLG_VERBOSE;
1894 		}
1895 	}
1896 	/*
1897 	 * LD_WARN (internal, used by ldd(1)).
1898 	 */
1899 	else if (*s1 == 'W') {
1900 		if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1,
1901 		    MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) {
1902 			select |= SEL_ACT_LML;
1903 			val = LML_FLG_TRC_WARN;
1904 			variable = ENV_FLG_WARN;
1905 		}
1906 #ifdef	SIEBEL_DISABLE
1907 	}
1908 	/*
1909 	 * LD__FIX__ (undocumented, enable future technology that can't be
1910 	 * delivered in a patch release).
1911 	 */
1912 	else if (*s1 == '_') {
1913 		if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1,
1914 		    MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) {
1915 			select |= SEL_ACT_RT;
1916 			val = RT_FL_DISFIX_1;
1917 			variable = ENV_FLG_FIX_1;
1918 		}
1919 #endif
1920 	}
1921 	if (variable == 0)
1922 		return;
1923 
1924 	/*
1925 	 * If the variable is already processed with ISA specific variable,
1926 	 * no further processing needed.
1927 	 */
1928 	if (((select & SEL_REPLACE) && (rplisa & variable)) ||
1929 	    ((select & SEL_PERMANT) && (prmisa & variable)))
1930 		return;
1931 
1932 	/*
1933 	 * Now mark the appropriate variables.
1934 	 * If the replaceable variable is already set, then the
1935 	 * process environment variable must be set. Any replaceable
1936 	 * variable specified in a configuration file can be ignored.
1937 	 */
1938 	if (env_flags & ENV_TYP_ISA) {
1939 		/*
1940 		 * This is ISA setting. We do the setting
1941 		 * even if s2 is NULL.
1942 		 * If s2 is NULL, we might need to undo
1943 		 * the setting.
1944 		 */
1945 		if (select & SEL_REPLACE) {
1946 			if (rplisa & variable)
1947 				return;
1948 			rplisa |= variable;
1949 		} else {
1950 			prmisa |= variable;
1951 		}
1952 	} else if (s2) {
1953 		/*
1954 		 * This is non0-ISA setting
1955 		 */
1956 		if (select & SEL_REPLACE) {
1957 			if (rplgen & variable)
1958 				return;
1959 			rplgen |= variable;
1960 		} else
1961 			prmgen |= variable;
1962 	} else
1963 		/*
1964 		 * This is non-ISA setting which
1965 		 * can be ignored.
1966 		 */
1967 		return;
1968 
1969 	/*
1970 	 * Now perform the setting.
1971 	 */
1972 	if (select & SEL_ACT_RT) {
1973 		if (s2)
1974 			rtld_flags |= val;
1975 		else
1976 			rtld_flags &= ~val;
1977 	} else if (select & SEL_ACT_RT2) {
1978 		if (s2)
1979 			rtld_flags2 |= val;
1980 		else
1981 			rtld_flags2 &= ~val;
1982 	} else if (select & SEL_ACT_STR)
1983 		*str = s2;
1984 	else if (select & SEL_ACT_LML) {
1985 		if (s2)
1986 			*lmflags |= val;
1987 		else
1988 			*lmflags &= ~val;
1989 	} else if (select & SEL_ACT_LMLT) {
1990 		if (s2)
1991 			*lmtflags |= val;
1992 		else
1993 			*lmtflags &= ~val;
1994 	} else if (select & SEL_ACT_SPEC_1) {
1995 		/*
1996 		 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH
1997 		 */
1998 		*str = s2;
1999 		if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) {
2000 			if (s2) {
2001 				if (variable == ENV_FLG_FLAGS)
2002 					env_info |= ENV_INF_FLAGCFG;
2003 				else
2004 					env_info |= ENV_INF_PATHCFG;
2005 			} else {
2006 				if (variable == ENV_FLG_FLAGS)
2007 					env_info &= ~ENV_INF_FLAGCFG;
2008 				else
2009 					env_info &= ~ENV_INF_PATHCFG;
2010 			}
2011 		}
2012 	} else if (select & SEL_ACT_SPEC_2) {
2013 		/*
2014 		 * variables can be: ENV_FLG_
2015 		 * 	AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN,
2016 		 *	LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS
2017 		 */
2018 		if (variable == ENV_FLG_AUDIT_ARGS) {
2019 			if (s2) {
2020 				audit_argcnt = atoi(s2);
2021 				audit_argcnt += audit_argcnt % 2;
2022 			} else
2023 				audit_argcnt = 0;
2024 		} else if (variable == ENV_FLG_BINDINGS) {
2025 			if (s2)
2026 				rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS);
2027 			else
2028 				rpl_debug = 0;
2029 		} else if (variable == ENV_FLG_CONCURRENCY) {
2030 			if (s2)
2031 				rtld_flags &= ~RT_FL_NOCONCUR;
2032 			else
2033 				rtld_flags |= RT_FL_NOCONCUR;
2034 		} else if (variable == ENV_FLG_CONFGEN) {
2035 			if (s2) {
2036 				rtld_flags |= RT_FL_CONFGEN;
2037 				*lmflags |= LML_FLG_IGNRELERR;
2038 			} else {
2039 				rtld_flags &= ~RT_FL_CONFGEN;
2040 				*lmflags &= ~LML_FLG_IGNRELERR;
2041 			}
2042 		} else if (variable == ENV_FLG_LOADFLTR) {
2043 			if (s2) {
2044 				*lmtflags |= LML_TFLG_LOADFLTR;
2045 				if (*s2 == '2')
2046 					rtld_flags |= RT_FL_WARNFLTR;
2047 			} else {
2048 				*lmtflags &= ~LML_TFLG_LOADFLTR;
2049 				rtld_flags &= ~RT_FL_WARNFLTR;
2050 			}
2051 		} else if (variable == ENV_FLG_PROFILE) {
2052 			profile_name = s2;
2053 			if (s2) {
2054 				if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) {
2055 					return;
2056 				}
2057 				/* BEGIN CSTYLED */
2058 				if (rtld_flags & RT_FL_SECURE) {
2059 					profile_lib =
2060 #if	defined(_ELF64)
2061 					    MSG_ORIG(MSG_PTH_LDPROFSE_64);
2062 #else
2063 					    MSG_ORIG(MSG_PTH_LDPROFSE);
2064 #endif
2065 				} else {
2066 					profile_lib =
2067 #if	defined(_ELF64)
2068 					    MSG_ORIG(MSG_PTH_LDPROF_64);
2069 #else
2070 					    MSG_ORIG(MSG_PTH_LDPROF);
2071 #endif
2072 				}
2073 				/* END CSTYLED */
2074 			} else
2075 				profile_lib = 0;
2076 		} else if (variable == ENV_FLG_SIGNAL) {
2077 			killsig = s2 ? atoi(s2) : SIGKILL;
2078 		} else if (variable == ENV_FLG_TRACE_OBJS) {
2079 			if (s2) {
2080 				*lmflags |= LML_FLG_TRC_ENABLE;
2081 				if (*s2 == '2')
2082 					*lmflags |= LML_FLG_TRC_LDDSTUB;
2083 			} else
2084 				*lmflags &=
2085 				    ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB);
2086 		}
2087 	}
2088 }
2089 
2090 /*
2091  * Determine whether we have an architecture specific environment variable.
2092  * If we do, and we're the wrong architecture, it'll just get ignored.
2093  * Otherwise the variable is processed in it's architecture neutral form.
2094  */
2095 static int
2096 ld_arch_env(const char *s1, size_t *len)
2097 {
2098 	size_t	_len = *len - 3;
2099 
2100 	if (s1[_len++] == '_') {
2101 		if ((s1[_len] == '3') && (s1[_len + 1] == '2')) {
2102 #if	defined(_ELF64)
2103 			return (ENV_TYP_IGNORE);
2104 #else
2105 			*len = *len - 3;
2106 			return (ENV_TYP_ISA);
2107 #endif
2108 		}
2109 		if ((s1[_len] == '6') && (s1[_len + 1] == '4')) {
2110 #if	defined(_ELF64)
2111 			*len = *len - 3;
2112 			return (ENV_TYP_ISA);
2113 #else
2114 			return (ENV_TYP_IGNORE);
2115 #endif
2116 		}
2117 	}
2118 	return (0);
2119 }
2120 
2121 
2122 /*
2123  * Process an LD_FLAGS environment variable.  The value can be a comma
2124  * separated set of tokens, which are sent (in upper case) into the generic
2125  * LD_XXXX environment variable engine.  For example:
2126  *
2127  *	LD_FLAGS=bind_now		->	LD_BIND_NOW=1
2128  *	LD_FLAGS=library_path=/foo:.	->	LD_LIBRARY_PATH=/foo:.
2129  *	LD_FLAGS=debug=files:detail	->	LD_DEBUG=files:detail
2130  * or
2131  *	LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail
2132  */
2133 static int
2134 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags,
2135     uint_t env_flags, int aout)
2136 {
2137 	char	*nstr, *sstr, *estr = 0;
2138 	size_t	nlen, len;
2139 
2140 	if (str == 0)
2141 		return (0);
2142 
2143 	/*
2144 	 * Create a new string as we're going to transform the token(s) into
2145 	 * uppercase and separate tokens with nulls.
2146 	 */
2147 	len = strlen(str);
2148 	if ((nstr = malloc(len + 1)) == 0)
2149 		return (1);
2150 	(void) strcpy(nstr, str);
2151 
2152 	for (sstr = nstr; sstr; sstr++, len--) {
2153 		int	flags;
2154 
2155 		if ((*sstr != '\0') && (*sstr != ',')) {
2156 			if (estr == 0) {
2157 				if (*sstr == '=')
2158 					estr = sstr;
2159 				else {
2160 					/*
2161 					 * Translate token to uppercase.  Don't
2162 					 * use toupper(3C) as including this
2163 					 * code doubles the size of ld.so.1.
2164 					 */
2165 					if ((*sstr >= 'a') && (*sstr <= 'z'))
2166 						*sstr = *sstr - ('a' - 'A');
2167 				}
2168 			}
2169 			continue;
2170 		}
2171 
2172 		*sstr = '\0';
2173 		if (estr) {
2174 			nlen = estr - nstr;
2175 			if ((*++estr == '\0') || (*estr == ','))
2176 				estr = 0;
2177 		} else
2178 			nlen = sstr - nstr;
2179 
2180 		/*
2181 		 * Fabricate a boolean definition for any unqualified variable.
2182 		 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null).
2183 		 * The value is sufficient to assert any boolean variables, plus
2184 		 * the term "(null)" is specifically chosen in case someone
2185 		 * mistakenly supplies something like LD_FLAGS=library_path.
2186 		 */
2187 		if (estr == 0)
2188 			estr = (char *)MSG_INTL(MSG_STR_NULL);
2189 
2190 		/*
2191 		 * Determine whether the environment variable is 32- or 64-bit
2192 		 * specific.  The length, len, will reflect the architecture
2193 		 * neutral portion of the string.
2194 		 */
2195 		if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) {
2196 			ld_generic_env(nstr, nlen, estr, lmflags,
2197 			    lmtflags, (env_flags | flags), aout);
2198 		}
2199 		if (len == 0)
2200 			return (0);
2201 
2202 		nstr = sstr + 1;
2203 		estr = 0;
2204 	}
2205 	return (0);
2206 }
2207 
2208 
2209 /*
2210  * Process a single environment string.  Only strings starting with `LD_' are
2211  * reserved for our use.  By convention, all strings should be of the form
2212  * `LD_XXXX=', if the string is followed by a non-null value the appropriate
2213  * functionality is enabled.  Also pick off applicable locale variables.
2214  */
2215 #define	LOC_LANG	1
2216 #define	LOC_MESG	2
2217 #define	LOC_ALL		3
2218 
2219 static void
2220 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags,
2221     int aout)
2222 {
2223 	const char	*s2;
2224 	static		size_t	loc = 0;
2225 
2226 	if (*s1++ != 'L')
2227 		return;
2228 
2229 	/*
2230 	 * See if we have any locale environment settings.  These environment
2231 	 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which
2232 	 * is higher than LANG.
2233 	 */
2234 	s2 = s1;
2235 	if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) {
2236 		if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) {
2237 			s2 += MSG_LC_ALL_SIZE;
2238 			if ((*s2 != '\0') && (loc < LOC_ALL)) {
2239 				glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2240 				loc = LOC_ALL;
2241 			}
2242 		} else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES),
2243 		    MSG_LC_MESSAGES_SIZE) == 0) {
2244 			s2 += MSG_LC_MESSAGES_SIZE;
2245 			if ((*s2 != '\0') && (loc < LOC_MESG)) {
2246 				glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2247 				loc = LOC_MESG;
2248 			}
2249 		}
2250 		return;
2251 	}
2252 
2253 	s2 = s1;
2254 	if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') &&
2255 	    (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) {
2256 		glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2257 		loc = LOC_LANG;
2258 		return;
2259 	}
2260 
2261 	/*
2262 	 * Pick off any LD_XXXX environment variables.
2263 	 */
2264 	if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) {
2265 		size_t	len;
2266 		int	flags;
2267 
2268 		/*
2269 		 * In a branded process we must ignore all LD_XXXX env vars
2270 		 * because they are intended for the brand's linker.
2271 		 * To affect the Solaris linker, use LD_BRAND_XXXX instead.
2272 		 */
2273 		if (rtld_flags2 & RT_FL2_BRANDED) {
2274 			if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX),
2275 			    MSG_LD_BRAND_PREFIX_SIZE) != 0)
2276 				return;
2277 			s1 += MSG_LD_BRAND_PREFIX_SIZE;
2278 		}
2279 
2280 		/*
2281 		 * Environment variables with no value (ie. LD_XXXX=) typically
2282 		 * have no impact, however if environment variables are defined
2283 		 * within a configuration file, these null user settings can be
2284 		 * used to disable any configuration replaceable definitions.
2285 		 */
2286 		if ((s2 = strchr(s1, '=')) == 0) {
2287 			len = strlen(s1);
2288 			s2 = 0;
2289 		} else if (*++s2 == '\0') {
2290 			len = strlen(s1) - 1;
2291 			s2 = 0;
2292 		} else {
2293 			len = s2 - s1 - 1;
2294 			while (isspace(*s2))
2295 				s2++;
2296 		}
2297 
2298 		/*
2299 		 * Determine whether the environment variable is 32- or 64-bit
2300 		 * specific.  The length, len, will reflect the architecture
2301 		 * neutral portion of the string.
2302 		 */
2303 		if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE)
2304 			return;
2305 		env_flags |= flags;
2306 
2307 		ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout);
2308 	}
2309 }
2310 
2311 /*
2312  * Internal getenv routine.  Called immediately after ld.so.1 initializes
2313  * itself.
2314  */
2315 int
2316 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout)
2317 {
2318 	char	*locale;
2319 
2320 	if (envp == (const char **)0)
2321 		return (0);
2322 
2323 	while (*envp != (const char *)0)
2324 		ld_str_env(*envp++, lmflags, lmtflags, 0, aout);
2325 
2326 	/*
2327 	 * Having collected the best representation of any LD_FLAGS, process
2328 	 * these strings.
2329 	 */
2330 	if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2331 		return (1);
2332 
2333 	/*
2334 	 * Don't allow environment controlled auditing when tracing or if
2335 	 * explicitly disabled.  Trigger all tracing modes from
2336 	 * LML_FLG_TRC_ENABLE.
2337 	 */
2338 	if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2339 		rpl_audit = profile_lib = profile_name = 0;
2340 	if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2341 		*lmflags &= ~LML_MSK_TRC;
2342 
2343 	/*
2344 	 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins.
2345 	 */
2346 	if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) ==
2347 	    (RT_FL2_BINDNOW | RT_FL2_BINDLAZY))
2348 		rtld_flags2 &= ~RT_FL2_BINDLAZY;
2349 
2350 	/*
2351 	 * When using ldd(1) -r or -d against an executable, assert -p.
2352 	 */
2353 	if ((*lmflags &
2354 	    (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN)
2355 		*lmflags |= LML_FLG_TRC_NOPAREXT;
2356 
2357 	/*
2358 	 * If we have a locale setting make sure its worth processing further.
2359 	 * C and POSIX locales don't need any processing.  In addition, to
2360 	 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow
2361 	 * the locale to contain a segment that leads upward in the file system
2362 	 * hierarchy (i.e. no '..' segments).   Given that we'll be confined to
2363 	 * the /usr/lib/locale hierarchy, there is no need to extensively
2364 	 * validate the mode or ownership of any message file (as libc's
2365 	 * generic handling of message files does).  Duplicate the string so
2366 	 * that new locale setting can generically cleanup any previous locales.
2367 	 */
2368 	if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) {
2369 		if (((*locale == 'C') && (*(locale + 1) == '\0')) ||
2370 		    (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) ||
2371 		    (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL))
2372 			glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0;
2373 		else
2374 			glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale);
2375 	}
2376 	return (0);
2377 }
2378 
2379 /*
2380  * Configuration environment processing.  Called after the a.out has been
2381  * processed (as the a.out can specify its own configuration file).
2382  */
2383 int
2384 readenv_config(Rtc_env * envtbl, Addr addr, int aout)
2385 {
2386 	Word	*lmflags = &(lml_main.lm_flags);
2387 	Word	*lmtflags = &(lml_main.lm_tflags);
2388 
2389 	if (envtbl == (Rtc_env *)0)
2390 		return (0);
2391 
2392 	while (envtbl->env_str) {
2393 		uint_t	env_flags = ENV_TYP_CONFIG;
2394 
2395 		if (envtbl->env_flags & RTC_ENV_PERMANT)
2396 			env_flags |= ENV_TYP_PERMANT;
2397 
2398 		ld_str_env((const char *)(envtbl->env_str + addr),
2399 		    lmflags, lmtflags, env_flags, 0);
2400 		envtbl++;
2401 	}
2402 
2403 	/*
2404 	 * Having collected the best representation of any LD_FLAGS, process
2405 	 * these strings.
2406 	 */
2407 	if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2408 		return (1);
2409 	if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG,
2410 	    aout) == 1)
2411 		return (1);
2412 
2413 	/*
2414 	 * Don't allow environment controlled auditing when tracing or if
2415 	 * explicitly disabled.  Trigger all tracing modes from
2416 	 * LML_FLG_TRC_ENABLE.
2417 	 */
2418 	if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2419 		prm_audit = profile_lib = profile_name = 0;
2420 	if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2421 		*lmflags &= ~LML_MSK_TRC;
2422 
2423 	return (0);
2424 }
2425 
2426 int
2427 dowrite(Prfbuf * prf)
2428 {
2429 	/*
2430 	 * We do not have a valid file descriptor, so we are unable
2431 	 * to flush the buffer.
2432 	 */
2433 	if (prf->pr_fd == -1)
2434 		return (0);
2435 	(void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf);
2436 	prf->pr_cur = prf->pr_buf;
2437 	return (1);
2438 }
2439 
2440 /*
2441  * Simplified printing.  The following conversion specifications are supported:
2442  *
2443  *	% [#] [-] [min field width] [. precision] s|d|x|c
2444  *
2445  *
2446  * dorprf takes the output buffer in the form of Prfbuf which permits
2447  * the verification of the output buffer size and the concatenation
2448  * of data to an already existing output buffer.  The Prfbuf
2449  * structure contains the following:
2450  *
2451  *  pr_buf	pointer to the beginning of the output buffer.
2452  *  pr_cur	pointer to the next available byte in the output buffer.  By
2453  *		setting pr_cur ahead of pr_buf you can append to an already
2454  *		existing buffer.
2455  *  pr_len	the size of the output buffer.  By setting pr_len to '0' you
2456  *		disable protection from overflows in the output buffer.
2457  *  pr_fd	a pointer to the file-descriptor the buffer will eventually be
2458  *		output to.  If pr_fd is set to '-1' then it's assumed there is
2459  *		no output buffer, and doprf() will return with an error to
2460  *		indicate an output buffer overflow.  If pr_fd is > -1 then when
2461  *		the output buffer is filled it will be flushed to pr_fd and will
2462  *		then be	available for additional data.
2463  */
2464 #define	FLG_UT_MINUS	0x0001	/* - */
2465 #define	FLG_UT_SHARP	0x0002	/* # */
2466 #define	FLG_UT_DOTSEEN	0x0008	/* dot appeared in format spec */
2467 
2468 /*
2469  * This macro is for use from within doprf only.  It is to be used for checking
2470  * the output buffer size and placing characters into the buffer.
2471  */
2472 #define	PUTC(c) \
2473 	{ \
2474 		char tmpc; \
2475 		\
2476 		tmpc = (c); \
2477 		if (bufsiz && (bp >= bufend)) { \
2478 			prf->pr_cur = bp; \
2479 			if (dowrite(prf) == 0) \
2480 				return (0); \
2481 			bp = prf->pr_cur; \
2482 		} \
2483 		*bp++ = tmpc; \
2484 	}
2485 
2486 /*
2487  * Define a local buffer size for building a numeric value - large enough to
2488  * hold a 64-bit value.
2489  */
2490 #define	NUM_SIZE	22
2491 
2492 size_t
2493 doprf(const char *format, va_list args, Prfbuf *prf)
2494 {
2495 	char	c;
2496 	char	*bp = prf->pr_cur;
2497 	char	*bufend = prf->pr_buf + prf->pr_len;
2498 	size_t	bufsiz = prf->pr_len;
2499 
2500 	while ((c = *format++) != '\0') {
2501 		if (c != '%') {
2502 			PUTC(c);
2503 		} else {
2504 			int	base = 0, flag = 0, width = 0, prec = 0;
2505 			size_t	_i;
2506 			int	_c, _n;
2507 			char	*_s;
2508 			int	ls = 0;
2509 again:
2510 			c = *format++;
2511 			switch (c) {
2512 			case '-':
2513 				flag |= FLG_UT_MINUS;
2514 				goto again;
2515 			case '#':
2516 				flag |= FLG_UT_SHARP;
2517 				goto again;
2518 			case '.':
2519 				flag |= FLG_UT_DOTSEEN;
2520 				goto again;
2521 			case '0':
2522 			case '1':
2523 			case '2':
2524 			case '3':
2525 			case '4':
2526 			case '5':
2527 			case '6':
2528 			case '7':
2529 			case '8':
2530 			case '9':
2531 				if (flag & FLG_UT_DOTSEEN)
2532 					prec = (prec * 10) + c - '0';
2533 				else
2534 					width = (width * 10) + c - '0';
2535 				goto again;
2536 			case 'x':
2537 			case 'X':
2538 				base = 16;
2539 				break;
2540 			case 'd':
2541 			case 'D':
2542 			case 'u':
2543 				base = 10;
2544 				flag &= ~FLG_UT_SHARP;
2545 				break;
2546 			case 'l':
2547 				base = 10;
2548 				ls++; /* number of l's (long or long long) */
2549 				if ((*format == 'l') ||
2550 				    (*format == 'd') || (*format == 'D') ||
2551 				    (*format == 'x') || (*format == 'X') ||
2552 				    (*format == 'o') || (*format == 'O'))
2553 					goto again;
2554 				break;
2555 			case 'o':
2556 			case 'O':
2557 				base = 8;
2558 				break;
2559 			case 'c':
2560 				_c = va_arg(args, int);
2561 
2562 				for (_i = 24; _i > 0; _i -= 8) {
2563 					if ((c = ((_c >> _i) & 0x7f)) != 0) {
2564 						PUTC(c);
2565 					}
2566 				}
2567 				if ((c = ((_c >> _i) & 0x7f)) != 0) {
2568 					PUTC(c);
2569 				}
2570 				break;
2571 			case 's':
2572 				_s = va_arg(args, char *);
2573 				_i = strlen(_s);
2574 				/* LINTED */
2575 				_n = (int)(width - _i);
2576 				if (!prec)
2577 					/* LINTED */
2578 					prec = (int)_i;
2579 
2580 				if (width && !(flag & FLG_UT_MINUS)) {
2581 					while (_n-- > 0)
2582 						PUTC(' ');
2583 				}
2584 				while (((c = *_s++) != 0) && prec--) {
2585 					PUTC(c);
2586 				}
2587 				if (width && (flag & FLG_UT_MINUS)) {
2588 					while (_n-- > 0)
2589 						PUTC(' ');
2590 				}
2591 				break;
2592 			case '%':
2593 				PUTC('%');
2594 				break;
2595 			default:
2596 				break;
2597 			}
2598 
2599 			/*
2600 			 * Numeric processing
2601 			 */
2602 			if (base) {
2603 				char		local[NUM_SIZE];
2604 				size_t		ssize = 0, psize = 0;
2605 				const char	*string =
2606 				    MSG_ORIG(MSG_STR_HEXNUM);
2607 				const char	*prefix =
2608 				    MSG_ORIG(MSG_STR_EMPTY);
2609 				u_longlong_t	num;
2610 
2611 				switch (ls) {
2612 				case 0:	/* int */
2613 					num = (u_longlong_t)
2614 					    va_arg(args, uint_t);
2615 					break;
2616 				case 1:	/* long */
2617 					num = (u_longlong_t)
2618 					    va_arg(args, ulong_t);
2619 					break;
2620 				case 2:	/* long long */
2621 					num = va_arg(args, u_longlong_t);
2622 					break;
2623 				}
2624 
2625 				if (flag & FLG_UT_SHARP) {
2626 					if (base == 16) {
2627 						prefix = MSG_ORIG(MSG_STR_HEX);
2628 						psize = 2;
2629 					} else {
2630 						prefix = MSG_ORIG(MSG_STR_ZERO);
2631 						psize = 1;
2632 					}
2633 				}
2634 				if ((base == 10) && (long)num < 0) {
2635 					prefix = MSG_ORIG(MSG_STR_NEGATE);
2636 					psize = MSG_STR_NEGATE_SIZE;
2637 					num = (u_longlong_t)(-(longlong_t)num);
2638 				}
2639 
2640 				/*
2641 				 * Convert the numeric value into a local
2642 				 * string (stored in reverse order).
2643 				 */
2644 				_s = local;
2645 				do {
2646 					*_s++ = string[num % base];
2647 					num /= base;
2648 					ssize++;
2649 				} while (num);
2650 
2651 				ASSERT(ssize < sizeof (local));
2652 
2653 				/*
2654 				 * Provide any precision or width padding.
2655 				 */
2656 				if (prec) {
2657 					/* LINTED */
2658 					_n = (int)(prec - ssize);
2659 					while ((_n-- > 0) &&
2660 					    (ssize < sizeof (local))) {
2661 						*_s++ = '0';
2662 						ssize++;
2663 					}
2664 				}
2665 				if (width && !(flag & FLG_UT_MINUS)) {
2666 					/* LINTED */
2667 					_n = (int)(width - ssize - psize);
2668 					while (_n-- > 0) {
2669 						PUTC(' ');
2670 					}
2671 				}
2672 
2673 				/*
2674 				 * Print any prefix and the numeric string
2675 				 */
2676 				while (*prefix)
2677 					PUTC(*prefix++);
2678 				do {
2679 					PUTC(*--_s);
2680 				} while (_s > local);
2681 
2682 				/*
2683 				 * Provide any width padding.
2684 				 */
2685 				if (width && (flag & FLG_UT_MINUS)) {
2686 					/* LINTED */
2687 					_n = (int)(width - ssize - psize);
2688 					while (_n-- > 0)
2689 						PUTC(' ');
2690 				}
2691 			}
2692 		}
2693 	}
2694 
2695 	PUTC('\0');
2696 	prf->pr_cur = bp;
2697 	return (1);
2698 }
2699 
2700 static int
2701 doprintf(const char *format, va_list args, Prfbuf *prf)
2702 {
2703 	char	*ocur = prf->pr_cur;
2704 
2705 	if (doprf(format, args, prf) == 0)
2706 		return (0);
2707 	/* LINTED */
2708 	return ((int)(prf->pr_cur - ocur));
2709 }
2710 
2711 /* VARARGS2 */
2712 int
2713 sprintf(char *buf, const char *format, ...)
2714 {
2715 	va_list	args;
2716 	int	len;
2717 	Prfbuf	prf;
2718 
2719 	va_start(args, format);
2720 	prf.pr_buf = prf.pr_cur = buf;
2721 	prf.pr_len = 0;
2722 	prf.pr_fd = -1;
2723 	len = doprintf(format, args, &prf);
2724 	va_end(args);
2725 
2726 	/*
2727 	 * sprintf() return value excludes the terminating null byte.
2728 	 */
2729 	return (len - 1);
2730 }
2731 
2732 /* VARARGS3 */
2733 int
2734 snprintf(char *buf, size_t n, const char *format, ...)
2735 {
2736 	va_list	args;
2737 	int	len;
2738 	Prfbuf	prf;
2739 
2740 	va_start(args, format);
2741 	prf.pr_buf = prf.pr_cur = buf;
2742 	prf.pr_len = n;
2743 	prf.pr_fd = -1;
2744 	len = doprintf(format, args, &prf);
2745 	va_end(args);
2746 
2747 	return (len);
2748 }
2749 
2750 /* VARARGS2 */
2751 int
2752 bufprint(Prfbuf *prf, const char *format, ...)
2753 {
2754 	va_list	args;
2755 	int	len;
2756 
2757 	va_start(args, format);
2758 	len = doprintf(format, args, prf);
2759 	va_end(args);
2760 
2761 	return (len);
2762 }
2763 
2764 /*PRINTFLIKE1*/
2765 int
2766 printf(const char *format, ...)
2767 {
2768 	va_list	args;
2769 	char 	buffer[ERRSIZE];
2770 	Prfbuf	prf;
2771 
2772 	va_start(args, format);
2773 	prf.pr_buf = prf.pr_cur = buffer;
2774 	prf.pr_len = ERRSIZE;
2775 	prf.pr_fd = 1;
2776 	(void) doprf(format, args, &prf);
2777 	va_end(args);
2778 	/*
2779 	 * Trim trailing '\0' form buffer
2780 	 */
2781 	prf.pr_cur--;
2782 	return (dowrite(&prf));
2783 }
2784 
2785 static char	errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0;
2786 
2787 /*PRINTFLIKE3*/
2788 void
2789 eprintf(Lm_list *lml, Error error, const char *format, ...)
2790 {
2791 	va_list		args;
2792 	int		overflow = 0;
2793 	static int	lock = 0;
2794 	Prfbuf		prf;
2795 
2796 	if (lock || (nextptr == (errbuf + ERRSIZE)))
2797 		return;
2798 
2799 	/*
2800 	 * Note: this lock is here to prevent the same thread from recursively
2801 	 * entering itself during a eprintf.  ie: during eprintf malloc() fails
2802 	 * and we try and call eprintf ... and then malloc() fails ....
2803 	 */
2804 	lock = 1;
2805 
2806 	/*
2807 	 * If we have completed startup initialization, all error messages
2808 	 * must be saved.  These are reported through dlerror().  If we're
2809 	 * still in the initialization stage, output the error directly and
2810 	 * add a newline.
2811 	 */
2812 	va_start(args, format);
2813 
2814 	prf.pr_buf = prf.pr_cur = nextptr;
2815 	prf.pr_len = ERRSIZE - (nextptr - errbuf);
2816 
2817 	if (!(rtld_flags & RT_FL_APPLIC))
2818 		prf.pr_fd = 2;
2819 	else
2820 		prf.pr_fd = -1;
2821 
2822 	if (error > ERR_NONE) {
2823 		if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN))
2824 			error = ERR_WARNING;
2825 		if (error == ERR_WARNING) {
2826 			if (err_strs[ERR_WARNING] == 0)
2827 				err_strs[ERR_WARNING] =
2828 				    MSG_INTL(MSG_ERR_WARNING);
2829 		} else if (error == ERR_FATAL) {
2830 			if (err_strs[ERR_FATAL] == 0)
2831 				err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL);
2832 		} else if (error == ERR_ELF) {
2833 			if (err_strs[ERR_ELF] == 0)
2834 				err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF);
2835 		}
2836 		if (procname) {
2837 			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1),
2838 			    rtldname, procname, err_strs[error]) == 0)
2839 				overflow = 1;
2840 		} else {
2841 			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2842 			    rtldname, err_strs[error]) == 0)
2843 				overflow = 1;
2844 		}
2845 		if (overflow == 0) {
2846 			/*
2847 			 * Remove the terminating '\0'.
2848 			 */
2849 			prf.pr_cur--;
2850 		}
2851 	}
2852 
2853 	if ((overflow == 0) && doprf(format, args, &prf) == 0)
2854 		overflow = 1;
2855 
2856 	/*
2857 	 * If this is an ELF error, it will have been generated by a support
2858 	 * object that has a dependency on libelf.  ld.so.1 doesn't generate any
2859 	 * ELF error messages as it doesn't interact with libelf.  Determine the
2860 	 * ELF error string.
2861 	 */
2862 	if ((overflow == 0) && (error == ERR_ELF)) {
2863 		static int		(*elfeno)() = 0;
2864 		static const char	*(*elfemg)();
2865 		const char		*emsg;
2866 		Rt_map			*dlmp, *lmp = lml_rtld.lm_head;
2867 
2868 		if (NEXT(lmp) && (elfeno == 0)) {
2869 			if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT,
2870 			    MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) ||
2871 			    ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT,
2872 			    MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0))
2873 				elfeno = 0;
2874 		}
2875 
2876 		/*
2877 		 * Lookup the message; equivalent to elf_errmsg(elf_errno()).
2878 		 */
2879 		if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) {
2880 			prf.pr_cur--;
2881 			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2882 			    emsg) == 0)
2883 				overflow = 1;
2884 		}
2885 	}
2886 
2887 	/*
2888 	 * Push out any message that's been built.  Note, in the case of an
2889 	 * overflow condition, this message may be incomplete, in which case
2890 	 * make sure any partial string is null terminated.
2891 	 */
2892 	if (overflow)
2893 		*(prf.pr_cur) = '\0';
2894 	if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) {
2895 		*(prf.pr_cur - 1) = '\n';
2896 		(void) dowrite(&prf);
2897 	}
2898 
2899 	DBG_CALL(Dbg_util_str(lml, nextptr));
2900 	va_end(args);
2901 
2902 	/*
2903 	 * Determine if there was insufficient space left in the buffer to
2904 	 * complete the message.  If so, we'll have printed out as much as had
2905 	 * been processed if we're not yet executing the application.
2906 	 * Otherwise, there will be some debugging diagnostic indicating
2907 	 * as much of the error message as possible.  Write out a final buffer
2908 	 * overflow diagnostic - unlocalized, so we don't chance more errors.
2909 	 */
2910 	if (overflow) {
2911 		char	*str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW);
2912 
2913 		if ((rtld_flags & RT_FL_SILENCERR) == 0) {
2914 			lasterr = str;
2915 
2916 			if ((rtld_flags & RT_FL_APPLIC) == 0) {
2917 				(void) write(2, str, strlen(str));
2918 				(void) write(2, MSG_ORIG(MSG_STR_NL),
2919 				    MSG_STR_NL_SIZE);
2920 			}
2921 		}
2922 		DBG_CALL(Dbg_util_str(lml, str));
2923 
2924 		lock = 0;
2925 		nextptr = errbuf + ERRSIZE;
2926 		return;
2927 	}
2928 
2929 	/*
2930 	 * If the application has started, then error messages are being saved
2931 	 * for retrieval by dlerror(), or possible flushing from rtldexit() in
2932 	 * the case of a fatal error.  In this case, establish the next error
2933 	 * pointer.  If we haven't started the application, the whole message
2934 	 * buffer can be reused.
2935 	 */
2936 	if ((rtld_flags & RT_FL_SILENCERR) == 0) {
2937 		lasterr = nextptr;
2938 
2939 		/*
2940 		 * Note, should we encounter an error such as ENOMEM, there may
2941 		 * be a number of the same error messages (ie. an operation
2942 		 * fails with ENOMEM, and then the attempts to construct the
2943 		 * error message itself, which incurs additional ENOMEM errors).
2944 		 * Compare any previous error message with the one we've just
2945 		 * created to prevent any duplication clutter.
2946 		 */
2947 		if ((rtld_flags & RT_FL_APPLIC) &&
2948 		    ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) {
2949 			prevptr = nextptr;
2950 			nextptr = prf.pr_cur;
2951 			*nextptr = '\0';
2952 		}
2953 	}
2954 	lock = 0;
2955 }
2956 
2957 
2958 #if	DEBUG
2959 /*
2960  * Provide assfail() for ASSERT() statements,
2961  * see <sys/debug.h> for further details.
2962  */
2963 int
2964 assfail(const char *a, const char *f, int l)
2965 {
2966 	(void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l);
2967 	(void) _lwp_kill(_lwp_self(), SIGABRT);
2968 	return (0);
2969 }
2970 #endif
2971 
2972 /*
2973  * Exit.  If we arrive here with a non zero status it's because of a fatal
2974  * error condition (most commonly a relocation error).  If the application has
2975  * already had control, then the actual fatal error message will have been
2976  * recorded in the dlerror() message buffer.  Print the message before really
2977  * exiting.
2978  */
2979 void
2980 rtldexit(Lm_list * lml, int status)
2981 {
2982 	if (status) {
2983 		if (rtld_flags & RT_FL_APPLIC) {
2984 			/*
2985 			 * If the error buffer has been used, write out all
2986 			 * pending messages - lasterr is simply a pointer to
2987 			 * the last message in this buffer.  However, if the
2988 			 * buffer couldn't be created at all, lasterr points
2989 			 * to a constant error message string.
2990 			 */
2991 			if (*errbuf) {
2992 				char	*errptr = errbuf;
2993 				char	*errend = errbuf + ERRSIZE;
2994 
2995 				while ((errptr < errend) && *errptr) {
2996 					size_t	size = strlen(errptr);
2997 					(void) write(2, errptr, size);
2998 					(void) write(2, MSG_ORIG(MSG_STR_NL),
2999 					    MSG_STR_NL_SIZE);
3000 					errptr += (size + 1);
3001 				}
3002 			}
3003 			if (lasterr && ((lasterr < errbuf) ||
3004 			    (lasterr > (errbuf + ERRSIZE)))) {
3005 				(void) write(2, lasterr, strlen(lasterr));
3006 				(void) write(2, MSG_ORIG(MSG_STR_NL),
3007 				    MSG_STR_NL_SIZE);
3008 			}
3009 		}
3010 		leave(lml);
3011 		(void) _lwp_kill(_lwp_self(), killsig);
3012 	}
3013 	_exit(status);
3014 }
3015 
3016 /*
3017  * Routines to co-ordinate the opening of /dev/zero and /proc.
3018  * dz_fd is exported for possible use by libld.so, and to insure it gets
3019  * closed on leaving ld.so.1.
3020  */
3021 int	dz_fd = FD_UNAVAIL;
3022 
3023 void
3024 dz_init(int fd)
3025 {
3026 	dz_fd = fd;
3027 }
3028 
3029 
3030 /*
3031  * mmap() a page from MAP_ANON
3032  *
3033  * Note: MAP_ANON is only on Solaris8++, we use this routine to
3034  *       not only mmap(MAP_ANON) but to also probe if it is available
3035  *	 on the current OS.
3036  */
3037 Am_ret
3038 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags)
3039 {
3040 #if defined(MAP_ANON)
3041 	static int	noanon = 0;
3042 	caddr_t		va;
3043 
3044 	if (noanon == 0) {
3045 		if ((va = (caddr_t)mmap(*addr, len, prot,
3046 		    (flags | MAP_ANON), -1, 0)) != MAP_FAILED) {
3047 			*addr = va;
3048 			return (AM_OK);
3049 		}
3050 
3051 		if ((errno != EBADF) && (errno != EINVAL)) {
3052 			int	err = errno;
3053 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON),
3054 			    MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
3055 			return (AM_ERROR);
3056 		} else
3057 			noanon = 1;
3058 	}
3059 #endif
3060 	return (AM_NOSUP);
3061 }
3062 
3063 /*
3064  * Map anonymous memory from /dev/zero, or via MAP_ANON.
3065  *
3066  * (MAP_ANON only appears on Solaris 8, so we need fall-back
3067  * behavior for older systems.)
3068  */
3069 caddr_t
3070 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3071 {
3072 	caddr_t	va;
3073 	int	err;
3074 	Am_ret	amret;
3075 
3076 	amret = anon_map(lml, &addr, len, prot, flags);
3077 
3078 	if (amret == AM_OK)
3079 		return (addr);
3080 	if (amret == AM_ERROR)
3081 		return (MAP_FAILED);
3082 
3083 	/* amret == AM_NOSUP -> fallback to a devzero mmaping */
3084 
3085 	if (dz_fd == FD_UNAVAIL) {
3086 		if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO),
3087 		    O_RDONLY)) == FD_UNAVAIL) {
3088 			err = errno;
3089 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
3090 			    MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
3091 			return (MAP_FAILED);
3092 		}
3093 	}
3094 
3095 	if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) {
3096 		err = errno;
3097 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
3098 		    MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
3099 	}
3100 	return (va);
3101 }
3102 
3103 static int	pr_fd = FD_UNAVAIL;
3104 
3105 int
3106 pr_open(Lm_list *lml)
3107 {
3108 	char	proc[16];
3109 
3110 	if (pr_fd == FD_UNAVAIL) {
3111 		(void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC),
3112 		    (int)getpid());
3113 		if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) {
3114 			int	err = errno;
3115 
3116 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc,
3117 			    strerror(err));
3118 		}
3119 	}
3120 	return (pr_fd);
3121 }
3122 
3123 static int	nu_fd = FD_UNAVAIL;
3124 
3125 caddr_t
3126 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3127 {
3128 	caddr_t	va;
3129 	int	err;
3130 
3131 	if (nu_fd == FD_UNAVAIL) {
3132 		if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL),
3133 		    O_RDONLY)) == FD_UNAVAIL) {
3134 			err = errno;
3135 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
3136 			    MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3137 			return (MAP_FAILED);
3138 		}
3139 	}
3140 
3141 	if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) ==
3142 	    MAP_FAILED) {
3143 		err = errno;
3144 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
3145 		    MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3146 	}
3147 	return (va);
3148 }
3149 
3150 /*
3151  * Generic entry point from user code - simply grabs a lock, and bumps the
3152  * entrance count.
3153  */
3154 int
3155 enter(void)
3156 {
3157 	if (rt_bind_guard(THR_FLG_RTLD)) {
3158 		(void) rt_mutex_lock(&rtldlock);
3159 		if (rtld_flags & RT_FL_OPERATION)
3160 			ld_entry_cnt++;
3161 		return (1);
3162 	}
3163 	return (0);
3164 }
3165 
3166 /*
3167  * Determine whether a search path has been used.
3168  */
3169 static void
3170 is_path_used(Lm_list *lml, Word unref, int *nl, Pnode *pnp, const char *obj)
3171 {
3172 	for (; pnp; pnp = pnp->p_next) {
3173 		const char	*fmt, *name;
3174 
3175 		if ((pnp->p_len == 0) || (pnp->p_orig & PN_FLG_USED))
3176 			continue;
3177 
3178 		/*
3179 		 * If this pathname originated from an expanded token, use the
3180 		 * original for any diagnostic output.
3181 		 */
3182 		if ((name = pnp->p_oname) == 0)
3183 			name = pnp->p_name;
3184 
3185 		if (unref == 0) {
3186 			if ((*nl)++ == 0)
3187 				DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3188 			DBG_CALL(Dbg_unused_path(lml, name, pnp->p_orig,
3189 			    (pnp->p_orig & PN_FLG_DUPLICAT), obj));
3190 			continue;
3191 		}
3192 
3193 		/*
3194 		 * For now, disable any unused search path processing that has
3195 		 * been triggered for ldd(1).
3196 		 */
3197 		if (unref)
3198 			continue;
3199 
3200 		if (pnp->p_orig & LA_SER_LIBPATH) {
3201 			if (pnp->p_orig & LA_SER_CONFIG) {
3202 				if (pnp->p_orig & PN_FLG_DUPLICAT)
3203 					fmt = MSG_INTL(MSG_DUP_LDLIBPATHC);
3204 				else
3205 					fmt = MSG_INTL(MSG_USD_LDLIBPATHC);
3206 			} else {
3207 				if (pnp->p_orig & PN_FLG_DUPLICAT)
3208 					fmt = MSG_INTL(MSG_DUP_LDLIBPATH);
3209 				else
3210 					fmt = MSG_INTL(MSG_USD_LDLIBPATH);
3211 			}
3212 		} else if (pnp->p_orig & LA_SER_RUNPATH) {
3213 			fmt = MSG_INTL(MSG_USD_RUNPATH);
3214 		} else
3215 			continue;
3216 
3217 		if ((*nl)++ == 0)
3218 			(void) printf(MSG_ORIG(MSG_STR_NL));
3219 		(void) printf(fmt, name, obj);
3220 	}
3221 }
3222 
3223 /*
3224  * Generate diagnostics as to whether an object has been used.  A symbolic
3225  * reference that gets bound to an object marks it as used.  Dependencies that
3226  * are unused when RTLD_NOW is in effect should be removed from future builds
3227  * of an object.  Dependencies that are unused without RTLD_NOW in effect are
3228  * candidates for lazy-loading.
3229  *
3230  * Unreferenced objects identify objects that are defined as dependencies but
3231  * are unreferenced by the caller.  These unreferenced objects may however be
3232  * referenced by other objects within the process, and therefore don't qualify
3233  * as completely unused.  They are still an unnecessary overhead.
3234  *
3235  * Unreferenced runpaths are also captured under ldd -U, or "unused,detail"
3236  * debugging.
3237  */
3238 void
3239 unused(Lm_list *lml)
3240 {
3241 	Rt_map		*lmp;
3242 	int		nl = 0;
3243 	Word		unref, unuse;
3244 
3245 	/*
3246 	 * If we're not tracing unused references or dependencies, or debugging
3247 	 * there's nothing to do.
3248 	 */
3249 	unref = lml->lm_flags & LML_FLG_TRC_UNREF;
3250 	unuse = lml->lm_flags & LML_FLG_TRC_UNUSED;
3251 
3252 	if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0))
3253 		return;
3254 
3255 	/*
3256 	 * Detect unused global search paths.
3257 	 */
3258 	if (rpl_libdirs)
3259 		is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name);
3260 	if (prm_libdirs)
3261 		is_path_used(lml, unref, &nl, prm_libdirs, config->c_name);
3262 
3263 	nl = 0;
3264 	lmp = lml->lm_head;
3265 	if (RLIST(lmp))
3266 		is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
3267 
3268 	/*
3269 	 * Traverse the link-maps looking for unreferenced or unused
3270 	 * dependencies.  Ignore the first object on a link-map list, as this
3271 	 * is always used.
3272 	 */
3273 	nl = 0;
3274 	for (lmp = (Rt_map *)NEXT(lmp); lmp; lmp = (Rt_map *)NEXT(lmp)) {
3275 		/*
3276 		 * Determine if this object contains any runpaths that have
3277 		 * not been used.
3278 		 */
3279 		if (RLIST(lmp))
3280 			is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
3281 
3282 		/*
3283 		 * If tracing unreferenced objects, or under debugging,
3284 		 * determine whether any of this objects callers haven't
3285 		 * referenced it.
3286 		 */
3287 		if (unref || DBG_ENABLED) {
3288 			Bnd_desc	*bdp;
3289 			Aliste		idx;
3290 
3291 			for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) {
3292 				Rt_map	*clmp;
3293 
3294 				if (bdp->b_flags & BND_REFER)
3295 					continue;
3296 
3297 				clmp = bdp->b_caller;
3298 				if (FLAGS1(clmp) & FL1_RT_LDDSTUB)
3299 					continue;
3300 
3301 				/* BEGIN CSTYLED */
3302 				if (nl++ == 0) {
3303 					if (unref)
3304 					    (void) printf(MSG_ORIG(MSG_STR_NL));
3305 					else
3306 					    DBG_CALL(Dbg_util_nl(lml,
3307 						DBG_NL_STD));
3308 				}
3309 
3310 				if (unref)
3311 				    (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT),
3312 					NAME(lmp), NAME(clmp));
3313 				else
3314 				    DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp)));
3315 				/* END CSTYLED */
3316 			}
3317 		}
3318 
3319 		/*
3320 		 * If tracing unused objects simply display those objects that
3321 		 * haven't been referenced by anyone.
3322 		 */
3323 		if (FLAGS1(lmp) & FL1_RT_USED)
3324 			continue;
3325 
3326 		if (nl++ == 0) {
3327 			if (unref || unuse)
3328 				(void) printf(MSG_ORIG(MSG_STR_NL));
3329 			else
3330 				DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3331 		}
3332 		if (CYCGROUP(lmp)) {
3333 			if (unref || unuse)
3334 				(void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT),
3335 				    NAME(lmp), CYCGROUP(lmp));
3336 			else
3337 				DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0,
3338 				    CYCGROUP(lmp)));
3339 		} else {
3340 			if (unref || unuse)
3341 				(void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT),
3342 				    NAME(lmp));
3343 			else
3344 				DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0));
3345 		}
3346 	}
3347 
3348 	DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3349 }
3350 
3351 /*
3352  * Initialization routine for the Fmap structure.  If the fmap structure is
3353  * already in use, any mapping is released.  The structure is then initialized
3354  * in preparation for further use.
3355  */
3356 void
3357 fmap_setup()
3358 {
3359 #if defined(MAP_ALIGN)
3360 	/*
3361 	 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment
3362 	 * value.  Otherwise, if fm_addr is non-null it indicates a mapping that
3363 	 * should now be freed.
3364 	 */
3365 	if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0))
3366 		(void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize);
3367 
3368 	/*
3369 	 * Providing we haven't determined that this system doesn't support
3370 	 * MAP_ALIGN, initialize the mapping address with the default segment
3371 	 * alignment.
3372 	 */
3373 	if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) {
3374 		fmap->fm_maddr = (char *)M_SEGM_ALIGN;
3375 		fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN;
3376 	} else {
3377 		fmap->fm_maddr = 0;
3378 		fmap->fm_mflags = MAP_PRIVATE;
3379 	}
3380 #else
3381 	if (fmap->fm_maddr)
3382 		(void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize);
3383 
3384 	fmap->fm_maddr = 0;
3385 	fmap->fm_mflags = MAP_PRIVATE;
3386 #endif
3387 
3388 	fmap->fm_msize = FMAP_SIZE;
3389 	fmap->fm_hwptr = 0;
3390 }
3391 
3392 /*
3393  * Generic cleanup routine called prior to returning control to the user.
3394  * Insures that any ld.so.1 specific file descriptors or temporary mapping are
3395  * released, and any locks dropped.
3396  */
3397 void
3398 leave(Lm_list *lml)
3399 {
3400 	Lm_list	*elml = lml;
3401 	Rt_map	*clmp;
3402 	Aliste	idx;
3403 
3404 	/*
3405 	 * Alert the debuggers that the link-maps are consistent.  Note, in the
3406 	 * case of tearing down a whole link-map list, lml will be null.  In
3407 	 * this case use the main link-map list to test for a notification.
3408 	 */
3409 	if (elml == 0)
3410 		elml = &lml_main;
3411 	if (elml->lm_flags & LML_FLG_DBNOTIF)
3412 		rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT);
3413 
3414 	/*
3415 	 * Alert any auditors that the link-maps are consistent.
3416 	 */
3417 	for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) {
3418 		audit_activity(clmp, LA_ACT_CONSISTENT);
3419 
3420 		aplist_delete(elml->lm_actaudit, &idx);
3421 	}
3422 
3423 	if (dz_fd != FD_UNAVAIL) {
3424 		(void) close(dz_fd);
3425 		dz_fd = FD_UNAVAIL;
3426 	}
3427 
3428 	if (pr_fd != FD_UNAVAIL) {
3429 		(void) close(pr_fd);
3430 		pr_fd = FD_UNAVAIL;
3431 	}
3432 
3433 	if (nu_fd != FD_UNAVAIL) {
3434 		(void) close(nu_fd);
3435 		nu_fd = FD_UNAVAIL;
3436 	}
3437 
3438 	fmap_setup();
3439 
3440 	/*
3441 	 * Reinitialize error message pointer, and any overflow indication.
3442 	 */
3443 	nextptr = errbuf;
3444 	prevptr = 0;
3445 
3446 	/*
3447 	 * Don't drop our lock if we are running on our link-map list as
3448 	 * there's little point in doing so since we are single-threaded.
3449 	 *
3450 	 * LML_FLG_HOLDLOCK is set for:
3451 	 *	*) The ld.so.1's link-map list.
3452 	 *	*) The auditor's link-map if the environment is
3453 	 *	   libc/libthread un-unified.
3454 	 */
3455 	if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK))
3456 		return;
3457 
3458 	if (rt_bind_clear(0) & THR_FLG_RTLD) {
3459 		(void) rt_mutex_unlock(&rtldlock);
3460 		(void) rt_bind_clear(THR_FLG_RTLD);
3461 	}
3462 }
3463 
3464 int
3465 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags)
3466 {
3467 	APlist		*calp, *dalp;
3468 	Aliste		idx1, idx2;
3469 	Grp_hdl		*ghp1, *ghp2;
3470 
3471 	/*
3472 	 * An object can always find symbols within itself.
3473 	 */
3474 	if (clmp == dlmp)
3475 		return (1);
3476 
3477 	/*
3478 	 * The search for a singleton must look in every loaded object.
3479 	 */
3480 	if (slflags & LKUP_SINGLETON)
3481 		return (1);
3482 
3483 	/*
3484 	 * Don't allow an object to bind to an object that is being deleted
3485 	 * unless the binder is also being deleted.
3486 	 */
3487 	if ((FLAGS(dlmp) & FLG_RT_DELETE) &&
3488 	    ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
3489 		return (0);
3490 
3491 	/*
3492 	 * An object with world access can always bind to an object with global
3493 	 * visibility.
3494 	 */
3495 	if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL))
3496 		return (1);
3497 
3498 	/*
3499 	 * An object with local access can only bind to an object that is a
3500 	 * member of the same group.
3501 	 */
3502 	if (((MODE(clmp) & RTLD_GROUP) == 0) ||
3503 	    ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL))
3504 		return (0);
3505 
3506 	/*
3507 	 * Traverse the list of groups the caller is a part of.
3508 	 */
3509 	for (APLIST_TRAVERSE(calp, idx1, ghp1)) {
3510 		/*
3511 		 * If we're testing for the ability of two objects to bind to
3512 		 * each other regardless of a specific group, ignore that group.
3513 		 */
3514 		if (ghp && (ghp1 == ghp))
3515 			continue;
3516 
3517 		/*
3518 		 * Traverse the list of groups the destination is a part of.
3519 		 */
3520 		for (APLIST_TRAVERSE(dalp, idx2, ghp2)) {
3521 			Grp_desc	*gdp;
3522 			Aliste		idx3;
3523 
3524 			if (ghp1 != ghp2)
3525 				continue;
3526 
3527 			/*
3528 			 * Make sure the relationship between the destination
3529 			 * and the caller provide symbols for relocation.
3530 			 * Parents are maintained as callers, but unless the
3531 			 * destination object was opened with RTLD_PARENT, the
3532 			 * parent doesn't provide symbols for the destination
3533 			 * to relocate against.
3534 			 */
3535 			for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) {
3536 				if (dlmp != gdp->gd_depend)
3537 					continue;
3538 
3539 				if (gdp->gd_flags & GPD_RELOC)
3540 					return (1);
3541 			}
3542 		}
3543 	}
3544 	return (0);
3545 }
3546 
3547 /*
3548  * Initialize the environ symbol.  Traditionally this is carried out by the crt
3549  * code prior to jumping to main.  However, init sections get fired before this
3550  * variable is initialized, so ld.so.1 sets this directly from the AUX vector
3551  * information.  In addition, a process may have multiple link-maps (ld.so.1's
3552  * debugging and preloading objects), and link auditing, and each may need an
3553  * environ variable set.
3554  *
3555  * This routine is called after a relocation() pass, and thus provides for:
3556  *
3557  *  o	setting environ on the main link-map after the initial application and
3558  *	its dependencies have been established.  Typically environ lives in the
3559  *	application (provided by its crt), but in older applications it might
3560  *	be in libc.  Who knows what's expected of applications not built on
3561  *	Solaris.
3562  *
3563  *  o	after loading a new shared object.  We can add shared objects to various
3564  *	link-maps, and any link-map dependencies requiring getopt() require
3565  *	their own environ.  In addition, lazy loading might bring in the
3566  *	supplier of environ (libc used to be a lazy loading candidate) after
3567  *	the link-map has been established and other objects are present.
3568  *
3569  * This routine handles all these scenarios, without adding unnecessary overhead
3570  * to ld.so.1.
3571  */
3572 void
3573 set_environ(Lm_list *lml)
3574 {
3575 	Rt_map		*dlmp;
3576 	Sym		*sym;
3577 	Slookup		sl;
3578 	uint_t		binfo;
3579 
3580 	/*
3581 	 * Initialize the symbol lookup data structure.
3582 	 */
3583 	SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head,
3584 	    ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK);
3585 
3586 	if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo, 0)) {
3587 		lml->lm_environ = (char ***)sym->st_value;
3588 
3589 		if (!(FLAGS(dlmp) & FLG_RT_FIXED))
3590 			lml->lm_environ =
3591 			    (char ***)((uintptr_t)lml->lm_environ +
3592 			    (uintptr_t)ADDR(dlmp));
3593 		*(lml->lm_environ) = (char **)environ;
3594 		lml->lm_flags |= LML_FLG_ENVIRON;
3595 	}
3596 }
3597 
3598 /*
3599  * Determine whether we have a secure executable.  Uid and gid information
3600  * can be passed to us via the aux vector, however if these values are -1
3601  * then use the appropriate system call to obtain them.
3602  *
3603  *  o	If the user is the root they can do anything
3604  *
3605  *  o	If the real and effective uid's don't match, or the real and
3606  *	effective gid's don't match then this is determined to be a `secure'
3607  *	application.
3608  *
3609  * This function is called prior to any dependency processing (see _setup.c).
3610  * Any secure setting will remain in effect for the life of the process.
3611  */
3612 void
3613 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags)
3614 {
3615 #ifdef AT_SUN_AUXFLAGS
3616 	if (auxflags != -1) {
3617 		if ((auxflags & AF_SUN_SETUGID) != 0)
3618 			rtld_flags |= RT_FL_SECURE;
3619 		return;
3620 	}
3621 #endif
3622 	if (uid == (uid_t)-1)
3623 		uid = getuid();
3624 	if (uid) {
3625 		if (euid == (uid_t)-1)
3626 			euid = geteuid();
3627 		if (uid != euid)
3628 			rtld_flags |= RT_FL_SECURE;
3629 		else {
3630 			if (gid == (gid_t)-1)
3631 				gid = getgid();
3632 			if (egid == (gid_t)-1)
3633 				egid = getegid();
3634 			if (gid != egid)
3635 				rtld_flags |= RT_FL_SECURE;
3636 		}
3637 	}
3638 }
3639 
3640 /*
3641  * _REENTRANT code gets errno redefined to a function so provide for return
3642  * of the thread errno if applicable.  This has no meaning in ld.so.1 which
3643  * is basically singled threaded.  Provide the interface for our dependencies.
3644  */
3645 #undef errno
3646 #pragma weak _private___errno = ___errno
3647 int *
3648 ___errno()
3649 {
3650 	extern	int	errno;
3651 
3652 	return (&errno);
3653 }
3654 
3655 /*
3656  * The interface with the c library which is supplied through libdl.so.1.
3657  * A non-null argument allows a function pointer array to be passed to us which
3658  * is used to re-initialize the linker libc table.
3659  */
3660 void
3661 _ld_libc(void * ptr)
3662 {
3663 	get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr);
3664 }
3665 
3666 /*
3667  * Determine whether a symbol name should be demangled.
3668  */
3669 const char *
3670 demangle(const char *name)
3671 {
3672 	if (rtld_flags & RT_FL_DEMANGLE)
3673 		return (conv_demangle_name(name));
3674 	else
3675 		return (name);
3676 }
3677