1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 27 */ 28 29 /* 30 * Utility routines for run-time linker. some are duplicated here from libc 31 * (with different names) to avoid name space collisions. 32 */ 33 #include <sys/systeminfo.h> 34 #include <stdio.h> 35 #include <sys/time.h> 36 #include <sys/types.h> 37 #include <sys/mman.h> 38 #include <sys/lwp.h> 39 #include <sys/debug.h> 40 #include <stdarg.h> 41 #include <fcntl.h> 42 #include <string.h> 43 #include <dlfcn.h> 44 #include <unistd.h> 45 #include <stdlib.h> 46 #include <sys/auxv.h> 47 #include <limits.h> 48 #include <debug.h> 49 #include <conv.h> 50 #include "_rtld.h" 51 #include "_audit.h" 52 #include "_elf.h" 53 #include "msg.h" 54 55 /* 56 * Null function used as place where a debugger can set a breakpoint. 57 */ 58 void 59 rtld_db_dlactivity(Lm_list *lml) 60 { 61 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 62 r_debug.rtd_rdebug.r_state)); 63 } 64 65 /* 66 * Null function used as place where debugger can set a pre .init 67 * processing breakpoint. 68 */ 69 void 70 rtld_db_preinit(Lm_list *lml) 71 { 72 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 73 r_debug.rtd_rdebug.r_state)); 74 } 75 76 /* 77 * Null function used as place where debugger can set a post .init 78 * processing breakpoint. 79 */ 80 void 81 rtld_db_postinit(Lm_list *lml) 82 { 83 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 84 r_debug.rtd_rdebug.r_state)); 85 } 86 87 /* 88 * Debugger Event Notification 89 * 90 * This function centralizes all debugger event notification (ala rtld_db). 91 * 92 * There's a simple intent, focused on insuring the primary link-map control 93 * list (or each link-map list) is consistent, and the indication that objects 94 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 95 * event are posted for each of these, most debuggers don't care, as their 96 * view is that these events simply convey an "inconsistent" state. 97 * 98 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 99 * enter ld.so.1. 100 * 101 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 102 * required later (RT_FL_DBNOTIF): 103 * 104 * i. the first time we add or delete an object to the primary link-map 105 * control list. 106 * ii. the first time we move a secondary link-map control list to the primary 107 * link-map control list (effectively, this is like adding a group of 108 * objects to the primary link-map control list). 109 * 110 * Set an RD_CONSISTENT event when it is required (RT_FL_DBNOTIF is set): 111 * 112 * i. each time we leave the runtime linker. 113 */ 114 void 115 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 116 { 117 void (*fptr)(Lm_list *); 118 119 switch (event) { 120 case RD_PREINIT: 121 fptr = rtld_db_preinit; 122 break; 123 case RD_POSTINIT: 124 fptr = rtld_db_postinit; 125 break; 126 case RD_DLACTIVITY: 127 switch (state) { 128 case RT_CONSISTENT: 129 /* 130 * Do we need to send a notification? 131 */ 132 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 133 return; 134 rtld_flags &= ~RT_FL_DBNOTIF; 135 break; 136 case RT_ADD: 137 case RT_DELETE: 138 /* 139 * If we are already in an inconsistent state, no 140 * notification is required. 141 */ 142 if (rtld_flags & RT_FL_DBNOTIF) 143 return; 144 rtld_flags |= RT_FL_DBNOTIF; 145 break; 146 }; 147 fptr = rtld_db_dlactivity; 148 break; 149 default: 150 /* 151 * RD_NONE - do nothing 152 */ 153 break; 154 }; 155 156 /* 157 * Set event state and call 'notification' function. 158 * 159 * The debugging clients have previously been told about these 160 * notification functions and have set breakpoints on them if they 161 * are interested in the notification. 162 */ 163 r_debug.rtd_rdebug.r_state = state; 164 r_debug.rtd_rdebug.r_rdevent = event; 165 fptr(lml); 166 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 167 } 168 169 #if defined(__sparc) || defined(__x86) 170 /* 171 * Stack Cleanup. 172 * 173 * This function is invoked to 'remove' arguments that were passed in on the 174 * stack. This is most likely if ld.so.1 was invoked directly. In that case 175 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 176 * Which means we then need to slide everything above it on the stack down 177 * accordingly. 178 * 179 * While the stack layout is platform specific - it just so happens that __x86, 180 * and __sparc platforms share the following initial stack layout. 181 * 182 * !_______________________! high addresses 183 * ! ! 184 * ! Information ! 185 * ! Block ! 186 * ! (size varies) ! 187 * !_______________________! 188 * ! 0 word ! 189 * !_______________________! 190 * ! Auxiliary ! 191 * ! vector ! 192 * ! 2 word entries ! 193 * ! ! 194 * !_______________________! 195 * ! 0 word ! 196 * !_______________________! 197 * ! Environment ! 198 * ! pointers ! 199 * ! ... ! 200 * ! (one word each) ! 201 * !_______________________! 202 * ! 0 word ! 203 * !_______________________! 204 * ! Argument ! low addresses 205 * ! pointers ! 206 * ! Argc words ! 207 * !_______________________! 208 * ! ! 209 * ! Argc ! 210 * !_______________________! 211 * ! ... ! 212 * 213 */ 214 static void 215 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 216 { 217 int ndx; 218 long *argc; 219 char **oargv, **nargv; 220 char **oenvp, **nenvp; 221 auxv_t *oauxv, *nauxv; 222 223 /* 224 * Slide ARGV[] and update argc. The argv pointer remains the same, 225 * however slide the applications arguments over the arguments to 226 * ld.so.1. 227 */ 228 nargv = &argv[0]; 229 oargv = &argv[rmcnt]; 230 231 for (ndx = 0; oargv[ndx]; ndx++) 232 nargv[ndx] = oargv[ndx]; 233 nargv[ndx] = oargv[ndx]; 234 235 argc = (long *)((uintptr_t)argv - sizeof (long *)); 236 *argc -= rmcnt; 237 238 /* 239 * Slide ENVP[], and update the environment array pointer. 240 */ 241 ndx++; 242 nenvp = &nargv[ndx]; 243 oenvp = &oargv[ndx]; 244 *envp = nenvp; 245 246 for (ndx = 0; oenvp[ndx]; ndx++) 247 nenvp[ndx] = oenvp[ndx]; 248 nenvp[ndx] = oenvp[ndx]; 249 250 /* 251 * Slide AUXV[], and update the aux vector pointer. 252 */ 253 ndx++; 254 nauxv = (auxv_t *)&nenvp[ndx]; 255 oauxv = (auxv_t *)&oenvp[ndx]; 256 *auxv = nauxv; 257 258 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 259 nauxv[ndx] = oauxv[ndx]; 260 nauxv[ndx] = oauxv[ndx]; 261 } 262 #else 263 /* 264 * Verify that the above routine is appropriate for any new platforms. 265 */ 266 #error unsupported architecture! 267 #endif 268 269 /* 270 * Compare function for PathNode AVL tree. 271 */ 272 static int 273 pnavl_compare(const void *n1, const void *n2) 274 { 275 uint_t hash1, hash2; 276 const char *st1, *st2; 277 int rc; 278 279 hash1 = ((PathNode *)n1)->pn_hash; 280 hash2 = ((PathNode *)n2)->pn_hash; 281 282 if (hash1 > hash2) 283 return (1); 284 if (hash1 < hash2) 285 return (-1); 286 287 st1 = ((PathNode *)n1)->pn_name; 288 st2 = ((PathNode *)n2)->pn_name; 289 290 rc = strcmp(st1, st2); 291 if (rc > 0) 292 return (1); 293 if (rc < 0) 294 return (-1); 295 return (0); 296 } 297 298 /* 299 * Create an AVL tree. 300 */ 301 static avl_tree_t * 302 pnavl_create(size_t size) 303 { 304 avl_tree_t *avlt; 305 306 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 307 return (NULL); 308 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 309 return (avlt); 310 } 311 312 /* 313 * Determine whether a PathNode is recorded. 314 */ 315 int 316 pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash, 317 avl_index_t *where) 318 { 319 PathNode pn; 320 321 /* 322 * Create the avl tree if required. 323 */ 324 if ((*pnavl == NULL) && 325 ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL)) 326 return (0); 327 328 pn.pn_name = name; 329 if ((pn.pn_hash = hash) == 0) 330 pn.pn_hash = sgs_str_hash(name); 331 332 if (avl_find(*pnavl, &pn, where) == NULL) 333 return (0); 334 335 return (1); 336 } 337 338 /* 339 * Determine if a pathname has already been recorded on the full path name 340 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 341 * successfully loaded. If the path name does not exist in this AVL tree, then 342 * the next insertion point is deposited in "where". This value can be used by 343 * fpavl_insert() to expedite the insertion. 344 */ 345 Rt_map * 346 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 347 { 348 FullPathNode fpn, *fpnp; 349 350 /* 351 * Create the avl tree if required. 352 */ 353 if ((lml->lm_fpavl == NULL) && 354 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 355 return (NULL); 356 357 fpn.fpn_node.pn_name = name; 358 if ((fpn.fpn_node.pn_hash = hash) == 0) 359 fpn.fpn_node.pn_hash = sgs_str_hash(name); 360 361 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 362 return (NULL); 363 364 return (fpnp->fpn_lmp); 365 } 366 367 /* 368 * Insert a name into the FullPathNode AVL tree for the link-map list. The 369 * objects NAME() is the path that would have originally been searched for, and 370 * is therefore the name to associate with any "where" value. If the object has 371 * a different PATHNAME(), perhaps because it has resolved to a different file 372 * (see fullpath()), then this name will be recorded as a separate FullPathNode 373 * (see load_file()). 374 */ 375 int 376 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 377 { 378 FullPathNode *fpnp; 379 uint_t hash = sgs_str_hash(name); 380 381 if (where == 0) { 382 /* LINTED */ 383 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); 384 385 /* 386 * We better not get a hit now, we do not want duplicates in 387 * the tree. 388 */ 389 ASSERT(_lmp == NULL); 390 } 391 392 /* 393 * Insert new node in tree. 394 */ 395 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) 396 return (0); 397 398 fpnp->fpn_node.pn_name = name; 399 fpnp->fpn_node.pn_hash = hash; 400 fpnp->fpn_lmp = lmp; 401 402 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 403 free(fpnp); 404 return (0); 405 } 406 407 ASSERT(lml->lm_fpavl != NULL); 408 avl_insert(lml->lm_fpavl, fpnp, where); 409 return (1); 410 } 411 412 /* 413 * Remove an object from the FullPathNode AVL tree. 414 */ 415 void 416 fpavl_remove(Rt_map *lmp) 417 { 418 FullPathNode *fpnp; 419 Aliste idx; 420 421 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 422 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 423 free(fpnp); 424 } 425 free(FPNODE(lmp)); 426 FPNODE(lmp) = NULL; 427 } 428 429 /* 430 * Insert a path name into the not-found AVL tree. 431 * 432 * This tree maintains a node for each path name that ld.so.1 has explicitly 433 * inspected, but has failed to load during a single ld.so.1 operation. If the 434 * path name does not exist in this AVL tree, then the next insertion point is 435 * deposited in "where". This value can be used by nfavl_insert() to expedite 436 * the insertion. 437 */ 438 void 439 nfavl_insert(const char *name, avl_index_t where) 440 { 441 PathNode *pnp; 442 uint_t hash = sgs_str_hash(name); 443 444 if (where == 0) { 445 /* LINTED */ 446 int in_nfavl = pnavl_recorded(&nfavl, name, hash, &where); 447 448 /* 449 * We better not get a hit now, we do not want duplicates in 450 * the tree. 451 */ 452 ASSERT(in_nfavl == 0); 453 } 454 455 /* 456 * Insert new node in tree. 457 */ 458 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 459 pnp->pn_name = name; 460 pnp->pn_hash = hash; 461 avl_insert(nfavl, pnp, where); 462 } 463 } 464 465 /* 466 * Insert the directory name, of a full path name, into the secure path AVL 467 * tree. 468 * 469 * This tree is used to maintain a list of directories in which the dependencies 470 * of a secure process have been found. This list provides a fall-back in the 471 * case that a $ORIGIN expansion is deemed insecure, when the expansion results 472 * in a path name that has already provided dependencies. 473 */ 474 void 475 spavl_insert(const char *name) 476 { 477 char buffer[PATH_MAX], *str; 478 size_t size; 479 avl_index_t where; 480 PathNode *pnp; 481 uint_t hash; 482 483 /* 484 * Separate the directory name from the path name. 485 */ 486 if ((str = strrchr(name, '/')) == name) 487 size = 1; 488 else 489 size = str - name; 490 491 (void) strncpy(buffer, name, size); 492 buffer[size] = '\0'; 493 hash = sgs_str_hash(buffer); 494 495 /* 496 * Determine whether this directory name is already recorded, or if 497 * not, 'where" will provide the insertion point for the new string. 498 */ 499 if (pnavl_recorded(&spavl, buffer, hash, &where)) 500 return; 501 502 /* 503 * Insert new node in tree. 504 */ 505 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 506 pnp->pn_name = strdup(buffer); 507 pnp->pn_hash = hash; 508 avl_insert(spavl, pnp, where); 509 } 510 } 511 512 /* 513 * Inspect the generic string AVL tree for the given string. If the string is 514 * not present, duplicate it, and insert the string in the AVL tree. Return the 515 * duplicated string to the caller. 516 * 517 * These strings are maintained for the life of ld.so.1 and represent path 518 * names, file names, and search paths. All other AVL trees that maintain 519 * FullPathNode and not-found path names use the same string pointer 520 * established for this string. 521 */ 522 static avl_tree_t *stravl = NULL; 523 static char *strbuf = NULL; 524 static PathNode *pnbuf = NULL; 525 static size_t strsize = 0, pnsize = 0; 526 527 const char * 528 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 529 { 530 char str[PATH_MAX]; 531 PathNode *pnp; 532 avl_index_t where; 533 534 /* 535 * Create the avl tree if required. 536 */ 537 if ((stravl == NULL) && 538 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 539 return (NULL); 540 541 /* 542 * Determine the string size if not provided by the caller. 543 */ 544 if (nsize == 0) 545 nsize = strlen(name) + 1; 546 else if (substr) { 547 /* 548 * The string passed to us may be a multiple path string for 549 * which we only need the first component. Using the provided 550 * size, strip out the required string. 551 */ 552 (void) strncpy(str, name, nsize); 553 str[nsize - 1] = '\0'; 554 name = str; 555 } 556 557 /* 558 * Allocate a PathNode buffer if one doesn't exist, or any existing 559 * buffer has been used up. 560 */ 561 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 562 pnsize = syspagsz; 563 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 564 MAP_PRIVATE)) == MAP_FAILED) 565 return (NULL); 566 } 567 /* 568 * Determine whether this string already exists. 569 */ 570 pnbuf->pn_name = name; 571 if ((pnbuf->pn_hash = hash) == 0) 572 pnbuf->pn_hash = sgs_str_hash(name); 573 574 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 575 return (pnp->pn_name); 576 577 /* 578 * Allocate a string buffer if one does not exist, or if there is 579 * insufficient space for the new string in any existing buffer. 580 */ 581 if ((strbuf == NULL) || (nsize > strsize)) { 582 strsize = S_ROUND(nsize, syspagsz); 583 584 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 585 MAP_PRIVATE)) == MAP_FAILED) 586 return (NULL); 587 } 588 589 (void) memcpy(strbuf, name, nsize); 590 pnp = pnbuf; 591 pnp->pn_name = strbuf; 592 avl_insert(stravl, pnp, where); 593 594 strbuf += nsize; 595 strsize -= nsize; 596 pnbuf++; 597 pnsize -= sizeof (PathNode); 598 return (pnp->pn_name); 599 } 600 601 /* 602 * Prior to calling an object, either via a .plt or through dlsym(), make sure 603 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 604 * init's in the correct order, however, this order is typically based on needed 605 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 606 * still occur and result in bindings that were not captured during topological 607 * sorting. This routine compensates for this lack of binding information, and 608 * provides for dynamic .init firing. 609 */ 610 void 611 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 612 { 613 Rt_map **tobj; 614 615 /* 616 * If the caller is an auditor, and the destination isn't, then don't 617 * run any .inits (see comments in load_completion()). 618 */ 619 if ((LIST(clmp)->lm_tflags & LML_TFLG_NOAUDIT) && 620 ((LIST(dlmp)->lm_tflags & LML_TFLG_NOAUDIT) == 0)) 621 return; 622 623 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 624 return; 625 626 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 627 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 628 return; 629 630 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 631 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 632 DBG_CALL(Dbg_util_no_init(dlmp)); 633 return; 634 } 635 636 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 637 tobj[0] = dlmp; 638 call_init(tobj, DBG_INIT_DYN); 639 } 640 } 641 642 /* 643 * Execute .{preinit|init|fini}array sections 644 */ 645 void 646 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 647 { 648 int start, stop, incr, ndx; 649 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 650 651 if (array == NULL) 652 return; 653 654 /* 655 * initarray & preinitarray are walked from beginning to end - while 656 * finiarray is walked from end to beginning. 657 */ 658 if (shtype == SHT_FINI_ARRAY) { 659 start = arraycnt - 1; 660 stop = incr = -1; 661 } else { 662 start = 0; 663 stop = arraycnt; 664 incr = 1; 665 } 666 667 /* 668 * Call the .*array[] entries 669 */ 670 for (ndx = start; ndx != stop; ndx += incr) { 671 uint_t rtldflags; 672 void (*fptr)(void) = (void(*)())array[ndx]; 673 674 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 675 676 APPLICATION_ENTER(rtldflags); 677 leave(LIST(lmp), 0); 678 (*fptr)(); 679 (void) enter(0); 680 APPLICATION_RETURN(rtldflags); 681 } 682 } 683 684 /* 685 * Execute any .init sections. These are passed to us in an lmp array which 686 * (by default) will have been sorted. 687 */ 688 void 689 call_init(Rt_map **tobj, int flag) 690 { 691 Rt_map **_tobj, **_nobj; 692 static APlist *pending = NULL; 693 694 /* 695 * If we're in the middle of an INITFIRST, this must complete before 696 * any new init's are fired. In this case add the object list to the 697 * pending queue and return. We'll pick up the queue after any 698 * INITFIRST objects have their init's fired. 699 */ 700 if (rtld_flags & RT_FL_INITFIRST) { 701 (void) aplist_append(&pending, tobj, AL_CNT_PENDING); 702 return; 703 } 704 705 /* 706 * Traverse the tobj array firing each objects init. 707 */ 708 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 709 Rt_map *lmp = *_tobj; 710 void (*iptr)() = INIT(lmp); 711 712 if (FLAGS(lmp) & FLG_RT_INITCALL) 713 continue; 714 715 FLAGS(lmp) |= FLG_RT_INITCALL; 716 717 /* 718 * Establish an initfirst state if necessary - no other inits 719 * will be fired (because of additional relocation bindings) 720 * when in this state. 721 */ 722 if (FLAGS(lmp) & FLG_RT_INITFRST) 723 rtld_flags |= RT_FL_INITFIRST; 724 725 if (INITARRAY(lmp) || iptr) 726 DBG_CALL(Dbg_util_call_init(lmp, flag)); 727 728 if (iptr) { 729 uint_t rtldflags; 730 731 APPLICATION_ENTER(rtldflags); 732 leave(LIST(lmp), 0); 733 (*iptr)(); 734 (void) enter(0); 735 APPLICATION_RETURN(rtldflags); 736 } 737 738 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 739 SHT_INIT_ARRAY); 740 741 if (INITARRAY(lmp) || iptr) 742 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 743 744 /* 745 * Set the initdone flag regardless of whether this object 746 * actually contains an .init section. This flag prevents us 747 * from processing this section again for an .init and also 748 * signifies that a .fini must be called should it exist. 749 * Clear the sort field for use in later .fini processing. 750 */ 751 FLAGS(lmp) |= FLG_RT_INITDONE; 752 SORTVAL(lmp) = -1; 753 754 /* 755 * If we're firing an INITFIRST object, and other objects must 756 * be fired which are not INITFIRST, make sure we grab any 757 * pending objects that might have been delayed as this 758 * INITFIRST was processed. 759 */ 760 if ((rtld_flags & RT_FL_INITFIRST) && 761 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 762 Aliste idx; 763 Rt_map **pobj; 764 765 rtld_flags &= ~RT_FL_INITFIRST; 766 767 for (APLIST_TRAVERSE(pending, idx, pobj)) { 768 aplist_delete(pending, &idx); 769 call_init(pobj, DBG_INIT_PEND); 770 } 771 } 772 } 773 free(tobj); 774 } 775 776 /* 777 * Call .fini sections for the topologically sorted list of objects. This 778 * routine is called from remove_hdl() for any objects being torn down as part 779 * of a dlclose() operation, and from atexit() processing for all the remaining 780 * objects within the process. 781 */ 782 void 783 call_fini(Lm_list *lml, Rt_map **tobj, Rt_map *clmp) 784 { 785 Rt_map **_tobj; 786 787 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 788 Rt_map *lmp = *_tobj; 789 790 /* 791 * Only fire a .fini if the objects corresponding .init has 792 * completed. We collect all .fini sections of objects that 793 * had their .init collected, but that doesn't mean that at 794 * the time of collection, that the .init had completed. 795 */ 796 if (FLAGS(lmp) & FLG_RT_INITDONE) { 797 void (*fptr)(void) = FINI(lmp); 798 799 if (FINIARRAY(lmp) || fptr) 800 DBG_CALL(Dbg_util_call_fini(lmp)); 801 802 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 803 SHT_FINI_ARRAY); 804 805 if (fptr) { 806 uint_t rtldflags; 807 808 APPLICATION_ENTER(rtldflags); 809 leave(lml, 0); 810 (*fptr)(); 811 (void) enter(0); 812 APPLICATION_RETURN(rtldflags); 813 } 814 } 815 816 /* 817 * Skip main, this is explicitly called last in atexit_fini(). 818 */ 819 if (FLAGS(lmp) & FLG_RT_ISMAIN) 820 continue; 821 822 /* 823 * This object has exercised its last instructions (regardless 824 * of whether it will be unmapped or not). Audit this closure. 825 */ 826 if ((lml->lm_tflags & LML_TFLG_NOAUDIT) == 0) 827 audit_objclose(lmp, clmp); 828 } 829 830 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 831 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 832 833 free(tobj); 834 } 835 836 /* 837 * Function called by atexit(3C). Calls all .fini sections within the objects 838 * that make up the process. As .fini processing is the last opportunity for 839 * any new bindings to be established, this is also a convenient location to 840 * check for unused objects. 841 */ 842 void 843 atexit_fini() 844 { 845 Rt_map **tobj, *lmp; 846 Lm_list *lml; 847 Aliste idx; 848 849 (void) enter(0); 850 851 rtld_flags |= RT_FL_ATEXIT; 852 853 lml = &lml_main; 854 lml->lm_flags |= LML_FLG_ATEXIT; 855 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 856 lmp = (Rt_map *)lml->lm_head; 857 858 /* 859 * Reverse topologically sort the main link-map for .fini execution. 860 */ 861 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 862 (tobj != (Rt_map **)S_ERROR)) 863 call_fini(lml, tobj, NULL); 864 865 /* 866 * Now that all .fini code has been run, see what unreferenced objects 867 * remain. 868 */ 869 unused(lml); 870 871 /* 872 * Traverse any alternative link-map lists, looking for non-auditors. 873 */ 874 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 875 /* 876 * Ignore the base-link-map list, which has already been 877 * processed, the runtime linkers link-map list, which is 878 * processed last, and any auditors. 879 */ 880 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) || 881 (lml->lm_tflags & LML_TFLG_AUD_MASK) || 882 ((lmp = (Rt_map *)lml->lm_head) == NULL)) 883 continue; 884 885 lml->lm_flags |= LML_FLG_ATEXIT; 886 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 887 888 /* 889 * Reverse topologically sort the link-map for .fini execution. 890 */ 891 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 892 (tobj != (Rt_map **)S_ERROR)) 893 call_fini(lml, tobj, NULL); 894 895 unused(lml); 896 } 897 898 /* 899 * Add an explicit close to main and ld.so.1. Although main's .fini is 900 * collected in call_fini() to provide for FINITARRAY processing, its 901 * audit_objclose is explicitly skipped. This provides for it to be 902 * called last, here. This is the reverse of the explicit calls to 903 * audit_objopen() made in setup(). 904 */ 905 lml = &lml_main; 906 lmp = (Rt_map *)lml->lm_head; 907 908 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 909 audit_objclose((Rt_map *)lml_rtld.lm_head, lmp); 910 audit_objclose(lmp, lmp); 911 } 912 913 /* 914 * Traverse any alternative link-map lists, looking for non-auditors. 915 */ 916 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 917 /* 918 * Ignore the base-link-map list, which has already been 919 * processed, the runtime linkers link-map list, which is 920 * processed last, and any non-auditors. 921 */ 922 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) || 923 ((lml->lm_tflags & LML_TFLG_AUD_MASK) == 0) || 924 ((lmp = (Rt_map *)lml->lm_head) == NULL)) 925 continue; 926 927 lml->lm_flags |= LML_FLG_ATEXIT; 928 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 929 930 /* 931 * Reverse topologically sort the link-map for .fini execution. 932 */ 933 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 934 (tobj != (Rt_map **)S_ERROR)) 935 call_fini(lml, tobj, NULL); 936 937 unused(lml); 938 } 939 940 /* 941 * Finally reverse topologically sort the runtime linkers link-map for 942 * .fini execution. 943 */ 944 lml = &lml_rtld; 945 lml->lm_flags |= LML_FLG_ATEXIT; 946 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 947 lmp = (Rt_map *)lml->lm_head; 948 949 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 950 (tobj != (Rt_map **)S_ERROR)) 951 call_fini(lml, tobj, NULL); 952 953 leave(&lml_main, 0); 954 } 955 956 /* 957 * This routine is called to complete any runtime linker activity which may have 958 * resulted in objects being loaded. This is called from all user entry points 959 * and from any internal dl*() requests. 960 */ 961 void 962 load_completion(Rt_map *nlmp) 963 { 964 Rt_map **tobj = NULL; 965 Lm_list *nlml; 966 967 /* 968 * Establish any .init processing. Note, in a world of lazy loading, 969 * objects may have been loaded regardless of whether the users request 970 * was fulfilled (i.e., a dlsym() request may have failed to find a 971 * symbol but objects might have been loaded during its search). Thus, 972 * any tsorting starts from the nlmp (new link-maps) pointer and not 973 * necessarily from the link-map that may have satisfied the request. 974 * 975 * Note, the primary link-map has an initialization phase where dynamic 976 * .init firing is suppressed. This provides for a simple and clean 977 * handshake with the primary link-maps libc, which is important for 978 * establishing uberdata. In addition, auditors often obtain handles 979 * to primary link-map objects as the objects are loaded, so as to 980 * inspect the link-map for symbols. This inspection is allowed without 981 * running any code on the primary link-map, as running this code may 982 * reenter the auditor, who may not yet have finished its own 983 * initialization. 984 */ 985 if (nlmp) 986 nlml = LIST(nlmp); 987 988 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 989 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 990 if ((tobj = tsort(nlmp, nlml->lm_init, 991 RT_SORT_REV)) == (Rt_map **)S_ERROR) 992 tobj = NULL; 993 } 994 995 /* 996 * Make sure any alternative link-map retrieves any external interfaces 997 * and initializes threads. 998 */ 999 if (nlmp && (nlml != &lml_main)) { 1000 (void) rt_get_extern(nlml, nlmp); 1001 rt_thr_init(nlml); 1002 } 1003 1004 /* 1005 * Traverse the list of new link-maps and register any dynamic TLS. 1006 * This storage is established for any objects not on the primary 1007 * link-map, and for any objects added to the primary link-map after 1008 * static TLS has been registered. 1009 */ 1010 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1011 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1012 Rt_map *lmp; 1013 1014 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1015 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1016 tls_modaddrem(lmp, TM_FLG_MODADD); 1017 } 1018 nlml->lm_tls = 0; 1019 } 1020 1021 /* 1022 * Fire any .init's. 1023 */ 1024 if (tobj) 1025 call_init(tobj, DBG_INIT_SORT); 1026 } 1027 1028 /* 1029 * Append an item to the specified link map control list. 1030 */ 1031 void 1032 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1033 { 1034 Lm_cntl *lmc; 1035 int add = 1; 1036 1037 /* 1038 * Indicate that this link-map list has a new object. 1039 */ 1040 (lml->lm_obj)++; 1041 1042 /* 1043 * If we're about to add a new object to the main link-map control 1044 * list, alert the debuggers. Additions of individual objects to the 1045 * main link-map control list occur during initial setup as the 1046 * applications immediate dependencies are loaded. Additional objects 1047 * are loaded on the main link-map control list after they have been 1048 * fully initialized on an alternative link-map control list. See 1049 * lm_move(). 1050 */ 1051 if (lmco == ALIST_OFF_DATA) 1052 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1053 1054 /* LINTED */ 1055 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1056 1057 /* 1058 * A link-map list header points to one of more link-map control lists 1059 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1060 * the list of relocated objects. Other lists maintain objects that 1061 * are still being analyzed or relocated. This list provides the core 1062 * link-map list information used by all ld.so.1 routines. 1063 */ 1064 if (lmc->lc_head == NULL) { 1065 /* 1066 * If this is the first link-map for the given control list, 1067 * initialize the list. 1068 */ 1069 lmc->lc_head = lmc->lc_tail = lmp; 1070 add = 0; 1071 1072 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1073 Rt_map *tlmp; 1074 1075 /* 1076 * If this is an interposer then append the link-map following 1077 * any other interposers (these are objects that have been 1078 * previously preloaded, or were identified with -z interpose). 1079 * Interposers can only be inserted on the first link-map 1080 * control list, as once relocation has started, interposition 1081 * from new interposers can't be guaranteed. 1082 * 1083 * NOTE: We do not interpose on the head of a list. This model 1084 * evolved because dynamic executables have already been fully 1085 * relocated within themselves and thus can't be interposed on. 1086 * Nowadays it's possible to have shared objects at the head of 1087 * a list, which conceptually means they could be interposed on. 1088 * But, shared objects can be created via dldump() and may only 1089 * be partially relocated (just relatives), in which case they 1090 * are interposable, but are marked as fixed (ET_EXEC). 1091 * 1092 * Thus we really don't have a clear method of deciding when the 1093 * head of a link-map is interposable. So, to be consistent, 1094 * for now only add interposers after the link-map lists head 1095 * object. 1096 */ 1097 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1098 tlmp = NEXT_RT_MAP(tlmp)) { 1099 1100 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1101 continue; 1102 1103 /* 1104 * Insert the new link-map before this non-interposer, 1105 * and indicate an interposer is found. 1106 */ 1107 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1108 PREV(lmp) = PREV(tlmp); 1109 1110 NEXT(lmp) = (Link_map *)tlmp; 1111 PREV(tlmp) = (Link_map *)lmp; 1112 1113 lmc->lc_flags |= LMC_FLG_REANALYZE; 1114 add = 0; 1115 break; 1116 } 1117 } 1118 1119 /* 1120 * Fall through to appending the new link map to the tail of the list. 1121 * If we're processing the initial objects of this link-map list, add 1122 * them to the backward compatibility list. 1123 */ 1124 if (add) { 1125 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1126 PREV(lmp) = (Link_map *)lmc->lc_tail; 1127 lmc->lc_tail = lmp; 1128 } 1129 1130 /* 1131 * Having added this link-map to a control list, indicate which control 1132 * list the link-map belongs to. Note, control list information is 1133 * always maintained as an offset, as the Alist can be reallocated. 1134 */ 1135 CNTL(lmp) = lmco; 1136 1137 /* 1138 * Indicate if an interposer is found. Note that the first object on a 1139 * link-map can be explicitly defined as an interposer so that it can 1140 * provide interposition over direct binding requests. 1141 */ 1142 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1143 lml->lm_flags |= LML_FLG_INTRPOSE; 1144 1145 /* 1146 * For backward compatibility with debuggers, the link-map list contains 1147 * pointers to the main control list. 1148 */ 1149 if (lmco == ALIST_OFF_DATA) { 1150 lml->lm_head = lmc->lc_head; 1151 lml->lm_tail = lmc->lc_tail; 1152 } 1153 } 1154 1155 /* 1156 * Delete an item from the specified link map control list. 1157 */ 1158 void 1159 lm_delete(Lm_list *lml, Rt_map *lmp, Rt_map *clmp) 1160 { 1161 Lm_cntl *lmc; 1162 1163 /* 1164 * If the control list pointer hasn't been initialized, this object 1165 * never got added to a link-map list. 1166 */ 1167 if (CNTL(lmp) == 0) 1168 return; 1169 1170 /* 1171 * If we're about to delete an object from the main link-map control 1172 * list, alert the debuggers. 1173 */ 1174 if (CNTL(lmp) == ALIST_OFF_DATA) 1175 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1176 1177 /* 1178 * If we're being audited tell the audit library that we're 1179 * about to go deleting dependencies. 1180 */ 1181 if (clmp && (aud_activity || 1182 ((LIST(clmp)->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_ACTIVITY))) 1183 audit_activity(clmp, LA_ACT_DELETE); 1184 1185 /* LINTED */ 1186 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1187 1188 if (lmc->lc_head == lmp) 1189 lmc->lc_head = NEXT_RT_MAP(lmp); 1190 else 1191 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1192 1193 if (lmc->lc_tail == lmp) 1194 lmc->lc_tail = PREV_RT_MAP(lmp); 1195 else 1196 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1197 1198 /* 1199 * For backward compatibility with debuggers, the link-map list contains 1200 * pointers to the main control list. 1201 */ 1202 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1203 lml->lm_head = lmc->lc_head; 1204 lml->lm_tail = lmc->lc_tail; 1205 } 1206 1207 /* 1208 * Indicate we have one less object on this control list. 1209 */ 1210 (lml->lm_obj)--; 1211 } 1212 1213 /* 1214 * Move a link-map control list to another. Objects that are being relocated 1215 * are maintained on secondary control lists. Once their relocation is 1216 * complete, the entire list is appended to the previous control list, as this 1217 * list must have been the trigger for generating the new control list. 1218 */ 1219 void 1220 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1221 { 1222 Rt_map *lmp; 1223 1224 /* 1225 * If we're about to add a new family of objects to the main link-map 1226 * control list, alert the debuggers. Additions of object families to 1227 * the main link-map control list occur during lazy loading, filtering 1228 * and dlopen(). 1229 */ 1230 if (plmco == ALIST_OFF_DATA) 1231 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1232 1233 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1234 1235 /* 1236 * Indicate each new link-map has been moved to the previous link-map 1237 * control list. 1238 */ 1239 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1240 CNTL(lmp) = plmco; 1241 1242 /* 1243 * If these objects are being added to the main link-map 1244 * control list, indicate that there are init's available 1245 * for harvesting. 1246 */ 1247 if (plmco == ALIST_OFF_DATA) { 1248 lml->lm_init++; 1249 lml->lm_flags |= LML_FLG_OBJADDED; 1250 } 1251 } 1252 1253 /* 1254 * Move the new link-map control list, to the callers link-map control 1255 * list. 1256 */ 1257 if (plmc->lc_head == NULL) { 1258 plmc->lc_head = nlmc->lc_head; 1259 PREV(nlmc->lc_head) = NULL; 1260 } else { 1261 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1262 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1263 } 1264 1265 plmc->lc_tail = nlmc->lc_tail; 1266 nlmc->lc_head = nlmc->lc_tail = NULL; 1267 1268 /* 1269 * For backward compatibility with debuggers, the link-map list contains 1270 * pointers to the main control list. 1271 */ 1272 if (plmco == ALIST_OFF_DATA) { 1273 lml->lm_head = plmc->lc_head; 1274 lml->lm_tail = plmc->lc_tail; 1275 } 1276 } 1277 1278 /* 1279 * Create, or assign a link-map control list. Each link-map list contains a 1280 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the 1281 * description in include/rtld.h). During the initial construction of a 1282 * process, objects are added to this main control list. This control list is 1283 * never deleted, unless an alternate link-map list has been requested (say for 1284 * auditors), and the associated objects could not be loaded or relocated. 1285 * 1286 * Once relocation has started, any lazy loadable objects, or filtees, are 1287 * processed on a new, temporary control list. Only when these objects have 1288 * been fully relocated, are they moved to the main link-map control list. 1289 * Once the objects are moved, this temporary control list is deleted (see 1290 * remove_cntl()). 1291 * 1292 * A dlopen() always requires a new temporary link-map control list. 1293 * Typically, a dlopen() occurs on a link-map list that had already started 1294 * relocation, however, auditors can dlopen() objects on the main link-map 1295 * list while under initial construction, before any relocation has begun. 1296 * Hence, dlopen() requests are explicitly flagged. 1297 */ 1298 Aliste 1299 create_cntl(Lm_list *lml, int dlopen) 1300 { 1301 /* 1302 * If the head link-map object has already been relocated, create a 1303 * new, temporary, control list. 1304 */ 1305 if (dlopen || (lml->lm_head == NULL) || 1306 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) { 1307 Lm_cntl *lmc; 1308 1309 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl), 1310 AL_CNT_LMLISTS)) == NULL) 1311 return (NULL); 1312 1313 return ((Aliste)((char *)lmc - (char *)lml->lm_lists)); 1314 } 1315 1316 return (ALIST_OFF_DATA); 1317 } 1318 1319 /* 1320 * Environment variables can have a variety of defined permutations, and thus 1321 * the following infrastructure exists to allow this variety and to select the 1322 * required definition. 1323 * 1324 * Environment variables can be defined as 32- or 64-bit specific, and if so 1325 * they will take precedence over any instruction set neutral form. Typically 1326 * this is only useful when the environment value is an informational string. 1327 * 1328 * Environment variables may be obtained from the standard user environment or 1329 * from a configuration file. The latter provides a fallback if no user 1330 * environment setting is found, and can take two forms: 1331 * 1332 * - a replaceable definition - this will be used if no user environment 1333 * setting has been seen, or 1334 * 1335 * - an permanent definition - this will be used no matter what user 1336 * environment setting is seen. In the case of list variables it will be 1337 * appended to any process environment setting seen. 1338 * 1339 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1340 * override any replaceable environment variables from a configuration file. 1341 */ 1342 static u_longlong_t rplgen = 0; /* replaceable generic */ 1343 /* variables */ 1344 static u_longlong_t rplisa = 0; /* replaceable ISA specific */ 1345 /* variables */ 1346 static u_longlong_t prmgen = 0; /* permanent generic */ 1347 /* variables */ 1348 static u_longlong_t prmisa = 0; /* permanent ISA specific */ 1349 /* variables */ 1350 static u_longlong_t cmdgen = 0; /* command line (-e) generic */ 1351 /* variables */ 1352 static u_longlong_t cmdisa = 0; /* command line (-e) ISA */ 1353 /* specific variables */ 1354 1355 /* 1356 * Classify an environment variables type. 1357 */ 1358 #define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */ 1359 /* the wrong ISA */ 1360 #define ENV_TYP_ISA 0x02 /* variable is ISA specific */ 1361 #define ENV_TYP_CONFIG 0x04 /* variable obtained from a */ 1362 /* config file */ 1363 #define ENV_TYP_PERMANT 0x08 /* variable is permanent */ 1364 #define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */ 1365 #define ENV_TYP_NULL 0x20 /* variable is null */ 1366 1367 /* 1368 * Identify all environment variables. 1369 */ 1370 #define ENV_FLG_AUDIT 0x0000000000001ULL 1371 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL 1372 #define ENV_FLG_BIND_NOW 0x0000000000004ULL 1373 #define ENV_FLG_BIND_NOT 0x0000000000008ULL 1374 #define ENV_FLG_BINDINGS 0x0000000000010ULL 1375 #define ENV_FLG_CONFGEN 0x0000000000020ULL 1376 #define ENV_FLG_CONFIG 0x0000000000040ULL 1377 #define ENV_FLG_DEBUG 0x0000000000080ULL 1378 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL 1379 #define ENV_FLG_DEMANGLE 0x0000000000200ULL 1380 #define ENV_FLG_FLAGS 0x0000000000400ULL 1381 #define ENV_FLG_INIT 0x0000000000800ULL 1382 #define ENV_FLG_LIBPATH 0x0000000001000ULL 1383 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL 1384 #define ENV_FLG_LOADFLTR 0x0000000004000ULL 1385 #define ENV_FLG_NOAUDIT 0x0000000008000ULL 1386 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL 1387 #define ENV_FLG_NOBAPLT 0x0000000020000ULL 1388 #define ENV_FLG_NOCONFIG 0x0000000040000ULL 1389 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL 1390 #define ENV_FLG_NODIRECT 0x0000000100000ULL 1391 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL 1392 #define ENV_FLG_NOLAZY 0x0000000400000ULL 1393 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL 1394 #define ENV_FLG_NOVERSION 0x0000001000000ULL 1395 #define ENV_FLG_PRELOAD 0x0000002000000ULL 1396 #define ENV_FLG_PROFILE 0x0000004000000ULL 1397 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL 1398 #define ENV_FLG_SIGNAL 0x0000010000000ULL 1399 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL 1400 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL 1401 #define ENV_FLG_UNREF 0x0000080000000ULL 1402 #define ENV_FLG_UNUSED 0x0000100000000ULL 1403 #define ENV_FLG_VERBOSE 0x0000200000000ULL 1404 #define ENV_FLG_WARN 0x0000400000000ULL 1405 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL 1406 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL 1407 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL 1408 #define ENV_FLG_NOPAREXT 0x0004000000000ULL 1409 #define ENV_FLG_HWCAP 0x0008000000000ULL 1410 #define ENV_FLG_SFCAP 0x0010000000000ULL 1411 #define ENV_FLG_MACHCAP 0x0020000000000ULL 1412 #define ENV_FLG_PLATCAP 0x0040000000000ULL 1413 #define ENV_FLG_CAP_FILES 0x0080000000000ULL 1414 #define ENV_FLG_DEFERRED 0x0100000000000ULL 1415 #define ENV_FLG_NOENVIRON 0x0200000000000ULL 1416 1417 #define SEL_REPLACE 0x0001 1418 #define SEL_PERMANT 0x0002 1419 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1420 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1421 #define SEL_ACT_STR 0x0400 /* setting string value */ 1422 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1423 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1424 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */ 1425 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1426 1427 /* 1428 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1429 * and len specifies its length (comparing a strings length before the string 1430 * itself speed things up). s2 points to the token itself which has already 1431 * had any leading white-space removed. 1432 */ 1433 static void 1434 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1435 Word *lmtflags, uint_t env_flags, int aout) 1436 { 1437 u_longlong_t variable = 0; 1438 ushort_t select = 0; 1439 const char **str; 1440 Word val = 0; 1441 1442 /* 1443 * Determine whether we're dealing with a replaceable or permanent 1444 * string. 1445 */ 1446 if (env_flags & ENV_TYP_PERMANT) { 1447 /* 1448 * If the string is from a configuration file and defined as 1449 * permanent, assign it as permanent. 1450 */ 1451 select |= SEL_PERMANT; 1452 } else 1453 select |= SEL_REPLACE; 1454 1455 /* 1456 * Parse the variable given. 1457 * 1458 * The LD_AUDIT family. 1459 */ 1460 if (*s1 == 'A') { 1461 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1462 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1463 /* 1464 * Replaceable and permanent audit objects can exist. 1465 */ 1466 select |= SEL_ACT_STR; 1467 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1468 variable = ENV_FLG_AUDIT; 1469 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1470 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1471 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1472 /* 1473 * A specialized variable for plt_exit() use, not 1474 * documented for general use. 1475 */ 1476 select |= SEL_ACT_SPEC_2; 1477 variable = ENV_FLG_AUDIT_ARGS; 1478 } 1479 } 1480 /* 1481 * The LD_BIND family. 1482 */ 1483 else if (*s1 == 'B') { 1484 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1485 MSG_ORIG(MSG_LD_BIND_LAZY), 1486 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1487 select |= SEL_ACT_RT2; 1488 val = RT_FL2_BINDLAZY; 1489 variable = ENV_FLG_BIND_LAZY; 1490 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1491 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1492 select |= SEL_ACT_RT2; 1493 val = RT_FL2_BINDNOW; 1494 variable = ENV_FLG_BIND_NOW; 1495 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1496 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1497 /* 1498 * Another trick, enabled to help debug AOUT 1499 * applications under BCP, but not documented for 1500 * general use. 1501 */ 1502 select |= SEL_ACT_RT; 1503 val = RT_FL_NOBIND; 1504 variable = ENV_FLG_BIND_NOT; 1505 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1506 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1507 /* 1508 * This variable is simply for backward compatibility. 1509 * If this and LD_DEBUG are both specified, only one of 1510 * the strings is going to get processed. 1511 */ 1512 select |= SEL_ACT_SPEC_2; 1513 variable = ENV_FLG_BINDINGS; 1514 } 1515 } 1516 /* 1517 * LD_CAP_FILES and LD_CONFIG family. 1518 */ 1519 else if (*s1 == 'C') { 1520 if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1, 1521 MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) { 1522 select |= SEL_ACT_STR; 1523 str = (select & SEL_REPLACE) ? 1524 &rpl_cap_files : &prm_cap_files; 1525 variable = ENV_FLG_CAP_FILES; 1526 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1527 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1528 /* 1529 * This variable is not documented for general use. 1530 * Although originaly designed for internal use with 1531 * crle(1), this variable is in use by the Studio 1532 * auditing tools. Hence, it can't be removed. 1533 */ 1534 select |= SEL_ACT_SPEC_2; 1535 variable = ENV_FLG_CONFGEN; 1536 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1537 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1538 /* 1539 * Secure applications must use a default configuration 1540 * file. A setting from a configuration file doesn't 1541 * make sense (given we must be reading a configuration 1542 * file to have gotten this). 1543 */ 1544 if ((rtld_flags & RT_FL_SECURE) || 1545 (env_flags & ENV_TYP_CONFIG)) 1546 return; 1547 select |= SEL_ACT_STR; 1548 str = &config->c_name; 1549 variable = ENV_FLG_CONFIG; 1550 } 1551 } 1552 /* 1553 * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and 1554 * LD_DEMANGLE. 1555 */ 1556 else if (*s1 == 'D') { 1557 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1558 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1559 select |= SEL_ACT_STR; 1560 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1561 variable = ENV_FLG_DEBUG; 1562 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1563 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1564 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1565 select |= SEL_ACT_STR; 1566 str = &dbg_file; 1567 variable = ENV_FLG_DEBUG_OUTPUT; 1568 } else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1, 1569 MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) { 1570 select |= SEL_ACT_RT; 1571 val = RT_FL_DEFERRED; 1572 variable = ENV_FLG_DEFERRED; 1573 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1574 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1575 select |= SEL_ACT_RT; 1576 val = RT_FL_DEMANGLE; 1577 variable = ENV_FLG_DEMANGLE; 1578 } 1579 } 1580 /* 1581 * LD_FLAGS - collect the best variable definition. On completion of 1582 * environment variable processing pass the result to ld_flags_env() 1583 * where they'll be decomposed and passed back to this routine. 1584 */ 1585 else if (*s1 == 'F') { 1586 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1587 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1588 select |= SEL_ACT_SPEC_1; 1589 str = (select & SEL_REPLACE) ? &rpl_ldflags : 1590 &prm_ldflags; 1591 variable = ENV_FLG_FLAGS; 1592 } 1593 } 1594 /* 1595 * LD_HWCAP. 1596 */ 1597 else if (*s1 == 'H') { 1598 if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1, 1599 MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) { 1600 select |= SEL_ACT_STR; 1601 str = (select & SEL_REPLACE) ? 1602 &rpl_hwcap : &prm_hwcap; 1603 variable = ENV_FLG_HWCAP; 1604 } 1605 } 1606 /* 1607 * LD_INIT (internal, used by ldd(1)). 1608 */ 1609 else if (*s1 == 'I') { 1610 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1611 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1612 select |= SEL_ACT_LML; 1613 val = LML_FLG_TRC_INIT; 1614 variable = ENV_FLG_INIT; 1615 } 1616 } 1617 /* 1618 * The LD_LIBRARY_PATH and LD_LOAD families. 1619 */ 1620 else if (*s1 == 'L') { 1621 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1622 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1623 select |= SEL_ACT_SPEC_1; 1624 str = (select & SEL_REPLACE) ? &rpl_libpath : 1625 &prm_libpath; 1626 variable = ENV_FLG_LIBPATH; 1627 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1628 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1629 /* 1630 * This variable is not documented for general use. 1631 * Although originaly designed for internal use with 1632 * crle(1), this variable is in use by the Studio 1633 * auditing tools. Hence, it can't be removed. 1634 */ 1635 select |= SEL_ACT_LML; 1636 val = LML_FLG_LOADAVAIL; 1637 variable = ENV_FLG_LOADAVAIL; 1638 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1639 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1640 select |= SEL_ACT_SPEC_2; 1641 variable = ENV_FLG_LOADFLTR; 1642 } 1643 } 1644 /* 1645 * LD_MACHCAP. 1646 */ 1647 else if (*s1 == 'M') { 1648 if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1, 1649 MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) { 1650 select |= SEL_ACT_STR; 1651 str = (select & SEL_REPLACE) ? 1652 &rpl_machcap : &prm_machcap; 1653 variable = ENV_FLG_MACHCAP; 1654 } 1655 } 1656 /* 1657 * The LD_NO family. 1658 */ 1659 else if (*s1 == 'N') { 1660 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1661 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1662 select |= SEL_ACT_RT; 1663 val = RT_FL_NOAUDIT; 1664 variable = ENV_FLG_NOAUDIT; 1665 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1666 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1667 select |= SEL_ACT_RT; 1668 val = RT_FL_NOAUXFLTR; 1669 variable = ENV_FLG_NOAUXFLTR; 1670 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1671 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1672 select |= SEL_ACT_RT; 1673 val = RT_FL_NOBAPLT; 1674 variable = ENV_FLG_NOBAPLT; 1675 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1676 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1677 select |= SEL_ACT_RT; 1678 val = RT_FL_NOCFG; 1679 variable = ENV_FLG_NOCONFIG; 1680 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1681 MSG_ORIG(MSG_LD_NODIRCONFIG), 1682 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1683 select |= SEL_ACT_RT; 1684 val = RT_FL_NODIRCFG; 1685 variable = ENV_FLG_NODIRCONFIG; 1686 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1687 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1688 select |= SEL_ACT_LMLT; 1689 val = LML_TFLG_NODIRECT; 1690 variable = ENV_FLG_NODIRECT; 1691 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1692 MSG_ORIG(MSG_LD_NOENVCONFIG), 1693 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1694 select |= SEL_ACT_RT; 1695 val = RT_FL_NOENVCFG; 1696 variable = ENV_FLG_NOENVCONFIG; 1697 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1698 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1699 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1700 select |= SEL_ACT_RT2; 1701 val = RT_FL2_NOFLTCFG; 1702 variable = ENV_FLG_NOFLTCONFIG; 1703 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1704 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1705 select |= SEL_ACT_LMLT; 1706 val = LML_TFLG_NOLAZYLD; 1707 variable = ENV_FLG_NOLAZY; 1708 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1709 MSG_ORIG(MSG_LD_NOOBJALTER), 1710 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1711 select |= SEL_ACT_RT; 1712 val = RT_FL_NOOBJALT; 1713 variable = ENV_FLG_NOOBJALTER; 1714 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1715 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1716 select |= SEL_ACT_RT; 1717 val = RT_FL_NOVERSION; 1718 variable = ENV_FLG_NOVERSION; 1719 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1720 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1721 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1722 /* 1723 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1724 */ 1725 select |= SEL_ACT_LML; 1726 val = LML_FLG_TRC_NOUNRESWEAK; 1727 variable = ENV_FLG_NOUNRESWEAK; 1728 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1729 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1730 select |= SEL_ACT_LML; 1731 val = LML_FLG_TRC_NOPAREXT; 1732 variable = ENV_FLG_NOPAREXT; 1733 } else if ((len == MSG_LD_NOENVIRON_SIZE) && (strncmp(s1, 1734 MSG_ORIG(MSG_LD_NOENVIRON), MSG_LD_NOENVIRON_SIZE) == 0)) { 1735 /* 1736 * LD_NOENVIRON can only be set with ld.so.1 -e. 1737 */ 1738 select |= SEL_ACT_RT; 1739 val = RT_FL_NOENVIRON; 1740 variable = ENV_FLG_NOENVIRON; 1741 } 1742 } 1743 /* 1744 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family. 1745 */ 1746 else if (*s1 == 'P') { 1747 if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1, 1748 MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) { 1749 select |= SEL_ACT_STR; 1750 str = (select & SEL_REPLACE) ? 1751 &rpl_platcap : &prm_platcap; 1752 variable = ENV_FLG_PLATCAP; 1753 } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1754 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1755 select |= SEL_ACT_STR; 1756 str = (select & SEL_REPLACE) ? &rpl_preload : 1757 &prm_preload; 1758 variable = ENV_FLG_PRELOAD; 1759 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1760 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1761 /* 1762 * Only one user library can be profiled at a time. 1763 */ 1764 select |= SEL_ACT_SPEC_2; 1765 variable = ENV_FLG_PROFILE; 1766 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1767 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1768 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1769 /* 1770 * Only one user library can be profiled at a time. 1771 */ 1772 select |= SEL_ACT_STR; 1773 str = &profile_out; 1774 variable = ENV_FLG_PROFILE_OUTPUT; 1775 } 1776 } 1777 /* 1778 * LD_SFCAP and LD_SIGNAL. 1779 */ 1780 else if (*s1 == 'S') { 1781 if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1, 1782 MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) { 1783 select |= SEL_ACT_STR; 1784 str = (select & SEL_REPLACE) ? 1785 &rpl_sfcap : &prm_sfcap; 1786 variable = ENV_FLG_SFCAP; 1787 } else if ((len == MSG_LD_SIGNAL_SIZE) && 1788 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1789 MSG_LD_SIGNAL_SIZE) == 0) && 1790 ((rtld_flags & RT_FL_SECURE) == 0)) { 1791 select |= SEL_ACT_SPEC_2; 1792 variable = ENV_FLG_SIGNAL; 1793 } 1794 } 1795 /* 1796 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1797 * the key to enabling all other ldd(1) specific environment variables. 1798 * In case an auditor is called, which in turn might exec(2) a 1799 * subprocess, this variable is disabled, so that any subprocess 1800 * escapes ldd(1) processing. 1801 */ 1802 else if (*s1 == 'T') { 1803 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1804 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1805 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1806 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1807 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1808 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1809 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1810 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1811 char *s0 = (char *)s1; 1812 1813 select |= SEL_ACT_SPEC_2; 1814 variable = ENV_FLG_TRACE_OBJS; 1815 1816 #if defined(__sparc) || defined(__x86) 1817 /* 1818 * The simplest way to "disable" this variable is to 1819 * truncate this string to "LD_'\0'". This string is 1820 * ignored by any ld.so.1 environment processing. 1821 * Use of such interfaces as unsetenv(3c) are overkill, 1822 * and would drag too much libc implementation detail 1823 * into ld.so.1. 1824 */ 1825 *s0 = '\0'; 1826 #else 1827 /* 1828 * Verify that the above write is appropriate for any new platforms. 1829 */ 1830 #error unsupported architecture! 1831 #endif 1832 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1833 MSG_ORIG(MSG_LD_TRACE_PTHS), 1834 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1835 select |= SEL_ACT_LML; 1836 val = LML_FLG_TRC_SEARCH; 1837 variable = ENV_FLG_TRACE_PTHS; 1838 } 1839 } 1840 /* 1841 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1842 */ 1843 else if (*s1 == 'U') { 1844 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1845 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1846 select |= SEL_ACT_LML; 1847 val = LML_FLG_TRC_UNREF; 1848 variable = ENV_FLG_UNREF; 1849 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1850 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1851 select |= SEL_ACT_LML; 1852 val = LML_FLG_TRC_UNUSED; 1853 variable = ENV_FLG_UNUSED; 1854 } 1855 } 1856 /* 1857 * LD_VERBOSE (internal, used by ldd(1)). 1858 */ 1859 else if (*s1 == 'V') { 1860 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1861 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1862 select |= SEL_ACT_LML; 1863 val = LML_FLG_TRC_VERBOSE; 1864 variable = ENV_FLG_VERBOSE; 1865 } 1866 } 1867 /* 1868 * LD_WARN (internal, used by ldd(1)). 1869 */ 1870 else if (*s1 == 'W') { 1871 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1872 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1873 select |= SEL_ACT_LML; 1874 val = LML_FLG_TRC_WARN; 1875 variable = ENV_FLG_WARN; 1876 } 1877 } 1878 1879 if (variable == 0) 1880 return; 1881 1882 /* 1883 * If the variable is already processed with and ISA specific variable, 1884 * no further processing is needed. 1885 */ 1886 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1887 ((select & SEL_PERMANT) && (prmisa & variable))) 1888 return; 1889 1890 /* 1891 * If this variable has already been set via the command line, then 1892 * ignore this variable. The command line, -e, takes precedence. 1893 */ 1894 if (env_flags & ENV_TYP_ISA) { 1895 if (cmdisa & variable) 1896 return; 1897 if (env_flags & ENV_TYP_CMDLINE) 1898 cmdisa |= variable; 1899 } else { 1900 if (cmdgen & variable) 1901 return; 1902 if (env_flags & ENV_TYP_CMDLINE) 1903 cmdgen |= variable; 1904 } 1905 1906 /* 1907 * Mark the appropriate variables. 1908 */ 1909 if (env_flags & ENV_TYP_ISA) { 1910 /* 1911 * This is an ISA setting. 1912 */ 1913 if (select & SEL_REPLACE) { 1914 if (rplisa & variable) 1915 return; 1916 rplisa |= variable; 1917 } else { 1918 prmisa |= variable; 1919 } 1920 } else { 1921 /* 1922 * This is a non-ISA setting. 1923 */ 1924 if (select & SEL_REPLACE) { 1925 if (rplgen & variable) 1926 return; 1927 rplgen |= variable; 1928 } else 1929 prmgen |= variable; 1930 } 1931 1932 /* 1933 * Now perform the setting. 1934 */ 1935 if (select & SEL_ACT_RT) { 1936 if (s2) 1937 rtld_flags |= val; 1938 else 1939 rtld_flags &= ~val; 1940 } else if (select & SEL_ACT_RT2) { 1941 if (s2) 1942 rtld_flags2 |= val; 1943 else 1944 rtld_flags2 &= ~val; 1945 } else if (select & SEL_ACT_STR) { 1946 if (env_flags & ENV_TYP_NULL) 1947 *str = NULL; 1948 else 1949 *str = s2; 1950 } else if (select & SEL_ACT_LML) { 1951 if (s2) 1952 *lmflags |= val; 1953 else 1954 *lmflags &= ~val; 1955 } else if (select & SEL_ACT_LMLT) { 1956 if (s2) 1957 *lmtflags |= val; 1958 else 1959 *lmtflags &= ~val; 1960 } else if (select & SEL_ACT_SPEC_1) { 1961 /* 1962 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1963 */ 1964 if (env_flags & ENV_TYP_NULL) 1965 *str = NULL; 1966 else 1967 *str = s2; 1968 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1969 if (s2) { 1970 if (variable == ENV_FLG_FLAGS) 1971 env_info |= ENV_INF_FLAGCFG; 1972 else 1973 env_info |= ENV_INF_PATHCFG; 1974 } else { 1975 if (variable == ENV_FLG_FLAGS) 1976 env_info &= ~ENV_INF_FLAGCFG; 1977 else 1978 env_info &= ~ENV_INF_PATHCFG; 1979 } 1980 } 1981 } else if (select & SEL_ACT_SPEC_2) { 1982 /* 1983 * variables can be: ENV_FLG_ 1984 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE, 1985 * SIGNAL, TRACE_OBJS 1986 */ 1987 switch (variable) { 1988 case ENV_FLG_AUDIT_ARGS: 1989 if (s2) { 1990 audit_argcnt = atoi(s2); 1991 audit_argcnt += audit_argcnt % 2; 1992 } else 1993 audit_argcnt = 0; 1994 break; 1995 case ENV_FLG_BINDINGS: 1996 if (s2) 1997 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1998 else 1999 rpl_debug = NULL; 2000 break; 2001 case ENV_FLG_CONFGEN: 2002 if (s2) { 2003 rtld_flags |= RT_FL_CONFGEN; 2004 *lmflags |= LML_FLG_IGNRELERR; 2005 } else { 2006 rtld_flags &= ~RT_FL_CONFGEN; 2007 *lmflags &= ~LML_FLG_IGNRELERR; 2008 } 2009 break; 2010 case ENV_FLG_LOADFLTR: 2011 if (s2) { 2012 *lmtflags |= LML_TFLG_LOADFLTR; 2013 if (*s2 == '2') 2014 rtld_flags |= RT_FL_WARNFLTR; 2015 } else { 2016 *lmtflags &= ~LML_TFLG_LOADFLTR; 2017 rtld_flags &= ~RT_FL_WARNFLTR; 2018 } 2019 break; 2020 case ENV_FLG_PROFILE: 2021 profile_name = s2; 2022 if (s2) { 2023 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2024 return; 2025 } 2026 /* BEGIN CSTYLED */ 2027 if (rtld_flags & RT_FL_SECURE) { 2028 profile_lib = 2029 #if defined(_ELF64) 2030 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2031 #else 2032 MSG_ORIG(MSG_PTH_LDPROFSE); 2033 #endif 2034 } else { 2035 profile_lib = 2036 #if defined(_ELF64) 2037 MSG_ORIG(MSG_PTH_LDPROF_64); 2038 #else 2039 MSG_ORIG(MSG_PTH_LDPROF); 2040 #endif 2041 } 2042 /* END CSTYLED */ 2043 } else 2044 profile_lib = NULL; 2045 break; 2046 case ENV_FLG_SIGNAL: 2047 killsig = s2 ? atoi(s2) : SIGKILL; 2048 break; 2049 case ENV_FLG_TRACE_OBJS: 2050 if (s2) { 2051 *lmflags |= LML_FLG_TRC_ENABLE; 2052 if (*s2 == '2') 2053 *lmflags |= LML_FLG_TRC_LDDSTUB; 2054 } else 2055 *lmflags &= 2056 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB); 2057 break; 2058 } 2059 } 2060 } 2061 2062 /* 2063 * Determine whether we have an architecture specific environment variable. 2064 * If we do, and we're the wrong architecture, it'll just get ignored. 2065 * Otherwise the variable is processed in it's architecture neutral form. 2066 */ 2067 static int 2068 ld_arch_env(const char *s1, size_t *len) 2069 { 2070 size_t _len = *len - 3; 2071 2072 if (s1[_len++] == '_') { 2073 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2074 #if defined(_ELF64) 2075 return (ENV_TYP_IGNORE); 2076 #else 2077 *len = *len - 3; 2078 return (ENV_TYP_ISA); 2079 #endif 2080 } 2081 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2082 #if defined(_ELF64) 2083 *len = *len - 3; 2084 return (ENV_TYP_ISA); 2085 #else 2086 return (ENV_TYP_IGNORE); 2087 #endif 2088 } 2089 } 2090 return (0); 2091 } 2092 2093 /* 2094 * Process an LD_FLAGS environment variable. The value can be a comma 2095 * separated set of tokens, which are sent (in upper case) into the generic 2096 * LD_XXXX environment variable engine. For example: 2097 * 2098 * LD_FLAGS=bind_now= -> LD_BIND_NOW= 2099 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2100 * LD_FLAGS=library_path= -> LD_LIBRARY_PATH= 2101 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2102 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2103 * or 2104 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2105 */ 2106 static int 2107 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2108 uint_t env_flags, int aout) 2109 { 2110 char *nstr, *sstr, *estr = NULL; 2111 size_t nlen, len; 2112 2113 if (str == NULL) 2114 return (0); 2115 2116 /* 2117 * Create a new string as we're going to transform the token(s) into 2118 * uppercase and separate tokens with nulls. 2119 */ 2120 len = strlen(str); 2121 if ((nstr = malloc(len + 1)) == NULL) 2122 return (1); 2123 (void) strcpy(nstr, str); 2124 2125 for (sstr = nstr; sstr; sstr++, len--) { 2126 int flags = 0; 2127 2128 if ((*sstr != '\0') && (*sstr != ',')) { 2129 if (estr == NULL) { 2130 if (*sstr == '=') 2131 estr = sstr; 2132 else { 2133 /* 2134 * Translate token to uppercase. Don't 2135 * use toupper(3C) as including this 2136 * code doubles the size of ld.so.1. 2137 */ 2138 if ((*sstr >= 'a') && (*sstr <= 'z')) 2139 *sstr = *sstr - ('a' - 'A'); 2140 } 2141 } 2142 continue; 2143 } 2144 2145 *sstr = '\0'; 2146 2147 /* 2148 * Have we discovered an "=" string. 2149 */ 2150 if (estr) { 2151 nlen = estr - nstr; 2152 2153 /* 2154 * If this is an unqualified "=", then this variable 2155 * is intended to ensure a feature is disabled. 2156 */ 2157 if ((*++estr == '\0') || (*estr == ',')) 2158 estr = NULL; 2159 } else { 2160 nlen = sstr - nstr; 2161 2162 /* 2163 * If there is no "=" found, fabricate a boolean 2164 * definition for any unqualified variable. Thus, 2165 * LD_FLAGS=bind_now is represented as BIND_NOW=1. 2166 * The value "1" is sufficient to assert any boolean 2167 * variables. Setting of ENV_TYP_NULL ensures any 2168 * string usage is reset to a NULL string, thus 2169 * LD_FLAGS=library_path is equivalent to 2170 * LIBRARY_PATH='\0'. 2171 */ 2172 flags |= ENV_TYP_NULL; 2173 estr = (char *)MSG_ORIG(MSG_STR_ONE); 2174 } 2175 2176 /* 2177 * Determine whether the environment variable is 32- or 64-bit 2178 * specific. The length, len, will reflect the architecture 2179 * neutral portion of the string. 2180 */ 2181 if ((flags |= ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2182 ld_generic_env(nstr, nlen, estr, lmflags, 2183 lmtflags, (env_flags | flags), aout); 2184 } 2185 if (len == 0) 2186 break; 2187 2188 nstr = sstr + 1; 2189 estr = NULL; 2190 } 2191 2192 return (0); 2193 } 2194 2195 /* 2196 * Variant of getopt(), intended for use when ld.so.1 is invoked directly 2197 * from the command line. The only command line option allowed is -e followed 2198 * by a runtime linker environment variable. 2199 */ 2200 int 2201 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 2202 Word *lmtflags, int aout) 2203 { 2204 int ndx; 2205 2206 for (ndx = 1; argv[ndx]; ndx++) { 2207 char *str; 2208 2209 if (argv[ndx][0] != '-') 2210 break; 2211 2212 if (argv[ndx][1] == '\0') { 2213 ndx++; 2214 break; 2215 } 2216 2217 if (argv[ndx][1] != 'e') 2218 return (1); 2219 2220 if (argv[ndx][2] == '\0') { 2221 ndx++; 2222 if (argv[ndx] == NULL) 2223 return (1); 2224 str = argv[ndx]; 2225 } else 2226 str = &argv[ndx][2]; 2227 2228 /* 2229 * If the environment variable starts with LD_, strip the LD_. 2230 * Otherwise, take things as is. Indicate that this variable 2231 * originates from the command line, as these variables take 2232 * precedence over any environment variables, or configuration 2233 * file variables. 2234 */ 2235 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 2236 (str[3] != '\0')) 2237 str += 3; 2238 if (ld_flags_env(str, lmflags, lmtflags, 2239 ENV_TYP_CMDLINE, aout) == 1) 2240 return (1); 2241 } 2242 2243 /* 2244 * Make sure an object file has been specified. 2245 */ 2246 if (argv[ndx] == NULL) 2247 return (1); 2248 2249 /* 2250 * Having gotten the arguments, clean ourselves off of the stack. 2251 * This results in a process that looks as if it was executed directly 2252 * from the application. 2253 */ 2254 stack_cleanup(argv, envp, auxv, ndx); 2255 return (0); 2256 } 2257 2258 /* 2259 * Process a single LD_XXXX string. 2260 */ 2261 static void 2262 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2263 int aout) 2264 { 2265 const char *s2; 2266 size_t len; 2267 int flags; 2268 2269 /* 2270 * In a branded process we must ignore all LD_XXXX variables because 2271 * they are intended for the brand's linker. To affect the native 2272 * linker, use LD_BRAND_XXXX instead. 2273 */ 2274 if (rtld_flags2 & RT_FL2_BRANDED) { 2275 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2276 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2277 return; 2278 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2279 } 2280 2281 /* 2282 * Variables with no value (ie. LD_XXXX=) turn a capability off. 2283 */ 2284 if ((s2 = strchr(s1, '=')) == NULL) { 2285 len = strlen(s1); 2286 s2 = NULL; 2287 } else if (*++s2 == '\0') { 2288 len = strlen(s1) - 1; 2289 s2 = NULL; 2290 } else { 2291 len = s2 - s1 - 1; 2292 while (conv_strproc_isspace(*s2)) 2293 s2++; 2294 } 2295 2296 /* 2297 * Determine whether the environment variable is 32-bit or 64-bit 2298 * specific. The length, len, will reflect the architecture neutral 2299 * portion of the string. 2300 */ 2301 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2302 return; 2303 env_flags |= flags; 2304 2305 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2306 } 2307 2308 /* 2309 * Internal getenv routine. Called immediately after ld.so.1 initializes 2310 * itself to process any locale specific environment variables, and collect 2311 * any LD_XXXX variables for later processing. 2312 */ 2313 #define LOC_LANG 1 2314 #define LOC_MESG 2 2315 #define LOC_ALL 3 2316 2317 int 2318 readenv_user(const char **envp, APlist **ealpp) 2319 { 2320 char *locale; 2321 const char *s1; 2322 int loc = 0; 2323 2324 for (s1 = *envp; s1; envp++, s1 = *envp) { 2325 const char *s2; 2326 2327 if (*s1++ != 'L') 2328 continue; 2329 2330 /* 2331 * See if we have any locale environment settings. These 2332 * environment variables have a precedence, LC_ALL is higher 2333 * than LC_MESSAGES which is higher than LANG. 2334 */ 2335 s2 = s1; 2336 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2337 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), 2338 MSG_LC_ALL_SIZE) == 0) { 2339 s2 += MSG_LC_ALL_SIZE; 2340 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2341 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 2342 (char *)s2; 2343 loc = LOC_ALL; 2344 } 2345 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2346 MSG_LC_MESSAGES_SIZE) == 0) { 2347 s2 += MSG_LC_MESSAGES_SIZE; 2348 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2349 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 2350 (char *)s2; 2351 loc = LOC_MESG; 2352 } 2353 } 2354 continue; 2355 } 2356 2357 s2 = s1; 2358 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2359 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2360 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2361 loc = LOC_LANG; 2362 continue; 2363 } 2364 2365 /* 2366 * Pick off any LD_XXXX environment variables. 2367 */ 2368 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2369 if (aplist_append(ealpp, s1, AL_CNT_ENVIRON) == NULL) 2370 return (1); 2371 } 2372 } 2373 2374 /* 2375 * If we have a locale setting make sure it's worth processing further. 2376 * C and POSIX locales don't need any processing. In addition, to 2377 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2378 * the locale to contain a segment that leads upward in the file system 2379 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2380 * the /usr/lib/locale hierarchy, there is no need to extensively 2381 * validate the mode or ownership of any message file (as libc's 2382 * generic handling of message files does), or be concerned with 2383 * symbolic links that might otherwise send us elsewhere. Duplicate 2384 * the string so that new locale setting can generically cleanup any 2385 * previous locales. 2386 */ 2387 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2388 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2389 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2390 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2391 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2392 else 2393 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2394 } 2395 return (0); 2396 } 2397 2398 /* 2399 * Process any LD_XXXX environment variables collected by readenv_user(). 2400 */ 2401 int 2402 procenv_user(APlist *ealp, Word *lmflags, Word *lmtflags, int aout) 2403 { 2404 Aliste idx; 2405 const char *s1; 2406 2407 for (APLIST_TRAVERSE(ealp, idx, s1)) 2408 ld_str_env(s1, lmflags, lmtflags, 0, aout); 2409 2410 /* 2411 * Having collected the best representation of any LD_FLAGS, process 2412 * these strings. 2413 */ 2414 if (rpl_ldflags) { 2415 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2416 return (1); 2417 rpl_ldflags = NULL; 2418 } 2419 2420 /* 2421 * Don't allow environment controlled auditing when tracing or if 2422 * explicitly disabled. Trigger all tracing modes from 2423 * LML_FLG_TRC_ENABLE. 2424 */ 2425 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2426 rpl_audit = profile_lib = profile_name = NULL; 2427 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2428 *lmflags &= ~LML_MSK_TRC; 2429 2430 /* 2431 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2432 */ 2433 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2434 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2435 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2436 2437 /* 2438 * When using ldd(1) -r or -d against an executable, assert -p. 2439 */ 2440 if ((*lmflags & 2441 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2442 *lmflags |= LML_FLG_TRC_NOPAREXT; 2443 2444 return (0); 2445 } 2446 2447 /* 2448 * Configuration environment processing. Called after the a.out has been 2449 * processed (as the a.out can specify its own configuration file). 2450 */ 2451 int 2452 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2453 { 2454 Word *lmflags = &(lml_main.lm_flags); 2455 Word *lmtflags = &(lml_main.lm_tflags); 2456 2457 if (envtbl == NULL) 2458 return (0); 2459 2460 while (envtbl->env_str) { 2461 uint_t env_flags = ENV_TYP_CONFIG; 2462 const char *s1 = (const char *)(envtbl->env_str + addr); 2463 2464 if (envtbl->env_flags & RTC_ENV_PERMANT) 2465 env_flags |= ENV_TYP_PERMANT; 2466 2467 if ((*s1++ == 'L') && (*s1++ == 'D') && 2468 (*s1++ == '_') && (*s1 != '\0')) 2469 ld_str_env(s1, lmflags, lmtflags, env_flags, 0); 2470 2471 envtbl++; 2472 } 2473 2474 /* 2475 * Having collected the best representation of any LD_FLAGS, process 2476 * these strings. 2477 */ 2478 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2479 return (1); 2480 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2481 aout) == 1) 2482 return (1); 2483 2484 /* 2485 * Don't allow environment controlled auditing when tracing or if 2486 * explicitly disabled. Trigger all tracing modes from 2487 * LML_FLG_TRC_ENABLE. 2488 */ 2489 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2490 prm_audit = profile_lib = profile_name = NULL; 2491 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2492 *lmflags &= ~LML_MSK_TRC; 2493 2494 return (0); 2495 } 2496 2497 int 2498 dowrite(Prfbuf * prf) 2499 { 2500 /* 2501 * We do not have a valid file descriptor, so we are unable 2502 * to flush the buffer. 2503 */ 2504 if (prf->pr_fd == -1) 2505 return (0); 2506 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2507 prf->pr_cur = prf->pr_buf; 2508 return (1); 2509 } 2510 2511 /* 2512 * Simplified printing. The following conversion specifications are supported: 2513 * 2514 * % [#] [-] [min field width] [. precision] s|d|x|c 2515 * 2516 * 2517 * dorprf takes the output buffer in the form of Prfbuf which permits 2518 * the verification of the output buffer size and the concatenation 2519 * of data to an already existing output buffer. The Prfbuf 2520 * structure contains the following: 2521 * 2522 * pr_buf pointer to the beginning of the output buffer. 2523 * pr_cur pointer to the next available byte in the output buffer. By 2524 * setting pr_cur ahead of pr_buf you can append to an already 2525 * existing buffer. 2526 * pr_len the size of the output buffer. By setting pr_len to '0' you 2527 * disable protection from overflows in the output buffer. 2528 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2529 * output to. If pr_fd is set to '-1' then it's assumed there is 2530 * no output buffer, and doprf() will return with an error to 2531 * indicate an output buffer overflow. If pr_fd is > -1 then when 2532 * the output buffer is filled it will be flushed to pr_fd and will 2533 * then be available for additional data. 2534 */ 2535 #define FLG_UT_MINUS 0x0001 /* - */ 2536 #define FLG_UT_SHARP 0x0002 /* # */ 2537 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2538 2539 /* 2540 * This macro is for use from within doprf only. It is to be used for checking 2541 * the output buffer size and placing characters into the buffer. 2542 */ 2543 #define PUTC(c) \ 2544 { \ 2545 char tmpc; \ 2546 \ 2547 tmpc = (c); \ 2548 if (bufsiz && (bp >= bufend)) { \ 2549 prf->pr_cur = bp; \ 2550 if (dowrite(prf) == 0) \ 2551 return (0); \ 2552 bp = prf->pr_cur; \ 2553 } \ 2554 *bp++ = tmpc; \ 2555 } 2556 2557 /* 2558 * Define a local buffer size for building a numeric value - large enough to 2559 * hold a 64-bit value. 2560 */ 2561 #define NUM_SIZE 22 2562 2563 size_t 2564 doprf(const char *format, va_list args, Prfbuf *prf) 2565 { 2566 char c; 2567 char *bp = prf->pr_cur; 2568 char *bufend = prf->pr_buf + prf->pr_len; 2569 size_t bufsiz = prf->pr_len; 2570 2571 while ((c = *format++) != '\0') { 2572 if (c != '%') { 2573 PUTC(c); 2574 } else { 2575 int base = 0, flag = 0, width = 0, prec = 0; 2576 size_t _i; 2577 int _c, _n; 2578 char *_s; 2579 int ls = 0; 2580 again: 2581 c = *format++; 2582 switch (c) { 2583 case '-': 2584 flag |= FLG_UT_MINUS; 2585 goto again; 2586 case '#': 2587 flag |= FLG_UT_SHARP; 2588 goto again; 2589 case '.': 2590 flag |= FLG_UT_DOTSEEN; 2591 goto again; 2592 case '0': 2593 case '1': 2594 case '2': 2595 case '3': 2596 case '4': 2597 case '5': 2598 case '6': 2599 case '7': 2600 case '8': 2601 case '9': 2602 if (flag & FLG_UT_DOTSEEN) 2603 prec = (prec * 10) + c - '0'; 2604 else 2605 width = (width * 10) + c - '0'; 2606 goto again; 2607 case 'x': 2608 case 'X': 2609 base = 16; 2610 break; 2611 case 'd': 2612 case 'D': 2613 case 'u': 2614 base = 10; 2615 flag &= ~FLG_UT_SHARP; 2616 break; 2617 case 'l': 2618 base = 10; 2619 ls++; /* number of l's (long or long long) */ 2620 if ((*format == 'l') || 2621 (*format == 'd') || (*format == 'D') || 2622 (*format == 'x') || (*format == 'X') || 2623 (*format == 'o') || (*format == 'O') || 2624 (*format == 'u') || (*format == 'U')) 2625 goto again; 2626 break; 2627 case 'o': 2628 case 'O': 2629 base = 8; 2630 break; 2631 case 'c': 2632 _c = va_arg(args, int); 2633 2634 for (_i = 24; _i > 0; _i -= 8) { 2635 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2636 PUTC(c); 2637 } 2638 } 2639 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2640 PUTC(c); 2641 } 2642 break; 2643 case 's': 2644 _s = va_arg(args, char *); 2645 _i = strlen(_s); 2646 /* LINTED */ 2647 _n = (int)(width - _i); 2648 if (!prec) 2649 /* LINTED */ 2650 prec = (int)_i; 2651 2652 if (width && !(flag & FLG_UT_MINUS)) { 2653 while (_n-- > 0) 2654 PUTC(' '); 2655 } 2656 while (((c = *_s++) != 0) && prec--) { 2657 PUTC(c); 2658 } 2659 if (width && (flag & FLG_UT_MINUS)) { 2660 while (_n-- > 0) 2661 PUTC(' '); 2662 } 2663 break; 2664 case '%': 2665 PUTC('%'); 2666 break; 2667 default: 2668 break; 2669 } 2670 2671 /* 2672 * Numeric processing 2673 */ 2674 if (base) { 2675 char local[NUM_SIZE]; 2676 size_t ssize = 0, psize = 0; 2677 const char *string = 2678 MSG_ORIG(MSG_STR_HEXNUM); 2679 const char *prefix = 2680 MSG_ORIG(MSG_STR_EMPTY); 2681 u_longlong_t num; 2682 2683 switch (ls) { 2684 case 0: /* int */ 2685 num = (u_longlong_t) 2686 va_arg(args, uint_t); 2687 break; 2688 case 1: /* long */ 2689 num = (u_longlong_t) 2690 va_arg(args, ulong_t); 2691 break; 2692 case 2: /* long long */ 2693 num = va_arg(args, u_longlong_t); 2694 break; 2695 } 2696 2697 if (flag & FLG_UT_SHARP) { 2698 if (base == 16) { 2699 prefix = MSG_ORIG(MSG_STR_HEX); 2700 psize = 2; 2701 } else { 2702 prefix = MSG_ORIG(MSG_STR_ZERO); 2703 psize = 1; 2704 } 2705 } 2706 if ((base == 10) && (long)num < 0) { 2707 prefix = MSG_ORIG(MSG_STR_NEGATE); 2708 psize = MSG_STR_NEGATE_SIZE; 2709 num = (u_longlong_t)(-(longlong_t)num); 2710 } 2711 2712 /* 2713 * Convert the numeric value into a local 2714 * string (stored in reverse order). 2715 */ 2716 _s = local; 2717 do { 2718 *_s++ = string[num % base]; 2719 num /= base; 2720 ssize++; 2721 } while (num); 2722 2723 ASSERT(ssize < sizeof (local)); 2724 2725 /* 2726 * Provide any precision or width padding. 2727 */ 2728 if (prec) { 2729 /* LINTED */ 2730 _n = (int)(prec - ssize); 2731 while ((_n-- > 0) && 2732 (ssize < sizeof (local))) { 2733 *_s++ = '0'; 2734 ssize++; 2735 } 2736 } 2737 if (width && !(flag & FLG_UT_MINUS)) { 2738 /* LINTED */ 2739 _n = (int)(width - ssize - psize); 2740 while (_n-- > 0) { 2741 PUTC(' '); 2742 } 2743 } 2744 2745 /* 2746 * Print any prefix and the numeric string 2747 */ 2748 while (*prefix) 2749 PUTC(*prefix++); 2750 do { 2751 PUTC(*--_s); 2752 } while (_s > local); 2753 2754 /* 2755 * Provide any width padding. 2756 */ 2757 if (width && (flag & FLG_UT_MINUS)) { 2758 /* LINTED */ 2759 _n = (int)(width - ssize - psize); 2760 while (_n-- > 0) 2761 PUTC(' '); 2762 } 2763 } 2764 } 2765 } 2766 2767 PUTC('\0'); 2768 prf->pr_cur = bp; 2769 return (1); 2770 } 2771 2772 static int 2773 doprintf(const char *format, va_list args, Prfbuf *prf) 2774 { 2775 char *ocur = prf->pr_cur; 2776 2777 if (doprf(format, args, prf) == 0) 2778 return (0); 2779 /* LINTED */ 2780 return ((int)(prf->pr_cur - ocur)); 2781 } 2782 2783 /* VARARGS2 */ 2784 int 2785 sprintf(char *buf, const char *format, ...) 2786 { 2787 va_list args; 2788 int len; 2789 Prfbuf prf; 2790 2791 va_start(args, format); 2792 prf.pr_buf = prf.pr_cur = buf; 2793 prf.pr_len = 0; 2794 prf.pr_fd = -1; 2795 len = doprintf(format, args, &prf); 2796 va_end(args); 2797 2798 /* 2799 * sprintf() return value excludes the terminating null byte. 2800 */ 2801 return (len - 1); 2802 } 2803 2804 /* VARARGS3 */ 2805 int 2806 snprintf(char *buf, size_t n, const char *format, ...) 2807 { 2808 va_list args; 2809 int len; 2810 Prfbuf prf; 2811 2812 va_start(args, format); 2813 prf.pr_buf = prf.pr_cur = buf; 2814 prf.pr_len = n; 2815 prf.pr_fd = -1; 2816 len = doprintf(format, args, &prf); 2817 va_end(args); 2818 2819 return (len); 2820 } 2821 2822 /* VARARGS2 */ 2823 int 2824 bufprint(Prfbuf *prf, const char *format, ...) 2825 { 2826 va_list args; 2827 int len; 2828 2829 va_start(args, format); 2830 len = doprintf(format, args, prf); 2831 va_end(args); 2832 2833 return (len); 2834 } 2835 2836 /*PRINTFLIKE1*/ 2837 int 2838 printf(const char *format, ...) 2839 { 2840 va_list args; 2841 char buffer[ERRSIZE]; 2842 Prfbuf prf; 2843 2844 va_start(args, format); 2845 prf.pr_buf = prf.pr_cur = buffer; 2846 prf.pr_len = ERRSIZE; 2847 prf.pr_fd = 1; 2848 (void) doprf(format, args, &prf); 2849 va_end(args); 2850 /* 2851 * Trim trailing '\0' form buffer 2852 */ 2853 prf.pr_cur--; 2854 return (dowrite(&prf)); 2855 } 2856 2857 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2858 2859 /* 2860 * All error messages go through eprintf(). During process initialization, 2861 * these messages are directed to the standard error, however once control has 2862 * been passed to the applications code these messages are stored in an internal 2863 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2864 * while running the application will still cause a standard error message, see 2865 * rtldexit() in this file for details. 2866 * The RT_FL_APPLIC flag serves to indicate the transition between process 2867 * initialization and when the applications code is running. 2868 */ 2869 /*PRINTFLIKE3*/ 2870 void 2871 eprintf(Lm_list *lml, Error error, const char *format, ...) 2872 { 2873 va_list args; 2874 int overflow = 0; 2875 static int lock = 0; 2876 Prfbuf prf; 2877 2878 if (lock || (nextptr == (errbuf + ERRSIZE))) 2879 return; 2880 2881 /* 2882 * Note: this lock is here to prevent the same thread from recursively 2883 * entering itself during a eprintf. ie: during eprintf malloc() fails 2884 * and we try and call eprintf ... and then malloc() fails .... 2885 */ 2886 lock = 1; 2887 2888 /* 2889 * If we have completed startup initialization, all error messages 2890 * must be saved. These are reported through dlerror(). If we're 2891 * still in the initialization stage, output the error directly and 2892 * add a newline. 2893 */ 2894 va_start(args, format); 2895 2896 prf.pr_buf = prf.pr_cur = nextptr; 2897 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2898 2899 if ((rtld_flags & RT_FL_APPLIC) == 0) 2900 prf.pr_fd = 2; 2901 else 2902 prf.pr_fd = -1; 2903 2904 if (error > ERR_NONE) { 2905 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2906 error = ERR_WARNING; 2907 if (error == ERR_WARNING) { 2908 if (err_strs[ERR_WARNING] == NULL) 2909 err_strs[ERR_WARNING] = 2910 MSG_INTL(MSG_ERR_WARNING); 2911 } else if (error == ERR_FATAL) { 2912 if (err_strs[ERR_FATAL] == NULL) 2913 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2914 } else if (error == ERR_ELF) { 2915 if (err_strs[ERR_ELF] == NULL) 2916 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2917 } 2918 if (procname) { 2919 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2920 rtldname, procname, err_strs[error]) == 0) 2921 overflow = 1; 2922 } else { 2923 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2924 rtldname, err_strs[error]) == 0) 2925 overflow = 1; 2926 } 2927 if (overflow == 0) { 2928 /* 2929 * Remove the terminating '\0'. 2930 */ 2931 prf.pr_cur--; 2932 } 2933 } 2934 2935 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2936 overflow = 1; 2937 2938 /* 2939 * If this is an ELF error, it will have been generated by a support 2940 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2941 * ELF error messages as it doesn't interact with libelf. Determine the 2942 * ELF error string. 2943 */ 2944 if ((overflow == 0) && (error == ERR_ELF)) { 2945 static int (*elfeno)() = 0; 2946 static const char *(*elfemg)(); 2947 const char *emsg; 2948 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2949 2950 if (NEXT(lmp) && (elfeno == 0)) { 2951 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2952 MSG_ORIG(MSG_SYM_ELFERRMSG), 2953 lmp, &dlmp)) == NULL) || 2954 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2955 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2956 elfeno = 0; 2957 } 2958 2959 /* 2960 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2961 */ 2962 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2963 prf.pr_cur--; 2964 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2965 emsg) == 0) 2966 overflow = 1; 2967 } 2968 } 2969 2970 /* 2971 * Push out any message that's been built. Note, in the case of an 2972 * overflow condition, this message may be incomplete, in which case 2973 * make sure any partial string is null terminated. 2974 */ 2975 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2976 *(prf.pr_cur - 1) = '\n'; 2977 (void) dowrite(&prf); 2978 } 2979 if (overflow) 2980 *(prf.pr_cur - 1) = '\0'; 2981 2982 DBG_CALL(Dbg_util_str(lml, nextptr)); 2983 va_end(args); 2984 2985 /* 2986 * Determine if there was insufficient space left in the buffer to 2987 * complete the message. If so, we'll have printed out as much as had 2988 * been processed if we're not yet executing the application. 2989 * Otherwise, there will be some debugging diagnostic indicating 2990 * as much of the error message as possible. Write out a final buffer 2991 * overflow diagnostic - unlocalized, so we don't chance more errors. 2992 */ 2993 if (overflow) { 2994 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2995 2996 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2997 lasterr = str; 2998 2999 if ((rtld_flags & RT_FL_APPLIC) == 0) { 3000 (void) write(2, str, strlen(str)); 3001 (void) write(2, MSG_ORIG(MSG_STR_NL), 3002 MSG_STR_NL_SIZE); 3003 } 3004 } 3005 DBG_CALL(Dbg_util_str(lml, str)); 3006 3007 lock = 0; 3008 nextptr = errbuf + ERRSIZE; 3009 return; 3010 } 3011 3012 /* 3013 * If the application has started, then error messages are being saved 3014 * for retrieval by dlerror(), or possible flushing from rtldexit() in 3015 * the case of a fatal error. In this case, establish the next error 3016 * pointer. If we haven't started the application, the whole message 3017 * buffer can be reused. 3018 */ 3019 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 3020 lasterr = nextptr; 3021 3022 /* 3023 * Note, should we encounter an error such as ENOMEM, there may 3024 * be a number of the same error messages (ie. an operation 3025 * fails with ENOMEM, and then the attempts to construct the 3026 * error message itself, which incurs additional ENOMEM errors). 3027 * Compare any previous error message with the one we've just 3028 * created to prevent any duplication clutter. 3029 */ 3030 if ((rtld_flags & RT_FL_APPLIC) && 3031 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 3032 prevptr = nextptr; 3033 nextptr = prf.pr_cur; 3034 *nextptr = '\0'; 3035 } 3036 } 3037 lock = 0; 3038 } 3039 3040 #if DEBUG 3041 /* 3042 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 3043 * details. 3044 */ 3045 int 3046 assfail(const char *a, const char *f, int l) 3047 { 3048 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 3049 (void) _lwp_kill(_lwp_self(), SIGABRT); 3050 return (0); 3051 } 3052 #endif 3053 3054 /* 3055 * Exit. If we arrive here with a non zero status it's because of a fatal 3056 * error condition (most commonly a relocation error). If the application has 3057 * already had control, then the actual fatal error message will have been 3058 * recorded in the dlerror() message buffer. Print the message before really 3059 * exiting. 3060 */ 3061 void 3062 rtldexit(Lm_list * lml, int status) 3063 { 3064 if (status) { 3065 if (rtld_flags & RT_FL_APPLIC) { 3066 /* 3067 * If the error buffer has been used, write out all 3068 * pending messages - lasterr is simply a pointer to 3069 * the last message in this buffer. However, if the 3070 * buffer couldn't be created at all, lasterr points 3071 * to a constant error message string. 3072 */ 3073 if (*errbuf) { 3074 char *errptr = errbuf; 3075 char *errend = errbuf + ERRSIZE; 3076 3077 while ((errptr < errend) && *errptr) { 3078 size_t size = strlen(errptr); 3079 (void) write(2, errptr, size); 3080 (void) write(2, MSG_ORIG(MSG_STR_NL), 3081 MSG_STR_NL_SIZE); 3082 errptr += (size + 1); 3083 } 3084 } 3085 if (lasterr && ((lasterr < errbuf) || 3086 (lasterr > (errbuf + ERRSIZE)))) { 3087 (void) write(2, lasterr, strlen(lasterr)); 3088 (void) write(2, MSG_ORIG(MSG_STR_NL), 3089 MSG_STR_NL_SIZE); 3090 } 3091 } 3092 leave(lml, 0); 3093 (void) _lwp_kill(_lwp_self(), killsig); 3094 } 3095 _exit(status); 3096 } 3097 3098 /* 3099 * Map anonymous memory via MAP_ANON (added in Solaris 8). 3100 */ 3101 void * 3102 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3103 { 3104 caddr_t va; 3105 3106 if ((va = (caddr_t)mmap(addr, len, prot, 3107 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 3108 int err = errno; 3109 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3110 strerror(err)); 3111 return (MAP_FAILED); 3112 } 3113 return (va); 3114 } 3115 3116 static int nu_fd = FD_UNAVAIL; 3117 3118 void * 3119 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3120 { 3121 caddr_t va; 3122 int err; 3123 3124 if (nu_fd == FD_UNAVAIL) { 3125 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3126 O_RDONLY)) == FD_UNAVAIL) { 3127 err = errno; 3128 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3129 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3130 return (MAP_FAILED); 3131 } 3132 } 3133 3134 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3135 MAP_FAILED) { 3136 err = errno; 3137 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3138 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3139 } 3140 return (va); 3141 } 3142 3143 /* 3144 * Generic entry point from user code - simply grabs a lock, and bumps the 3145 * entrance count. 3146 */ 3147 int 3148 enter(int flags) 3149 { 3150 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3151 if (!thr_flg_nolock) 3152 (void) rt_mutex_lock(&rtldlock); 3153 if (rtld_flags & RT_FL_OPERATION) { 3154 ld_entry_cnt++; 3155 3156 /* 3157 * Reset the diagnostic time information for each new 3158 * "operation". Thus timing diagnostics are relative 3159 * to entering ld.so.1. 3160 */ 3161 if (DBG_ISTIME() && 3162 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) { 3163 DBG_DELTATIME = DBG_TOTALTIME; 3164 DBG_ONRESET(); 3165 } 3166 } 3167 return (1); 3168 } 3169 return (0); 3170 } 3171 3172 /* 3173 * Determine whether a search path has been used. 3174 */ 3175 static void 3176 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3177 { 3178 Pdesc *pdp; 3179 Aliste idx; 3180 3181 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3182 const char *fmt, *name; 3183 3184 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3185 continue; 3186 3187 /* 3188 * If this pathname originated from an expanded token, use the 3189 * original for any diagnostic output. 3190 */ 3191 if ((name = pdp->pd_oname) == NULL) 3192 name = pdp->pd_pname; 3193 3194 if (unref == 0) { 3195 if ((*nl)++ == 0) 3196 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3197 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3198 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3199 continue; 3200 } 3201 3202 if (pdp->pd_flags & LA_SER_LIBPATH) { 3203 if (pdp->pd_flags & LA_SER_CONFIG) { 3204 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3205 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3206 else 3207 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3208 } else { 3209 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3210 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3211 else 3212 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3213 } 3214 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3215 fmt = MSG_INTL(MSG_USD_RUNPATH); 3216 } else 3217 continue; 3218 3219 if ((*nl)++ == 0) 3220 (void) printf(MSG_ORIG(MSG_STR_NL)); 3221 (void) printf(fmt, name, obj); 3222 } 3223 } 3224 3225 /* 3226 * Generate diagnostics as to whether an object has been used. A symbolic 3227 * reference that gets bound to an object marks it as used. Dependencies that 3228 * are unused when RTLD_NOW is in effect should be removed from future builds 3229 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3230 * candidates for lazy-loading. 3231 * 3232 * Unreferenced objects identify objects that are defined as dependencies but 3233 * are unreferenced by the caller. These unreferenced objects may however be 3234 * referenced by other objects within the process, and therefore don't qualify 3235 * as completely unused. They are still an unnecessary overhead. 3236 * 3237 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3238 * debugging. 3239 */ 3240 void 3241 unused(Lm_list *lml) 3242 { 3243 Rt_map *lmp; 3244 int nl = 0; 3245 Word unref, unuse; 3246 3247 /* 3248 * If we're not tracing unused references or dependencies, or debugging 3249 * there's nothing to do. 3250 */ 3251 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3252 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3253 3254 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3255 return; 3256 3257 /* 3258 * Detect unused global search paths. 3259 */ 3260 if (rpl_libdirs) 3261 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3262 if (prm_libdirs) 3263 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3264 3265 nl = 0; 3266 lmp = lml->lm_head; 3267 if (RLIST(lmp)) 3268 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3269 3270 /* 3271 * Traverse the link-maps looking for unreferenced or unused 3272 * dependencies. Ignore the first object on a link-map list, as this 3273 * is always used. 3274 */ 3275 nl = 0; 3276 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3277 /* 3278 * Determine if this object contains any runpaths that have 3279 * not been used. 3280 */ 3281 if (RLIST(lmp)) 3282 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3283 3284 /* 3285 * If tracing unreferenced objects, or under debugging, 3286 * determine whether any of this objects callers haven't 3287 * referenced it. 3288 */ 3289 if (unref || DBG_ENABLED) { 3290 Bnd_desc *bdp; 3291 Aliste idx; 3292 3293 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3294 Rt_map *clmp; 3295 3296 if (bdp->b_flags & BND_REFER) 3297 continue; 3298 3299 clmp = bdp->b_caller; 3300 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3301 continue; 3302 3303 /* BEGIN CSTYLED */ 3304 if (nl++ == 0) { 3305 if (unref) 3306 (void) printf(MSG_ORIG(MSG_STR_NL)); 3307 else 3308 DBG_CALL(Dbg_util_nl(lml, 3309 DBG_NL_STD)); 3310 } 3311 3312 if (unref) 3313 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3314 NAME(lmp), NAME(clmp)); 3315 else 3316 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3317 /* END CSTYLED */ 3318 } 3319 } 3320 3321 /* 3322 * If tracing unused objects simply display those objects that 3323 * haven't been referenced by anyone. 3324 */ 3325 if (FLAGS1(lmp) & FL1_RT_USED) 3326 continue; 3327 3328 if (nl++ == 0) { 3329 if (unref || unuse) 3330 (void) printf(MSG_ORIG(MSG_STR_NL)); 3331 else 3332 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3333 } 3334 if (CYCGROUP(lmp)) { 3335 if (unref || unuse) 3336 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3337 NAME(lmp), CYCGROUP(lmp)); 3338 else 3339 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3340 CYCGROUP(lmp))); 3341 } else { 3342 if (unref || unuse) 3343 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3344 NAME(lmp)); 3345 else 3346 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3347 } 3348 } 3349 3350 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3351 } 3352 3353 /* 3354 * Generic cleanup routine called prior to returning control to the user. 3355 * Ensures that any ld.so.1 specific file descriptors or temporary mapping are 3356 * released, and any locks dropped. 3357 */ 3358 void 3359 leave(Lm_list *lml, int flags) 3360 { 3361 /* 3362 * Alert the debuggers that the link-maps are consistent. 3363 */ 3364 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT); 3365 3366 /* 3367 * Alert any auditors that the link-maps are consistent. 3368 */ 3369 if (lml->lm_flags & LML_FLG_ACTAUDIT) { 3370 audit_activity(lml->lm_head, LA_ACT_CONSISTENT); 3371 lml->lm_flags &= ~LML_FLG_ACTAUDIT; 3372 } 3373 3374 if (nu_fd != FD_UNAVAIL) { 3375 (void) close(nu_fd); 3376 nu_fd = FD_UNAVAIL; 3377 } 3378 3379 /* 3380 * Reinitialize error message pointer, and any overflow indication. 3381 */ 3382 nextptr = errbuf; 3383 prevptr = NULL; 3384 3385 /* 3386 * Defragment any freed memory. 3387 */ 3388 if (aplist_nitems(free_alp)) 3389 defrag(); 3390 3391 /* 3392 * Don't drop our lock if we are running on our link-map list as 3393 * there's little point in doing so since we are single-threaded. 3394 * 3395 * LML_FLG_HOLDLOCK is set for: 3396 * - The ld.so.1's link-map list. 3397 * - The auditor's link-map if the environment is pre-UPM. 3398 */ 3399 if (lml->lm_flags & LML_FLG_HOLDLOCK) 3400 return; 3401 3402 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3403 if (!thr_flg_nolock) 3404 (void) rt_mutex_unlock(&rtldlock); 3405 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3406 } 3407 } 3408 3409 int 3410 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3411 { 3412 APlist *calp, *dalp; 3413 Aliste idx1, idx2; 3414 Grp_hdl *ghp1, *ghp2; 3415 3416 /* 3417 * An object can always find symbols within itself. 3418 */ 3419 if (clmp == dlmp) 3420 return (1); 3421 3422 /* 3423 * The search for a singleton must look in every loaded object. 3424 */ 3425 if (slflags & LKUP_SINGLETON) 3426 return (1); 3427 3428 /* 3429 * Don't allow an object to bind to an object that is being deleted 3430 * unless the binder is also being deleted. 3431 */ 3432 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3433 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3434 return (0); 3435 3436 /* 3437 * An object with world access can always bind to an object with global 3438 * visibility. 3439 */ 3440 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3441 (MODE(dlmp) & RTLD_GLOBAL)) 3442 return (1); 3443 3444 /* 3445 * An object with local access can only bind to an object that is a 3446 * member of the same group. 3447 */ 3448 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3449 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3450 return (0); 3451 3452 /* 3453 * Traverse the list of groups the caller is a part of. 3454 */ 3455 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3456 /* 3457 * If we're testing for the ability of two objects to bind to 3458 * each other regardless of a specific group, ignore that group. 3459 */ 3460 if (ghp && (ghp1 == ghp)) 3461 continue; 3462 3463 /* 3464 * Traverse the list of groups the destination is a part of. 3465 */ 3466 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3467 Grp_desc *gdp; 3468 Aliste idx3; 3469 3470 if (ghp1 != ghp2) 3471 continue; 3472 3473 /* 3474 * Make sure the relationship between the destination 3475 * and the caller provide symbols for relocation. 3476 * Parents are maintained as callers, but unless the 3477 * destination object was opened with RTLD_PARENT, the 3478 * parent doesn't provide symbols for the destination 3479 * to relocate against. 3480 */ 3481 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3482 if (dlmp != gdp->gd_depend) 3483 continue; 3484 3485 if (gdp->gd_flags & GPD_RELOC) 3486 return (1); 3487 } 3488 } 3489 } 3490 return (0); 3491 } 3492 3493 /* 3494 * Initialize the environ symbol. Traditionally this is carried out by the crt 3495 * code prior to jumping to main. However, init sections get fired before this 3496 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3497 * information. In addition, a process may have multiple link-maps (ld.so.1's 3498 * debugging and preloading objects), and link auditing, and each may need an 3499 * environ variable set. 3500 * 3501 * This routine is called after a relocation() pass, and thus provides for: 3502 * 3503 * - setting environ on the main link-map after the initial application and 3504 * its dependencies have been established. Typically environ lives in the 3505 * application (provided by its crt), but in older applications it might 3506 * be in libc. Who knows what's expected of applications not built on 3507 * Solaris. 3508 * 3509 * - after loading a new shared object. We can add shared objects to various 3510 * link-maps, and any link-map dependencies requiring getopt() require 3511 * their own environ. In addition, lazy loading might bring in the 3512 * supplier of environ (libc used to be a lazy loading candidate) after 3513 * the link-map has been established and other objects are present. 3514 * 3515 * This routine handles all these scenarios, without adding unnecessary overhead 3516 * to ld.so.1. 3517 */ 3518 void 3519 set_environ(Lm_list *lml) 3520 { 3521 Slookup sl; 3522 Sresult sr; 3523 uint_t binfo; 3524 3525 /* 3526 * Initialize the symbol lookup, and symbol result, data structures. 3527 */ 3528 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3529 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3530 SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON)); 3531 3532 if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) { 3533 Rt_map *dlmp = sr.sr_dmap; 3534 3535 lml->lm_environ = (char ***)sr.sr_sym->st_value; 3536 3537 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3538 lml->lm_environ = 3539 (char ***)((uintptr_t)lml->lm_environ + 3540 (uintptr_t)ADDR(dlmp)); 3541 *(lml->lm_environ) = (char **)environ; 3542 lml->lm_flags |= LML_FLG_ENVIRON; 3543 } 3544 } 3545 3546 /* 3547 * Determine whether we have a secure executable. Uid and gid information 3548 * can be passed to us via the aux vector, however if these values are -1 3549 * then use the appropriate system call to obtain them. 3550 * 3551 * - If the user is the root they can do anything 3552 * 3553 * - If the real and effective uid's don't match, or the real and 3554 * effective gid's don't match then this is determined to be a `secure' 3555 * application. 3556 * 3557 * This function is called prior to any dependency processing (see _setup.c). 3558 * Any secure setting will remain in effect for the life of the process. 3559 */ 3560 void 3561 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3562 { 3563 if (auxflags != -1) { 3564 if ((auxflags & AF_SUN_SETUGID) != 0) 3565 rtld_flags |= RT_FL_SECURE; 3566 return; 3567 } 3568 3569 if (uid == (uid_t)-1) 3570 uid = getuid(); 3571 if (uid) { 3572 if (euid == (uid_t)-1) 3573 euid = geteuid(); 3574 if (uid != euid) 3575 rtld_flags |= RT_FL_SECURE; 3576 else { 3577 if (gid == (gid_t)-1) 3578 gid = getgid(); 3579 if (egid == (gid_t)-1) 3580 egid = getegid(); 3581 if (gid != egid) 3582 rtld_flags |= RT_FL_SECURE; 3583 } 3584 } 3585 } 3586 3587 /* 3588 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3589 */ 3590 int 3591 is_rtld_setuid() 3592 { 3593 rtld_stat_t status; 3594 const char *name; 3595 3596 if (rtld_flags2 & RT_FL2_SETUID) 3597 return (1); 3598 3599 if (interp && interp->i_name) 3600 name = interp->i_name; 3601 else 3602 name = NAME(lml_rtld.lm_head); 3603 3604 if (((rtld_stat(name, &status) == 0) && 3605 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3606 rtld_flags2 |= RT_FL2_SETUID; 3607 return (1); 3608 } 3609 return (0); 3610 } 3611 3612 /* 3613 * Determine that systems platform name. Normally, this name is provided from 3614 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a 3615 * fall back. 3616 */ 3617 void 3618 platform_name(Syscapset *scapset) 3619 { 3620 char info[SYS_NMLN]; 3621 size_t size; 3622 3623 if ((scapset->sc_platsz = size = 3624 sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1) 3625 return; 3626 3627 if ((scapset->sc_plat = malloc(size)) == NULL) { 3628 scapset->sc_platsz = (size_t)-1; 3629 return; 3630 } 3631 (void) strcpy(scapset->sc_plat, info); 3632 } 3633 3634 /* 3635 * Determine that systems machine name. Normally, this name is provided from 3636 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a 3637 * fall back. 3638 */ 3639 void 3640 machine_name(Syscapset *scapset) 3641 { 3642 char info[SYS_NMLN]; 3643 size_t size; 3644 3645 if ((scapset->sc_machsz = size = 3646 sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1) 3647 return; 3648 3649 if ((scapset->sc_mach = malloc(size)) == NULL) { 3650 scapset->sc_machsz = (size_t)-1; 3651 return; 3652 } 3653 (void) strcpy(scapset->sc_mach, info); 3654 } 3655 3656 /* 3657 * _REENTRANT code gets errno redefined to a function so provide for return 3658 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3659 * is basically singled threaded. Provide the interface for our dependencies. 3660 */ 3661 #undef errno 3662 int * 3663 ___errno() 3664 { 3665 extern int errno; 3666 3667 return (&errno); 3668 } 3669 3670 /* 3671 * Determine whether a symbol name should be demangled. 3672 */ 3673 const char * 3674 demangle(const char *name) 3675 { 3676 if (rtld_flags & RT_FL_DEMANGLE) 3677 return (conv_demangle_name(name)); 3678 else 3679 return (name); 3680 } 3681 3682 #ifndef _LP64 3683 /* 3684 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3685 * underneath while preserving the object size limits of a non-largefile 3686 * enabled 32-bit process. The purpose of this is to prevent large inode 3687 * values from causing stat() to fail. 3688 */ 3689 inline static int 3690 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3691 { 3692 extern int errno; 3693 3694 /* 3695 * Although we used a 64-bit capable stat(), the 32-bit rtld 3696 * can only handle objects < 2GB in size. If this object is 3697 * too big, turn the success into an overflow error. 3698 */ 3699 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3700 errno = EOVERFLOW; 3701 return (-1); 3702 } 3703 3704 /* 3705 * Transfer the information needed by rtld into a rtld_stat_t 3706 * structure that preserves the non-largile types for everything 3707 * except inode. 3708 */ 3709 buf->st_dev = lbuf->st_dev; 3710 buf->st_ino = lbuf->st_ino; 3711 buf->st_mode = lbuf->st_mode; 3712 buf->st_uid = lbuf->st_uid; 3713 buf->st_size = (off_t)lbuf->st_size; 3714 buf->st_mtim = lbuf->st_mtim; 3715 #ifdef sparc 3716 buf->st_blksize = lbuf->st_blksize; 3717 #endif 3718 3719 return (r); 3720 } 3721 3722 int 3723 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3724 { 3725 struct stat64 lbuf; 3726 int r; 3727 3728 r = stat64(path, &lbuf); 3729 if (r != -1) 3730 r = rtld_stat_process(r, &lbuf, buf); 3731 return (r); 3732 } 3733 3734 int 3735 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3736 { 3737 struct stat64 lbuf; 3738 int r; 3739 3740 r = fstat64(fildes, &lbuf); 3741 if (r != -1) 3742 r = rtld_stat_process(r, &lbuf, buf); 3743 return (r); 3744 } 3745 #endif 3746