xref: /titanic_51/usr/src/cmd/sgs/rtld/common/elf.c (revision b9bd317cda1afb3a01f4812de73e8cec888cbbd7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  *	Copyright (c) 1988 AT&T
29  *	  All Rights Reserved
30  */
31 
32 #pragma ident	"%Z%%M%	%I%	%E% SMI"
33 
34 /*
35  * Object file dependent support for ELF objects.
36  */
37 
38 #include	<stdio.h>
39 #include	<sys/procfs.h>
40 #include	<sys/mman.h>
41 #include	<sys/debug.h>
42 #include	<string.h>
43 #include	<limits.h>
44 #include	<dlfcn.h>
45 #include	<debug.h>
46 #include	<conv.h>
47 #include	"_rtld.h"
48 #include	"_audit.h"
49 #include	"_elf.h"
50 #include	"msg.h"
51 
52 /*
53  * Default and secure dependency search paths.
54  */
55 static Pnode		elf_dflt_dirs[] = {
56 #if	defined(_ELF64)
57 #ifndef	SGS_PRE_UNIFIED_PROCESS
58 	{ MSG_ORIG(MSG_PTH_LIB_64),		0,	MSG_PTH_LIB_64_SIZE,
59 		LA_SER_DEFAULT,			0,	&elf_dflt_dirs[1] },
60 #endif
61 	{ MSG_ORIG(MSG_PTH_USRLIB_64),		0,	MSG_PTH_USRLIB_64_SIZE,
62 		LA_SER_DEFAULT,			0, 0 }
63 #else
64 #ifndef	SGS_PRE_UNIFIED_PROCESS
65 	{ MSG_ORIG(MSG_PTH_LIB),		0,	MSG_PTH_LIB_SIZE,
66 		LA_SER_DEFAULT,			0,	&elf_dflt_dirs[1] },
67 #endif
68 	{ MSG_ORIG(MSG_PTH_USRLIB),		0,	MSG_PTH_USRLIB_SIZE,
69 		LA_SER_DEFAULT,			0, 0 }
70 #endif
71 };
72 
73 static Pnode		elf_secure_dirs[] = {
74 #if	defined(_ELF64)
75 #ifndef	SGS_PRE_UNIFIED_PROCESS
76 	{ MSG_ORIG(MSG_PTH_LIBSE_64),		0,	MSG_PTH_LIBSE_64_SIZE,
77 		LA_SER_SECURE,			0,	&elf_secure_dirs[1] },
78 #endif
79 	{ MSG_ORIG(MSG_PTH_USRLIBSE_64),	0,
80 		MSG_PTH_USRLIBSE_64_SIZE,
81 		LA_SER_SECURE,			0, 0 }
82 #else
83 #ifndef	SGS_PRE_UNIFIED_PROCESS
84 	{ MSG_ORIG(MSG_PTH_LIBSE),		0,	MSG_PTH_LIBSE_SIZE,
85 		LA_SER_SECURE,			0,	&elf_secure_dirs[1] },
86 #endif
87 	{ MSG_ORIG(MSG_PTH_USRLIBSE),		0,	MSG_PTH_USRLIBSE_SIZE,
88 		LA_SER_SECURE,			0, 0 }
89 #endif
90 };
91 
92 /*
93  * Defines for local functions.
94  */
95 static Pnode	*elf_fix_name(const char *, Rt_map *, uint_t);
96 static int	elf_are_u(Rej_desc *);
97 static void	elf_dladdr(ulong_t, Rt_map *, Dl_info *, void **, int);
98 static ulong_t	elf_entry_pt(void);
99 static char	*elf_get_so(const char *, const char *);
100 static Rt_map	*elf_map_so(Lm_list *, Aliste, const char *, const char *,
101 		    int, int *);
102 static int	elf_needed(Lm_list *, Aliste, Rt_map *, int *);
103 static void	elf_unmap_so(Rt_map *);
104 static int	elf_verify_vers(const char *, Rt_map *, Rt_map *);
105 
106 /*
107  * Functions and data accessed through indirect pointers.
108  */
109 Fct elf_fct = {
110 	elf_are_u,
111 	elf_entry_pt,
112 	elf_map_so,
113 	elf_unmap_so,
114 	elf_needed,
115 	lookup_sym,
116 	elf_reloc,
117 	elf_dflt_dirs,
118 	elf_secure_dirs,
119 	elf_fix_name,
120 	elf_get_so,
121 	elf_dladdr,
122 	dlsym_handle,
123 	elf_verify_vers,
124 	elf_set_prot
125 };
126 
127 
128 /*
129  * Redefine NEEDED name if necessary.
130  */
131 static Pnode *
132 elf_fix_name(const char *name, Rt_map *clmp, uint_t orig)
133 {
134 	/*
135 	 * For ABI compliance, if we are asked for ld.so.1, then really give
136 	 * them libsys.so.1 (the SONAME of libsys.so.1 is ld.so.1).
137 	 */
138 	if (((*name == '/') &&
139 	/* BEGIN CSTYLED */
140 #if	defined(_ELF64)
141 	    (strcmp(name, MSG_ORIG(MSG_PTH_RTLD_64)) == 0)) ||
142 #else
143 	    (strcmp(name, MSG_ORIG(MSG_PTH_RTLD)) == 0)) ||
144 #endif
145 	    (strcmp(name, MSG_ORIG(MSG_FIL_RTLD)) == 0)) {
146 		/* END CSTYLED */
147 		Pnode	*pnp;
148 
149 		DBG_CALL(Dbg_file_fixname(LIST(clmp), name,
150 		    MSG_ORIG(MSG_PTH_LIBSYS)));
151 		if (((pnp = calloc(sizeof (Pnode), 1)) == 0) ||
152 		    ((pnp->p_name = strdup(MSG_ORIG(MSG_PTH_LIBSYS))) == 0)) {
153 			if (pnp)
154 				free(pnp);
155 			return (0);
156 		}
157 		pnp->p_len = MSG_PTH_LIBSYS_SIZE;
158 		return (pnp);
159 	}
160 
161 	return (expand_paths(clmp, name, orig, 0));
162 }
163 
164 /*
165  * Determine if we have been given an ELF file and if so determine if the file
166  * is compatible.  Returns 1 if true, else 0 and sets the reject descriptor
167  * with associated error information.
168  */
169 static int
170 elf_are_u(Rej_desc *rej)
171 {
172 	Ehdr	*ehdr;
173 
174 	/*
175 	 * Determine if we're an elf file.  If not simply return, we don't set
176 	 * any rejection information as this test allows use to scroll through
177 	 * the objects we support (ELF, AOUT).
178 	 */
179 	if (fmap->fm_fsize < sizeof (Ehdr) ||
180 	    fmap->fm_maddr[EI_MAG0] != ELFMAG0 ||
181 	    fmap->fm_maddr[EI_MAG1] != ELFMAG1 ||
182 	    fmap->fm_maddr[EI_MAG2] != ELFMAG2 ||
183 	    fmap->fm_maddr[EI_MAG3] != ELFMAG3) {
184 		return (0);
185 	}
186 
187 	/*
188 	 * Check class and encoding.
189 	 */
190 	/* LINTED */
191 	ehdr = (Ehdr *)fmap->fm_maddr;
192 	if (ehdr->e_ident[EI_CLASS] != M_CLASS) {
193 		rej->rej_type = SGS_REJ_CLASS;
194 		rej->rej_info = (uint_t)ehdr->e_ident[EI_CLASS];
195 		return (0);
196 	}
197 	if (ehdr->e_ident[EI_DATA] != M_DATA) {
198 		rej->rej_type = SGS_REJ_DATA;
199 		rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA];
200 		return (0);
201 	}
202 	if ((ehdr->e_type != ET_REL) && (ehdr->e_type != ET_EXEC) &&
203 	    (ehdr->e_type != ET_DYN)) {
204 		rej->rej_type = SGS_REJ_TYPE;
205 		rej->rej_info = (uint_t)ehdr->e_type;
206 		return (0);
207 	}
208 
209 	/*
210 	 * Verify machine specific flags, and hardware capability requirements.
211 	 */
212 	if ((elf_mach_flags_check(rej, ehdr) == 0) ||
213 	    ((rtld_flags2 & RT_FL2_HWCAP) && (hwcap_check(rej, ehdr) == 0)))
214 		return (0);
215 
216 	/*
217 	 * Verify ELF version.  ??? is this too restrictive ???
218 	 */
219 	if (ehdr->e_version > EV_CURRENT) {
220 		rej->rej_type = SGS_REJ_VERSION;
221 		rej->rej_info = (uint_t)ehdr->e_version;
222 		return (0);
223 	}
224 	return (1);
225 }
226 
227 /*
228  * The runtime linker employs lazy loading to provide the libraries needed for
229  * debugging, preloading .o's and dldump().  As these are seldom used, the
230  * standard startup of ld.so.1 doesn't initialize all the information necessary
231  * to perform plt relocation on ld.so.1's link-map.  The first time lazy loading
232  * is called we get here to perform these initializations:
233  *
234  *  o	elf_needed() is called to set up the DYNINFO() indexes for each lazy
235  *	dependency.  Typically, for all other objects, this is called during
236  *	analyze_so(), but as ld.so.1 is set-contained we skip this processing.
237  *
238  *  o	For intel, ld.so.1's JMPSLOT relocations need relative updates. These
239  *	are by default skipped thus delaying all relative relocation processing
240  * 	on every invocation of ld.so.1.
241  */
242 int
243 elf_rtld_load()
244 {
245 	Lm_list	*lml = &lml_rtld;
246 	Rt_map	*lmp = lml->lm_head;
247 
248 	if (lml->lm_flags & LML_FLG_PLTREL)
249 		return (1);
250 
251 	/*
252 	 * As we need to refer to the DYNINFO() information, insure that it has
253 	 * been initialized.
254 	 */
255 	if (elf_needed(lml, ALIST_OFF_DATA, lmp, NULL) == 0)
256 		return (0);
257 
258 #if	defined(__i386)
259 	/*
260 	 * This is a kludge to give ld.so.1 a performance benefit on i386.
261 	 * It's based around two factors.
262 	 *
263 	 *  o	JMPSLOT relocations (PLT's) actually need a relative relocation
264 	 *	applied to the GOT entry so that they can find PLT0.
265 	 *
266 	 *  o	ld.so.1 does not exercise *any* PLT's before it has made a call
267 	 *	to elf_lazy_load().  This is because all dynamic dependencies
268 	 * 	are recorded as lazy dependencies.
269 	 */
270 	(void) elf_reloc_relacount((ulong_t)JMPREL(lmp),
271 	    (ulong_t)(PLTRELSZ(lmp) / RELENT(lmp)), (ulong_t)RELENT(lmp),
272 	    (ulong_t)ADDR(lmp));
273 #endif
274 
275 	lml->lm_flags |= LML_FLG_PLTREL;
276 	return (1);
277 }
278 
279 /*
280  * Lazy load an object.
281  */
282 Rt_map *
283 elf_lazy_load(Rt_map *clmp, Slookup *slp, uint_t ndx, const char *sym,
284     int *in_nfavl)
285 {
286 	Rt_map		*nlmp, *hlmp;
287 	Dyninfo		*dip = &DYNINFO(clmp)[ndx], *pdip;
288 	uint_t		flags = 0;
289 	Pnode		*pnp;
290 	const char	*name;
291 	Lm_list		*lml = LIST(clmp);
292 	Lm_cntl		*lmc;
293 	Aliste		lmco;
294 
295 	/*
296 	 * If this dependency has already been processed, we're done.
297 	 */
298 	if (((nlmp = (Rt_map *)dip->di_info) != 0) ||
299 	    (dip->di_flags & FLG_DI_LDD_DONE))
300 		return (nlmp);
301 
302 	/*
303 	 * If we're running under ldd(1), indicate that this dependency has been
304 	 * processed (see test above).  It doesn't matter whether the object is
305 	 * successfully loaded or not, this flag simply ensures that we don't
306 	 * repeatedly attempt to load an object that has already failed to load.
307 	 * To do so would create multiple failure diagnostics for the same
308 	 * object under ldd(1).
309 	 */
310 	if (lml->lm_flags & LML_FLG_TRC_ENABLE)
311 		dip->di_flags |= FLG_DI_LDD_DONE;
312 
313 	/*
314 	 * Determine the initial dependency name.
315 	 */
316 	name = STRTAB(clmp) + DYN(clmp)[ndx].d_un.d_val;
317 	DBG_CALL(Dbg_file_lazyload(clmp, name, sym));
318 
319 	/*
320 	 * If this object needs to establish its own group, make sure a handle
321 	 * is created.
322 	 */
323 	if (dip->di_flags & FLG_DI_GROUP)
324 		flags |= (FLG_RT_SETGROUP | FLG_RT_HANDLE);
325 
326 	/*
327 	 * Lazy dependencies are identified as DT_NEEDED entries with a
328 	 * DF_P1_LAZYLOAD flag in the previous DT_POSFLAG_1 element.  The
329 	 * dynamic information element that corresponds to the DT_POSFLAG_1
330 	 * entry is free, and thus used to store the present entrance
331 	 * identifier.  This identifier is used to prevent multiple attempts to
332 	 * load a failed lazy loadable dependency within the same runtime linker
333 	 * operation.  However, future attempts to reload this dependency are
334 	 * still possible.
335 	 */
336 	if (ndx && (pdip = dip - 1) && (pdip->di_flags & FLG_DI_POSFLAG1))
337 		pdip->di_info = (void *)slp->sl_id;
338 
339 	/*
340 	 * Expand the requested name if necessary.
341 	 */
342 	if ((pnp = elf_fix_name(name, clmp, 0)) == 0)
343 		return (0);
344 
345 	/*
346 	 * Provided the object on the head of the link-map has completed its
347 	 * relocation, create a new link-map control list for this request.
348 	 */
349 	hlmp = lml->lm_head;
350 	if (FLAGS(hlmp) & FLG_RT_RELOCED) {
351 		if ((lmc = alist_append(&lml->lm_lists, 0, sizeof (Lm_cntl),
352 		    AL_CNT_LMLISTS)) == 0) {
353 			remove_pnode(pnp);
354 			return (0);
355 		}
356 		lmco = (Aliste)((char *)lmc - (char *)lml->lm_lists);
357 	} else {
358 		lmc = 0;
359 		lmco = ALIST_OFF_DATA;
360 	}
361 
362 	/*
363 	 * Load the associated object.
364 	 */
365 	dip->di_info = nlmp =
366 	    load_one(lml, lmco, pnp, clmp, MODE(clmp), flags, 0, in_nfavl);
367 
368 	/*
369 	 * Remove any expanded pathname infrastructure.  Reduce the pending lazy
370 	 * dependency count of the caller, together with the link-map lists
371 	 * count of objects that still have lazy dependencies pending.
372 	 */
373 	remove_pnode(pnp);
374 	if (--LAZY(clmp) == 0)
375 		LIST(clmp)->lm_lazy--;
376 
377 	/*
378 	 * Finish processing the objects associated with this request, and
379 	 * create an association between the caller and this dependency.
380 	 */
381 	if (nlmp && ((bind_one(clmp, nlmp, BND_NEEDED) == 0) ||
382 	    (analyze_lmc(lml, lmco, nlmp, in_nfavl) == 0) ||
383 	    (relocate_lmc(lml, lmco, clmp, nlmp, in_nfavl) == 0)))
384 		dip->di_info = nlmp = 0;
385 
386 	/*
387 	 * If this lazyload has failed, and we've created a new link-map
388 	 * control list to which this request has added objects, then remove
389 	 * all the objects that have been associated to this request.
390 	 */
391 	if ((nlmp == 0) && lmc && lmc->lc_head)
392 		remove_lmc(lml, clmp, lmc, lmco, name);
393 
394 	/*
395 	 * Finally, remove any link-map control list that was created.
396 	 */
397 	if (lmc)
398 		remove_cntl(lml, lmco);
399 
400 	/*
401 	 * If this lazy loading failed, record the fact, and bump the lazy
402 	 * counts.
403 	 */
404 	if (nlmp == 0) {
405 		dip->di_flags |= FLG_DI_LAZYFAIL;
406 		if (LAZY(clmp)++ == 0)
407 			LIST(clmp)->lm_lazy++;
408 	}
409 
410 	return (nlmp);
411 }
412 
413 /*
414  * Return the entry point of the ELF executable.
415  */
416 static ulong_t
417 elf_entry_pt(void)
418 {
419 	return (ENTRY(lml_main.lm_head));
420 }
421 
422 /*
423  * Unmap a given ELF shared object from the address space.
424  */
425 static void
426 elf_unmap_so(Rt_map *lmp)
427 {
428 	caddr_t	addr;
429 	size_t	size;
430 	Mmap	*mmaps;
431 
432 	/*
433 	 * If this link map represents a relocatable object concatenation, then
434 	 * the image was simply generated in allocated memory.  Free the memory.
435 	 *
436 	 * Note: the memory was originally allocated in the libelf:_elf_outmap
437 	 * routine and would normally have been free'd in elf_outsync(), but
438 	 * because we 'interpose' on that routine the memory  wasn't free'd at
439 	 * that time.
440 	 */
441 	if (FLAGS(lmp) & FLG_RT_IMGALLOC) {
442 		free((void *)ADDR(lmp));
443 		return;
444 	}
445 
446 	/*
447 	 * If padding was enabled via rtld_db, then we have at least one page
448 	 * in front of the image - and possibly a trailing page.
449 	 * Unmap the front page first:
450 	 */
451 	if (PADSTART(lmp) != ADDR(lmp)) {
452 		addr = (caddr_t)M_PTRUNC(PADSTART(lmp));
453 		size = ADDR(lmp) - (ulong_t)addr;
454 		(void) munmap(addr, size);
455 	}
456 
457 	/*
458 	 * Unmap any trailing padding.
459 	 */
460 	if (M_PROUND((PADSTART(lmp) + PADIMLEN(lmp))) >
461 	    M_PROUND(ADDR(lmp) + MSIZE(lmp))) {
462 		addr = (caddr_t)M_PROUND(ADDR(lmp) + MSIZE(lmp));
463 		size = M_PROUND(PADSTART(lmp) + PADIMLEN(lmp)) - (ulong_t)addr;
464 		(void) munmap(addr, size);
465 	}
466 
467 	/*
468 	 * Unmmap all mapped segments.
469 	 */
470 	for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++)
471 		(void) munmap(mmaps->m_vaddr, mmaps->m_msize);
472 }
473 
474 /*
475  * Determine if a dependency requires a particular version and if so verify
476  * that the version exists in the dependency.
477  */
478 static int
479 elf_verify_vers(const char *name, Rt_map *clmp, Rt_map *nlmp)
480 {
481 	Verneed		*vnd = VERNEED(clmp);
482 	int		_num, num = VERNEEDNUM(clmp);
483 	char		*cstrs = (char *)STRTAB(clmp);
484 	Lm_list		*lml = LIST(clmp);
485 
486 	/*
487 	 * Traverse the callers version needed information and determine if any
488 	 * specific versions are required from the dependency.
489 	 */
490 	DBG_CALL(Dbg_ver_need_title(LIST(clmp), NAME(clmp)));
491 	for (_num = 1; _num <= num; _num++,
492 	    vnd = (Verneed *)((Xword)vnd + vnd->vn_next)) {
493 		Half		cnt = vnd->vn_cnt;
494 		Vernaux		*vnap;
495 		char		*nstrs, *need;
496 
497 		/*
498 		 * Determine if a needed entry matches this dependency.
499 		 */
500 		need = (char *)(cstrs + vnd->vn_file);
501 		if (strcmp(name, need) != 0)
502 			continue;
503 
504 		if ((lml->lm_flags & LML_FLG_TRC_VERBOSE) &&
505 		    ((FLAGS1(clmp) & FL1_RT_LDDSTUB) == 0))
506 			(void) printf(MSG_INTL(MSG_LDD_VER_FIND), name);
507 
508 		/*
509 		 * Validate that each version required actually exists in the
510 		 * dependency.
511 		 */
512 		nstrs = (char *)STRTAB(nlmp);
513 
514 		for (vnap = (Vernaux *)((Xword)vnd + vnd->vn_aux); cnt;
515 		    cnt--, vnap = (Vernaux *)((Xword)vnap + vnap->vna_next)) {
516 			char		*version, *define;
517 			Verdef		*vdf = VERDEF(nlmp);
518 			ulong_t		_num, num = VERDEFNUM(nlmp);
519 			int		found = 0;
520 
521 			version = (char *)(cstrs + vnap->vna_name);
522 			DBG_CALL(Dbg_ver_need_entry(lml, 0, need, version));
523 
524 			for (_num = 1; _num <= num; _num++,
525 			    vdf = (Verdef *)((Xword)vdf + vdf->vd_next)) {
526 				Verdaux		*vdap;
527 
528 				if (vnap->vna_hash != vdf->vd_hash)
529 					continue;
530 
531 				vdap = (Verdaux *)((Xword)vdf + vdf->vd_aux);
532 				define = (char *)(nstrs + vdap->vda_name);
533 				if (strcmp(version, define) != 0)
534 					continue;
535 
536 				found++;
537 				break;
538 			}
539 
540 			/*
541 			 * If we're being traced print out any matched version
542 			 * when the verbose (-v) option is in effect.  Always
543 			 * print any unmatched versions.
544 			 */
545 			if (lml->lm_flags & LML_FLG_TRC_ENABLE) {
546 				/* BEGIN CSTYLED */
547 				if (found) {
548 				    if (!(lml->lm_flags & LML_FLG_TRC_VERBOSE))
549 					continue;
550 
551 				    (void) printf(MSG_ORIG(MSG_LDD_VER_FOUND),
552 					need, version, NAME(nlmp));
553 				} else {
554 				    if (rtld_flags & RT_FL_SILENCERR)
555 					continue;
556 
557 				    (void) printf(MSG_INTL(MSG_LDD_VER_NFOUND),
558 					need, version);
559 				}
560 				/* END CSTYLED */
561 				continue;
562 			}
563 
564 			/*
565 			 * If the version hasn't been found then this is a
566 			 * candidate for a fatal error condition.  Weak
567 			 * version definition requirements are silently
568 			 * ignored.  Also, if the image inspected for a version
569 			 * definition has no versioning recorded at all then
570 			 * silently ignore this (this provides better backward
571 			 * compatibility to old images created prior to
572 			 * versioning being available).  Both of these skipped
573 			 * diagnostics are available under tracing (see above).
574 			 */
575 			if ((found == 0) && (num != 0) &&
576 			    (!(vnap->vna_flags & VER_FLG_WEAK))) {
577 				eprintf(lml, ERR_FATAL,
578 				    MSG_INTL(MSG_VER_NFOUND), need, version,
579 				    NAME(clmp));
580 				return (0);
581 			}
582 		}
583 	}
584 	DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
585 	return (1);
586 }
587 
588 /*
589  * Search through the dynamic section for DT_NEEDED entries and perform one
590  * of two functions.  If only the first argument is specified then load the
591  * defined shared object, otherwise add the link map representing the defined
592  * link map the the dlopen list.
593  */
594 static int
595 elf_needed(Lm_list *lml, Aliste lmco, Rt_map *clmp, int *in_nfavl)
596 {
597 	Dyn		*dyn, *pdyn;
598 	ulong_t		ndx = 0;
599 	uint_t		lazy, flags;
600 	Word		lmflags = lml->lm_flags;
601 	Word		lmtflags = lml->lm_tflags;
602 
603 	/*
604 	 * Process each shared object on needed list.
605 	 */
606 	if (DYN(clmp) == 0)
607 		return (1);
608 
609 	for (dyn = (Dyn *)DYN(clmp), pdyn = NULL; dyn->d_tag != DT_NULL;
610 	    pdyn = dyn++, ndx++) {
611 		Dyninfo	*dip = &DYNINFO(clmp)[ndx];
612 		Rt_map	*nlmp = 0;
613 		char	*name;
614 		int	silent = 0;
615 		Pnode	*pnp;
616 
617 		switch (dyn->d_tag) {
618 		case DT_POSFLAG_1:
619 			dip->di_flags |= FLG_DI_POSFLAG1;
620 			continue;
621 		case DT_NEEDED:
622 		case DT_USED:
623 			lazy = flags = 0;
624 			dip->di_flags |= FLG_DI_NEEDED;
625 
626 			if (pdyn && (pdyn->d_tag == DT_POSFLAG_1)) {
627 				if ((pdyn->d_un.d_val & DF_P1_LAZYLOAD) &&
628 				    ((lmtflags & LML_TFLG_NOLAZYLD) == 0)) {
629 					dip->di_flags |= FLG_DI_LAZY;
630 					lazy = 1;
631 				}
632 				if (pdyn->d_un.d_val & DF_P1_GROUPPERM) {
633 					dip->di_flags |= FLG_DI_GROUP;
634 					flags =
635 					    (FLG_RT_SETGROUP | FLG_RT_HANDLE);
636 				}
637 			}
638 
639 			name = (char *)STRTAB(clmp) + dyn->d_un.d_val;
640 
641 			/*
642 			 * NOTE, libc.so.1 can't be lazy loaded.  Although a
643 			 * lazy position flag won't be produced when a RTLDINFO
644 			 * .dynamic entry is found (introduced with the UPM in
645 			 * Solaris 10), it was possible to mark libc for lazy
646 			 * loading on previous releases.  To reduce the overhead
647 			 * of testing for this occurrence, only carry out this
648 			 * check for the first object on the link-map list
649 			 * (there aren't many applications built without libc).
650 			 */
651 			if (lazy && (lml->lm_head == clmp) &&
652 			    (strcmp(name, MSG_ORIG(MSG_FIL_LIBC)) == 0))
653 				lazy = 0;
654 
655 			/*
656 			 * Don't bring in lazy loaded objects yet unless we've
657 			 * been asked to attempt to load all available objects
658 			 * (crle(1) sets LD_FLAGS=loadavail).  Even under
659 			 * RTLD_NOW we don't process this - RTLD_NOW will cause
660 			 * relocation processing which in turn might trigger
661 			 * lazy loading, but its possible that the object has a
662 			 * lazy loaded file with no bindings (i.e., it should
663 			 * never have been a dependency in the first place).
664 			 */
665 			if (lazy) {
666 				if ((lmflags & LML_FLG_LOADAVAIL) == 0) {
667 					LAZY(clmp)++;
668 					lazy = flags = 0;
669 					continue;
670 				}
671 
672 				/*
673 				 * Silence any error messages - see description
674 				 * under elf_lookup_filtee().
675 				 */
676 				if ((rtld_flags & RT_FL_SILENCERR) == 0) {
677 					rtld_flags |= RT_FL_SILENCERR;
678 					silent = 1;
679 				}
680 			}
681 			break;
682 		case DT_AUXILIARY:
683 			dip->di_flags |= FLG_DI_AUXFLTR;
684 			continue;
685 		case DT_SUNW_AUXILIARY:
686 			dip->di_flags |= (FLG_DI_AUXFLTR | FLG_DI_SYMFLTR);
687 			continue;
688 		case DT_FILTER:
689 			dip->di_flags |= FLG_DI_STDFLTR;
690 			continue;
691 		case DT_SUNW_FILTER:
692 			dip->di_flags |= (FLG_DI_STDFLTR | FLG_DI_SYMFLTR);
693 			continue;
694 		default:
695 			continue;
696 		}
697 
698 		DBG_CALL(Dbg_file_needed(clmp, name));
699 
700 		/*
701 		 * If we're running under ldd(1), indicate that this dependency
702 		 * has been processed.  It doesn't matter whether the object is
703 		 * successfully loaded or not, this flag simply ensures that we
704 		 * don't repeatedly attempt to load an object that has already
705 		 * failed to load.  To do so would create multiple failure
706 		 * diagnostics for the same object under ldd(1).
707 		 */
708 		if (lml->lm_flags & LML_FLG_TRC_ENABLE)
709 			dip->di_flags |= FLG_DI_LDD_DONE;
710 
711 		/*
712 		 * Establish the objects name, load it and establish a binding
713 		 * with the caller.
714 		 */
715 		if (((pnp = elf_fix_name(name, clmp, 0)) == 0) || ((nlmp =
716 		    load_one(lml, lmco, pnp, clmp, MODE(clmp), flags, 0,
717 		    in_nfavl)) == 0) || (bind_one(clmp, nlmp, BND_NEEDED) == 0))
718 			nlmp = 0;
719 
720 		/*
721 		 * Clean up any infrastructure, including the removal of the
722 		 * error suppression state, if it had been previously set in
723 		 * this routine.
724 		 */
725 		if (pnp)
726 			remove_pnode(pnp);
727 		if (silent)
728 			rtld_flags &= ~RT_FL_SILENCERR;
729 
730 		if ((dip->di_info = (void *)nlmp) == 0) {
731 			/*
732 			 * If the object could not be mapped, continue if error
733 			 * suppression is established or we're here with ldd(1).
734 			 */
735 			if ((MODE(clmp) & RTLD_CONFGEN) || (lmflags &
736 			    (LML_FLG_LOADAVAIL | LML_FLG_TRC_ENABLE)))
737 				continue;
738 			else
739 				return (0);
740 		}
741 	}
742 
743 	if (LAZY(clmp))
744 		lml->lm_lazy++;
745 
746 	return (1);
747 }
748 
749 static int
750 elf_map_check(Lm_list *lml, const char *name, caddr_t vaddr, Off size)
751 {
752 	prmap_t		*maps, *_maps;
753 	int		pfd, num, _num;
754 	caddr_t		eaddr = vaddr + size;
755 	int		err;
756 
757 	/*
758 	 * If memory reservations have been established for alternative objects
759 	 * determine if this object falls within the reservation, if it does no
760 	 * further checking is required.
761 	 */
762 	if (rtld_flags & RT_FL_MEMRESV) {
763 		Rtc_head	*head = (Rtc_head *)config->c_bgn;
764 
765 		if ((vaddr >= (caddr_t)(uintptr_t)head->ch_resbgn) &&
766 		    (eaddr <= (caddr_t)(uintptr_t)head->ch_resend))
767 			return (0);
768 	}
769 
770 	/*
771 	 * Determine the mappings presently in use by this process.
772 	 */
773 	if ((pfd = pr_open(lml)) == FD_UNAVAIL)
774 		return (1);
775 
776 	if (ioctl(pfd, PIOCNMAP, (void *)&num) == -1) {
777 		err = errno;
778 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_PROC), name,
779 		    strerror(err));
780 		return (1);
781 	}
782 
783 	if ((maps = malloc((num + 1) * sizeof (prmap_t))) == 0)
784 		return (1);
785 
786 	if (ioctl(pfd, PIOCMAP, (void *)maps) == -1) {
787 		err = errno;
788 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_PROC), name,
789 		    strerror(err));
790 		free(maps);
791 		return (1);
792 	}
793 
794 	/*
795 	 * Determine if the supplied address clashes with any of the present
796 	 * process mappings.
797 	 */
798 	for (_num = 0, _maps = maps; _num < num; _num++, _maps++) {
799 		caddr_t		_eaddr = _maps->pr_vaddr + _maps->pr_size;
800 		Rt_map		*lmp;
801 		const char	*str;
802 
803 		if ((eaddr < _maps->pr_vaddr) || (vaddr >= _eaddr))
804 			continue;
805 
806 		/*
807 		 * We have a memory clash.  See if one of the known dynamic
808 		 * dependency mappings represents this space so as to provide
809 		 * the user a more meaningful message.
810 		 */
811 		if ((lmp = _caller(vaddr, 0)) != 0)
812 			str = NAME(lmp);
813 		else
814 			str = MSG_INTL(MSG_STR_UNKNOWN);
815 
816 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_MAPINUSE), name,
817 		    EC_NATPTR(vaddr), EC_OFF(size), str);
818 		return (1);
819 	}
820 	free(maps);
821 	return (0);
822 }
823 
824 /*
825  * Obtain a memory reservation.  On newer systems, both MAP_ANON and MAP_ALIGN
826  * are used to obtained an aligned reservation from anonymous memory.  If
827  * MAP_ANON isn't available, then MAP_ALIGN isn't either, so obtain a standard
828  * reservation using the file as backing.
829  */
830 static Am_ret
831 elf_map_reserve(Lm_list *lml, const char *name, caddr_t *maddr, Off msize,
832     int mperm, int fd, Xword align)
833 {
834 	Am_ret	amret;
835 	int	mflag = MAP_PRIVATE | MAP_NORESERVE;
836 
837 #if defined(MAP_ALIGN)
838 	if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) {
839 		mflag |= MAP_ALIGN;
840 		*maddr = (caddr_t)align;
841 	}
842 #endif
843 	if ((amret = anon_map(lml, maddr, msize, PROT_NONE, mflag)) == AM_ERROR)
844 		return (amret);
845 
846 	if (amret == AM_OK)
847 		return (AM_OK);
848 
849 	/*
850 	 * If an anonymous memory request failed (which should only be the
851 	 * case if it is unsupported on the system we're running on), establish
852 	 * the initial mapping directly from the file.
853 	 */
854 	*maddr = 0;
855 	if ((*maddr = mmap(*maddr, msize, mperm, MAP_PRIVATE,
856 	    fd, 0)) == MAP_FAILED) {
857 		int	err = errno;
858 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), name,
859 		    strerror(err));
860 		return (AM_ERROR);
861 	}
862 	return (AM_NOSUP);
863 }
864 
865 static void *
866 elf_map_textdata(caddr_t addr, Off flen, int mperm, int phdr_mperm, int mflag,
867     int fd, Off foff)
868 {
869 #if	defined(MAP_TEXT) && defined(MAP_INITDATA)
870 	static int	notd = 0;
871 
872 	/*
873 	 * If MAP_TEXT and MAP_INITDATA are available, select the appropriate
874 	 * flag.
875 	 */
876 	if (notd == 0) {
877 		if ((phdr_mperm & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC)
878 			mflag |= MAP_TEXT;
879 		else
880 			mflag |= MAP_INITDATA;
881 	}
882 #endif
883 	if (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff) != MAP_FAILED)
884 		return (0);
885 
886 #if	defined(MAP_TEXT) && defined(MAP_INITDATA)
887 	if ((notd == 0) && (errno == EINVAL)) {
888 		/*
889 		 * MAP_TEXT and MAP_INITDATA may not be supported on this
890 		 * platform, try again without.
891 		 */
892 		notd = 1;
893 		mflag &= ~(MAP_TEXT | MAP_INITDATA);
894 
895 		return (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff));
896 	}
897 #endif
898 	return (MAP_FAILED);
899 }
900 
901 /*
902  * Map in a file.
903  */
904 static caddr_t
905 elf_map_it(
906 	Lm_list		*lml,		/* link-map list */
907 	const char	*name,		/* actual name stored for pathname */
908 	Off		fsize,		/* total mapping claim of the file */
909 	Ehdr		*ehdr,		/* ELF header of file */
910 	Phdr		*fphdr,		/* first loadable Phdr */
911 	Phdr		*lphdr,		/* last loadable Phdr */
912 	Phdr		**rrphdr,	/* return first Phdr in reservation */
913 	caddr_t		*rraddr,	/* return start of reservation */
914 	Off		*rrsize,	/* return total size of reservation */
915 	int		fixed,		/* image is resolved to a fixed addr */
916 	int		fd,		/* images file descriptor */
917 	Xword		align,		/* image segments maximum alignment */
918 	Mmap		*mmaps,		/* mmap information array and */
919 	uint_t		*mmapcnt)	/* 	mapping count */
920 {
921 	caddr_t		raddr;		/* reservation address */
922 	Off		rsize;		/* reservation size */
923 	Phdr		*phdr;		/* working program header poiner */
924 	caddr_t		maddr;		/* working mmap address */
925 	caddr_t		faddr;		/* working file address */
926 	size_t		padsize;	/* object padding requirement */
927 	size_t		padpsize = 0;	/* padding size rounded to next page */
928 	size_t		padmsize = 0;	/* padding size rounded for alignment */
929 	int		skipfseg;	/* skip mapping first segment */
930 	int		mperm;		/* segment permissions */
931 	Am_ret		amret = AM_NOSUP;
932 
933 	/*
934 	 * If padding is required extend both the front and rear of the image.
935 	 * To insure the image itself is mapped at the correct alignment the
936 	 * initial padding is rounded up to the nearest page.  Once the image is
937 	 * mapped the excess can be pruned to the nearest page required for the
938 	 * actual padding itself.
939 	 */
940 	if ((padsize = r_debug.rtd_objpad) != 0) {
941 		padpsize = M_PROUND(padsize);
942 		if (fixed)
943 			padmsize = padpsize;
944 		else
945 			padmsize = S_ROUND(padsize, align);
946 	}
947 
948 	/*
949 	 * Determine the initial permissions used to map in the first segment.
950 	 * If this segments memsz is greater that its filesz then the difference
951 	 * must be zeroed.  Make sure this segment is writable.
952 	 */
953 	mperm = 0;
954 	if (fphdr->p_flags & PF_R)
955 		mperm |= PROT_READ;
956 	if (fphdr->p_flags & PF_X)
957 		mperm |= PROT_EXEC;
958 	if ((fphdr->p_flags & PF_W) || (fphdr->p_memsz > fphdr->p_filesz))
959 		mperm |= PROT_WRITE;
960 
961 	/*
962 	 * Determine whether or not to let system reserve address space based on
963 	 * whether this is a dynamic executable (addresses in object are fixed)
964 	 * or a shared object (addresses in object are relative to the objects'
965 	 * base).
966 	 */
967 	if (fixed) {
968 		/*
969 		 * Determine the reservation address and size, and insure that
970 		 * this reservation isn't already in use.
971 		 */
972 		faddr = maddr = (caddr_t)M_PTRUNC((ulong_t)fphdr->p_vaddr);
973 		raddr = maddr - padpsize;
974 		rsize = fsize + padpsize + padsize;
975 
976 		if (lml_main.lm_head) {
977 			if (elf_map_check(lml, name, raddr, rsize) != 0)
978 				return (0);
979 		}
980 
981 		/*
982 		 * As this is a fixed image, all segments must be individually
983 		 * mapped.
984 		 */
985 		skipfseg = 0;
986 
987 	} else {
988 		size_t	esize;
989 
990 		/*
991 		 * If this isn't a fixed image, reserve enough address space for
992 		 * the entire image to be mapped.  The amount of reservation is
993 		 * the range between the beginning of the first, and end of the
994 		 * last loadable segment, together with any padding, plus the
995 		 * alignment of the first segment.
996 		 *
997 		 * The optimal reservation is made as a no-reserve mapping from
998 		 * anonymous memory.  Each segment is then mapped into this
999 		 * reservation.  If the anonymous mapping capability isn't
1000 		 * available, the reservation is obtained from the file itself.
1001 		 * In this case the first segment of the image is mapped as part
1002 		 * of the reservation, thus only the following segments need to
1003 		 * be remapped.
1004 		 */
1005 		rsize = fsize + padmsize + padsize;
1006 		if ((amret = elf_map_reserve(lml, name, &raddr, rsize, mperm,
1007 		    fd, align)) == AM_ERROR)
1008 			return (0);
1009 		maddr = raddr + padmsize;
1010 		faddr = (caddr_t)S_ROUND((Off)maddr, align);
1011 
1012 		/*
1013 		 * If this reservation has been obtained from anonymous memory,
1014 		 * then all segments must be individually mapped.  Otherwise,
1015 		 * the first segment heads the reservation.
1016 		 */
1017 		if (amret == AM_OK)
1018 			skipfseg = 0;
1019 		else
1020 			skipfseg = 1;
1021 
1022 		/*
1023 		 * For backward compatibility (where MAP_ALIGN isn't available),
1024 		 * insure the alignment of the reservation is adequate for this
1025 		 * object, and if not remap the object to obtain the correct
1026 		 * alignment.
1027 		 */
1028 		if (faddr != maddr) {
1029 			(void) munmap(raddr, rsize);
1030 
1031 			rsize += align;
1032 			if ((amret = elf_map_reserve(lml, name, &raddr, rsize,
1033 			    mperm, fd, align)) == AM_ERROR)
1034 				return (0);
1035 
1036 			maddr = faddr = (caddr_t)S_ROUND((Off)(raddr +
1037 			    padpsize), align);
1038 
1039 			esize = maddr - raddr + padpsize;
1040 
1041 			/*
1042 			 * As ths image has been realigned, the first segment
1043 			 * of the file needs to be remapped to its correct
1044 			 * location.
1045 			 */
1046 			skipfseg = 0;
1047 		} else
1048 			esize = padmsize - padpsize;
1049 
1050 		/*
1051 		 * If this reservation included padding, remove any excess for
1052 		 * the start of the image (the padding was adjusted to insure
1053 		 * the image was aligned appropriately).
1054 		 */
1055 		if (esize) {
1056 			(void) munmap(raddr, esize);
1057 			raddr += esize;
1058 			rsize -= esize;
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * At this point we know the initial location of the image, and its
1064 	 * size.  Pass these back to the caller for inclusion in the link-map
1065 	 * that will eventually be created.
1066 	 */
1067 	*rraddr = raddr;
1068 	*rrsize = rsize;
1069 
1070 	/*
1071 	 * The first loadable segment is now pointed to by maddr.  This segment
1072 	 * will eventually contain the elf header and program headers, so reset
1073 	 * the program header.  Pass this  back to the caller for inclusion in
1074 	 * the link-map so it can be used for later unmapping operations.
1075 	 */
1076 	/* LINTED */
1077 	*rrphdr = (Phdr *)((char *)maddr + ehdr->e_phoff);
1078 
1079 	/*
1080 	 * If padding is required at the front of the image, obtain that now.
1081 	 * Note, if we've already obtained a reservation from anonymous memory
1082 	 * then this reservation will already include suitable padding.
1083 	 * Otherwise this reservation is backed by the file, or in the case of
1084 	 * a fixed image, doesn't yet exist.  Map the padding so that it is
1085 	 * suitably protected (PROT_NONE), and insure the first segment of the
1086 	 * file is mapped to its correct location.
1087 	 */
1088 	if (padsize) {
1089 		if (amret == AM_NOSUP) {
1090 			if (dz_map(lml, raddr, padpsize, PROT_NONE,
1091 			    (MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE)) ==
1092 			    MAP_FAILED)
1093 				return (0);
1094 
1095 			skipfseg = 0;
1096 		}
1097 		rsize -= padpsize;
1098 	}
1099 
1100 	/*
1101 	 * Map individual segments.  For a fixed image, these will each be
1102 	 * unique mappings.  For a reservation these will fill in the
1103 	 * reservation.
1104 	 */
1105 	for (phdr = fphdr; phdr <= lphdr;
1106 	    phdr = (Phdr *)((Off)phdr + ehdr->e_phentsize)) {
1107 		caddr_t	addr;
1108 		Off	mlen, flen;
1109 		size_t	size;
1110 
1111 		/*
1112 		 * Skip non-loadable segments or segments that don't occupy
1113 		 * any memory.
1114 		 */
1115 		if (((phdr->p_type != PT_LOAD) &&
1116 		    (phdr->p_type != PT_SUNWBSS)) || (phdr->p_memsz == 0))
1117 			continue;
1118 
1119 		/*
1120 		 * Establish this segments address relative to our base.
1121 		 */
1122 		addr = (caddr_t)M_PTRUNC((ulong_t)(phdr->p_vaddr +
1123 		    (fixed ? 0 : faddr)));
1124 
1125 		/*
1126 		 * Determine the mapping protection from the segment attributes.
1127 		 * Also determine the etext address from the last loadable
1128 		 * segment which has permissions but no write access.
1129 		 */
1130 		mperm = 0;
1131 		if (phdr->p_flags) {
1132 			if (phdr->p_flags & PF_R)
1133 				mperm |= PROT_READ;
1134 			if (phdr->p_flags & PF_X)
1135 				mperm |= PROT_EXEC;
1136 			if (phdr->p_flags & PF_W)
1137 				mperm |= PROT_WRITE;
1138 			else
1139 				fmap->fm_etext = phdr->p_vaddr + phdr->p_memsz +
1140 				    (ulong_t)(fixed ? 0 : faddr);
1141 		}
1142 
1143 		/*
1144 		 * Determine the type of mapping required.
1145 		 */
1146 		if (phdr->p_type == PT_SUNWBSS) {
1147 			/*
1148 			 * Potentially, we can defer the loading of any SUNWBSS
1149 			 * segment, depending on whether the symbols it provides
1150 			 * have been bound to.  In this manner, large segments
1151 			 * that are interposed upon between shared libraries
1152 			 * may not require mapping.  Note, that the mapping
1153 			 * information is recorded in our mapping descriptor at
1154 			 * this time.
1155 			 */
1156 			mlen = phdr->p_memsz;
1157 			flen = 0;
1158 
1159 		} else if ((phdr->p_filesz == 0) && (phdr->p_flags == 0)) {
1160 			/*
1161 			 * If this segment has no backing file and no flags
1162 			 * specified, then it defines a reservation.  At this
1163 			 * point all standard loadable segments will have been
1164 			 * processed.  The segment reservation is mapped
1165 			 * directly from /dev/null.
1166 			 */
1167 			if (nu_map(lml, (caddr_t)addr, phdr->p_memsz, PROT_NONE,
1168 			    MAP_FIXED | MAP_PRIVATE) == MAP_FAILED)
1169 				return (0);
1170 
1171 			mlen = phdr->p_memsz;
1172 			flen = 0;
1173 
1174 		} else if (phdr->p_filesz == 0) {
1175 			/*
1176 			 * If this segment has no backing file then it defines a
1177 			 * nobits segment and is mapped directly from /dev/zero.
1178 			 */
1179 			if (dz_map(lml, (caddr_t)addr, phdr->p_memsz, mperm,
1180 			    MAP_FIXED | MAP_PRIVATE) == MAP_FAILED)
1181 				return (0);
1182 
1183 			mlen = phdr->p_memsz;
1184 			flen = 0;
1185 
1186 		} else {
1187 			Off	foff;
1188 
1189 			/*
1190 			 * This mapping originates from the file.  Determine the
1191 			 * file offset to which the mapping will be directed
1192 			 * (must be aligned) and how much to map (might be more
1193 			 * than the file in the case of .bss).
1194 			 */
1195 			foff = M_PTRUNC((ulong_t)phdr->p_offset);
1196 			mlen = phdr->p_memsz + (phdr->p_offset - foff);
1197 			flen = phdr->p_filesz + (phdr->p_offset - foff);
1198 
1199 			/*
1200 			 * If this is a non-fixed, non-anonymous mapping, and no
1201 			 * padding is involved, then the first loadable segment
1202 			 * is already part of the initial reservation.  In this
1203 			 * case there is no need to remap this segment.
1204 			 */
1205 			if ((skipfseg == 0) || (phdr != fphdr)) {
1206 				int phdr_mperm = mperm;
1207 				/*
1208 				 * If this segments memsz is greater that its
1209 				 * filesz then the difference must be zeroed.
1210 				 * Make sure this segment is writable.
1211 				 */
1212 				if (phdr->p_memsz > phdr->p_filesz)
1213 					mperm |= PROT_WRITE;
1214 
1215 				if (elf_map_textdata((caddr_t)addr, flen,
1216 				    mperm, phdr_mperm,
1217 				    (MAP_FIXED | MAP_PRIVATE), fd, foff) ==
1218 				    MAP_FAILED) {
1219 					int	err = errno;
1220 					eprintf(lml, ERR_FATAL,
1221 					    MSG_INTL(MSG_SYS_MMAP), name,
1222 					    strerror(err));
1223 					return (0);
1224 				}
1225 			}
1226 
1227 			/*
1228 			 * If the memory occupancy of the segment overflows the
1229 			 * definition in the file, we need to "zero out" the end
1230 			 * of the mapping we've established, and if necessary,
1231 			 * map some more space from /dev/zero.  Note, zero'ed
1232 			 * memory must end on a double word boundary to satisfy
1233 			 * zero().
1234 			 */
1235 			if (phdr->p_memsz > phdr->p_filesz) {
1236 				caddr_t	zaddr;
1237 				size_t	zlen, zplen;
1238 				Off	fend;
1239 
1240 				foff = (Off)(phdr->p_vaddr + phdr->p_filesz +
1241 				    (fixed ? 0 : faddr));
1242 				zaddr = (caddr_t)M_PROUND(foff);
1243 				zplen = (size_t)(zaddr - foff);
1244 
1245 				fend = (Off)S_DROUND((size_t)(phdr->p_vaddr +
1246 				    phdr->p_memsz + (fixed ? 0 : faddr)));
1247 				zlen = (size_t)(fend - foff);
1248 
1249 				/*
1250 				 * Determine whether the number of bytes that
1251 				 * must be zero'ed overflow to the next page.
1252 				 * If not, simply clear the exact bytes
1253 				 * (filesz to memsz) from this page.  Otherwise,
1254 				 * clear the remaining bytes of this page, and
1255 				 * map an following pages from /dev/zero.
1256 				 */
1257 				if (zlen < zplen)
1258 					zero((caddr_t)foff, (long)zlen);
1259 				else {
1260 					zero((caddr_t)foff, (long)zplen);
1261 
1262 					if ((zlen = (fend - (Off)zaddr)) > 0) {
1263 						if (dz_map(lml, zaddr, zlen,
1264 						    mperm,
1265 						    MAP_FIXED | MAP_PRIVATE) ==
1266 						    MAP_FAILED)
1267 							return (0);
1268 					}
1269 				}
1270 			}
1271 		}
1272 
1273 		/*
1274 		 * Unmap anything from the last mapping address to this one and
1275 		 * update the mapping claim pointer.
1276 		 */
1277 		if ((fixed == 0) && ((size = addr - maddr) != 0)) {
1278 			(void) munmap(maddr, size);
1279 			rsize -= size;
1280 		}
1281 
1282 		/*
1283 		 * Retain this segments mapping information.
1284 		 */
1285 		mmaps[*mmapcnt].m_vaddr = addr;
1286 		mmaps[*mmapcnt].m_msize = mlen;
1287 		mmaps[*mmapcnt].m_fsize = flen;
1288 		mmaps[*mmapcnt].m_perm = mperm;
1289 		(*mmapcnt)++;
1290 
1291 		maddr = addr + M_PROUND(mlen);
1292 		rsize -= M_PROUND(mlen);
1293 	}
1294 
1295 	/*
1296 	 * If padding is required at the end of the image, obtain that now.
1297 	 * Note, if we've already obtained a reservation from anonymous memory
1298 	 * then this reservation will already include suitable padding.
1299 	 */
1300 	if (padsize) {
1301 		if (amret == AM_NOSUP) {
1302 			/*
1303 			 * maddr is currently page aligned from the last segment
1304 			 * mapping.
1305 			 */
1306 			if (dz_map(lml, maddr, padsize, PROT_NONE,
1307 			    (MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE)) ==
1308 			    MAP_FAILED)
1309 				return (0);
1310 		}
1311 		maddr += padsize;
1312 		rsize -= padsize;
1313 	}
1314 
1315 	/*
1316 	 * Unmap any final reservation.
1317 	 */
1318 	if ((fixed == 0) && (rsize != 0))
1319 		(void) munmap(maddr, rsize);
1320 
1321 	return (faddr);
1322 }
1323 
1324 /*
1325  * A null symbol interpretor.  Used if a filter has no associated filtees.
1326  */
1327 /* ARGSUSED0 */
1328 static Sym *
1329 elf_null_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo, int *in_nfavl)
1330 {
1331 	return ((Sym *)0);
1332 }
1333 
1334 /*
1335  * Disable filtee use.
1336  */
1337 static void
1338 elf_disable_filtee(Rt_map *lmp, Dyninfo *dip)
1339 {
1340 	dip->di_info = 0;
1341 
1342 	if ((dip->di_flags & FLG_DI_SYMFLTR) == 0) {
1343 		/*
1344 		 * If this is an object filter, free the filtee's duplication.
1345 		 */
1346 		if (OBJFLTRNDX(lmp) != FLTR_DISABLED) {
1347 			free(REFNAME(lmp));
1348 			REFNAME(lmp) = (char *)0;
1349 			OBJFLTRNDX(lmp) = FLTR_DISABLED;
1350 
1351 			/*
1352 			 * Indicate that this filtee is no longer available.
1353 			 */
1354 			if (dip->di_flags & FLG_DI_STDFLTR)
1355 				SYMINTP(lmp) = elf_null_find_sym;
1356 
1357 		}
1358 	} else if (dip->di_flags & FLG_DI_STDFLTR) {
1359 		/*
1360 		 * Indicate that this standard filtee is no longer available.
1361 		 */
1362 		if (SYMSFLTRCNT(lmp))
1363 			SYMSFLTRCNT(lmp)--;
1364 	} else {
1365 		/*
1366 		 * Indicate that this auxiliary filtee is no longer available.
1367 		 */
1368 		if (SYMAFLTRCNT(lmp))
1369 			SYMAFLTRCNT(lmp)--;
1370 	}
1371 	dip->di_flags &= ~MSK_DI_FILTER;
1372 }
1373 
1374 /*
1375  * Find symbol interpreter - filters.
1376  * This function is called when the symbols from a shared object should
1377  * be resolved from the shared objects filtees instead of from within itself.
1378  *
1379  * A symbol name of 0 is used to trigger filtee loading.
1380  */
1381 static Sym *
1382 _elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx,
1383     int *in_nfavl)
1384 {
1385 	const char	*name = slp->sl_name, *filtees;
1386 	Rt_map		*clmp = slp->sl_cmap;
1387 	Rt_map		*ilmp = slp->sl_imap;
1388 	Pnode		*pnp, **pnpp;
1389 	int		any;
1390 	Dyninfo		*dip = &DYNINFO(ilmp)[ndx];
1391 	Lm_list		*lml = LIST(ilmp);
1392 
1393 	/*
1394 	 * Indicate that the filter has been used.  If a binding already exists
1395 	 * to the caller, indicate that this object is referenced.  This insures
1396 	 * we don't generate false unreferenced diagnostics from ldd -u/U or
1397 	 * debugging.  Don't create a binding regardless, as this filter may
1398 	 * have been dlopen()'ed.
1399 	 */
1400 	if (name && (ilmp != clmp)) {
1401 		Word	tracing = (LIST(clmp)->lm_flags &
1402 		    (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED));
1403 
1404 		if (tracing || DBG_ENABLED) {
1405 			Bnd_desc 	*bdp;
1406 			Aliste		idx;
1407 
1408 			FLAGS1(ilmp) |= FL1_RT_USED;
1409 
1410 			if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) {
1411 				for (APLIST_TRAVERSE(CALLERS(ilmp), idx, bdp)) {
1412 					if (bdp->b_caller == clmp) {
1413 						bdp->b_flags |= BND_REFER;
1414 						break;
1415 					}
1416 				}
1417 			}
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * If this is the first call to process this filter, establish the
1423 	 * filtee list.  If a configuration file exists, determine if any
1424 	 * filtee associations for this filter, and its filtee reference, are
1425 	 * defined.  Otherwise, process the filtee reference.  Any token
1426 	 * expansion is also completed at this point (i.e., $PLATFORM).
1427 	 */
1428 	filtees = (char *)STRTAB(ilmp) + DYN(ilmp)[ndx].d_un.d_val;
1429 	if (dip->di_info == 0) {
1430 		if (rtld_flags2 & RT_FL2_FLTCFG)
1431 			dip->di_info = elf_config_flt(lml, PATHNAME(ilmp),
1432 			    filtees);
1433 
1434 		if (dip->di_info == 0) {
1435 			DBG_CALL(Dbg_file_filter(lml, NAME(ilmp), filtees, 0));
1436 			if ((lml->lm_flags &
1437 			    (LML_FLG_TRC_VERBOSE | LML_FLG_TRC_SEARCH)) &&
1438 			    ((FLAGS1(ilmp) & FL1_RT_LDDSTUB) == 0))
1439 				(void) printf(MSG_INTL(MSG_LDD_FIL_FILTER),
1440 				    NAME(ilmp), filtees);
1441 
1442 			if ((dip->di_info = (void *)expand_paths(ilmp,
1443 			    filtees, 0, 0)) == 0) {
1444 				elf_disable_filtee(ilmp, dip);
1445 				return ((Sym *)0);
1446 			}
1447 		}
1448 	}
1449 
1450 	/*
1451 	 * Traverse the filtee list, dlopen()'ing any objects specified and
1452 	 * using their group handle to lookup the symbol.
1453 	 */
1454 	for (any = 0, pnpp = (Pnode **)&(dip->di_info), pnp = *pnpp; pnp;
1455 	    pnpp = &pnp->p_next, pnp = *pnpp) {
1456 		int	mode;
1457 		Grp_hdl	*ghp;
1458 		Rt_map	*nlmp = 0;
1459 
1460 		if (pnp->p_len == 0)
1461 			continue;
1462 
1463 		/*
1464 		 * Establish the mode of the filtee from the filter.  As filtees
1465 		 * are loaded via a dlopen(), make sure that RTLD_GROUP is set
1466 		 * and the filtees aren't global.  It would be nice to have
1467 		 * RTLD_FIRST used here also, but as filters got out long before
1468 		 * RTLD_FIRST was introduced it's a little too late now.
1469 		 */
1470 		mode = MODE(ilmp) | RTLD_GROUP;
1471 		mode &= ~RTLD_GLOBAL;
1472 
1473 		/*
1474 		 * Insure that any auxiliary filter can locate symbols from its
1475 		 * caller.
1476 		 */
1477 		if (dip->di_flags & FLG_DI_AUXFLTR)
1478 			mode |= RTLD_PARENT;
1479 
1480 		/*
1481 		 * Process any hardware capability directory.  Establish a new
1482 		 * link-map control list from which to analyze any newly added
1483 		 * objects.
1484 		 */
1485 		if ((pnp->p_info == 0) && (pnp->p_orig & PN_TKN_HWCAP)) {
1486 			Lm_cntl	*lmc;
1487 			Aliste	lmco;
1488 
1489 			if (FLAGS(lml->lm_head) & FLG_RT_RELOCED) {
1490 				if ((lmc = alist_append(&lml->lm_lists, 0,
1491 				    sizeof (Lm_cntl), AL_CNT_LMLISTS)) == 0)
1492 					return ((Sym *)0);
1493 				lmco = (Aliste)((char *)lmc -
1494 				    (char *)lml->lm_lists);
1495 			} else {
1496 				lmc = 0;
1497 				lmco = ALIST_OFF_DATA;
1498 			}
1499 
1500 			pnp = hwcap_filtees(pnpp, lmco, lmc, dip, ilmp, filtees,
1501 			    mode, (FLG_RT_HANDLE | FLG_RT_HWCAP), in_nfavl);
1502 
1503 			/*
1504 			 * Now that any hardware capability objects have been
1505 			 * processed, remove any link-map control list.
1506 			 */
1507 			if (lmc)
1508 				remove_cntl(lml, lmco);
1509 		}
1510 
1511 		if (pnp->p_len == 0)
1512 			continue;
1513 
1514 		/*
1515 		 * Process an individual filtee.
1516 		 */
1517 		if (pnp->p_info == 0) {
1518 			const char	*filtee = pnp->p_name;
1519 			int		audit = 0;
1520 
1521 			DBG_CALL(Dbg_file_filtee(lml, NAME(ilmp), filtee, 0));
1522 
1523 			ghp = 0;
1524 
1525 			/*
1526 			 * Determine if the reference link map is already
1527 			 * loaded.  As an optimization compare the filtee with
1528 			 * our interpretor.  The most common filter is
1529 			 * libdl.so.1, which is a filter on ld.so.1.
1530 			 */
1531 #if	defined(_ELF64)
1532 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD_64)) == 0) {
1533 #else
1534 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD)) == 0) {
1535 #endif
1536 				/*
1537 				 * Create an association between ld.so.1 and the
1538 				 * filter.  As an optimization, a handle for
1539 				 * ld.so.1 itself (required for the dlopen()
1540 				 * family filtering mechanism) shouldn't search
1541 				 * any dependencies of ld.so.1.  Omitting
1542 				 * GPD_ADDEPS prevents the addition of any
1543 				 * ld.so.1 dependencies to this handle.
1544 				 */
1545 				nlmp = lml_rtld.lm_head;
1546 				if ((ghp = hdl_create(&lml_rtld, nlmp, ilmp,
1547 				    (GPH_LDSO | GPH_FIRST | GPH_FILTEE),
1548 				    (GPD_DLSYM | GPD_RELOC), GPD_PARENT)) == 0)
1549 					nlmp = 0;
1550 
1551 				/*
1552 				 * Establish the filter handle to prevent any
1553 				 * recursion.
1554 				 */
1555 				if (nlmp && ghp)
1556 					pnp->p_info = (void *)ghp;
1557 
1558 				/*
1559 				 * Audit the filter/filtee established.  Ignore
1560 				 * any return from the auditor, as we can't
1561 				 * allow ignore filtering to ld.so.1, otherwise
1562 				 * nothing is going to work.
1563 				 */
1564 				if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) &
1565 				    LML_TFLG_AUD_OBJFILTER))
1566 					(void) audit_objfilter(ilmp, filtees,
1567 					    nlmp, 0);
1568 
1569 			} else {
1570 				Rej_desc	rej = { 0 };
1571 				Lm_cntl		*lmc;
1572 				Aliste		lmco;
1573 
1574 				/*
1575 				 * Establish a new link-map control list from
1576 				 * which to analyze any newly added objects.
1577 				 */
1578 				if (FLAGS(lml->lm_head) & FLG_RT_RELOCED) {
1579 					if ((lmc =
1580 					    alist_append(&lml->lm_lists, 0,
1581 					    sizeof (Lm_cntl),
1582 					    AL_CNT_LMLISTS)) == 0)
1583 						return ((Sym *)0);
1584 					lmco = (Aliste)((char *)lmc -
1585 					    (char *)lml->lm_lists);
1586 				} else {
1587 					lmc = 0;
1588 					lmco = ALIST_OFF_DATA;
1589 				}
1590 
1591 				/*
1592 				 * Load the filtee.  Note, an auditor can
1593 				 * provide an alternative name.
1594 				 */
1595 				if ((nlmp = load_path(lml, lmco, &(pnp->p_name),
1596 				    ilmp, mode, FLG_RT_HANDLE, &ghp, 0,
1597 				    &rej, in_nfavl)) == 0) {
1598 					file_notfound(LIST(ilmp), filtee, ilmp,
1599 					    FLG_RT_HANDLE, &rej);
1600 					remove_rej(&rej);
1601 				}
1602 				filtee = pnp->p_name;
1603 
1604 				/*
1605 				 * Establish the filter handle to prevent any
1606 				 * recursion.
1607 				 */
1608 				if (nlmp && ghp) {
1609 					ghp->gh_flags |= GPH_FILTEE;
1610 					pnp->p_info = (void *)ghp;
1611 
1612 					FLAGS1(nlmp) |= FL1_RT_USED;
1613 				}
1614 
1615 				/*
1616 				 * Audit the filter/filtee established.  A
1617 				 * return of 0 indicates the auditor wishes to
1618 				 * ignore this filtee.
1619 				 */
1620 				if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) &
1621 				    LML_TFLG_AUD_OBJFILTER)) {
1622 					if (audit_objfilter(ilmp, filtees,
1623 					    nlmp, 0) == 0) {
1624 						audit = 1;
1625 						nlmp = 0;
1626 					}
1627 				}
1628 
1629 				/*
1630 				 * Finish processing the objects associated with
1631 				 * this request.  Create an association between
1632 				 * this object and the originating filter to
1633 				 * provide sufficient information to tear down
1634 				 * this filtee if necessary.
1635 				 */
1636 				if (nlmp && ghp && ((analyze_lmc(lml, lmco,
1637 				    nlmp, in_nfavl) == 0) || (relocate_lmc(lml,
1638 				    lmco, ilmp, nlmp, in_nfavl) == 0)))
1639 					nlmp = 0;
1640 
1641 				/*
1642 				 * If the filtee has been successfully
1643 				 * processed, then create an association
1644 				 * between the filter and filtee.  This
1645 				 * association provides sufficient information
1646 				 * to tear down the filter and filtee if
1647 				 * necessary.
1648 				 */
1649 				DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
1650 				if (nlmp && ghp &&
1651 				    (hdl_add(ghp, ilmp, GPD_FILTER) == 0))
1652 					nlmp = 0;
1653 
1654 				/*
1655 				 * If this filtee loading has failed, and we've
1656 				 * created a new link-map control list to which
1657 				 * this request has added objects, then remove
1658 				 * all the objects that have been associated to
1659 				 * this request.
1660 				 */
1661 				if ((nlmp == 0) && lmc && lmc->lc_head)
1662 					remove_lmc(lml, clmp, lmc, lmco, name);
1663 
1664 				/*
1665 				 * Remove any link-map control list that was
1666 				 * created.
1667 				 */
1668 				if (lmc)
1669 					remove_cntl(lml, lmco);
1670 			}
1671 
1672 			/*
1673 			 * Generate a diagnostic if the filtee couldn't be
1674 			 * loaded, null out the pnode entry, and continue
1675 			 * the search.  Otherwise, retain this group handle
1676 			 * for future symbol searches.
1677 			 */
1678 			if (nlmp == 0) {
1679 				DBG_CALL(Dbg_file_filtee(lml, 0, filtee,
1680 				    audit));
1681 
1682 				pnp->p_info = 0;
1683 				pnp->p_len = 0;
1684 				continue;
1685 			}
1686 		}
1687 
1688 		ghp = (Grp_hdl *)pnp->p_info;
1689 
1690 		/*
1691 		 * If we're just here to trigger filtee loading skip the symbol
1692 		 * lookup so we'll continue looking for additional filtees.
1693 		 */
1694 		if (name) {
1695 			Grp_desc	*gdp;
1696 			Sym		*sym = 0;
1697 			Aliste		idx;
1698 			Slookup		sl = *slp;
1699 
1700 			sl.sl_flags |= LKUP_FIRST;
1701 			any++;
1702 
1703 			/*
1704 			 * Look for the symbol in the handles dependencies.
1705 			 */
1706 			for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1707 				if ((gdp->gd_flags & GPD_DLSYM) == 0)
1708 					continue;
1709 
1710 				/*
1711 				 * If our parent is a dependency don't look at
1712 				 * it (otherwise we are in a recursive loop).
1713 				 * This situation can occur with auxiliary
1714 				 * filters if the filtee has a dependency on the
1715 				 * filter.  This dependency isn't necessary as
1716 				 * auxiliary filters are opened RTLD_PARENT, but
1717 				 * users may still unknowingly add an explicit
1718 				 * dependency to the parent.
1719 				 */
1720 				if ((sl.sl_imap = gdp->gd_depend) == ilmp)
1721 					continue;
1722 
1723 				if (((sym = SYMINTP(sl.sl_imap)(&sl, dlmp,
1724 				    binfo, in_nfavl)) != 0) ||
1725 				    (ghp->gh_flags & GPH_FIRST))
1726 					break;
1727 			}
1728 
1729 			/*
1730 			 * If a symbol has been found, indicate the binding
1731 			 * and return the symbol.
1732 			 */
1733 			if (sym) {
1734 				*binfo |= DBG_BINFO_FILTEE;
1735 				return (sym);
1736 			}
1737 		}
1738 
1739 		/*
1740 		 * If this object is tagged to terminate filtee processing we're
1741 		 * done.
1742 		 */
1743 		if (FLAGS1(ghp->gh_ownlmp) & FL1_RT_ENDFILTE)
1744 			break;
1745 	}
1746 
1747 	/*
1748 	 * If we're just here to trigger filtee loading then we're done.
1749 	 */
1750 	if (name == 0)
1751 		return ((Sym *)0);
1752 
1753 	/*
1754 	 * If no filtees have been found for a filter, clean up any Pnode
1755 	 * structures and disable their search completely.  For auxiliary
1756 	 * filters we can reselect the symbol search function so that we never
1757 	 * enter this routine again for this object.  For standard filters we
1758 	 * use the null symbol routine.
1759 	 */
1760 	if (any == 0) {
1761 		remove_pnode((Pnode *)dip->di_info);
1762 		elf_disable_filtee(ilmp, dip);
1763 		return ((Sym *)0);
1764 	}
1765 
1766 	return ((Sym *)0);
1767 }
1768 
1769 /*
1770  * Focal point for disabling error messages for auxiliary filters.  As an
1771  * auxiliary filter allows for filtee use, but provides a fallback should a
1772  * filtee not exist (or fail to load), any errors generated as a consequence of
1773  * trying to load the filtees are typically suppressed.  Setting RT_FL_SILENCERR
1774  * suppresses errors generated by eprint(), but insures a debug diagnostic is
1775  * produced.  ldd(1) employs printf(), and here, the selection of whether to
1776  * print a diagnostic in regards to auxiliary filters is a little more complex.
1777  *
1778  *   .	The determination of whether to produce an ldd message, or a fatal
1779  *	error message is driven by LML_FLG_TRC_ENABLE.
1780  *   .	More detailed ldd messages may also be driven off of LML_FLG_TRC_WARN,
1781  *	(ldd -d/-r), LML_FLG_TRC_VERBOSE (ldd -v), LML_FLG_TRC_SEARCH (ldd -s),
1782  *	and LML_FLG_TRC_UNREF/LML_FLG_TRC_UNUSED (ldd -U/-u).
1783  *
1784  *   .	If the calling object is lddstub, then several classes of message are
1785  *	suppressed.  The user isn't trying to diagnose lddstub, this is simply
1786  *	a stub executable employed to preload a user specified library against.
1787  *
1788  *   .	If RT_FL_SILENCERR is in effect then any generic ldd() messages should
1789  *	be suppressed.  All detailed ldd messages should still be produced.
1790  */
1791 Sym *
1792 elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx,
1793     int *in_nfavl)
1794 {
1795 	Sym	*sym;
1796 	Dyninfo	*dip = &DYNINFO(slp->sl_imap)[ndx];
1797 	int	silent = 0;
1798 
1799 	/*
1800 	 * Make sure this entry is still acting as a filter.  We may have tried
1801 	 * to process this previously, and disabled it if the filtee couldn't
1802 	 * be processed.  However, other entries may provide different filtees
1803 	 * that are yet to be completed.
1804 	 */
1805 	if (dip->di_flags == 0)
1806 		return ((Sym *)0);
1807 
1808 	/*
1809 	 * Indicate whether an error message is required should this filtee not
1810 	 * be found, based on the type of filter.
1811 	 */
1812 	if ((dip->di_flags & FLG_DI_AUXFLTR) &&
1813 	    ((rtld_flags & (RT_FL_WARNFLTR | RT_FL_SILENCERR)) == 0)) {
1814 		rtld_flags |= RT_FL_SILENCERR;
1815 		silent = 1;
1816 	}
1817 
1818 	sym = _elf_lookup_filtee(slp, dlmp, binfo, ndx, in_nfavl);
1819 
1820 	if (silent)
1821 		rtld_flags &= ~RT_FL_SILENCERR;
1822 
1823 	return (sym);
1824 }
1825 
1826 /*
1827  * Compute the elf hash value (as defined in the ELF access library).
1828  * The form of the hash table is:
1829  *
1830  *	|--------------|
1831  *	| # of buckets |
1832  *	|--------------|
1833  *	| # of chains  |
1834  *	|--------------|
1835  *	|   bucket[]   |
1836  *	|--------------|
1837  *	|   chain[]    |
1838  *	|--------------|
1839  */
1840 ulong_t
1841 elf_hash(const char *name)
1842 {
1843 	uint_t	hval = 0;
1844 
1845 	while (*name) {
1846 		uint_t	g;
1847 		hval = (hval << 4) + *name++;
1848 		if ((g = (hval & 0xf0000000)) != 0)
1849 			hval ^= g >> 24;
1850 		hval &= ~g;
1851 	}
1852 	return ((ulong_t)hval);
1853 }
1854 
1855 /*
1856  * If flag argument has LKUP_SPEC set, we treat undefined symbols of type
1857  * function specially in the executable - if they have a value, even though
1858  * undefined, we use that value.  This allows us to associate all references
1859  * to a function's address to a single place in the process: the plt entry
1860  * for that function in the executable.  Calls to lookup from plt binding
1861  * routines do NOT set LKUP_SPEC in the flag.
1862  */
1863 Sym *
1864 elf_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo, int *in_nfavl)
1865 {
1866 	const char	*name = slp->sl_name;
1867 	Rt_map		*ilmp = slp->sl_imap;
1868 	ulong_t		hash = slp->sl_hash;
1869 	uint_t		ndx, htmp, buckets, *chainptr;
1870 	Sym		*sym, *symtabptr;
1871 	char		*strtabptr, *strtabname;
1872 	uint_t		flags1;
1873 	Syminfo		*sip;
1874 
1875 	/*
1876 	 * If we're only here to establish a symbols index, skip the diagnostic
1877 	 * used to trace a symbol search.
1878 	 */
1879 	if ((slp->sl_flags & LKUP_SYMNDX) == 0)
1880 		DBG_CALL(Dbg_syms_lookup(ilmp, name, MSG_ORIG(MSG_STR_ELF)));
1881 
1882 	if (HASH(ilmp) == 0)
1883 		return ((Sym *)0);
1884 
1885 	buckets = HASH(ilmp)[0];
1886 	/* LINTED */
1887 	htmp = (uint_t)hash % buckets;
1888 
1889 	/*
1890 	 * Get the first symbol on hash chain and initialize the string
1891 	 * and symbol table pointers.
1892 	 */
1893 	if ((ndx = HASH(ilmp)[htmp + 2]) == 0)
1894 		return ((Sym *)0);
1895 
1896 	chainptr = HASH(ilmp) + 2 + buckets;
1897 	strtabptr = STRTAB(ilmp);
1898 	symtabptr = SYMTAB(ilmp);
1899 
1900 	while (ndx) {
1901 		sym = symtabptr + ndx;
1902 		strtabname = strtabptr + sym->st_name;
1903 
1904 		/*
1905 		 * Compare the symbol found with the name required.  If the
1906 		 * names don't match continue with the next hash entry.
1907 		 */
1908 		if ((*strtabname++ != *name) || strcmp(strtabname, &name[1])) {
1909 			if ((ndx = chainptr[ndx]) != 0)
1910 				continue;
1911 			return ((Sym *)0);
1912 		}
1913 
1914 		/*
1915 		 * The Solaris ld does not put DT_VERSYM in the dynamic
1916 		 * section, but the GNU ld does. The GNU runtime linker
1917 		 * interprets the top bit of the 16-bit Versym value
1918 		 * (0x8000) as the "hidden" bit. If this bit is set,
1919 		 * the linker is supposed to act as if that symbol does
1920 		 * not exist. The hidden bit supports their versioning
1921 		 * scheme, which allows multiple incompatible functions
1922 		 * with the same name to exist at different versions
1923 		 * within an object. The Solaris linker does not support this
1924 		 * mechanism, or the model of interface evolution that
1925 		 * it allows, but we honor the hidden bit in GNU ld
1926 		 * produced objects in order to interoperate with them.
1927 		 */
1928 		if ((VERSYM(ilmp) != NULL) &&
1929 		    ((VERSYM(ilmp)[ndx] & 0x8000) != 0)) {
1930 			DBG_CALL(Dbg_syms_ignore_gnuver(ilmp, name,
1931 			    ndx, VERSYM(ilmp)[ndx]));
1932 			if ((ndx = chainptr[ndx]) != 0)
1933 				continue;
1934 			return ((Sym *)0);
1935 		}
1936 
1937 		/*
1938 		 * If we're only here to establish a symbols index, we're done.
1939 		 */
1940 		if (slp->sl_flags & LKUP_SYMNDX)
1941 			return (sym);
1942 
1943 		/*
1944 		 * If we find a match and the symbol is defined, return the
1945 		 * symbol pointer and the link map in which it was found.
1946 		 */
1947 		if (sym->st_shndx != SHN_UNDEF) {
1948 			*dlmp = ilmp;
1949 			*binfo |= DBG_BINFO_FOUND;
1950 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1951 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1952 			    is_sym_interposer(ilmp, sym)))
1953 				*binfo |= DBG_BINFO_INTERPOSE;
1954 			break;
1955 
1956 		/*
1957 		 * If we find a match and the symbol is undefined, the
1958 		 * symbol type is a function, and the value of the symbol
1959 		 * is non zero, then this is a special case.  This allows
1960 		 * the resolution of a function address to the plt[] entry.
1961 		 * See SPARC ABI, Dynamic Linking, Function Addresses for
1962 		 * more details.
1963 		 */
1964 		} else if ((slp->sl_flags & LKUP_SPEC) &&
1965 		    (FLAGS(ilmp) & FLG_RT_ISMAIN) && (sym->st_value != 0) &&
1966 		    (ELF_ST_TYPE(sym->st_info) == STT_FUNC)) {
1967 			*dlmp = ilmp;
1968 			*binfo |= (DBG_BINFO_FOUND | DBG_BINFO_PLTADDR);
1969 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1970 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1971 			    is_sym_interposer(ilmp, sym)))
1972 				*binfo |= DBG_BINFO_INTERPOSE;
1973 			return (sym);
1974 		}
1975 
1976 		/*
1977 		 * Undefined symbol.
1978 		 */
1979 		return ((Sym *)0);
1980 	}
1981 
1982 	/*
1983 	 * We've found a match.  Determine if the defining object contains
1984 	 * symbol binding information.
1985 	 */
1986 	if ((sip = SYMINFO(ilmp)) != 0)
1987 		sip += ndx;
1988 
1989 	/*
1990 	 * If this definition is a singleton, and we haven't followed a default
1991 	 * symbol search knowing that we're looking for a singleton (presumably
1992 	 * because the symbol definition has been changed since the referring
1993 	 * object was built), then reject this binding so that the caller can
1994 	 * fall back to a standard symbol search.
1995 	 */
1996 	if ((ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON) &&
1997 	    (((slp->sl_flags & LKUP_STANDARD) == 0) ||
1998 	    (((slp->sl_flags & LKUP_SINGLETON) == 0) &&
1999 	    (LIST(ilmp)->lm_flags & LML_FLG_GROUPSEXIST)))) {
2000 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
2001 		    DBG_BNDREJ_SINGLE));
2002 		*binfo |= BINFO_REJSINGLE;
2003 		*binfo &= ~DBG_BINFO_MSK;
2004 		return ((Sym *)0);
2005 	}
2006 
2007 	/*
2008 	 * If this is a direct binding request, but the symbol definition has
2009 	 * disabled directly binding to it (presumably because the symbol
2010 	 * definition has been changed since the referring object was built),
2011 	 * indicate this failure so that the caller can fall back to a standard
2012 	 * symbol search.
2013 	 */
2014 	if (sip && (slp->sl_flags & LKUP_DIRECT) &&
2015 	    (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT)) {
2016 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
2017 		    DBG_BNDREJ_NODIR));
2018 		*binfo |= BINFO_REJDIRECT;
2019 		*binfo &= ~DBG_BINFO_MSK;
2020 		return ((Sym *)0);
2021 	}
2022 
2023 	/*
2024 	 * Determine whether this object is acting as a filter.
2025 	 */
2026 	if (((flags1 = FLAGS1(ilmp)) & MSK_RT_FILTER) == 0)
2027 		return (sym);
2028 
2029 	/*
2030 	 * Determine if this object offers per-symbol filtering, and if so,
2031 	 * whether this symbol references a filtee.
2032 	 */
2033 	if (sip && (flags1 & (FL1_RT_SYMSFLTR | FL1_RT_SYMAFLTR))) {
2034 		/*
2035 		 * If this is a standard filter reference, and no standard
2036 		 * filtees remain to be inspected, we're done.  If this is an
2037 		 * auxiliary filter reference, and no auxiliary filtees remain,
2038 		 * we'll fall through in case any object filtering is available.
2039 		 */
2040 		if ((sip->si_flags & SYMINFO_FLG_FILTER) &&
2041 		    (SYMSFLTRCNT(ilmp) == 0))
2042 			return ((Sym *)0);
2043 
2044 		if ((sip->si_flags & SYMINFO_FLG_FILTER) ||
2045 		    ((sip->si_flags & SYMINFO_FLG_AUXILIARY) &&
2046 		    SYMAFLTRCNT(ilmp))) {
2047 			Sym	*fsym;
2048 
2049 			/*
2050 			 * This symbol has an associated filtee.  Lookup the
2051 			 * symbol in the filtee, and if it is found return it.
2052 			 * If the symbol doesn't exist, and this is a standard
2053 			 * filter, return an error, otherwise fall through to
2054 			 * catch any object filtering that may be available.
2055 			 */
2056 			if ((fsym = elf_lookup_filtee(slp, dlmp, binfo,
2057 			    sip->si_boundto, in_nfavl)) != 0)
2058 				return (fsym);
2059 			if (sip->si_flags & SYMINFO_FLG_FILTER)
2060 				return ((Sym *)0);
2061 		}
2062 	}
2063 
2064 	/*
2065 	 * Determine if this object provides global filtering.
2066 	 */
2067 	if (flags1 & (FL1_RT_OBJSFLTR | FL1_RT_OBJAFLTR)) {
2068 		Sym	*fsym;
2069 
2070 		if (OBJFLTRNDX(ilmp) != FLTR_DISABLED) {
2071 			/*
2072 			 * This object has an associated filtee.  Lookup the
2073 			 * symbol in the filtee, and if it is found return it.
2074 			 * If the symbol doesn't exist, and this is a standard
2075 			 * filter, return and error, otherwise return the symbol
2076 			 * within the filter itself.
2077 			 */
2078 			if ((fsym = elf_lookup_filtee(slp, dlmp, binfo,
2079 			    OBJFLTRNDX(ilmp), in_nfavl)) != 0)
2080 				return (fsym);
2081 		}
2082 
2083 		if (flags1 & FL1_RT_OBJSFLTR)
2084 			return ((Sym *)0);
2085 	}
2086 	return (sym);
2087 }
2088 
2089 /*
2090  * Create a new Rt_map structure for an ELF object and initialize
2091  * all values.
2092  */
2093 Rt_map *
2094 elf_new_lm(Lm_list *lml, const char *pname, const char *oname, Dyn *ld,
2095     ulong_t addr, ulong_t etext, Aliste lmco, ulong_t msize, ulong_t entry,
2096     ulong_t paddr, ulong_t padimsize, Mmap *mmaps, uint_t mmapcnt,
2097     int *in_nfavl)
2098 {
2099 	Rt_map		*lmp;
2100 	ulong_t		base, fltr = 0, audit = 0, cfile = 0, crle = 0;
2101 	Xword		rpath = 0;
2102 	Ehdr		*ehdr = (Ehdr *)addr;
2103 
2104 	DBG_CALL(Dbg_file_elf(lml, pname, (ulong_t)ld, addr, msize, entry,
2105 	    lml->lm_lmidstr, lmco));
2106 
2107 	/*
2108 	 * Allocate space for the link-map and private elf information.  Once
2109 	 * these are allocated and initialized, we can use remove_so(0, lmp) to
2110 	 * tear down the link-map should any failures occur.
2111 	 */
2112 	if ((lmp = calloc(sizeof (Rt_map), 1)) == 0)
2113 		return (0);
2114 	if ((ELFPRV(lmp) = calloc(sizeof (Rt_elfp), 1)) == 0) {
2115 		free(lmp);
2116 		return (0);
2117 	}
2118 
2119 	/*
2120 	 * All fields not filled in were set to 0 by calloc.
2121 	 */
2122 	ORIGNAME(lmp) = PATHNAME(lmp) = NAME(lmp) = (char *)pname;
2123 	DYN(lmp) = ld;
2124 	ADDR(lmp) = addr;
2125 	MSIZE(lmp) = msize;
2126 	ENTRY(lmp) = (Addr)entry;
2127 	SYMINTP(lmp) = elf_find_sym;
2128 	ETEXT(lmp) = etext;
2129 	FCT(lmp) = &elf_fct;
2130 	LIST(lmp) = lml;
2131 	PADSTART(lmp) = paddr;
2132 	PADIMLEN(lmp) = padimsize;
2133 	THREADID(lmp) = rt_thr_self();
2134 	OBJFLTRNDX(lmp) = FLTR_DISABLED;
2135 	SORTVAL(lmp) = -1;
2136 
2137 	MMAPS(lmp) = mmaps;
2138 	MMAPCNT(lmp) = mmapcnt;
2139 	ASSERT(mmapcnt != 0);
2140 
2141 	/*
2142 	 * If this is a shared object, add the base address to each address.
2143 	 * if this is an executable, use address as is.
2144 	 */
2145 	if (ehdr->e_type == ET_EXEC) {
2146 		base = 0;
2147 		FLAGS(lmp) |= FLG_RT_FIXED;
2148 	} else
2149 		base = addr;
2150 
2151 	/*
2152 	 * Fill in rest of the link map entries with information from the file's
2153 	 * dynamic structure.
2154 	 */
2155 	if (ld) {
2156 		uint_t		dynndx = 0;
2157 		Xword		pltpadsz = 0;
2158 		Rti_desc	*rti;
2159 
2160 		/* CSTYLED */
2161 		for ( ; ld->d_tag != DT_NULL; ++ld, dynndx++) {
2162 			switch ((Xword)ld->d_tag) {
2163 			case DT_SYMTAB:
2164 				SYMTAB(lmp) = (void *)(ld->d_un.d_ptr + base);
2165 				break;
2166 			case DT_SUNW_SYMTAB:
2167 				SUNWSYMTAB(lmp) =
2168 				    (void *)(ld->d_un.d_ptr + base);
2169 				break;
2170 			case DT_SUNW_SYMSZ:
2171 				SUNWSYMSZ(lmp) = ld->d_un.d_val;
2172 				break;
2173 			case DT_STRTAB:
2174 				STRTAB(lmp) = (void *)(ld->d_un.d_ptr + base);
2175 				break;
2176 			case DT_SYMENT:
2177 				SYMENT(lmp) = ld->d_un.d_val;
2178 				break;
2179 			case DT_FEATURE_1:
2180 				ld->d_un.d_val |= DTF_1_PARINIT;
2181 				if (ld->d_un.d_val & DTF_1_CONFEXP)
2182 					crle = 1;
2183 				break;
2184 			case DT_MOVESZ:
2185 				MOVESZ(lmp) = ld->d_un.d_val;
2186 				FLAGS(lmp) |= FLG_RT_MOVE;
2187 				break;
2188 			case DT_MOVEENT:
2189 				MOVEENT(lmp) = ld->d_un.d_val;
2190 				break;
2191 			case DT_MOVETAB:
2192 				MOVETAB(lmp) = (void *)(ld->d_un.d_ptr + base);
2193 				break;
2194 			case DT_REL:
2195 			case DT_RELA:
2196 				/*
2197 				 * At this time, ld.so. can only handle one
2198 				 * type of relocation per object.
2199 				 */
2200 				REL(lmp) = (void *)(ld->d_un.d_ptr + base);
2201 				break;
2202 			case DT_RELSZ:
2203 			case DT_RELASZ:
2204 				RELSZ(lmp) = ld->d_un.d_val;
2205 				break;
2206 			case DT_RELENT:
2207 			case DT_RELAENT:
2208 				RELENT(lmp) = ld->d_un.d_val;
2209 				break;
2210 			case DT_RELCOUNT:
2211 			case DT_RELACOUNT:
2212 				RELACOUNT(lmp) = (uint_t)ld->d_un.d_val;
2213 				break;
2214 			case DT_TEXTREL:
2215 				FLAGS1(lmp) |= FL1_RT_TEXTREL;
2216 				break;
2217 			case DT_HASH:
2218 				HASH(lmp) = (uint_t *)(ld->d_un.d_ptr + base);
2219 				break;
2220 			case DT_PLTGOT:
2221 				PLTGOT(lmp) = (uint_t *)(ld->d_un.d_ptr + base);
2222 				break;
2223 			case DT_PLTRELSZ:
2224 				PLTRELSZ(lmp) = ld->d_un.d_val;
2225 				break;
2226 			case DT_JMPREL:
2227 				JMPREL(lmp) = (void *)(ld->d_un.d_ptr + base);
2228 				break;
2229 			case DT_INIT:
2230 				if (ld->d_un.d_ptr != NULL)
2231 					INIT(lmp) =
2232 					    (void (*)())(ld->d_un.d_ptr + base);
2233 				break;
2234 			case DT_FINI:
2235 				if (ld->d_un.d_ptr != NULL)
2236 					FINI(lmp) =
2237 					    (void (*)())(ld->d_un.d_ptr + base);
2238 				break;
2239 			case DT_INIT_ARRAY:
2240 				INITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr +
2241 				    base);
2242 				break;
2243 			case DT_INIT_ARRAYSZ:
2244 				INITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val;
2245 				break;
2246 			case DT_FINI_ARRAY:
2247 				FINIARRAY(lmp) = (Addr *)(ld->d_un.d_ptr +
2248 				    base);
2249 				break;
2250 			case DT_FINI_ARRAYSZ:
2251 				FINIARRAYSZ(lmp) = (uint_t)ld->d_un.d_val;
2252 				break;
2253 			case DT_PREINIT_ARRAY:
2254 				PREINITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr +
2255 				    base);
2256 				break;
2257 			case DT_PREINIT_ARRAYSZ:
2258 				PREINITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val;
2259 				break;
2260 			case DT_RPATH:
2261 			case DT_RUNPATH:
2262 				rpath = ld->d_un.d_val;
2263 				break;
2264 			case DT_FILTER:
2265 				fltr = ld->d_un.d_val;
2266 				OBJFLTRNDX(lmp) = dynndx;
2267 				FLAGS1(lmp) |= FL1_RT_OBJSFLTR;
2268 				break;
2269 			case DT_AUXILIARY:
2270 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
2271 					fltr = ld->d_un.d_val;
2272 					OBJFLTRNDX(lmp) = dynndx;
2273 				}
2274 				FLAGS1(lmp) |= FL1_RT_OBJAFLTR;
2275 				break;
2276 			case DT_SUNW_FILTER:
2277 				SYMSFLTRCNT(lmp)++;
2278 				FLAGS1(lmp) |= FL1_RT_SYMSFLTR;
2279 				break;
2280 			case DT_SUNW_AUXILIARY:
2281 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
2282 					SYMAFLTRCNT(lmp)++;
2283 				}
2284 				FLAGS1(lmp) |= FL1_RT_SYMAFLTR;
2285 				break;
2286 			case DT_DEPAUDIT:
2287 				if (!(rtld_flags & RT_FL_NOAUDIT))
2288 					audit = ld->d_un.d_val;
2289 				break;
2290 			case DT_CONFIG:
2291 				cfile = ld->d_un.d_val;
2292 				break;
2293 			case DT_DEBUG:
2294 				/*
2295 				 * DT_DEBUG entries are only created in
2296 				 * dynamic objects that require an interpretor
2297 				 * (ie. all dynamic executables and some shared
2298 				 * objects), and provide for a hand-shake with
2299 				 * debuggers.  This entry is initialized to
2300 				 * zero by the link-editor.  If a debugger has
2301 				 * us and updated this entry set the debugger
2302 				 * flag, and finish initializing the debugging
2303 				 * structure (see setup() also).  Switch off any
2304 				 * configuration object use as most debuggers
2305 				 * can't handle fixed dynamic executables as
2306 				 * dependencies, and we can't handle requests
2307 				 * like object padding for alternative objects.
2308 				 */
2309 				if (ld->d_un.d_ptr)
2310 					rtld_flags |=
2311 					    (RT_FL_DEBUGGER | RT_FL_NOOBJALT);
2312 				ld->d_un.d_ptr = (Addr)&r_debug;
2313 				break;
2314 			case DT_VERNEED:
2315 				VERNEED(lmp) = (Verneed *)(ld->d_un.d_ptr +
2316 				    base);
2317 				break;
2318 			case DT_VERNEEDNUM:
2319 				/* LINTED */
2320 				VERNEEDNUM(lmp) = (int)ld->d_un.d_val;
2321 				break;
2322 			case DT_VERDEF:
2323 				VERDEF(lmp) = (Verdef *)(ld->d_un.d_ptr + base);
2324 				break;
2325 			case DT_VERDEFNUM:
2326 				/* LINTED */
2327 				VERDEFNUM(lmp) = (int)ld->d_un.d_val;
2328 				break;
2329 			case DT_VERSYM:
2330 				/*
2331 				 * The Solaris ld does not produce DT_VERSYM,
2332 				 * but the GNU ld does, in order to support
2333 				 * their style of versioning, which differs
2334 				 * from ours in some ways, while using the
2335 				 * same data structures. The presence of
2336 				 * DT_VERSYM therefore means that GNU
2337 				 * versioning rules apply to the given file.
2338 				 * If DT_VERSYM is not present, then Solaris
2339 				 * versioning rules apply.
2340 				 */
2341 				VERSYM(lmp) = (Versym *)(ld->d_un.d_ptr + base);
2342 				break;
2343 			case DT_BIND_NOW:
2344 				if ((ld->d_un.d_val & DF_BIND_NOW) &&
2345 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2346 					MODE(lmp) |= RTLD_NOW;
2347 					MODE(lmp) &= ~RTLD_LAZY;
2348 				}
2349 				break;
2350 			case DT_FLAGS:
2351 				FLAGS2(lmp) |= FL2_RT_DTFLAGS;
2352 				if (ld->d_un.d_val & DF_SYMBOLIC)
2353 					FLAGS1(lmp) |= FL1_RT_SYMBOLIC;
2354 				if (ld->d_un.d_val & DF_TEXTREL)
2355 					FLAGS1(lmp) |= FL1_RT_TEXTREL;
2356 				if ((ld->d_un.d_val & DF_BIND_NOW) &&
2357 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2358 					MODE(lmp) |= RTLD_NOW;
2359 					MODE(lmp) &= ~RTLD_LAZY;
2360 				}
2361 				/*
2362 				 * Capture any static TLS use, and enforce that
2363 				 * this object be non-deletable.
2364 				 */
2365 				if (ld->d_un.d_val & DF_STATIC_TLS) {
2366 					FLAGS1(lmp) |= FL1_RT_TLSSTAT;
2367 					MODE(lmp) |= RTLD_NODELETE;
2368 				}
2369 				break;
2370 			case DT_FLAGS_1:
2371 				if (ld->d_un.d_val & DF_1_DISPRELPND)
2372 					FLAGS1(lmp) |= FL1_RT_DISPREL;
2373 				if (ld->d_un.d_val & DF_1_GROUP)
2374 					FLAGS(lmp) |=
2375 					    (FLG_RT_SETGROUP | FLG_RT_HANDLE);
2376 				if ((ld->d_un.d_val & DF_1_NOW) &&
2377 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2378 					MODE(lmp) |= RTLD_NOW;
2379 					MODE(lmp) &= ~RTLD_LAZY;
2380 				}
2381 				if (ld->d_un.d_val & DF_1_NODELETE)
2382 					MODE(lmp) |= RTLD_NODELETE;
2383 				if (ld->d_un.d_val & DF_1_INITFIRST)
2384 					FLAGS(lmp) |= FLG_RT_INITFRST;
2385 				if (ld->d_un.d_val & DF_1_NOOPEN)
2386 					FLAGS(lmp) |= FLG_RT_NOOPEN;
2387 				if (ld->d_un.d_val & DF_1_LOADFLTR)
2388 					FLAGS(lmp) |= FLG_RT_LOADFLTR;
2389 				if (ld->d_un.d_val & DF_1_NODUMP)
2390 					FLAGS(lmp) |= FLG_RT_NODUMP;
2391 				if (ld->d_un.d_val & DF_1_CONFALT)
2392 					crle = 1;
2393 				if (ld->d_un.d_val & DF_1_DIRECT)
2394 					FLAGS1(lmp) |= FL1_RT_DIRECT;
2395 				if (ld->d_un.d_val & DF_1_NODEFLIB)
2396 					FLAGS1(lmp) |= FL1_RT_NODEFLIB;
2397 				if (ld->d_un.d_val & DF_1_ENDFILTEE)
2398 					FLAGS1(lmp) |= FL1_RT_ENDFILTE;
2399 				if (ld->d_un.d_val & DF_1_TRANS)
2400 					FLAGS(lmp) |= FLG_RT_TRANS;
2401 #ifndef	EXPAND_RELATIVE
2402 				if (ld->d_un.d_val & DF_1_ORIGIN)
2403 					FLAGS1(lmp) |= FL1_RT_RELATIVE;
2404 #endif
2405 				/*
2406 				 * Global auditing is only meaningful when
2407 				 * specified by the initiating object of the
2408 				 * process - typically the dynamic executable.
2409 				 * If this is the initiaiting object, its link-
2410 				 * map will not yet have been added to the
2411 				 * link-map list, and consequently the link-map
2412 				 * list is empty.  (see setup()).
2413 				 */
2414 				if (ld->d_un.d_val & DF_1_GLOBAUDIT) {
2415 					if (lml_main.lm_head == 0)
2416 						FLAGS1(lmp) |= FL1_RT_GLOBAUD;
2417 					else
2418 						DBG_CALL(Dbg_audit_ignore(lmp));
2419 				}
2420 
2421 				/*
2422 				 * If this object identifies itself as an
2423 				 * interposer, but relocation processing has
2424 				 * already started, then demote it.  It's too
2425 				 * late to guarantee complete interposition.
2426 				 */
2427 				/* BEGIN CSTYLED */
2428 				if (ld->d_un.d_val &
2429 				    (DF_1_INTERPOSE | DF_1_SYMINTPOSE)) {
2430 				    if (lml->lm_flags & LML_FLG_STARTREL) {
2431 					DBG_CALL(Dbg_util_intoolate(lmp));
2432 					if (lml->lm_flags & LML_FLG_TRC_ENABLE)
2433 					    (void) printf(
2434 						MSG_INTL(MSG_LDD_REL_ERR2),
2435 						NAME(lmp));
2436 				    } else if (ld->d_un.d_val & DF_1_INTERPOSE)
2437 					FLAGS(lmp) |= FLG_RT_OBJINTPO;
2438 				    else
2439 					FLAGS(lmp) |= FLG_RT_SYMINTPO;
2440 				}
2441 				/* END CSTYLED */
2442 				break;
2443 			case DT_SYMINFO:
2444 				SYMINFO(lmp) = (Syminfo *)(ld->d_un.d_ptr +
2445 				    base);
2446 				break;
2447 			case DT_SYMINENT:
2448 				SYMINENT(lmp) = ld->d_un.d_val;
2449 				break;
2450 			case DT_PLTPAD:
2451 				PLTPAD(lmp) = (void *)(ld->d_un.d_ptr + base);
2452 				break;
2453 			case DT_PLTPADSZ:
2454 				pltpadsz = ld->d_un.d_val;
2455 				break;
2456 			case DT_SUNW_RTLDINF:
2457 				/*
2458 				 * Maintain a list of RTLDINFO structures.
2459 				 * Typically, libc is the only supplier, and
2460 				 * only one structure is provided.  However,
2461 				 * multiple suppliers and multiple structures
2462 				 * are supported.  For example, one structure
2463 				 * may provide thread_init, and another
2464 				 * structure may provide atexit reservations.
2465 				 */
2466 				if ((rti = alist_append(&lml->lm_rti, 0,
2467 				    sizeof (Rti_desc), AL_CNT_RTLDINFO)) == 0) {
2468 					remove_so(0, lmp);
2469 					return (0);
2470 				}
2471 				rti->rti_lmp = lmp;
2472 				rti->rti_info = (void *)(ld->d_un.d_ptr + base);
2473 				break;
2474 			case DT_SUNW_SORTENT:
2475 				SUNWSORTENT(lmp) = ld->d_un.d_val;
2476 				break;
2477 			case DT_SUNW_SYMSORT:
2478 				SUNWSYMSORT(lmp) =
2479 				    (void *)(ld->d_un.d_ptr + base);
2480 				break;
2481 			case DT_SUNW_SYMSORTSZ:
2482 				SUNWSYMSORTSZ(lmp) = ld->d_un.d_val;
2483 				break;
2484 			case DT_DEPRECATED_SPARC_REGISTER:
2485 			case M_DT_REGISTER:
2486 				FLAGS(lmp) |= FLG_RT_REGSYMS;
2487 				break;
2488 			case M_DT_PLTRESERVE:
2489 				PLTRESERVE(lmp) = (void *)(ld->d_un.d_ptr +
2490 				    base);
2491 				break;
2492 			}
2493 		}
2494 
2495 		if (PLTPAD(lmp)) {
2496 			if (pltpadsz == (Xword)0)
2497 				PLTPAD(lmp) = 0;
2498 			else
2499 				PLTPADEND(lmp) = (void *)((Addr)PLTPAD(lmp) +
2500 				    pltpadsz);
2501 		}
2502 
2503 		/*
2504 		 * Allocate a Dynamic Info structure.
2505 		 */
2506 		if ((DYNINFO(lmp) = calloc((size_t)dynndx,
2507 		    sizeof (Dyninfo))) == 0) {
2508 			remove_so(0, lmp);
2509 			return (0);
2510 		}
2511 		DYNINFOCNT(lmp) = dynndx;
2512 	}
2513 
2514 	/*
2515 	 * A dynsym contains only global functions. We want to have
2516 	 * a version of it that also includes local functions, so that
2517 	 * dladdr() will be able to report names for local functions
2518 	 * when used to generate a stack trace for a stripped file.
2519 	 * This version of the dynsym is provided via DT_SUNW_SYMTAB.
2520 	 *
2521 	 * In producing DT_SUNW_SYMTAB, ld uses a non-obvious trick
2522 	 * in order to avoid having to have two copies of the global
2523 	 * symbols held in DT_SYMTAB: The local symbols are placed in
2524 	 * a separate section than the globals in the dynsym, but the
2525 	 * linker conspires to put the data for these two sections adjacent
2526 	 * to each other. DT_SUNW_SYMTAB points at the top of the local
2527 	 * symbols, and DT_SUNW_SYMSZ is the combined length of both tables.
2528 	 *
2529 	 * If the two sections are not adjacent, then something went wrong
2530 	 * at link time. We use ASSERT to kill the process if this is
2531 	 * a debug build. In a production build, we will silently ignore
2532 	 * the presence of the .ldynsym and proceed. We can detect this
2533 	 * situation by checking to see that DT_SYMTAB lies in
2534 	 * the range given by DT_SUNW_SYMTAB/DT_SUNW_SYMSZ.
2535 	 */
2536 	if ((SUNWSYMTAB(lmp) != NULL) &&
2537 	    (((char *)SYMTAB(lmp) <= (char *)SUNWSYMTAB(lmp)) ||
2538 	    (((char *)SYMTAB(lmp) >=
2539 	    (SUNWSYMSZ(lmp) + (char *)SUNWSYMTAB(lmp)))))) {
2540 		ASSERT(0);
2541 		SUNWSYMTAB(lmp) = NULL;
2542 		SUNWSYMSZ(lmp) = 0;
2543 	}
2544 
2545 	/*
2546 	 * If configuration file use hasn't been disabled, and a configuration
2547 	 * file hasn't already been set via an environment variable, see if any
2548 	 * application specific configuration file is specified.  An LD_CONFIG
2549 	 * setting is used first, but if this image was generated via crle(1)
2550 	 * then a default configuration file is a fall-back.
2551 	 */
2552 	if ((!(rtld_flags & RT_FL_NOCFG)) && (config->c_name == 0)) {
2553 		if (cfile)
2554 			config->c_name = (const char *)(cfile +
2555 			    (char *)STRTAB(lmp));
2556 		else if (crle) {
2557 			rtld_flags |= RT_FL_CONFAPP;
2558 #ifndef	EXPAND_RELATIVE
2559 			FLAGS1(lmp) |= FL1_RT_RELATIVE;
2560 #endif
2561 		}
2562 	}
2563 
2564 	if (rpath)
2565 		RPATH(lmp) = (char *)(rpath + (char *)STRTAB(lmp));
2566 	if (fltr) {
2567 		/*
2568 		 * If this object is a global filter, duplicate the filtee
2569 		 * string name(s) so that REFNAME() is available in core files.
2570 		 * This cludge was useful for debuggers at one point, but only
2571 		 * when the filtee name was an individual full path.
2572 		 */
2573 		if ((REFNAME(lmp) = strdup(fltr + (char *)STRTAB(lmp))) == 0) {
2574 			remove_so(0, lmp);
2575 			return (0);
2576 		}
2577 	}
2578 
2579 	if (rtld_flags & RT_FL_RELATIVE)
2580 		FLAGS1(lmp) |= FL1_RT_RELATIVE;
2581 
2582 	/*
2583 	 * For Intel ABI compatibility.  It's possible that a JMPREL can be
2584 	 * specified without any other relocations (e.g. a dynamic executable
2585 	 * normally only contains .plt relocations).  If this is the case then
2586 	 * no REL, RELSZ or RELENT will have been created.  For us to be able
2587 	 * to traverse the .plt relocations under LD_BIND_NOW we need to know
2588 	 * the RELENT for these relocations.  Refer to elf_reloc() for more
2589 	 * details.
2590 	 */
2591 	if (!RELENT(lmp) && JMPREL(lmp))
2592 		RELENT(lmp) = sizeof (Rel);
2593 
2594 	/*
2595 	 * Establish any per-object auditing.  If we're establishing `main's
2596 	 * link-map its too early to go searching for audit objects so just
2597 	 * hold the object name for later (see setup()).
2598 	 */
2599 	if (audit) {
2600 		char	*cp = audit + (char *)STRTAB(lmp);
2601 
2602 		if (*cp) {
2603 			if (((AUDITORS(lmp) =
2604 			    calloc(1, sizeof (Audit_desc))) == 0) ||
2605 			    ((AUDITORS(lmp)->ad_name = strdup(cp)) == 0)) {
2606 				remove_so(0, lmp);
2607 				return (0);
2608 			}
2609 			if (lml_main.lm_head) {
2610 				if (audit_setup(lmp, AUDITORS(lmp), 0,
2611 				    in_nfavl) == 0) {
2612 					remove_so(0, lmp);
2613 					return (0);
2614 				}
2615 				FLAGS1(lmp) |= AUDITORS(lmp)->ad_flags;
2616 				lml->lm_flags |= LML_FLG_LOCAUDIT;
2617 			}
2618 		}
2619 	}
2620 
2621 	if ((CONDVAR(lmp) = rt_cond_create()) == 0) {
2622 		remove_so(0, lmp);
2623 		return (0);
2624 	}
2625 	if (oname && ((append_alias(lmp, oname, 0)) == 0)) {
2626 		remove_so(0, lmp);
2627 		return (0);
2628 	}
2629 
2630 	/*
2631 	 * Add the mapped object to the end of the link map list.
2632 	 */
2633 	lm_append(lml, lmco, lmp);
2634 	return (lmp);
2635 }
2636 
2637 /*
2638  * Assign hardware/software capabilities.
2639  */
2640 void
2641 cap_assign(Cap *cap, Rt_map *lmp)
2642 {
2643 	while (cap->c_tag != CA_SUNW_NULL) {
2644 		switch (cap->c_tag) {
2645 		case CA_SUNW_HW_1:
2646 			HWCAP(lmp) = cap->c_un.c_val;
2647 			break;
2648 		case CA_SUNW_SF_1:
2649 			SFCAP(lmp) = cap->c_un.c_val;
2650 		}
2651 		cap++;
2652 	}
2653 }
2654 
2655 /*
2656  * Map in an ELF object.
2657  * Takes an open file descriptor for the object to map and its pathname; returns
2658  * a pointer to a Rt_map structure for this object, or 0 on error.
2659  */
2660 static Rt_map *
2661 elf_map_so(Lm_list *lml, Aliste lmco, const char *pname, const char *oname,
2662     int fd, int *in_nfavl)
2663 {
2664 	int		i; 		/* general temporary */
2665 	Off		memsize = 0;	/* total memory size of pathname */
2666 	Off		mentry;		/* entry point */
2667 	Ehdr		*ehdr;		/* ELF header of ld.so */
2668 	Phdr		*phdr;		/* first Phdr in file */
2669 	Phdr		*phdr0;		/* Saved first Phdr in file */
2670 	Phdr		*pptr;		/* working Phdr */
2671 	Phdr		*fph = 0;	/* first loadable Phdr */
2672 	Phdr		*lph;		/* last loadable Phdr */
2673 	Phdr		*lfph = 0;	/* last loadable (filesz != 0) Phdr */
2674 	Phdr		*lmph = 0;	/* last loadable (memsz != 0) Phdr */
2675 	Phdr		*swph = 0;	/* program header for SUNWBSS */
2676 	Phdr		*tlph = 0;	/* program header for PT_TLS */
2677 	Phdr		*unwindph = 0;	/* program header for PT_SUNW_UNWIND */
2678 	Cap		*cap = 0;	/* program header for SUNWCAP */
2679 	Dyn		*mld = 0;	/* DYNAMIC structure for pathname */
2680 	size_t		size;		/* size of elf and program headers */
2681 	caddr_t		faddr = 0;	/* mapping address of pathname */
2682 	Rt_map		*lmp;		/* link map created */
2683 	caddr_t		paddr;		/* start of padded image */
2684 	Off		plen;		/* size of image including padding */
2685 	Half		etype;
2686 	int		fixed;
2687 	Mmap		*mmaps;
2688 	uint_t		mmapcnt = 0;
2689 	Xword		align = 0;
2690 
2691 	/* LINTED */
2692 	ehdr = (Ehdr *)fmap->fm_maddr;
2693 
2694 	/*
2695 	 * If this a relocatable object then special processing is required.
2696 	 */
2697 	if ((etype = ehdr->e_type) == ET_REL)
2698 		return (elf_obj_file(lml, lmco, pname, fd));
2699 
2700 	/*
2701 	 * If this isn't a dynamic executable or shared object we can't process
2702 	 * it.  If this is a dynamic executable then all addresses are fixed.
2703 	 */
2704 	if (etype == ET_EXEC) {
2705 		fixed = 1;
2706 	} else if (etype == ET_DYN) {
2707 		fixed = 0;
2708 	} else {
2709 		Conv_inv_buf_t inv_buf;
2710 
2711 		eprintf(lml, ERR_ELF, MSG_INTL(MSG_GEN_BADTYPE), pname,
2712 		    conv_ehdr_type(etype, 0, &inv_buf));
2713 		return (0);
2714 	}
2715 
2716 	/*
2717 	 * If our original mapped page was not large enough to hold all the
2718 	 * program headers remap them.
2719 	 */
2720 	size = (size_t)((char *)ehdr->e_phoff +
2721 	    (ehdr->e_phnum * ehdr->e_phentsize));
2722 	if (size > fmap->fm_fsize) {
2723 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), pname);
2724 		return (0);
2725 	}
2726 	if (size > fmap->fm_msize) {
2727 		fmap_setup();
2728 		if ((fmap->fm_maddr = mmap(fmap->fm_maddr, size, PROT_READ,
2729 		    fmap->fm_mflags, fd, 0)) == MAP_FAILED) {
2730 			int	err = errno;
2731 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), pname,
2732 			    strerror(err));
2733 			return (0);
2734 		}
2735 		fmap->fm_msize = size;
2736 		/* LINTED */
2737 		ehdr = (Ehdr *)fmap->fm_maddr;
2738 	}
2739 	/* LINTED */
2740 	phdr0 = phdr = (Phdr *)((char *)ehdr + ehdr->e_ehsize);
2741 
2742 	/*
2743 	 * Get entry point.
2744 	 */
2745 	mentry = ehdr->e_entry;
2746 
2747 	/*
2748 	 * Point at program headers and perform some basic validation.
2749 	 */
2750 	for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++,
2751 	    pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) {
2752 		if ((pptr->p_type == PT_LOAD) ||
2753 		    (pptr->p_type == PT_SUNWBSS)) {
2754 
2755 			if (fph == 0) {
2756 				fph = pptr;
2757 			/* LINTED argument lph is initialized in first pass */
2758 			} else if (pptr->p_vaddr <= lph->p_vaddr) {
2759 				eprintf(lml, ERR_ELF,
2760 				    MSG_INTL(MSG_GEN_INVPRGHDR), pname);
2761 				return (0);
2762 			}
2763 
2764 			lph = pptr;
2765 
2766 			if (pptr->p_memsz)
2767 				lmph = pptr;
2768 			if (pptr->p_filesz)
2769 				lfph = pptr;
2770 			if (pptr->p_type == PT_SUNWBSS)
2771 				swph = pptr;
2772 			if (pptr->p_align > align)
2773 				align = pptr->p_align;
2774 
2775 		} else if (pptr->p_type == PT_DYNAMIC) {
2776 			mld = (Dyn *)(pptr->p_vaddr);
2777 		} else if ((pptr->p_type == PT_TLS) && pptr->p_memsz) {
2778 			tlph = pptr;
2779 		} else if (pptr->p_type == PT_SUNWCAP) {
2780 			cap = (Cap *)(pptr->p_vaddr);
2781 		} else if (pptr->p_type == PT_SUNW_UNWIND) {
2782 			unwindph = pptr;
2783 		}
2784 	}
2785 
2786 #if defined(MAP_ALIGN)
2787 	/*
2788 	 * Make sure the maximum page alignment is a power of 2 >= the default
2789 	 * segment alignment, for use with MAP_ALIGN.
2790 	 */
2791 	align = S_ROUND(align, M_SEGM_ALIGN);
2792 #endif
2793 
2794 	/*
2795 	 * We'd better have at least one loadable segment, together with some
2796 	 * specified file and memory size.
2797 	 */
2798 	if ((fph == 0) || (lmph == 0) || (lfph == 0)) {
2799 		eprintf(lml, ERR_ELF, MSG_INTL(MSG_GEN_NOLOADSEG), pname);
2800 		return (0);
2801 	}
2802 
2803 	/*
2804 	 * Check that the files size accounts for the loadable sections
2805 	 * we're going to map in (failure to do this may cause spurious
2806 	 * bus errors if we're given a truncated file).
2807 	 */
2808 	if (fmap->fm_fsize < ((size_t)lfph->p_offset + lfph->p_filesz)) {
2809 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), pname);
2810 		return (0);
2811 	}
2812 
2813 	/*
2814 	 * Memsize must be page rounded so that if we add object padding
2815 	 * at the end it will start at the beginning of a page.
2816 	 */
2817 	plen = memsize = M_PROUND((lmph->p_vaddr + lmph->p_memsz) -
2818 	    M_PTRUNC((ulong_t)fph->p_vaddr));
2819 
2820 	/*
2821 	 * Determine if an existing mapping is acceptable.
2822 	 */
2823 	if (interp && (lml->lm_flags & LML_FLG_BASELM) &&
2824 	    (strcmp(pname, interp->i_name) == 0)) {
2825 		/*
2826 		 * If this is the interpreter then it has already been mapped
2827 		 * and we have the address so don't map it again.  Note that
2828 		 * the common occurrence of a reference to the interpretor
2829 		 * (libdl -> ld.so.1) will have been caught during filter
2830 		 * initialization (see elf_lookup_filtee()).  However, some
2831 		 * ELF implementations are known to record libc.so.1 as the
2832 		 * interpretor, and thus this test catches this behavior.
2833 		 */
2834 		paddr = faddr = interp->i_faddr;
2835 
2836 	} else if ((fixed == 0) && (r_debug.rtd_objpad == 0) &&
2837 	    (memsize <= fmap->fm_msize) && ((fph->p_flags & PF_W) == 0) &&
2838 	    (fph == lph) && (fph->p_filesz == fph->p_memsz) &&
2839 	    (((Xword)fmap->fm_maddr % align) == 0)) {
2840 		size_t	rsize;
2841 
2842 		/*
2843 		 * If the file contains a single segment, and the mapping
2844 		 * required has already been established from the initial fmap
2845 		 * mapping, then we don't need to do anything more.  Reset the
2846 		 * fmap address so that any later files start a new fmap.  This
2847 		 * is really an optimization for filters, such as libdl.so,
2848 		 * libthread, etc. that are constructed to be a single text
2849 		 * segment.
2850 		 */
2851 		paddr = faddr = fmap->fm_maddr;
2852 
2853 		/*
2854 		 * Free any unused mapping by assigning the fmap buffer to the
2855 		 * unused region.  fmap_setup() will unmap this area and
2856 		 * establish defaults for future mappings.
2857 		 */
2858 		rsize = M_PROUND(fph->p_filesz);
2859 		fmap->fm_maddr += rsize;
2860 		fmap->fm_msize -= rsize;
2861 		fmap_setup();
2862 	}
2863 
2864 	/*
2865 	 * Allocate a mapping array to retain mapped segment information.
2866 	 */
2867 	if ((mmaps = calloc(ehdr->e_phnum, sizeof (Mmap))) == 0)
2868 		return (0);
2869 
2870 	/*
2871 	 * If we're reusing an existing mapping determine the objects etext
2872 	 * address.  Otherwise map the file (which will calculate the etext
2873 	 * address as part of the mapping process).
2874 	 */
2875 	if (faddr) {
2876 		caddr_t	base;
2877 
2878 		if (fixed)
2879 			base = 0;
2880 		else
2881 			base = faddr;
2882 
2883 		/* LINTED */
2884 		phdr0 = phdr = (Phdr *)((char *)faddr + ehdr->e_ehsize);
2885 
2886 		for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++,
2887 		    pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) {
2888 			if (pptr->p_type != PT_LOAD)
2889 				continue;
2890 
2891 			mmaps[mmapcnt].m_vaddr = (pptr->p_vaddr + base);
2892 			mmaps[mmapcnt].m_msize = pptr->p_memsz;
2893 			mmaps[mmapcnt].m_fsize = pptr->p_filesz;
2894 			mmaps[mmapcnt].m_perm = (PROT_READ | PROT_EXEC);
2895 			mmapcnt++;
2896 
2897 			if (!(pptr->p_flags & PF_W)) {
2898 				fmap->fm_etext = (ulong_t)pptr->p_vaddr +
2899 				    (ulong_t)pptr->p_memsz +
2900 				    (ulong_t)(fixed ? 0 : faddr);
2901 			}
2902 		}
2903 	} else {
2904 		/*
2905 		 * Map the file.
2906 		 */
2907 		if (!(faddr = elf_map_it(lml, pname, memsize, ehdr, fph, lph,
2908 		    &phdr, &paddr, &plen, fixed, fd, align, mmaps, &mmapcnt)))
2909 			return (0);
2910 	}
2911 
2912 	/*
2913 	 * Calculate absolute base addresses and entry points.
2914 	 */
2915 	if (!fixed) {
2916 		if (mld)
2917 			/* LINTED */
2918 			mld = (Dyn *)((Off)mld + faddr);
2919 		if (cap)
2920 			/* LINTED */
2921 			cap = (Cap *)((Off)cap + faddr);
2922 		mentry += (Off)faddr;
2923 	}
2924 
2925 	/*
2926 	 * Create new link map structure for newly mapped shared object.
2927 	 */
2928 	if (!(lmp = elf_new_lm(lml, pname, oname, mld, (ulong_t)faddr,
2929 	    fmap->fm_etext, lmco, memsize, mentry, (ulong_t)paddr, plen, mmaps,
2930 	    mmapcnt, in_nfavl))) {
2931 		(void) munmap((caddr_t)faddr, memsize);
2932 		return (0);
2933 	}
2934 
2935 	/*
2936 	 * Start the system loading in the ELF information we'll be processing.
2937 	 */
2938 	if (REL(lmp)) {
2939 		(void) madvise((void *)ADDR(lmp), (uintptr_t)REL(lmp) +
2940 		    (uintptr_t)RELSZ(lmp) - (uintptr_t)ADDR(lmp),
2941 		    MADV_WILLNEED);
2942 	}
2943 
2944 	/*
2945 	 * If this shared object contains any special segments, record them.
2946 	 */
2947 	if (swph) {
2948 		FLAGS(lmp) |= FLG_RT_SUNWBSS;
2949 		SUNWBSS(lmp) = phdr + (swph - phdr0);
2950 	}
2951 	if (tlph && (tls_assign(lml, lmp, (phdr + (tlph - phdr0))) == 0)) {
2952 		remove_so(lml, lmp);
2953 		return (0);
2954 	}
2955 
2956 	if (unwindph)
2957 		PTUNWIND(lmp) = phdr + (unwindph - phdr0);
2958 
2959 	if (cap)
2960 		cap_assign(cap, lmp);
2961 
2962 	return (lmp);
2963 }
2964 
2965 /*
2966  * Function to correct protection settings.  Segments are all mapped initially
2967  * with permissions as given in the segment header.  We need to turn on write
2968  * permissions on a text segment if there are any relocations against that
2969  * segment, and them turn write permission back off again before returning
2970  * control to the user.  This function turns the permission on or off depending
2971  * on the value of the argument.
2972  */
2973 int
2974 elf_set_prot(Rt_map *lmp, int permission)
2975 {
2976 	Mmap	*mmaps;
2977 
2978 	/*
2979 	 * If this is an allocated image (ie. a relocatable object) we can't
2980 	 * mprotect() anything.
2981 	 */
2982 	if (FLAGS(lmp) & FLG_RT_IMGALLOC)
2983 		return (1);
2984 
2985 	DBG_CALL(Dbg_file_prot(lmp, permission));
2986 
2987 	for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++) {
2988 		if (mmaps->m_perm & PROT_WRITE)
2989 			continue;
2990 
2991 		if (mprotect(mmaps->m_vaddr, mmaps->m_msize,
2992 		    (mmaps->m_perm | permission)) == -1) {
2993 			int	err = errno;
2994 			eprintf(LIST(lmp), ERR_FATAL, MSG_INTL(MSG_SYS_MPROT),
2995 			    NAME(lmp), strerror(err));
2996 			return (0);
2997 		}
2998 	}
2999 	return (1);
3000 }
3001 
3002 /*
3003  * Build full pathname of shared object from given directory name and filename.
3004  */
3005 static char *
3006 elf_get_so(const char *dir, const char *file)
3007 {
3008 	static char	pname[PATH_MAX];
3009 
3010 	(void) snprintf(pname, PATH_MAX, MSG_ORIG(MSG_FMT_PATH), dir, file);
3011 	return (pname);
3012 }
3013 
3014 /*
3015  * The copy relocation is recorded in a copy structure which will be applied
3016  * after all other relocations are carried out.  This provides for copying data
3017  * that must be relocated itself (ie. pointers in shared objects).  This
3018  * structure also provides a means of binding RTLD_GROUP dependencies to any
3019  * copy relocations that have been taken from any group members.
3020  *
3021  * If the size of the .bss area available for the copy information is not the
3022  * same as the source of the data inform the user if we're under ldd(1) control
3023  * (this checking was only established in 5.3, so by only issuing an error via
3024  * ldd(1) we maintain the standard set by previous releases).
3025  */
3026 int
3027 elf_copy_reloc(char *name, Sym *rsym, Rt_map *rlmp, void *radd, Sym *dsym,
3028     Rt_map *dlmp, const void *dadd)
3029 {
3030 	Rel_copy	rc;
3031 	Lm_list		*lml = LIST(rlmp);
3032 
3033 	rc.r_name = name;
3034 	rc.r_rsym = rsym;		/* the new reference symbol and its */
3035 	rc.r_rlmp = rlmp;		/*	associated link-map */
3036 	rc.r_dlmp = dlmp;		/* the defining link-map */
3037 	rc.r_dsym = dsym;		/* the original definition */
3038 	rc.r_radd = radd;
3039 	rc.r_dadd = dadd;
3040 
3041 	if (rsym->st_size > dsym->st_size)
3042 		rc.r_size = (size_t)dsym->st_size;
3043 	else
3044 		rc.r_size = (size_t)rsym->st_size;
3045 
3046 	if (alist_append(&COPY_R(dlmp), &rc, sizeof (Rel_copy),
3047 	    AL_CNT_COPYREL) == 0) {
3048 		if (!(lml->lm_flags & LML_FLG_TRC_WARN))
3049 			return (0);
3050 		else
3051 			return (1);
3052 	}
3053 	if (!(FLAGS1(dlmp) & FL1_RT_COPYTOOK)) {
3054 		if (aplist_append(&COPY_S(rlmp), dlmp,
3055 		    AL_CNT_COPYREL) == NULL) {
3056 			if (!(lml->lm_flags & LML_FLG_TRC_WARN))
3057 				return (0);
3058 			else
3059 				return (1);
3060 		}
3061 		FLAGS1(dlmp) |= FL1_RT_COPYTOOK;
3062 	}
3063 
3064 	/*
3065 	 * If we are tracing (ldd), warn the user if
3066 	 *	1) the size from the reference symbol differs from the
3067 	 *	   copy definition. We can only copy as much data as the
3068 	 *	   reference (dynamic executables) entry allows.
3069 	 *	2) the copy definition has STV_PROTECTED visibility.
3070 	 */
3071 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
3072 		if (rsym->st_size != dsym->st_size) {
3073 			(void) printf(MSG_INTL(MSG_LDD_CPY_SIZDIF),
3074 			    _conv_reloc_type(M_R_COPY), demangle(name),
3075 			    NAME(rlmp), EC_XWORD(rsym->st_size),
3076 			    NAME(dlmp), EC_XWORD(dsym->st_size));
3077 			if (rsym->st_size > dsym->st_size)
3078 				(void) printf(MSG_INTL(MSG_LDD_CPY_INSDATA),
3079 				    NAME(dlmp));
3080 			else
3081 				(void) printf(MSG_INTL(MSG_LDD_CPY_DATRUNC),
3082 				    NAME(rlmp));
3083 		}
3084 
3085 		if (ELF_ST_VISIBILITY(dsym->st_other) == STV_PROTECTED) {
3086 			(void) printf(MSG_INTL(MSG_LDD_CPY_PROT),
3087 			    _conv_reloc_type(M_R_COPY), demangle(name),
3088 			    NAME(dlmp));
3089 		}
3090 	}
3091 
3092 	DBG_CALL(Dbg_reloc_apply_val(lml, ELF_DBG_RTLD, (Xword)radd,
3093 	    (Xword)rc.r_size));
3094 	return (1);
3095 }
3096 
3097 /*
3098  * Determine the symbol location of an address within a link-map.  Look for
3099  * the nearest symbol (whose value is less than or equal to the required
3100  * address).  This is the object specific part of dladdr().
3101  */
3102 static void
3103 elf_dladdr(ulong_t addr, Rt_map *lmp, Dl_info *dlip, void **info, int flags)
3104 {
3105 	ulong_t		ndx, cnt, base, _value;
3106 	Sym		*sym, *_sym = NULL;
3107 	const char	*str;
3108 	int		_flags;
3109 	uint_t		*dynaddr_ndx;
3110 	uint_t		dynaddr_n = 0;
3111 	ulong_t		value;
3112 
3113 	/*
3114 	 * If SUNWSYMTAB() is non-NULL, then it sees a special version of
3115 	 * the dynsym that starts with any local function symbols that exist in
3116 	 * the library and then moves to the data held in SYMTAB(). In this
3117 	 * case, SUNWSYMSZ tells us how long the symbol table is. The
3118 	 * availability of local function symbols will enhance the results
3119 	 * we can provide.
3120 	 *
3121 	 * If SUNWSYMTAB() is non-NULL, then there might also be a
3122 	 * SUNWSYMSORT() vector associated with it. SUNWSYMSORT() contains
3123 	 * an array of indices into SUNWSYMTAB, sorted by increasing
3124 	 * address. We can use this to do an O(log N) search instead of a
3125 	 * brute force search.
3126 	 *
3127 	 * If SUNWSYMTAB() is NULL, then SYMTAB() references a dynsym that
3128 	 * contains only global symbols. In that case, the length of
3129 	 * the symbol table comes from the nchain field of the related
3130 	 * symbol lookup hash table.
3131 	 */
3132 	str = STRTAB(lmp);
3133 	if (SUNWSYMSZ(lmp) == NULL) {
3134 		sym = SYMTAB(lmp);
3135 		/*
3136 		 * If we don't have a .hash table there are no symbols
3137 		 * to look at.
3138 		 */
3139 		if (HASH(lmp) == 0)
3140 			return;
3141 		cnt = HASH(lmp)[1];
3142 	} else {
3143 		sym = SUNWSYMTAB(lmp);
3144 		cnt = SUNWSYMSZ(lmp) / SYMENT(lmp);
3145 		dynaddr_ndx = SUNWSYMSORT(lmp);
3146 		if (dynaddr_ndx != NULL)
3147 			dynaddr_n = SUNWSYMSORTSZ(lmp) / SUNWSORTENT(lmp);
3148 	}
3149 
3150 	if (FLAGS(lmp) & FLG_RT_FIXED)
3151 		base = 0;
3152 	else
3153 		base = ADDR(lmp);
3154 
3155 	if (dynaddr_n > 0) {		/* Binary search */
3156 		long	low = 0, low_bnd;
3157 		long	high = dynaddr_n - 1, high_bnd;
3158 		long	mid;
3159 		Sym	*mid_sym;
3160 
3161 		/*
3162 		 * Note that SUNWSYMSORT only contains symbols types that
3163 		 * supply memory addresses, so there's no need to check and
3164 		 * filter out any other types.
3165 		 */
3166 		low_bnd = low;
3167 		high_bnd = high;
3168 		while (low <= high) {
3169 			mid = (low + high) / 2;
3170 			mid_sym = &sym[dynaddr_ndx[mid]];
3171 			value = mid_sym->st_value + base;
3172 			if (addr < value) {
3173 				if ((sym[dynaddr_ndx[high]].st_value + base) >=
3174 				    addr)
3175 					high_bnd = high;
3176 				high = mid - 1;
3177 			} else if (addr > value) {
3178 				if ((sym[dynaddr_ndx[low]].st_value + base) <=
3179 				    addr)
3180 					low_bnd = low;
3181 				low = mid + 1;
3182 			} else {
3183 				_sym = mid_sym;
3184 				_value = value;
3185 				break;
3186 			}
3187 		}
3188 		/*
3189 		 * If the above didn't find it exactly, then we must
3190 		 * return the closest symbol with a value that doesn't
3191 		 * exceed the one we are looking for. If that symbol exists,
3192 		 * it will lie in the range bounded by low_bnd and
3193 		 * high_bnd. This is a linear search, but a short one.
3194 		 */
3195 		if (_sym == NULL) {
3196 			for (mid = low_bnd; mid <= high_bnd; mid++) {
3197 				mid_sym = &sym[dynaddr_ndx[mid]];
3198 				value = mid_sym->st_value + base;
3199 				if (addr >= value) {
3200 					_sym = mid_sym;
3201 					_value = value;
3202 				} else {
3203 					break;
3204 				}
3205 			}
3206 		}
3207 	} else {			/* Linear search */
3208 		for (_value = 0, sym++, ndx = 1; ndx < cnt; ndx++, sym++) {
3209 			/*
3210 			 * Skip expected symbol types that are not functions
3211 			 * or data:
3212 			 *	- A symbol table starts with an undefined symbol
3213 			 *		in slot 0. If we are using SUNWSYMTAB(),
3214 			 *		there will be a second undefined symbol
3215 			 *		right before the globals.
3216 			 *	- The local part of SUNWSYMTAB() contains a
3217 			 *		series of function symbols. Each section
3218 			 *		starts with an initial STT_FILE symbol.
3219 			 */
3220 			if ((sym->st_shndx == SHN_UNDEF) ||
3221 			    (ELF_ST_TYPE(sym->st_info) == STT_FILE))
3222 				continue;
3223 
3224 			value = sym->st_value + base;
3225 			if (value > addr)
3226 				continue;
3227 			if (value < _value)
3228 				continue;
3229 
3230 			_sym = sym;
3231 			_value = value;
3232 
3233 			/*
3234 			 * Note, because we accept local and global symbols
3235 			 * we could find a section symbol that matches the
3236 			 * associated address, which means that the symbol
3237 			 * name will be null.  In this case continue the
3238 			 * search in case we can find a global symbol of
3239 			 * the same value.
3240 			 */
3241 			if ((value == addr) &&
3242 			    (ELF_ST_TYPE(sym->st_info) != STT_SECTION))
3243 				break;
3244 		}
3245 	}
3246 
3247 	_flags = flags & RTLD_DL_MASK;
3248 	if (_sym) {
3249 		if (_flags == RTLD_DL_SYMENT)
3250 			*info = (void *)_sym;
3251 		else if (_flags == RTLD_DL_LINKMAP)
3252 			*info = (void *)lmp;
3253 
3254 		dlip->dli_sname = str + _sym->st_name;
3255 		dlip->dli_saddr = (void *)_value;
3256 	} else {
3257 		/*
3258 		 * addr lies between the beginning of the mapped segment and
3259 		 * the first global symbol. We have no symbol to return
3260 		 * and the caller requires one. We use _START_, the base
3261 		 * address of the mapping.
3262 		 */
3263 
3264 		if (_flags == RTLD_DL_SYMENT) {
3265 			/*
3266 			 * An actual symbol struct is needed, so we
3267 			 * construct one for _START_. To do this in a
3268 			 * fully accurate way requires a different symbol
3269 			 * for each mapped segment. This requires the
3270 			 * use of dynamic memory and a mutex. That's too much
3271 			 * plumbing for a fringe case of limited importance.
3272 			 *
3273 			 * Fortunately, we can simplify:
3274 			 *    - Only the st_size and st_info fields are useful
3275 			 *	outside of the linker internals. The others
3276 			 *	reference things that outside code cannot see,
3277 			 *	and can be set to 0.
3278 			 *    - It's just a label and there is no size
3279 			 *	to report. So, the size should be 0.
3280 			 * This means that only st_info needs a non-zero
3281 			 * (constant) value. A static struct will suffice.
3282 			 * It must be const (readonly) so the caller can't
3283 			 * change its meaning for subsequent callers.
3284 			 */
3285 			static const Sym fsym = { 0, 0, 0,
3286 				ELF_ST_INFO(STB_LOCAL, STT_OBJECT) };
3287 			*info = (void *) &fsym;
3288 		}
3289 
3290 		dlip->dli_sname = MSG_ORIG(MSG_SYM_START);
3291 		dlip->dli_saddr = (void *) ADDR(lmp);
3292 	}
3293 }
3294 
3295 static void
3296 elf_lazy_cleanup(APlist *alp)
3297 {
3298 	Rt_map	*lmp;
3299 	Aliste	idx;
3300 
3301 	/*
3302 	 * Cleanup any link-maps added to this dynamic list and free it.
3303 	 */
3304 	for (APLIST_TRAVERSE(alp, idx, lmp))
3305 		FLAGS(lmp) &= ~FLG_RT_TMPLIST;
3306 	free(alp);
3307 }
3308 
3309 /*
3310  * This routine is called as a last fall-back to search for a symbol from a
3311  * standard relocation.  To maintain lazy loadings goal of reducing the number
3312  * of objects mapped, any symbol search is first carried out using the objects
3313  * that already exist in the process (either on a link-map list or handle).
3314  * If a symbol can't be found, and lazy dependencies are still pending, this
3315  * routine loads the dependencies in an attempt to locate the symbol.
3316  *
3317  * Only new objects are inspected as we will have already inspected presently
3318  * loaded objects before calling this routine.  However, a new object may not
3319  * be new - although the di_lmp might be zero, the object may have been mapped
3320  * as someone elses dependency.  Thus there's a possibility of some symbol
3321  * search duplication.
3322  */
3323 Sym *
3324 elf_lazy_find_sym(Slookup *slp, Rt_map **_lmp, uint_t *binfo, int *in_nfavl)
3325 {
3326 	Sym		*sym = 0;
3327 	APlist		*alist = NULL;
3328 	Aliste		idx;
3329 	Rt_map		*lmp1, *lmp = slp->sl_imap;
3330 	const char	*name = slp->sl_name;
3331 
3332 	/*
3333 	 * Generate a local list of new objects to process.  This list can grow
3334 	 * as each object supplies its own lazy dependencies.
3335 	 */
3336 	if (aplist_append(&alist, lmp, AL_CNT_LAZYFIND) == NULL)
3337 		return (NULL);
3338 	FLAGS(lmp) |= FLG_RT_TMPLIST;
3339 
3340 	for (APLIST_TRAVERSE(alist, idx, lmp1)) {
3341 		uint_t	cnt = 0;
3342 		Slookup	sl = *slp;
3343 		Dyninfo	*dip, *pdip;
3344 
3345 		/*
3346 		 * Discard any relocation index from further symbol searches.
3347 		 * This index will have already been used to trigger any
3348 		 * necessary lazy-loads, and it might be because one of these
3349 		 * lazy loads have failed that we're here performing this
3350 		 * fallback.  By removing the relocation index we don't try
3351 		 * and perform the same failed lazy loading activity again.
3352 		 */
3353 		sl.sl_rsymndx = 0;
3354 
3355 		/*
3356 		 * Loop through the lazy DT_NEEDED entries examining each object
3357 		 * for the required symbol.  If the symbol is not found, the
3358 		 * object is in turn added to the local alist, so that the
3359 		 * objects lazy DT_NEEDED entries can be examined.
3360 		 */
3361 		lmp = lmp1;
3362 		for (dip = DYNINFO(lmp), pdip = NULL; cnt < DYNINFOCNT(lmp);
3363 		    cnt++, pdip = dip++) {
3364 			Rt_map *nlmp;
3365 
3366 			if (((dip->di_flags & FLG_DI_LAZY) == 0) ||
3367 			    dip->di_info)
3368 				continue;
3369 
3370 			/*
3371 			 * If this object has already failed to lazy load, and
3372 			 * we're still processing the same runtime linker
3373 			 * operation that produced the failure, don't bother
3374 			 * to try and load the object again.
3375 			 */
3376 			if ((dip->di_flags & FLG_DI_LAZYFAIL) && pdip &&
3377 			    (pdip->di_flags & FLG_DI_POSFLAG1)) {
3378 				if (pdip->di_info == (void *)ld_entry_cnt)
3379 					continue;
3380 
3381 				dip->di_flags &= ~FLG_DI_LAZYFAIL;
3382 				pdip->di_info = NULL;
3383 			}
3384 
3385 			/*
3386 			 * Try loading this lazy dependency.  If the object
3387 			 * can't be loaded, consider this non-fatal and continue
3388 			 * the search.  Lazy loaded dependencies need not exist
3389 			 * and their loading should only turn out to be fatal
3390 			 * if they are required to satisfy a relocation.
3391 			 *
3392 			 * If the file is already loaded and relocated we must
3393 			 * still inspect it for symbols, even though it might
3394 			 * have already been searched.  This lazy load operation
3395 			 * might have promoted the permissions of the object,
3396 			 * and thus made the object applicable for this symbol
3397 			 * search, whereas before the object might have been
3398 			 * skipped.
3399 			 */
3400 			if ((nlmp = elf_lazy_load(lmp, &sl, cnt,
3401 			    name, in_nfavl)) == 0)
3402 				continue;
3403 
3404 			/*
3405 			 * If this object isn't yet a part of the dynamic list
3406 			 * then inspect it for the symbol.  If the symbol isn't
3407 			 * found add the object to the dynamic list so that we
3408 			 * can inspect its dependencies.
3409 			 */
3410 			if (FLAGS(nlmp) & FLG_RT_TMPLIST)
3411 				continue;
3412 
3413 			sl.sl_imap = nlmp;
3414 			if (sym = LM_LOOKUP_SYM(sl.sl_cmap)(&sl, _lmp,
3415 			    binfo, in_nfavl))
3416 				break;
3417 
3418 			/*
3419 			 * Some dlsym() operations are already traversing a
3420 			 * link-map (dlopen(0)), and thus there's no need to
3421 			 * build our own dynamic dependency list.
3422 			 */
3423 			if ((sl.sl_flags & LKUP_NODESCENT) == 0) {
3424 				if (aplist_append(&alist, nlmp,
3425 				    AL_CNT_LAZYFIND) == 0) {
3426 					elf_lazy_cleanup(alist);
3427 					return (0);
3428 				}
3429 				FLAGS(nlmp) |= FLG_RT_TMPLIST;
3430 			}
3431 		}
3432 		if (sym)
3433 			break;
3434 	}
3435 
3436 	elf_lazy_cleanup(alist);
3437 	return (sym);
3438 }
3439 
3440 /*
3441  * Warning message for bad r_offset.
3442  */
3443 void
3444 elf_reloc_bad(Rt_map *lmp, void *rel, uchar_t rtype, ulong_t roffset,
3445     ulong_t rsymndx)
3446 {
3447 	const char	*name = (char *)0;
3448 	Lm_list		*lml = LIST(lmp);
3449 	int		trace;
3450 
3451 	if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
3452 	    (((rtld_flags & RT_FL_SILENCERR) == 0) ||
3453 	    (lml->lm_flags & LML_FLG_TRC_VERBOSE)))
3454 		trace = 1;
3455 	else
3456 		trace = 0;
3457 
3458 	if ((trace == 0) && (DBG_ENABLED == 0))
3459 		return;
3460 
3461 	if (rsymndx) {
3462 		Sym	*symref = (Sym *)((ulong_t)SYMTAB(lmp) +
3463 		    (rsymndx * SYMENT(lmp)));
3464 
3465 		if (ELF_ST_BIND(symref->st_info) != STB_LOCAL)
3466 			name = (char *)(STRTAB(lmp) + symref->st_name);
3467 	}
3468 
3469 	if (name == 0)
3470 		name = MSG_ORIG(MSG_STR_EMPTY);
3471 
3472 	if (trace) {
3473 		const char *rstr;
3474 
3475 		rstr = _conv_reloc_type((uint_t)rtype);
3476 		(void) printf(MSG_INTL(MSG_LDD_REL_ERR1), rstr, name,
3477 		    EC_ADDR(roffset));
3478 		return;
3479 	}
3480 
3481 	Dbg_reloc_error(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, name);
3482 }
3483 
3484 /*
3485  * Resolve a static TLS relocation.
3486  */
3487 long
3488 elf_static_tls(Rt_map *lmp, Sym *sym, void *rel, uchar_t rtype, char *name,
3489     ulong_t roffset, long value)
3490 {
3491 	Lm_list	*lml = LIST(lmp);
3492 
3493 	/*
3494 	 * Relocations against a static TLS block have limited support once
3495 	 * process initialization has completed.  Any error condition should be
3496 	 * discovered by testing for DF_STATIC_TLS as part of loading an object,
3497 	 * however individual relocations are tested in case the dynamic flag
3498 	 * had not been set when this object was built.
3499 	 */
3500 	if (PTTLS(lmp) == 0) {
3501 		DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
3502 		    M_REL_SHT_TYPE, rel, NULL, name));
3503 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
3504 		    _conv_reloc_type((uint_t)rtype), NAME(lmp),
3505 		    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
3506 		return (0);
3507 	}
3508 
3509 	/*
3510 	 * If no static TLS has been set aside for this object, determine if
3511 	 * any can be obtained.  Enforce that any object using static TLS is
3512 	 * non-deletable.
3513 	 */
3514 	if (TLSSTATOFF(lmp) == 0) {
3515 		FLAGS1(lmp) |= FL1_RT_TLSSTAT;
3516 		MODE(lmp) |= RTLD_NODELETE;
3517 
3518 		if (tls_assign(lml, lmp, PTTLS(lmp)) == 0) {
3519 			DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
3520 			    M_REL_SHT_TYPE, rel, NULL, name));
3521 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
3522 			    _conv_reloc_type((uint_t)rtype), NAME(lmp),
3523 			    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
3524 			return (0);
3525 		}
3526 	}
3527 
3528 	/*
3529 	 * Typically, a static TLS offset is maintained as a symbols value.
3530 	 * For local symbols that are not apart of the dynamic symbol table,
3531 	 * the TLS relocation points to a section symbol, and the static TLS
3532 	 * offset was deposited in the associated GOT table.  Make sure the GOT
3533 	 * is cleared, so that the value isn't reused in do_reloc().
3534 	 */
3535 	if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
3536 		if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION)) {
3537 			value = *(long *)roffset;
3538 			*(long *)roffset = 0;
3539 		} else {
3540 			value = sym->st_value;
3541 		}
3542 	}
3543 	return (-(TLSSTATOFF(lmp) - value));
3544 }
3545 
3546 /*
3547  * If the symbol is not found and the reference was not to a weak symbol, report
3548  * an error.  Weak references may be unresolved.
3549  */
3550 int
3551 elf_reloc_error(Rt_map *lmp, const char *name, void *rel, uint_t binfo)
3552 {
3553 	Lm_list	*lml = LIST(lmp);
3554 
3555 	/*
3556 	 * Under crle(1), relocation failures are ignored.
3557 	 */
3558 	if (lml->lm_flags & LML_FLG_IGNRELERR)
3559 		return (1);
3560 
3561 	/*
3562 	 * Under ldd(1), unresolved references are reported.  However, if the
3563 	 * original reference is EXTERN or PARENT these references are ignored
3564 	 * unless ldd's -p option is in effect.
3565 	 */
3566 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
3567 		if (((binfo & DBG_BINFO_REF_MSK) == 0) ||
3568 		    ((lml->lm_flags & LML_FLG_TRC_NOPAREXT) != 0)) {
3569 			(void) printf(MSG_INTL(MSG_LDD_SYM_NFOUND),
3570 			    demangle(name), NAME(lmp));
3571 		}
3572 		return (1);
3573 	}
3574 
3575 	/*
3576 	 * Otherwise, the unresolved references is fatal.
3577 	 */
3578 	DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel,
3579 	    NULL, name));
3580 	eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
3581 	    demangle(name));
3582 
3583 	return (0);
3584 }
3585