1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Object file dependent support for ELF objects. 33 */ 34 #include "_synonyms.h" 35 36 #include <stdio.h> 37 #include <sys/procfs.h> 38 #include <sys/mman.h> 39 #include <sys/debug.h> 40 #include <string.h> 41 #include <limits.h> 42 #include <dlfcn.h> 43 #include <debug.h> 44 #include <conv.h> 45 #include "_rtld.h" 46 #include "_audit.h" 47 #include "_elf.h" 48 #include "msg.h" 49 50 /* 51 * Default and secure dependency search paths. 52 */ 53 static Pnode elf_dflt_dirs[] = { 54 #if defined(_ELF64) 55 #ifndef SGS_PRE_UNIFIED_PROCESS 56 { MSG_ORIG(MSG_PTH_LIB_64), 0, MSG_PTH_LIB_64_SIZE, 57 LA_SER_DEFAULT, 0, &elf_dflt_dirs[1] }, 58 #endif 59 { MSG_ORIG(MSG_PTH_USRLIB_64), 0, MSG_PTH_USRLIB_64_SIZE, 60 LA_SER_DEFAULT, 0, 0 } 61 #else 62 #ifndef SGS_PRE_UNIFIED_PROCESS 63 { MSG_ORIG(MSG_PTH_LIB), 0, MSG_PTH_LIB_SIZE, 64 LA_SER_DEFAULT, 0, &elf_dflt_dirs[1] }, 65 #endif 66 { MSG_ORIG(MSG_PTH_USRLIB), 0, MSG_PTH_USRLIB_SIZE, 67 LA_SER_DEFAULT, 0, 0 } 68 #endif 69 }; 70 71 static Pnode elf_secure_dirs[] = { 72 #if defined(_ELF64) 73 #ifndef SGS_PRE_UNIFIED_PROCESS 74 { MSG_ORIG(MSG_PTH_LIBSE_64), 0, MSG_PTH_LIBSE_64_SIZE, 75 LA_SER_SECURE, 0, &elf_secure_dirs[1] }, 76 #endif 77 { MSG_ORIG(MSG_PTH_USRLIBSE_64), 0, 78 MSG_PTH_USRLIBSE_64_SIZE, 79 LA_SER_SECURE, 0, 0 } 80 #else 81 #ifndef SGS_PRE_UNIFIED_PROCESS 82 { MSG_ORIG(MSG_PTH_LIBSE), 0, MSG_PTH_LIBSE_SIZE, 83 LA_SER_SECURE, 0, &elf_secure_dirs[1] }, 84 #endif 85 { MSG_ORIG(MSG_PTH_USRLIBSE), 0, MSG_PTH_USRLIBSE_SIZE, 86 LA_SER_SECURE, 0, 0 } 87 #endif 88 }; 89 90 /* 91 * Defines for local functions. 92 */ 93 static Pnode *elf_fix_name(const char *, Rt_map *, uint_t); 94 static int elf_are_u(Rej_desc *); 95 static void elf_dladdr(ulong_t, Rt_map *, Dl_info *, void **, int); 96 static ulong_t elf_entry_pt(void); 97 static char *elf_get_so(const char *, const char *); 98 static Rt_map *elf_map_so(Lm_list *, Aliste, const char *, const char *, int); 99 static int elf_needed(Lm_list *, Aliste, Rt_map *); 100 static void elf_unmap_so(Rt_map *); 101 static int elf_verify_vers(const char *, Rt_map *, Rt_map *); 102 103 /* 104 * Functions and data accessed through indirect pointers. 105 */ 106 Fct elf_fct = { 107 elf_are_u, 108 elf_entry_pt, 109 elf_map_so, 110 elf_unmap_so, 111 elf_needed, 112 lookup_sym, 113 elf_reloc, 114 elf_dflt_dirs, 115 elf_secure_dirs, 116 elf_fix_name, 117 elf_get_so, 118 elf_dladdr, 119 dlsym_handle, 120 elf_verify_vers, 121 elf_set_prot 122 }; 123 124 125 /* 126 * Redefine NEEDED name if necessary. 127 */ 128 static Pnode * 129 elf_fix_name(const char *name, Rt_map *clmp, uint_t orig) 130 { 131 /* 132 * For ABI compliance, if we are asked for ld.so.1, then really give 133 * them libsys.so.1 (the SONAME of libsys.so.1 is ld.so.1). 134 */ 135 if (((*name == '/') && 136 /* BEGIN CSTYLED */ 137 #if defined(_ELF64) 138 (strcmp(name, MSG_ORIG(MSG_PTH_RTLD_64)) == 0)) || 139 #else 140 (strcmp(name, MSG_ORIG(MSG_PTH_RTLD)) == 0)) || 141 #endif 142 (strcmp(name, MSG_ORIG(MSG_FIL_RTLD)) == 0)) { 143 /* END CSTYLED */ 144 Pnode *pnp; 145 146 DBG_CALL(Dbg_file_fixname(LIST(clmp), name, 147 MSG_ORIG(MSG_PTH_LIBSYS))); 148 if (((pnp = calloc(sizeof (Pnode), 1)) == 0) || 149 ((pnp->p_name = strdup(MSG_ORIG(MSG_PTH_LIBSYS))) == 0)) { 150 if (pnp) 151 free(pnp); 152 return (0); 153 } 154 pnp->p_len = MSG_PTH_LIBSYS_SIZE; 155 pnp->p_orig = (orig & PN_SER_MASK); 156 return (pnp); 157 } 158 159 return (expand_paths(clmp, name, orig, 0)); 160 } 161 162 /* 163 * Determine if we have been given an ELF file and if so determine if the file 164 * is compatible. Returns 1 if true, else 0 and sets the reject descriptor 165 * with associated error information. 166 */ 167 static int 168 elf_are_u(Rej_desc *rej) 169 { 170 Ehdr *ehdr; 171 172 /* 173 * Determine if we're an elf file. If not simply return, we don't set 174 * any rejection information as this test allows use to scroll through 175 * the objects we support (ELF, AOUT). 176 */ 177 if (fmap->fm_fsize < sizeof (Ehdr) || 178 fmap->fm_maddr[EI_MAG0] != ELFMAG0 || 179 fmap->fm_maddr[EI_MAG1] != ELFMAG1 || 180 fmap->fm_maddr[EI_MAG2] != ELFMAG2 || 181 fmap->fm_maddr[EI_MAG3] != ELFMAG3) { 182 return (0); 183 } 184 185 /* 186 * Check class and encoding. 187 */ 188 /* LINTED */ 189 ehdr = (Ehdr *)fmap->fm_maddr; 190 if (ehdr->e_ident[EI_CLASS] != M_CLASS) { 191 rej->rej_type = SGS_REJ_CLASS; 192 rej->rej_info = (uint_t)ehdr->e_ident[EI_CLASS]; 193 return (0); 194 } 195 if (ehdr->e_ident[EI_DATA] != M_DATA) { 196 rej->rej_type = SGS_REJ_DATA; 197 rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA]; 198 return (0); 199 } 200 if ((ehdr->e_type != ET_REL) && (ehdr->e_type != ET_EXEC) && 201 (ehdr->e_type != ET_DYN)) { 202 rej->rej_type = SGS_REJ_TYPE; 203 rej->rej_info = (uint_t)ehdr->e_type; 204 return (0); 205 } 206 207 /* 208 * Verify machine specific flags, and hardware capability requirements. 209 */ 210 if ((elf_mach_flags_check(rej, ehdr) == 0) || 211 ((rtld_flags2 & RT_FL2_HWCAP) && (hwcap_check(rej, ehdr) == 0))) 212 return (0); 213 214 /* 215 * Verify ELF version. ??? is this too restrictive ??? 216 */ 217 if (ehdr->e_version > EV_CURRENT) { 218 rej->rej_type = SGS_REJ_VERSION; 219 rej->rej_info = (uint_t)ehdr->e_version; 220 return (0); 221 } 222 return (1); 223 } 224 225 /* 226 * The runtime linker employs lazy loading to provide the libraries needed for 227 * debugging, preloading .o's and dldump(). As these are seldom used, the 228 * standard startup of ld.so.1 doesn't initialize all the information necessary 229 * to perform plt relocation on ld.so.1's link-map. The first time lazy loading 230 * is called we get here to perform these initializations: 231 * 232 * o elf_needed() is called to set up the DYNINFO() indexes for each lazy 233 * dependency. Typically, for all other objects, this is called during 234 * analyze_so(), but as ld.so.1 is set-contained we skip this processing. 235 * 236 * o For intel, ld.so.1's JMPSLOT relocations need relative updates. These 237 * are by default skipped thus delaying all relative relocation processing 238 * on every invocation of ld.so.1. 239 */ 240 int 241 elf_rtld_load() 242 { 243 Lm_list *lml = &lml_rtld; 244 Rt_map *lmp = lml->lm_head; 245 246 if (lml->lm_flags & LML_FLG_PLTREL) 247 return (1); 248 249 /* 250 * As we need to refer to the DYNINFO() information, insure that it has 251 * been initialized. 252 */ 253 if (elf_needed(lml, ALO_DATA, lmp) == 0) 254 return (0); 255 256 #if defined(__i386) 257 /* 258 * This is a kludge to give ld.so.1 a performance benefit on i386. 259 * It's based around two factors. 260 * 261 * o JMPSLOT relocations (PLT's) actually need a relative relocation 262 * applied to the GOT entry so that they can find PLT0. 263 * 264 * o ld.so.1 does not exercise *any* PLT's before it has made a call 265 * to elf_lazy_load(). This is because all dynamic dependencies 266 * are recorded as lazy dependencies. 267 */ 268 (void) elf_reloc_relacount((ulong_t)JMPREL(lmp), 269 (ulong_t)(PLTRELSZ(lmp) / RELENT(lmp)), (ulong_t)RELENT(lmp), 270 (ulong_t)ADDR(lmp)); 271 #endif 272 273 lml->lm_flags |= LML_FLG_PLTREL; 274 return (1); 275 } 276 277 /* 278 * Lazy load an object. 279 */ 280 Rt_map * 281 elf_lazy_load(Rt_map *clmp, uint_t ndx, const char *sym) 282 { 283 Rt_map *nlmp, *hlmp; 284 Dyninfo *dip = &DYNINFO(clmp)[ndx]; 285 uint_t flags = 0; 286 Pnode *pnp; 287 const char *name; 288 Lm_list *lml = LIST(clmp); 289 Lm_cntl *lmc; 290 Aliste lmco; 291 292 /* 293 * If this dependency has already been processed, we're done. 294 */ 295 if (((nlmp = (Rt_map *)dip->di_info) != 0) || 296 (dip->di_flags & FLG_DI_PROCESSD)) 297 return (nlmp); 298 299 /* 300 * Determine the initial dependency name, and indicate that this 301 * dependencies processing has initiated. 302 */ 303 name = STRTAB(clmp) + DYN(clmp)[ndx].d_un.d_val; 304 DBG_CALL(Dbg_file_lazyload(clmp, name, sym)); 305 if (lml->lm_flags & LML_FLG_TRC_ENABLE) 306 dip->di_flags |= FLG_DI_PROCESSD; 307 308 if (dip->di_flags & FLG_DI_GROUP) 309 flags |= (FLG_RT_SETGROUP | FLG_RT_HANDLE); 310 311 /* 312 * Expand the requested name if necessary. 313 */ 314 if ((pnp = elf_fix_name(name, clmp, PN_SER_NEEDED)) == 0) 315 return (0); 316 317 /* 318 * Provided the object on the head of the link-map has completed its 319 * relocation, create a new link-map control list for this request. 320 */ 321 hlmp = lml->lm_head; 322 if (FLAGS(hlmp) & FLG_RT_RELOCED) { 323 if ((lmc = alist_append(&(lml->lm_lists), 0, sizeof (Lm_cntl), 324 AL_CNT_LMLISTS)) == 0) { 325 remove_pnode(pnp); 326 return (0); 327 } 328 lmco = (Aliste)((char *)lmc - (char *)lml->lm_lists); 329 } else { 330 lmc = 0; 331 lmco = ALO_DATA; 332 } 333 334 /* 335 * Load the associated object. 336 */ 337 dip->di_info = nlmp = 338 load_one(lml, lmco, pnp, clmp, MODE(clmp), flags, 0); 339 340 /* 341 * Remove any expanded pathname infrastructure. Reduce the pending lazy 342 * dependency count of the caller, together with the link-map lists 343 * count of objects that still have lazy dependencies pending. 344 */ 345 remove_pnode(pnp); 346 if (--LAZY(clmp) == 0) 347 LIST(clmp)->lm_lazy--; 348 349 /* 350 * Finish processing the objects associated with this request, and 351 * create an association between the caller and this dependency. 352 */ 353 if (nlmp && (((analyze_lmc(lml, lmco, nlmp) == 0)) || 354 (relocate_lmc(lml, lmco, clmp, nlmp) == 0) || 355 (bind_one(clmp, nlmp, BND_NEEDED) == 0))) 356 dip->di_info = nlmp = 0; 357 358 /* 359 * If this lazyload has failed, and we've created a new link-map 360 * control list to which this request has added objects, then remove 361 * all the objects that have been associated to this request. 362 */ 363 if ((nlmp == 0) && lmc && lmc->lc_head) 364 remove_lmc(lml, clmp, lmc, lmco, name); 365 366 /* 367 * Finally, remove any link-map control list that was created. 368 */ 369 if (lmc) 370 remove_cntl(lml, lmco); 371 372 return (nlmp); 373 } 374 375 /* 376 * Return the entry point of the ELF executable. 377 */ 378 static ulong_t 379 elf_entry_pt(void) 380 { 381 return (ENTRY(lml_main.lm_head)); 382 } 383 384 /* 385 * Unmap a given ELF shared object from the address space. 386 */ 387 static void 388 elf_unmap_so(Rt_map *lmp) 389 { 390 caddr_t addr; 391 size_t size; 392 Mmap *mmaps; 393 394 /* 395 * If this link map represents a relocatable object concatenation, then 396 * the image was simply generated in allocated memory. Free the memory. 397 * 398 * Note: the memory was originally allocated in the libelf:_elf_outmap 399 * routine and would normally have been free'd in elf_outsync(), but 400 * because we 'interpose' on that routine the memory wasn't free'd at 401 * that time. 402 */ 403 if (FLAGS(lmp) & FLG_RT_IMGALLOC) { 404 free((void *)ADDR(lmp)); 405 return; 406 } 407 408 /* 409 * If padding was enabled via rtld_db, then we have at least one page 410 * in front of the image - and possibly a trailing page. 411 * Unmap the front page first: 412 */ 413 if (PADSTART(lmp) != ADDR(lmp)) { 414 addr = (caddr_t)M_PTRUNC(PADSTART(lmp)); 415 size = ADDR(lmp) - (ulong_t)addr; 416 (void) munmap(addr, size); 417 } 418 419 /* 420 * Unmap any trailing padding. 421 */ 422 if (M_PROUND((PADSTART(lmp) + PADIMLEN(lmp))) > 423 M_PROUND(ADDR(lmp) + MSIZE(lmp))) { 424 addr = (caddr_t)M_PROUND(ADDR(lmp) + MSIZE(lmp)); 425 size = M_PROUND(PADSTART(lmp) + PADIMLEN(lmp)) - (ulong_t)addr; 426 (void) munmap(addr, size); 427 } 428 429 /* 430 * Unmmap all mapped segments. 431 */ 432 for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++) 433 (void) munmap(mmaps->m_vaddr, mmaps->m_msize); 434 } 435 436 /* 437 * Determine if a dependency requires a particular version and if so verify 438 * that the version exists in the dependency. 439 */ 440 static int 441 elf_verify_vers(const char *name, Rt_map *clmp, Rt_map *nlmp) 442 { 443 Verneed *vnd = VERNEED(clmp); 444 int _num, num = VERNEEDNUM(clmp); 445 char *cstrs = (char *)STRTAB(clmp); 446 Lm_list *lml = LIST(clmp); 447 448 /* 449 * Traverse the callers version needed information and determine if any 450 * specific versions are required from the dependency. 451 */ 452 DBG_CALL(Dbg_ver_need_title(LIST(clmp), NAME(clmp))); 453 for (_num = 1; _num <= num; _num++, 454 vnd = (Verneed *)((Xword)vnd + vnd->vn_next)) { 455 Half cnt = vnd->vn_cnt; 456 Vernaux *vnap; 457 char *nstrs, *need; 458 459 /* 460 * Determine if a needed entry matches this dependency. 461 */ 462 need = (char *)(cstrs + vnd->vn_file); 463 if (strcmp(name, need) != 0) 464 continue; 465 466 if ((lml->lm_flags & LML_FLG_TRC_VERBOSE) && 467 ((FLAGS1(clmp) & FL1_RT_LDDSTUB) == 0)) 468 (void) printf(MSG_INTL(MSG_LDD_VER_FIND), name); 469 470 /* 471 * Validate that each version required actually exists in the 472 * dependency. 473 */ 474 nstrs = (char *)STRTAB(nlmp); 475 476 for (vnap = (Vernaux *)((Xword)vnd + vnd->vn_aux); cnt; 477 cnt--, vnap = (Vernaux *)((Xword)vnap + vnap->vna_next)) { 478 char *version, *define; 479 Verdef *vdf = VERDEF(nlmp); 480 ulong_t _num, num = VERDEFNUM(nlmp); 481 int found = 0; 482 483 version = (char *)(cstrs + vnap->vna_name); 484 DBG_CALL(Dbg_ver_need_entry(lml, 0, need, version)); 485 486 for (_num = 1; _num <= num; _num++, 487 vdf = (Verdef *)((Xword)vdf + vdf->vd_next)) { 488 Verdaux *vdap; 489 490 if (vnap->vna_hash != vdf->vd_hash) 491 continue; 492 493 vdap = (Verdaux *)((Xword)vdf + vdf->vd_aux); 494 define = (char *)(nstrs + vdap->vda_name); 495 if (strcmp(version, define) != 0) 496 continue; 497 498 found++; 499 break; 500 } 501 502 /* 503 * If we're being traced print out any matched version 504 * when the verbose (-v) option is in effect. Always 505 * print any unmatched versions. 506 */ 507 if (lml->lm_flags & LML_FLG_TRC_ENABLE) { 508 /* BEGIN CSTYLED */ 509 if (found) { 510 if (!(lml->lm_flags & LML_FLG_TRC_VERBOSE)) 511 continue; 512 513 (void) printf(MSG_ORIG(MSG_LDD_VER_FOUND), 514 need, version, NAME(nlmp)); 515 } else { 516 if (rtld_flags & RT_FL_SILENCERR) 517 continue; 518 519 (void) printf(MSG_INTL(MSG_LDD_VER_NFOUND), 520 need, version); 521 } 522 /* END CSTYLED */ 523 continue; 524 } 525 526 /* 527 * If the version hasn't been found then this is a 528 * candidate for a fatal error condition. Weak 529 * version definition requirements are silently 530 * ignored. Also, if the image inspected for a version 531 * definition has no versioning recorded at all then 532 * silently ignore this (this provides better backward 533 * compatibility to old images created prior to 534 * versioning being available). Both of these skipped 535 * diagnostics are available under tracing (see above). 536 */ 537 if ((found == 0) && (num != 0) && 538 (!(vnap->vna_flags & VER_FLG_WEAK))) { 539 eprintf(lml, ERR_FATAL, 540 MSG_INTL(MSG_VER_NFOUND), need, version, 541 NAME(clmp)); 542 return (0); 543 } 544 } 545 } 546 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 547 return (1); 548 } 549 550 /* 551 * Search through the dynamic section for DT_NEEDED entries and perform one 552 * of two functions. If only the first argument is specified then load the 553 * defined shared object, otherwise add the link map representing the defined 554 * link map the the dlopen list. 555 */ 556 static int 557 elf_needed(Lm_list *lml, Aliste lmco, Rt_map *clmp) 558 { 559 Dyn *dyn; 560 ulong_t ndx = 0; 561 uint_t lazy = 0, flags = 0; 562 Word lmflags = lml->lm_flags; 563 Word lmtflags = lml->lm_tflags; 564 565 /* 566 * Process each shared object on needed list. 567 */ 568 if (DYN(clmp) == 0) 569 return (1); 570 571 for (dyn = (Dyn *)DYN(clmp); dyn->d_tag != DT_NULL; dyn++, ndx++) { 572 Dyninfo *dip = &DYNINFO(clmp)[ndx]; 573 Rt_map *nlmp = 0; 574 char *name; 575 int silent = 0; 576 Pnode *pnp; 577 578 switch (dyn->d_tag) { 579 case DT_POSFLAG_1: 580 if ((dyn->d_un.d_val & DF_P1_LAZYLOAD) && 581 !(lmtflags & LML_TFLG_NOLAZYLD)) 582 lazy = 1; 583 if (dyn->d_un.d_val & DF_P1_GROUPPERM) 584 flags = (FLG_RT_SETGROUP | FLG_RT_HANDLE); 585 continue; 586 case DT_NEEDED: 587 case DT_USED: 588 dip->di_flags |= FLG_DI_NEEDED; 589 if (flags) 590 dip->di_flags |= FLG_DI_GROUP; 591 592 name = (char *)STRTAB(clmp) + dyn->d_un.d_val; 593 594 /* 595 * NOTE, libc.so.1 can't be lazy loaded. Although a 596 * lazy position flag won't be produced when a RTLDINFO 597 * .dynamic entry is found (introduced with the UPM in 598 * Solaris 10), it was possible to mark libc for lazy 599 * loading on previous releases. To reduce the overhead 600 * of testing for this occurrence, only carry out this 601 * check for the first object on the link-map list 602 * (there aren't many applications built without libc). 603 */ 604 if (lazy && (lml->lm_head == clmp) && 605 (strcmp(name, MSG_ORIG(MSG_FIL_LIBC)) == 0)) 606 lazy = 0; 607 608 /* 609 * Don't bring in lazy loaded objects yet unless we've 610 * been asked to attempt to load all available objects 611 * (crle(1) sets LD_FLAGS=loadavail). Even under 612 * RTLD_NOW we don't process this - RTLD_NOW will cause 613 * relocation processing which in turn might trigger 614 * lazy loading, but its possible that the object has a 615 * lazy loaded file with no bindings (i.e., it should 616 * never have been a dependency in the first place). 617 */ 618 if (lazy) { 619 if ((lmflags & LML_FLG_LOADAVAIL) == 0) { 620 LAZY(clmp)++; 621 lazy = flags = 0; 622 continue; 623 } 624 625 /* 626 * Silence any error messages - see description 627 * under elf_lookup_filtee(). 628 */ 629 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 630 rtld_flags |= RT_FL_SILENCERR; 631 silent = 1; 632 } 633 } 634 break; 635 case DT_AUXILIARY: 636 dip->di_flags |= FLG_DI_AUXFLTR; 637 lazy = flags = 0; 638 continue; 639 case DT_SUNW_AUXILIARY: 640 dip->di_flags |= (FLG_DI_AUXFLTR | FLG_DI_SYMFLTR); 641 lazy = flags = 0; 642 continue; 643 case DT_FILTER: 644 dip->di_flags |= FLG_DI_STDFLTR; 645 lazy = flags = 0; 646 continue; 647 case DT_SUNW_FILTER: 648 dip->di_flags |= (FLG_DI_STDFLTR | FLG_DI_SYMFLTR); 649 lazy = flags = 0; 650 continue; 651 default: 652 lazy = flags = 0; 653 continue; 654 } 655 656 DBG_CALL(Dbg_file_needed(clmp, name)); 657 if (lml->lm_flags & LML_FLG_TRC_ENABLE) 658 dip->di_flags |= FLG_DI_PROCESSD; 659 660 /* 661 * Establish the objects name, load it and establish a binding 662 * with the caller. 663 */ 664 if (((pnp = elf_fix_name(name, clmp, PN_SER_NEEDED)) == 0) || 665 ((nlmp = load_one(lml, lmco, pnp, clmp, MODE(clmp), 666 flags, 0)) == 0) || (bind_one(clmp, nlmp, BND_NEEDED) == 0)) 667 nlmp = 0; 668 669 /* 670 * Clean up any infrastructure, including the removal of the 671 * error suppression state, if it had been previously set in 672 * this routine. 673 */ 674 if (pnp) 675 remove_pnode(pnp); 676 if (silent) 677 rtld_flags &= ~RT_FL_SILENCERR; 678 lazy = flags = 0; 679 if ((dip->di_info = (void *)nlmp) == 0) { 680 /* 681 * If the object could not be mapped, continue if error 682 * suppression is established or we're here with ldd(1). 683 */ 684 if ((MODE(clmp) & RTLD_CONFGEN) || (lmflags & 685 (LML_FLG_LOADAVAIL | LML_FLG_TRC_ENABLE))) 686 continue; 687 else 688 return (0); 689 } 690 } 691 692 if (LAZY(clmp)) 693 lml->lm_lazy++; 694 695 return (1); 696 } 697 698 static int 699 elf_map_check(Lm_list *lml, const char *name, caddr_t vaddr, Off size) 700 { 701 prmap_t *maps, *_maps; 702 int pfd, num, _num; 703 caddr_t eaddr = vaddr + size; 704 int err; 705 706 /* 707 * If memory reservations have been established for alternative objects 708 * determine if this object falls within the reservation, if it does no 709 * further checking is required. 710 */ 711 if (rtld_flags & RT_FL_MEMRESV) { 712 Rtc_head *head = (Rtc_head *)config->c_bgn; 713 714 if ((vaddr >= (caddr_t)(uintptr_t)head->ch_resbgn) && 715 (eaddr <= (caddr_t)(uintptr_t)head->ch_resend)) 716 return (0); 717 } 718 719 /* 720 * Determine the mappings presently in use by this process. 721 */ 722 if ((pfd = pr_open(lml)) == FD_UNAVAIL) 723 return (1); 724 725 if (ioctl(pfd, PIOCNMAP, (void *)&num) == -1) { 726 err = errno; 727 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_PROC), name, 728 strerror(err)); 729 return (1); 730 } 731 732 if ((maps = malloc((num + 1) * sizeof (prmap_t))) == 0) 733 return (1); 734 735 if (ioctl(pfd, PIOCMAP, (void *)maps) == -1) { 736 err = errno; 737 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_PROC), name, 738 strerror(err)); 739 free(maps); 740 return (1); 741 } 742 743 /* 744 * Determine if the supplied address clashes with any of the present 745 * process mappings. 746 */ 747 for (_num = 0, _maps = maps; _num < num; _num++, _maps++) { 748 caddr_t _eaddr = _maps->pr_vaddr + _maps->pr_size; 749 Rt_map *lmp; 750 const char *str; 751 752 if ((eaddr < _maps->pr_vaddr) || (vaddr >= _eaddr)) 753 continue; 754 755 /* 756 * We have a memory clash. See if one of the known dynamic 757 * dependency mappings represents this space so as to provide 758 * the user a more meaningful message. 759 */ 760 if ((lmp = _caller(vaddr, 0)) != 0) 761 str = NAME(lmp); 762 else 763 str = MSG_INTL(MSG_STR_UNKNOWN); 764 765 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_MAPINUSE), name, 766 EC_NATPTR(vaddr), EC_OFF(size), str); 767 return (1); 768 } 769 free(maps); 770 return (0); 771 } 772 773 /* 774 * Obtain a memory reservation. On newer systems, both MAP_ANON and MAP_ALIGN 775 * are used to obtained an aligned reservation from anonymous memory. If 776 * MAP_ANON isn't available, then MAP_ALIGN isn't either, so obtain a standard 777 * reservation using the file as backing. 778 */ 779 static Am_ret 780 elf_map_reserve(Lm_list *lml, const char *name, caddr_t *maddr, Off msize, 781 int mperm, int fd, Xword align) 782 { 783 Am_ret amret; 784 int mflag = MAP_PRIVATE | MAP_NORESERVE; 785 786 #if defined(MAP_ALIGN) 787 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 788 mflag |= MAP_ALIGN; 789 *maddr = (caddr_t)align; 790 } 791 #endif 792 if ((amret = anon_map(lml, maddr, msize, PROT_NONE, mflag)) == AM_ERROR) 793 return (amret); 794 795 if (amret == AM_OK) 796 return (AM_OK); 797 798 /* 799 * If an anonymous memory request failed (which should only be the 800 * case if it is unsupported on the system we're running on), establish 801 * the initial mapping directly from the file. 802 */ 803 *maddr = 0; 804 if ((*maddr = mmap(*maddr, msize, mperm, MAP_PRIVATE, 805 fd, 0)) == MAP_FAILED) { 806 int err = errno; 807 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), name, 808 strerror(err)); 809 return (AM_ERROR); 810 } 811 return (AM_NOSUP); 812 } 813 814 static void * 815 elf_map_textdata(caddr_t addr, Off flen, int mperm, int phdr_mperm, int mflag, 816 int fd, Off foff) 817 { 818 #if defined(MAP_TEXT) && defined(MAP_INITDATA) 819 static int notd = 0; 820 821 /* 822 * If MAP_TEXT and MAP_INITDATA are available, select the appropriate 823 * flag. 824 */ 825 if (notd == 0) { 826 if ((phdr_mperm & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) 827 mflag |= MAP_TEXT; 828 else 829 mflag |= MAP_INITDATA; 830 } 831 #endif 832 if (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff) != MAP_FAILED) 833 return (0); 834 835 #if defined(MAP_TEXT) && defined(MAP_INITDATA) 836 if ((notd == 0) && (errno == EINVAL)) { 837 /* 838 * MAP_TEXT and MAP_INITDATA may not be supported on this 839 * platform, try again without. 840 */ 841 notd = 1; 842 mflag &= ~(MAP_TEXT | MAP_INITDATA); 843 844 return (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff)); 845 } 846 #endif 847 return (MAP_FAILED); 848 } 849 850 /* 851 * Map in a file. 852 */ 853 static caddr_t 854 elf_map_it( 855 Lm_list *lml, /* link-map list */ 856 const char *name, /* actual name stored for pathname */ 857 Off fsize, /* total mapping claim of the file */ 858 Ehdr *ehdr, /* ELF header of file */ 859 Phdr *fphdr, /* first loadable Phdr */ 860 Phdr *lphdr, /* last loadable Phdr */ 861 Phdr **rrphdr, /* return first Phdr in reservation */ 862 caddr_t *rraddr, /* return start of reservation */ 863 Off *rrsize, /* return total size of reservation */ 864 int fixed, /* image is resolved to a fixed addr */ 865 int fd, /* images file descriptor */ 866 Xword align, /* image segments maximum alignment */ 867 Mmap *mmaps, /* mmap information array and */ 868 uint_t *mmapcnt) /* mapping count */ 869 { 870 caddr_t raddr; /* reservation address */ 871 Off rsize; /* reservation size */ 872 Phdr *phdr; /* working program header poiner */ 873 caddr_t maddr; /* working mmap address */ 874 caddr_t faddr; /* working file address */ 875 size_t padsize; /* object padding requirement */ 876 size_t padpsize = 0; /* padding size rounded to next page */ 877 size_t padmsize = 0; /* padding size rounded for alignment */ 878 int skipfseg; /* skip mapping first segment */ 879 int mperm; /* segment permissions */ 880 Am_ret amret = AM_NOSUP; 881 882 /* 883 * If padding is required extend both the front and rear of the image. 884 * To insure the image itself is mapped at the correct alignment the 885 * initial padding is rounded up to the nearest page. Once the image is 886 * mapped the excess can be pruned to the nearest page required for the 887 * actual padding itself. 888 */ 889 if ((padsize = r_debug.rtd_objpad) != 0) { 890 padpsize = M_PROUND(padsize); 891 if (fixed) 892 padmsize = padpsize; 893 else 894 padmsize = S_ROUND(padsize, align); 895 } 896 897 /* 898 * Determine the initial permissions used to map in the first segment. 899 * If this segments memsz is greater that its filesz then the difference 900 * must be zeroed. Make sure this segment is writable. 901 */ 902 mperm = 0; 903 if (fphdr->p_flags & PF_R) 904 mperm |= PROT_READ; 905 if (fphdr->p_flags & PF_X) 906 mperm |= PROT_EXEC; 907 if ((fphdr->p_flags & PF_W) || (fphdr->p_memsz > fphdr->p_filesz)) 908 mperm |= PROT_WRITE; 909 910 /* 911 * Determine whether or not to let system reserve address space based on 912 * whether this is a dynamic executable (addresses in object are fixed) 913 * or a shared object (addresses in object are relative to the objects' 914 * base). 915 */ 916 if (fixed) { 917 /* 918 * Determine the reservation address and size, and insure that 919 * this reservation isn't already in use. 920 */ 921 faddr = maddr = (caddr_t)M_PTRUNC((ulong_t)fphdr->p_vaddr); 922 raddr = maddr - padpsize; 923 rsize = fsize + padpsize + padsize; 924 925 if (lml_main.lm_head) { 926 if (elf_map_check(lml, name, raddr, rsize) != 0) 927 return (0); 928 } 929 930 /* 931 * As this is a fixed image, all segments must be individually 932 * mapped. 933 */ 934 skipfseg = 0; 935 936 } else { 937 size_t esize; 938 939 /* 940 * If this isn't a fixed image, reserve enough address space for 941 * the entire image to be mapped. The amount of reservation is 942 * the range between the beginning of the first, and end of the 943 * last loadable segment, together with any padding, plus the 944 * alignment of the first segment. 945 * 946 * The optimal reservation is made as a no-reserve mapping from 947 * anonymous memory. Each segment is then mapped into this 948 * reservation. If the anonymous mapping capability isn't 949 * available, the reservation is obtained from the file itself. 950 * In this case the first segment of the image is mapped as part 951 * of the reservation, thus only the following segments need to 952 * be remapped. 953 */ 954 rsize = fsize + padmsize + padsize; 955 if ((amret = elf_map_reserve(lml, name, &raddr, rsize, mperm, 956 fd, align)) == AM_ERROR) 957 return (0); 958 maddr = raddr + padmsize; 959 faddr = (caddr_t)S_ROUND((Off)maddr, align); 960 961 /* 962 * If this reservation has been obtained from anonymous memory, 963 * then all segments must be individually mapped. Otherwise, 964 * the first segment heads the reservation. 965 */ 966 if (amret == AM_OK) 967 skipfseg = 0; 968 else 969 skipfseg = 1; 970 971 /* 972 * For backward compatibility (where MAP_ALIGN isn't available), 973 * insure the alignment of the reservation is adequate for this 974 * object, and if not remap the object to obtain the correct 975 * alignment. 976 */ 977 if (faddr != maddr) { 978 (void) munmap(raddr, rsize); 979 980 rsize += align; 981 if ((amret = elf_map_reserve(lml, name, &raddr, rsize, 982 mperm, fd, align)) == AM_ERROR) 983 return (0); 984 985 maddr = faddr = (caddr_t)S_ROUND((Off)(raddr + 986 padpsize), align); 987 988 esize = maddr - raddr + padpsize; 989 990 /* 991 * As ths image has been realigned, the first segment 992 * of the file needs to be remapped to its correct 993 * location. 994 */ 995 skipfseg = 0; 996 } else 997 esize = padmsize - padpsize; 998 999 /* 1000 * If this reservation included padding, remove any excess for 1001 * the start of the image (the padding was adjusted to insure 1002 * the image was aligned appropriately). 1003 */ 1004 if (esize) { 1005 (void) munmap(raddr, esize); 1006 raddr += esize; 1007 rsize -= esize; 1008 } 1009 } 1010 1011 /* 1012 * At this point we know the initial location of the image, and its 1013 * size. Pass these back to the caller for inclusion in the link-map 1014 * that will eventually be created. 1015 */ 1016 *rraddr = raddr; 1017 *rrsize = rsize; 1018 1019 /* 1020 * The first loadable segment is now pointed to by maddr. This segment 1021 * will eventually contain the elf header and program headers, so reset 1022 * the program header. Pass this back to the caller for inclusion in 1023 * the link-map so it can be used for later unmapping operations. 1024 */ 1025 /* LINTED */ 1026 *rrphdr = (Phdr *)((char *)maddr + ehdr->e_phoff); 1027 1028 /* 1029 * If padding is required at the front of the image, obtain that now. 1030 * Note, if we've already obtained a reservation from anonymous memory 1031 * then this reservation will already include suitable padding. 1032 * Otherwise this reservation is backed by the file, or in the case of 1033 * a fixed image, doesn't yet exist. Map the padding so that it is 1034 * suitably protected (PROT_NONE), and insure the first segment of the 1035 * file is mapped to its correct location. 1036 */ 1037 if (padsize) { 1038 if (amret == AM_NOSUP) { 1039 if (dz_map(lml, raddr, padpsize, PROT_NONE, 1040 (MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE)) == 1041 MAP_FAILED) 1042 return (0); 1043 1044 skipfseg = 0; 1045 } 1046 rsize -= padpsize; 1047 } 1048 1049 /* 1050 * Map individual segments. For a fixed image, these will each be 1051 * unique mappings. For a reservation these will fill in the 1052 * reservation. 1053 */ 1054 for (phdr = fphdr; phdr <= lphdr; 1055 phdr = (Phdr *)((Off)phdr + ehdr->e_phentsize)) { 1056 caddr_t addr; 1057 Off mlen, flen; 1058 size_t size; 1059 1060 /* 1061 * Skip non-loadable segments or segments that don't occupy 1062 * any memory. 1063 */ 1064 if (((phdr->p_type != PT_LOAD) && 1065 (phdr->p_type != PT_SUNWBSS)) || (phdr->p_memsz == 0)) 1066 continue; 1067 1068 /* 1069 * Establish this segments address relative to our base. 1070 */ 1071 addr = (caddr_t)M_PTRUNC((ulong_t)(phdr->p_vaddr + 1072 (fixed ? 0 : faddr))); 1073 1074 /* 1075 * Determine the mapping protection from the segment attributes. 1076 * Also determine the etext address from the last loadable 1077 * segment which has permissions but no write access. 1078 */ 1079 mperm = 0; 1080 if (phdr->p_flags) { 1081 if (phdr->p_flags & PF_R) 1082 mperm |= PROT_READ; 1083 if (phdr->p_flags & PF_X) 1084 mperm |= PROT_EXEC; 1085 if (phdr->p_flags & PF_W) 1086 mperm |= PROT_WRITE; 1087 else 1088 fmap->fm_etext = phdr->p_vaddr + phdr->p_memsz + 1089 (ulong_t)(fixed ? 0 : faddr); 1090 } 1091 1092 /* 1093 * Determine the type of mapping required. 1094 */ 1095 if (phdr->p_type == PT_SUNWBSS) { 1096 /* 1097 * Potentially, we can defer the loading of any SUNWBSS 1098 * segment, depending on whether the symbols it provides 1099 * have been bound to. In this manner, large segments 1100 * that are interposed upon between shared libraries 1101 * may not require mapping. Note, that the mapping 1102 * information is recorded in our mapping descriptor at 1103 * this time. 1104 */ 1105 mlen = phdr->p_memsz; 1106 flen = 0; 1107 1108 } else if ((phdr->p_filesz == 0) && (phdr->p_flags == 0)) { 1109 /* 1110 * If this segment has no backing file and no flags 1111 * specified, then it defines a reservation. At this 1112 * point all standard loadable segments will have been 1113 * processed. The segment reservation is mapped 1114 * directly from /dev/null. 1115 */ 1116 if (nu_map(lml, (caddr_t)addr, phdr->p_memsz, PROT_NONE, 1117 MAP_FIXED | MAP_PRIVATE) == MAP_FAILED) 1118 return (0); 1119 1120 mlen = phdr->p_memsz; 1121 flen = 0; 1122 1123 } else if (phdr->p_filesz == 0) { 1124 /* 1125 * If this segment has no backing file then it defines a 1126 * nobits segment and is mapped directly from /dev/zero. 1127 */ 1128 if (dz_map(lml, (caddr_t)addr, phdr->p_memsz, mperm, 1129 MAP_FIXED | MAP_PRIVATE) == MAP_FAILED) 1130 return (0); 1131 1132 mlen = phdr->p_memsz; 1133 flen = 0; 1134 1135 } else { 1136 Off foff; 1137 1138 /* 1139 * This mapping originates from the file. Determine the 1140 * file offset to which the mapping will be directed 1141 * (must be aligned) and how much to map (might be more 1142 * than the file in the case of .bss). 1143 */ 1144 foff = M_PTRUNC((ulong_t)phdr->p_offset); 1145 mlen = phdr->p_memsz + (phdr->p_offset - foff); 1146 flen = phdr->p_filesz + (phdr->p_offset - foff); 1147 1148 /* 1149 * If this is a non-fixed, non-anonymous mapping, and no 1150 * padding is involved, then the first loadable segment 1151 * is already part of the initial reservation. In this 1152 * case there is no need to remap this segment. 1153 */ 1154 if ((skipfseg == 0) || (phdr != fphdr)) { 1155 int phdr_mperm = mperm; 1156 /* 1157 * If this segments memsz is greater that its 1158 * filesz then the difference must be zeroed. 1159 * Make sure this segment is writable. 1160 */ 1161 if (phdr->p_memsz > phdr->p_filesz) 1162 mperm |= PROT_WRITE; 1163 1164 if (elf_map_textdata((caddr_t)addr, flen, 1165 mperm, phdr_mperm, 1166 (MAP_FIXED | MAP_PRIVATE), fd, foff) == 1167 MAP_FAILED) { 1168 int err = errno; 1169 eprintf(lml, ERR_FATAL, 1170 MSG_INTL(MSG_SYS_MMAP), name, 1171 strerror(err)); 1172 return (0); 1173 } 1174 } 1175 1176 /* 1177 * If the memory occupancy of the segment overflows the 1178 * definition in the file, we need to "zero out" the end 1179 * of the mapping we've established, and if necessary, 1180 * map some more space from /dev/zero. Note, zero'ed 1181 * memory must end on a double word boundary to satisfy 1182 * zero(). 1183 */ 1184 if (phdr->p_memsz > phdr->p_filesz) { 1185 caddr_t zaddr; 1186 size_t zlen, zplen; 1187 Off fend; 1188 1189 foff = (Off)(phdr->p_vaddr + phdr->p_filesz + 1190 (fixed ? 0 : faddr)); 1191 zaddr = (caddr_t)M_PROUND(foff); 1192 zplen = (size_t)(zaddr - foff); 1193 1194 fend = (Off)S_DROUND((size_t)(phdr->p_vaddr + 1195 phdr->p_memsz + (fixed ? 0 : faddr))); 1196 zlen = (size_t)(fend - foff); 1197 1198 /* 1199 * Determine whether the number of bytes that 1200 * must be zero'ed overflow to the next page. 1201 * If not, simply clear the exact bytes 1202 * (filesz to memsz) from this page. Otherwise, 1203 * clear the remaining bytes of this page, and 1204 * map an following pages from /dev/zero. 1205 */ 1206 if (zlen < zplen) 1207 zero((caddr_t)foff, (long)zlen); 1208 else { 1209 zero((caddr_t)foff, (long)zplen); 1210 1211 if ((zlen = (fend - (Off)zaddr)) > 0) { 1212 if (dz_map(lml, zaddr, zlen, 1213 mperm, 1214 MAP_FIXED | MAP_PRIVATE) == 1215 MAP_FAILED) 1216 return (0); 1217 } 1218 } 1219 } 1220 } 1221 1222 /* 1223 * Unmap anything from the last mapping address to this one and 1224 * update the mapping claim pointer. 1225 */ 1226 if ((fixed == 0) && ((size = addr - maddr) != 0)) { 1227 (void) munmap(maddr, size); 1228 rsize -= size; 1229 } 1230 1231 /* 1232 * Retain this segments mapping information. 1233 */ 1234 mmaps[*mmapcnt].m_vaddr = addr; 1235 mmaps[*mmapcnt].m_msize = mlen; 1236 mmaps[*mmapcnt].m_fsize = flen; 1237 mmaps[*mmapcnt].m_perm = mperm; 1238 (*mmapcnt)++; 1239 1240 maddr = addr + M_PROUND(mlen); 1241 rsize -= M_PROUND(mlen); 1242 } 1243 1244 /* 1245 * If padding is required at the end of the image, obtain that now. 1246 * Note, if we've already obtained a reservation from anonymous memory 1247 * then this reservation will already include suitable padding. 1248 */ 1249 if (padsize) { 1250 if (amret == AM_NOSUP) { 1251 /* 1252 * maddr is currently page aligned from the last segment 1253 * mapping. 1254 */ 1255 if (dz_map(lml, maddr, padsize, PROT_NONE, 1256 (MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE)) == 1257 MAP_FAILED) 1258 return (0); 1259 } 1260 maddr += padsize; 1261 rsize -= padsize; 1262 } 1263 1264 /* 1265 * Unmap any final reservation. 1266 */ 1267 if ((fixed == 0) && (rsize != 0)) 1268 (void) munmap(maddr, rsize); 1269 1270 return (faddr); 1271 } 1272 1273 /* 1274 * A null symbol interpretor. Used if a filter has no associated filtees. 1275 */ 1276 /* ARGSUSED0 */ 1277 static Sym * 1278 elf_null_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo) 1279 { 1280 return ((Sym *)0); 1281 } 1282 1283 /* 1284 * Disable filtee use. 1285 */ 1286 static void 1287 elf_disable_filtee(Rt_map *lmp, Dyninfo *dip) 1288 { 1289 dip->di_info = 0; 1290 1291 if ((dip->di_flags & FLG_DI_SYMFLTR) == 0) { 1292 /* 1293 * If this is an object filter, free the filtee's duplication. 1294 */ 1295 if (OBJFLTRNDX(lmp) != FLTR_DISABLED) { 1296 free(REFNAME(lmp)); 1297 REFNAME(lmp) = (char *)0; 1298 OBJFLTRNDX(lmp) = FLTR_DISABLED; 1299 1300 /* 1301 * Indicate that this filtee is no longer available. 1302 */ 1303 if (dip->di_flags & FLG_DI_STDFLTR) 1304 SYMINTP(lmp) = elf_null_find_sym; 1305 1306 } 1307 } else if (dip->di_flags & FLG_DI_STDFLTR) { 1308 /* 1309 * Indicate that this standard filtee is no longer available. 1310 */ 1311 if (SYMSFLTRCNT(lmp)) 1312 SYMSFLTRCNT(lmp)--; 1313 } else { 1314 /* 1315 * Indicate that this auxiliary filtee is no longer available. 1316 */ 1317 if (SYMAFLTRCNT(lmp)) 1318 SYMAFLTRCNT(lmp)--; 1319 } 1320 dip->di_flags &= ~MSK_DI_FILTER; 1321 } 1322 1323 /* 1324 * Find symbol interpreter - filters. 1325 * This function is called when the symbols from a shared object should 1326 * be resolved from the shared objects filtees instead of from within itself. 1327 * 1328 * A symbol name of 0 is used to trigger filtee loading. 1329 */ 1330 static Sym * 1331 _elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx) 1332 { 1333 const char *name = slp->sl_name, *filtees; 1334 Rt_map *clmp = slp->sl_cmap; 1335 Rt_map *ilmp = slp->sl_imap; 1336 Pnode *pnp, **pnpp; 1337 int any; 1338 Dyninfo *dip = &DYNINFO(ilmp)[ndx]; 1339 Lm_list *lml = LIST(ilmp); 1340 1341 /* 1342 * Indicate that the filter has been used. If a binding already exists 1343 * to the caller, indicate that this object is referenced. This insures 1344 * we don't generate false unreferenced diagnostics from ldd -u/U or 1345 * debugging. Don't create a binding regardless, as this filter may 1346 * have been dlopen()'ed. 1347 */ 1348 if (name && (ilmp != clmp)) { 1349 Word tracing = (LIST(clmp)->lm_flags & 1350 (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED)); 1351 1352 if (tracing || DBG_ENABLED) { 1353 Bnd_desc ** bdpp; 1354 Aliste off; 1355 1356 FLAGS1(ilmp) |= FL1_RT_USED; 1357 1358 if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) { 1359 for (ALIST_TRAVERSE(CALLERS(ilmp), off, bdpp)) { 1360 Bnd_desc * bdp = *bdpp; 1361 1362 if (bdp->b_caller == clmp) { 1363 bdp->b_flags |= BND_REFER; 1364 break; 1365 } 1366 } 1367 } 1368 } 1369 } 1370 1371 /* 1372 * If this is the first call to process this filter, establish the 1373 * filtee list. If a configuration file exists, determine if any 1374 * filtee associations for this filter, and its filtee reference, are 1375 * defined. Otherwise, process the filtee reference. Any token 1376 * expansion is also completed at this point (i.e., $PLATFORM). 1377 */ 1378 filtees = (char *)STRTAB(ilmp) + DYN(ilmp)[ndx].d_un.d_val; 1379 if (dip->di_info == 0) { 1380 if (rtld_flags2 & RT_FL2_FLTCFG) 1381 dip->di_info = elf_config_flt(lml, PATHNAME(ilmp), 1382 filtees); 1383 1384 if (dip->di_info == 0) { 1385 DBG_CALL(Dbg_file_filter(lml, NAME(ilmp), filtees, 0)); 1386 if ((lml->lm_flags & 1387 (LML_FLG_TRC_VERBOSE | LML_FLG_TRC_SEARCH)) && 1388 ((FLAGS1(ilmp) & FL1_RT_LDDSTUB) == 0)) 1389 (void) printf(MSG_INTL(MSG_LDD_FIL_FILTER), 1390 NAME(ilmp), filtees); 1391 1392 if ((dip->di_info = (void *)expand_paths(ilmp, 1393 filtees, PN_SER_FILTEE, 0)) == 0) { 1394 elf_disable_filtee(ilmp, dip); 1395 return ((Sym *)0); 1396 } 1397 } 1398 } 1399 1400 /* 1401 * Traverse the filtee list, dlopen()'ing any objects specified and 1402 * using their group handle to lookup the symbol. 1403 */ 1404 for (any = 0, pnpp = (Pnode **)&(dip->di_info), pnp = *pnpp; pnp; 1405 pnpp = &pnp->p_next, pnp = *pnpp) { 1406 int mode; 1407 Grp_hdl *ghp; 1408 Rt_map *nlmp = 0; 1409 1410 if (pnp->p_len == 0) 1411 continue; 1412 1413 /* 1414 * Establish the mode of the filtee from the filter. As filtees 1415 * are loaded via a dlopen(), make sure that RTLD_GROUP is set 1416 * and the filtees aren't global. It would be nice to have 1417 * RTLD_FIRST used here also, but as filters got out long before 1418 * RTLD_FIRST was introduced it's a little too late now. 1419 */ 1420 mode = MODE(ilmp) | RTLD_GROUP; 1421 mode &= ~RTLD_GLOBAL; 1422 1423 /* 1424 * Insure that any auxiliary filter can locate symbols from its 1425 * caller. 1426 */ 1427 if (dip->di_flags & FLG_DI_AUXFLTR) 1428 mode |= RTLD_PARENT; 1429 1430 /* 1431 * Process any hardware capability directory. Establish a new 1432 * link-map control list from which to analyze any newly added 1433 * objects. 1434 */ 1435 if ((pnp->p_info == 0) && (pnp->p_orig & PN_TKN_HWCAP)) { 1436 Lm_cntl *lmc; 1437 Aliste lmco; 1438 1439 if (FLAGS(lml->lm_head) & FLG_RT_RELOCED) { 1440 if ((lmc = alist_append(&(lml->lm_lists), 0, 1441 sizeof (Lm_cntl), AL_CNT_LMLISTS)) == 0) 1442 return ((Sym *)0); 1443 lmco = (Aliste)((char *)lmc - 1444 (char *)lml->lm_lists); 1445 } else { 1446 lmc = 0; 1447 lmco = ALO_DATA; 1448 } 1449 1450 pnp = hwcap_filtees(pnpp, lmco, lmc, dip, ilmp, filtees, 1451 mode, (FLG_RT_HANDLE | FLG_RT_HWCAP)); 1452 1453 /* 1454 * Now that any hardware capability objects have been 1455 * processed, remove any link-map control list. 1456 */ 1457 if (lmc) 1458 remove_cntl(lml, lmco); 1459 } 1460 1461 if (pnp->p_len == 0) 1462 continue; 1463 1464 /* 1465 * Process an individual filtee. 1466 */ 1467 if (pnp->p_info == 0) { 1468 const char *filtee = pnp->p_name; 1469 int audit = 0; 1470 1471 DBG_CALL(Dbg_file_filtee(lml, NAME(ilmp), filtee, 0)); 1472 1473 ghp = 0; 1474 1475 /* 1476 * Determine if the reference link map is already 1477 * loaded. As an optimization compare the filtee with 1478 * our interpretor. The most common filter is 1479 * libdl.so.1, which is a filter on ld.so.1. 1480 */ 1481 #if defined(_ELF64) 1482 if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD_64)) == 0) { 1483 #else 1484 if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD)) == 0) { 1485 #endif 1486 /* 1487 * Create an association between ld.so.1 and 1488 * the filter. 1489 */ 1490 nlmp = lml_rtld.lm_head; 1491 if ((ghp = hdl_create(&lml_rtld, nlmp, ilmp, 1492 (GPH_LDSO | GPH_FIRST | GPH_FILTEE))) == 0) 1493 nlmp = 0; 1494 1495 /* 1496 * Establish the filter handle to prevent any 1497 * recursion. 1498 */ 1499 if (nlmp && ghp) 1500 pnp->p_info = (void *)ghp; 1501 1502 /* 1503 * Audit the filter/filtee established. Ignore 1504 * any return from the auditor, as we can't 1505 * allow ignore filtering to ld.so.1, otherwise 1506 * nothing is going to work. 1507 */ 1508 if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) & 1509 LML_TFLG_AUD_OBJFILTER)) 1510 (void) audit_objfilter(ilmp, filtees, 1511 nlmp, 0); 1512 1513 } else { 1514 Rej_desc rej = { 0 }; 1515 Lm_cntl *lmc; 1516 Aliste lmco; 1517 1518 /* 1519 * Establish a new link-map control list from 1520 * which to analyze any newly added objects. 1521 */ 1522 if (FLAGS(lml->lm_head) & FLG_RT_RELOCED) { 1523 if ((lmc = 1524 alist_append(&(lml->lm_lists), 0, 1525 sizeof (Lm_cntl), 1526 AL_CNT_LMLISTS)) == 0) 1527 return ((Sym *)0); 1528 lmco = (Aliste)((char *)lmc - 1529 (char *)lml->lm_lists); 1530 } else { 1531 lmc = 0; 1532 lmco = ALO_DATA; 1533 } 1534 1535 /* 1536 * Load the filtee. 1537 */ 1538 if ((nlmp = load_path(lml, lmco, filtee, ilmp, 1539 mode, FLG_RT_HANDLE, &ghp, 0, &rej)) == 0) { 1540 file_notfound(LIST(ilmp), filtee, ilmp, 1541 FLG_RT_HANDLE, &rej); 1542 remove_rej(&rej); 1543 } 1544 1545 /* 1546 * Establish the filter handle to prevent any 1547 * recursion. 1548 */ 1549 if (nlmp && ghp) { 1550 ghp->gh_flags |= GPH_FILTEE; 1551 pnp->p_info = (void *)ghp; 1552 } 1553 1554 /* 1555 * Audit the filter/filtee established. A 1556 * return of 0 indicates the auditor wishes to 1557 * ignore this filtee. 1558 */ 1559 if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) & 1560 LML_TFLG_AUD_OBJFILTER)) { 1561 if (audit_objfilter(ilmp, filtees, 1562 nlmp, 0) == 0) { 1563 audit = 1; 1564 nlmp = 0; 1565 } 1566 } 1567 1568 /* 1569 * Finish processing the objects associated with 1570 * this request. Create an association between 1571 * this object and the originating filter to 1572 * provide sufficient information to tear down 1573 * this filtee if necessary. 1574 */ 1575 if (nlmp && ghp && 1576 ((analyze_lmc(lml, lmco, nlmp) == 0) || 1577 (relocate_lmc(lml, lmco, ilmp, nlmp) == 0))) 1578 nlmp = 0; 1579 1580 /* 1581 * If the filtee has been successfully 1582 * processed, then create an association 1583 * between the filter and filtee. This 1584 * association provides sufficient information 1585 * to tear down the filter and filtee if 1586 * necessary. 1587 */ 1588 DBG_CALL(Dbg_file_hdl_title(DBG_DEP_ADD)); 1589 if (nlmp && ghp && 1590 (hdl_add(ghp, ilmp, GPD_FILTER) == 0)) 1591 nlmp = 0; 1592 1593 /* 1594 * If this filtee loading has failed, and we've 1595 * created a new link-map control list to which 1596 * this request has added objects, then remove 1597 * all the objects that have been associated to 1598 * this request. 1599 */ 1600 if ((nlmp == 0) && lmc && lmc->lc_head) 1601 remove_lmc(lml, clmp, lmc, lmco, name); 1602 1603 /* 1604 * Remove any link-map control list that was 1605 * created. 1606 */ 1607 if (lmc) 1608 remove_cntl(lml, lmco); 1609 } 1610 1611 /* 1612 * Generate a diagnostic if the filtee couldn't be 1613 * loaded, null out the pnode entry, and continue 1614 * the search. Otherwise, retain this group handle 1615 * for future symbol searches. 1616 */ 1617 if (nlmp == 0) { 1618 DBG_CALL(Dbg_file_filtee(lml, 0, filtee, 1619 audit)); 1620 1621 pnp->p_info = 0; 1622 pnp->p_len = 0; 1623 continue; 1624 } 1625 } 1626 1627 ghp = (Grp_hdl *)pnp->p_info; 1628 1629 /* 1630 * If we're just here to trigger filtee loading skip the symbol 1631 * lookup so we'll continue looking for additional filtees. 1632 */ 1633 if (name) { 1634 Grp_desc *gdp; 1635 Sym *sym = 0; 1636 Aliste off; 1637 Slookup sl = *slp; 1638 1639 sl.sl_flags |= LKUP_FIRST; 1640 any++; 1641 1642 /* 1643 * Look for the symbol in the handles dependencies. 1644 */ 1645 for (ALIST_TRAVERSE(ghp->gh_depends, off, gdp)) { 1646 if ((gdp->gd_flags & GPD_AVAIL) == 0) 1647 continue; 1648 1649 /* 1650 * If our parent is a dependency don't look at 1651 * it (otherwise we are in a recursive loop). 1652 * This situation can occur with auxiliary 1653 * filters if the filtee has a dependency on the 1654 * filter. This dependency isn't necessary as 1655 * auxiliary filters are opened RTLD_PARENT, but 1656 * users may still unknowingly add an explicit 1657 * dependency to the parent. 1658 */ 1659 if ((sl.sl_imap = gdp->gd_depend) == ilmp) 1660 continue; 1661 1662 if (((sym = SYMINTP(sl.sl_imap)(&sl, dlmp, 1663 binfo)) != 0) || 1664 (ghp->gh_flags & GPH_FIRST)) 1665 break; 1666 } 1667 1668 /* 1669 * If a symbol has been found, indicate the binding 1670 * and return the symbol. 1671 */ 1672 if (sym) { 1673 *binfo |= DBG_BINFO_FILTEE; 1674 return (sym); 1675 } 1676 } 1677 1678 /* 1679 * If this object is tagged to terminate filtee processing we're 1680 * done. 1681 */ 1682 if (FLAGS1(ghp->gh_ownlmp) & FL1_RT_ENDFILTE) 1683 break; 1684 } 1685 1686 /* 1687 * If we're just here to trigger filtee loading then we're done. 1688 */ 1689 if (name == 0) 1690 return ((Sym *)0); 1691 1692 /* 1693 * If no filtees have been found for a filter, clean up any Pnode 1694 * structures and disable their search completely. For auxiliary 1695 * filters we can reselect the symbol search function so that we never 1696 * enter this routine again for this object. For standard filters we 1697 * use the null symbol routine. 1698 */ 1699 if (any == 0) { 1700 remove_pnode((Pnode *)dip->di_info); 1701 elf_disable_filtee(ilmp, dip); 1702 return ((Sym *)0); 1703 } 1704 1705 return ((Sym *)0); 1706 } 1707 1708 /* 1709 * Focal point for disabling error messages for auxiliary filters. As an 1710 * auxiliary filter allows for filtee use, but provides a fallback should a 1711 * filtee not exist (or fail to load), any errors generated as a consequence of 1712 * trying to load the filtees are typically suppressed. Setting RT_FL_SILENCERR 1713 * suppresses errors generated by eprint(), but insures a debug diagnostic is 1714 * produced. ldd(1) employs printf(), and here, the selection of whether to 1715 * print a diagnostic in regards to auxiliary filters is a little more complex. 1716 * 1717 * . The determination of whether to produce an ldd message, or a fatal 1718 * error message is driven by LML_FLG_TRC_ENABLE. 1719 * . More detailed ldd messages may also be driven off of LML_FLG_TRC_WARN, 1720 * (ldd -d/-r), LML_FLG_TRC_VERBOSE (ldd -v), LML_FLG_TRC_SEARCH (ldd -s), 1721 * and LML_FLG_TRC_UNREF/LML_FLG_TRC_UNUSED (ldd -U/-u). 1722 * 1723 * . If the calling object is lddstub, then several classes of message are 1724 * suppressed. The user isn't trying to diagnose lddstub, this is simply 1725 * a stub executable employed to preload a user specified library against. 1726 * 1727 * . If RT_FL_SILENCERR is in effect then any generic ldd() messages should 1728 * be suppressed. All detailed ldd messages should still be produced. 1729 */ 1730 Sym * 1731 elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx) 1732 { 1733 Sym *sym; 1734 Dyninfo *dip = &DYNINFO(slp->sl_imap)[ndx]; 1735 int silent = 0; 1736 1737 /* 1738 * Make sure this entry is still acting as a filter. We may have tried 1739 * to process this previously, and disabled it if the filtee couldn't 1740 * be processed. However, other entries may provide different filtees 1741 * that are yet to be completed. 1742 */ 1743 if (dip->di_flags == 0) 1744 return ((Sym *)0); 1745 1746 /* 1747 * Indicate whether an error message is required should this filtee not 1748 * be found, based on the type of filter. 1749 */ 1750 if ((dip->di_flags & FLG_DI_AUXFLTR) && 1751 ((rtld_flags & (RT_FL_WARNFLTR | RT_FL_SILENCERR)) == 0)) { 1752 rtld_flags |= RT_FL_SILENCERR; 1753 silent = 1; 1754 } 1755 1756 sym = _elf_lookup_filtee(slp, dlmp, binfo, ndx); 1757 1758 if (silent) 1759 rtld_flags &= ~RT_FL_SILENCERR; 1760 1761 return (sym); 1762 } 1763 1764 /* 1765 * Compute the elf hash value (as defined in the ELF access library). 1766 * The form of the hash table is: 1767 * 1768 * |--------------| 1769 * | # of buckets | 1770 * |--------------| 1771 * | # of chains | 1772 * |--------------| 1773 * | bucket[] | 1774 * |--------------| 1775 * | chain[] | 1776 * |--------------| 1777 */ 1778 ulong_t 1779 elf_hash(const char *name) 1780 { 1781 uint_t hval = 0; 1782 1783 while (*name) { 1784 uint_t g; 1785 hval = (hval << 4) + *name++; 1786 if ((g = (hval & 0xf0000000)) != 0) 1787 hval ^= g >> 24; 1788 hval &= ~g; 1789 } 1790 return ((ulong_t)hval); 1791 } 1792 1793 /* 1794 * If flag argument has LKUP_SPEC set, we treat undefined symbols of type 1795 * function specially in the executable - if they have a value, even though 1796 * undefined, we use that value. This allows us to associate all references 1797 * to a function's address to a single place in the process: the plt entry 1798 * for that function in the executable. Calls to lookup from plt binding 1799 * routines do NOT set LKUP_SPEC in the flag. 1800 */ 1801 Sym * 1802 elf_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo) 1803 { 1804 const char *name = slp->sl_name; 1805 Rt_map *ilmp = slp->sl_imap; 1806 ulong_t hash = slp->sl_hash; 1807 uint_t ndx, htmp, buckets, *chainptr; 1808 Sym *sym, *symtabptr; 1809 char *strtabptr, *strtabname; 1810 uint_t flags1; 1811 Syminfo *sip; 1812 1813 /* 1814 * If we're only here to establish a symbols index, skip the diagnostic 1815 * used to trace a symbol search. 1816 */ 1817 if ((slp->sl_flags & LKUP_SYMNDX) == 0) 1818 DBG_CALL(Dbg_syms_lookup(ilmp, name, MSG_ORIG(MSG_STR_ELF))); 1819 1820 if (HASH(ilmp) == 0) 1821 return ((Sym *)0); 1822 1823 buckets = HASH(ilmp)[0]; 1824 /* LINTED */ 1825 htmp = (uint_t)hash % buckets; 1826 1827 /* 1828 * Get the first symbol on hash chain and initialize the string 1829 * and symbol table pointers. 1830 */ 1831 if ((ndx = HASH(ilmp)[htmp + 2]) == 0) 1832 return ((Sym *)0); 1833 1834 chainptr = HASH(ilmp) + 2 + buckets; 1835 strtabptr = STRTAB(ilmp); 1836 symtabptr = SYMTAB(ilmp); 1837 1838 while (ndx) { 1839 sym = symtabptr + ndx; 1840 strtabname = strtabptr + sym->st_name; 1841 1842 /* 1843 * Compare the symbol found with the name required. If the 1844 * names don't match continue with the next hash entry. 1845 */ 1846 if ((*strtabname++ != *name) || strcmp(strtabname, &name[1])) { 1847 if ((ndx = chainptr[ndx]) != 0) 1848 continue; 1849 return ((Sym *)0); 1850 } 1851 1852 /* 1853 * To accomodate objects built with the GNU ld, we quietly 1854 * ignore symbols with a version that is outside the range 1855 * of the valid versions supplied by the file. See the 1856 * comment that accompanies the VERSYM_INVALID macro in libld.h 1857 * for additional details. 1858 */ 1859 if (VERNDX_INVALID(sym->st_shndx, VERDEFNUM(ilmp), 1860 VERSYM(ilmp), ndx)) { 1861 DBG_CALL(Dbg_syms_ignore_badver(ilmp, name, 1862 ndx, VERSYM(ilmp)[ndx])); 1863 if ((ndx = chainptr[ndx]) != 0) 1864 continue; 1865 return ((Sym *)0); 1866 } 1867 1868 /* 1869 * If we're only here to establish a symbols index, we're done. 1870 */ 1871 if (slp->sl_flags & LKUP_SYMNDX) 1872 return (sym); 1873 1874 /* 1875 * If we find a match and the symbol is defined, return the 1876 * symbol pointer and the link map in which it was found. 1877 */ 1878 if (sym->st_shndx != SHN_UNDEF) { 1879 *dlmp = ilmp; 1880 *binfo |= DBG_BINFO_FOUND; 1881 if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) || 1882 ((FLAGS(ilmp) & FLG_RT_SYMINTPO) && 1883 is_sym_interposer(ilmp, sym))) 1884 *binfo |= DBG_BINFO_INTERPOSE; 1885 break; 1886 1887 /* 1888 * If we find a match and the symbol is undefined, the 1889 * symbol type is a function, and the value of the symbol 1890 * is non zero, then this is a special case. This allows 1891 * the resolution of a function address to the plt[] entry. 1892 * See SPARC ABI, Dynamic Linking, Function Addresses for 1893 * more details. 1894 */ 1895 } else if ((slp->sl_flags & LKUP_SPEC) && 1896 (FLAGS(ilmp) & FLG_RT_ISMAIN) && (sym->st_value != 0) && 1897 (ELF_ST_TYPE(sym->st_info) == STT_FUNC)) { 1898 *dlmp = ilmp; 1899 *binfo |= (DBG_BINFO_FOUND | DBG_BINFO_PLTADDR); 1900 if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) || 1901 ((FLAGS(ilmp) & FLG_RT_SYMINTPO) && 1902 is_sym_interposer(ilmp, sym))) 1903 *binfo |= DBG_BINFO_INTERPOSE; 1904 return (sym); 1905 } 1906 1907 /* 1908 * Undefined symbol. 1909 */ 1910 return ((Sym *)0); 1911 } 1912 1913 /* 1914 * We've found a match. Determine if the defining object contains 1915 * symbol binding information. 1916 */ 1917 if ((sip = SYMINFO(ilmp)) != 0) 1918 sip += ndx; 1919 1920 /* 1921 * If this is a direct binding request, but the symbol definition has 1922 * disabled directly binding to it (presumably because the symbol 1923 * definition has been changed since the referring object was built), 1924 * indicate this failure so that the caller can fall back to a standard 1925 * symbol search. Clear any debug binding information for cleanliness. 1926 */ 1927 if (sip && (slp->sl_flags & LKUP_DIRECT) && 1928 (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT)) { 1929 *binfo |= BINFO_DIRECTDIS; 1930 *binfo &= ~DBG_BINFO_MSK; 1931 return ((Sym *)0); 1932 } 1933 1934 /* 1935 * Determine whether this object is acting as a filter. 1936 */ 1937 if (((flags1 = FLAGS1(ilmp)) & MSK_RT_FILTER) == 0) 1938 return (sym); 1939 1940 /* 1941 * Determine if this object offers per-symbol filtering, and if so, 1942 * whether this symbol references a filtee. 1943 */ 1944 if (sip && (flags1 & (FL1_RT_SYMSFLTR | FL1_RT_SYMAFLTR))) { 1945 /* 1946 * If this is a standard filter reference, and no standard 1947 * filtees remain to be inspected, we're done. If this is an 1948 * auxiliary filter reference, and no auxiliary filtees remain, 1949 * we'll fall through in case any object filtering is available. 1950 */ 1951 if ((sip->si_flags & SYMINFO_FLG_FILTER) && 1952 (SYMSFLTRCNT(ilmp) == 0)) 1953 return ((Sym *)0); 1954 1955 if ((sip->si_flags & SYMINFO_FLG_FILTER) || 1956 ((sip->si_flags & SYMINFO_FLG_AUXILIARY) && 1957 SYMAFLTRCNT(ilmp))) { 1958 Sym * fsym; 1959 1960 /* 1961 * This symbol has an associated filtee. Lookup the 1962 * symbol in the filtee, and if it is found return it. 1963 * If the symbol doesn't exist, and this is a standard 1964 * filter, return an error, otherwise fall through to 1965 * catch any object filtering that may be available. 1966 */ 1967 if ((fsym = elf_lookup_filtee(slp, dlmp, binfo, 1968 sip->si_boundto)) != 0) 1969 return (fsym); 1970 if (sip->si_flags & SYMINFO_FLG_FILTER) 1971 return ((Sym *)0); 1972 } 1973 } 1974 1975 /* 1976 * Determine if this object provides global filtering. 1977 */ 1978 if (flags1 & (FL1_RT_OBJSFLTR | FL1_RT_OBJAFLTR)) { 1979 Sym * fsym; 1980 1981 if (OBJFLTRNDX(ilmp) != FLTR_DISABLED) { 1982 /* 1983 * This object has an associated filtee. Lookup the 1984 * symbol in the filtee, and if it is found return it. 1985 * If the symbol doesn't exist, and this is a standard 1986 * filter, return and error, otherwise return the symbol 1987 * within the filter itself. 1988 */ 1989 if ((fsym = elf_lookup_filtee(slp, dlmp, binfo, 1990 OBJFLTRNDX(ilmp))) != 0) 1991 return (fsym); 1992 } 1993 1994 if (flags1 & FL1_RT_OBJSFLTR) 1995 return ((Sym *)0); 1996 } 1997 return (sym); 1998 } 1999 2000 /* 2001 * Create a new Rt_map structure for an ELF object and initialize 2002 * all values. 2003 */ 2004 Rt_map * 2005 elf_new_lm(Lm_list *lml, const char *pname, const char *oname, Dyn *ld, 2006 ulong_t addr, ulong_t etext, Aliste lmco, ulong_t msize, ulong_t entry, 2007 ulong_t paddr, ulong_t padimsize, Mmap *mmaps, uint_t mmapcnt) 2008 { 2009 Rt_map *lmp; 2010 ulong_t base, fltr = 0, audit = 0, cfile = 0, crle = 0; 2011 Xword rpath = 0; 2012 Ehdr *ehdr = (Ehdr *)addr; 2013 2014 DBG_CALL(Dbg_file_elf(lml, pname, (ulong_t)ld, addr, msize, entry, 2015 lml->lm_lmidstr, lmco)); 2016 2017 /* 2018 * Allocate space for the link-map and private elf information. Once 2019 * these are allocated and initialized, we can use remove_so(0, lmp) to 2020 * tear down the link-map should any failures occur. 2021 */ 2022 if ((lmp = calloc(sizeof (Rt_map), 1)) == 0) 2023 return (0); 2024 if ((ELFPRV(lmp) = calloc(sizeof (Rt_elfp), 1)) == 0) { 2025 free(lmp); 2026 return (0); 2027 } 2028 2029 /* 2030 * All fields not filled in were set to 0 by calloc. 2031 */ 2032 ORIGNAME(lmp) = PATHNAME(lmp) = NAME(lmp) = (char *)pname; 2033 DYN(lmp) = ld; 2034 ADDR(lmp) = addr; 2035 MSIZE(lmp) = msize; 2036 ENTRY(lmp) = (Addr)entry; 2037 SYMINTP(lmp) = elf_find_sym; 2038 ETEXT(lmp) = etext; 2039 FCT(lmp) = &elf_fct; 2040 LIST(lmp) = lml; 2041 PADSTART(lmp) = paddr; 2042 PADIMLEN(lmp) = padimsize; 2043 THREADID(lmp) = rt_thr_self(); 2044 OBJFLTRNDX(lmp) = FLTR_DISABLED; 2045 SORTVAL(lmp) = -1; 2046 2047 MMAPS(lmp) = mmaps; 2048 MMAPCNT(lmp) = mmapcnt; 2049 ASSERT(mmapcnt != 0); 2050 2051 /* 2052 * If this is a shared object, add the base address to each address. 2053 * if this is an executable, use address as is. 2054 */ 2055 if (ehdr->e_type == ET_EXEC) { 2056 base = 0; 2057 FLAGS(lmp) |= FLG_RT_FIXED; 2058 } else 2059 base = addr; 2060 2061 /* 2062 * Fill in rest of the link map entries with information from the file's 2063 * dynamic structure. 2064 */ 2065 if (ld) { 2066 uint_t dyncnt = 0; 2067 Xword pltpadsz = 0; 2068 Rti_desc *rti; 2069 2070 /* CSTYLED */ 2071 for ( ; ld->d_tag != DT_NULL; ++ld, dyncnt++) { 2072 switch ((Xword)ld->d_tag) { 2073 case DT_SYMTAB: 2074 SYMTAB(lmp) = (void *)(ld->d_un.d_ptr + base); 2075 break; 2076 case DT_SUNW_SYMTAB: 2077 SUNWSYMTAB(lmp) = 2078 (void *)(ld->d_un.d_ptr + base); 2079 break; 2080 case DT_SUNW_SYMSZ: 2081 SUNWSYMSZ(lmp) = ld->d_un.d_val; 2082 break; 2083 case DT_STRTAB: 2084 STRTAB(lmp) = (void *)(ld->d_un.d_ptr + base); 2085 break; 2086 case DT_SYMENT: 2087 SYMENT(lmp) = ld->d_un.d_val; 2088 break; 2089 case DT_FEATURE_1: 2090 ld->d_un.d_val |= DTF_1_PARINIT; 2091 if (ld->d_un.d_val & DTF_1_CONFEXP) 2092 crle = 1; 2093 break; 2094 case DT_MOVESZ: 2095 MOVESZ(lmp) = ld->d_un.d_val; 2096 FLAGS(lmp) |= FLG_RT_MOVE; 2097 break; 2098 case DT_MOVEENT: 2099 MOVEENT(lmp) = ld->d_un.d_val; 2100 break; 2101 case DT_MOVETAB: 2102 MOVETAB(lmp) = (void *)(ld->d_un.d_ptr + base); 2103 break; 2104 case DT_REL: 2105 case DT_RELA: 2106 /* 2107 * At this time we can only handle 1 type of 2108 * relocation per object. 2109 */ 2110 REL(lmp) = (void *)(ld->d_un.d_ptr + base); 2111 break; 2112 case DT_RELSZ: 2113 case DT_RELASZ: 2114 RELSZ(lmp) = ld->d_un.d_val; 2115 break; 2116 case DT_RELENT: 2117 case DT_RELAENT: 2118 RELENT(lmp) = ld->d_un.d_val; 2119 break; 2120 case DT_RELCOUNT: 2121 case DT_RELACOUNT: 2122 RELACOUNT(lmp) = (uint_t)ld->d_un.d_val; 2123 break; 2124 case DT_TEXTREL: 2125 FLAGS1(lmp) |= FL1_RT_TEXTREL; 2126 break; 2127 case DT_HASH: 2128 HASH(lmp) = (uint_t *)(ld->d_un.d_ptr + base); 2129 break; 2130 case DT_PLTGOT: 2131 PLTGOT(lmp) = (uint_t *)(ld->d_un.d_ptr + base); 2132 break; 2133 case DT_PLTRELSZ: 2134 PLTRELSZ(lmp) = ld->d_un.d_val; 2135 break; 2136 case DT_JMPREL: 2137 JMPREL(lmp) = (void *)(ld->d_un.d_ptr + base); 2138 break; 2139 case DT_INIT: 2140 if (ld->d_un.d_ptr != NULL) 2141 INIT(lmp) = 2142 (void (*)())(ld->d_un.d_ptr + base); 2143 break; 2144 case DT_FINI: 2145 if (ld->d_un.d_ptr != NULL) 2146 FINI(lmp) = 2147 (void (*)())(ld->d_un.d_ptr + base); 2148 break; 2149 case DT_INIT_ARRAY: 2150 INITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr + 2151 base); 2152 break; 2153 case DT_INIT_ARRAYSZ: 2154 INITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val; 2155 break; 2156 case DT_FINI_ARRAY: 2157 FINIARRAY(lmp) = (Addr *)(ld->d_un.d_ptr + 2158 base); 2159 break; 2160 case DT_FINI_ARRAYSZ: 2161 FINIARRAYSZ(lmp) = (uint_t)ld->d_un.d_val; 2162 break; 2163 case DT_PREINIT_ARRAY: 2164 PREINITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr + 2165 base); 2166 break; 2167 case DT_PREINIT_ARRAYSZ: 2168 PREINITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val; 2169 break; 2170 case DT_RPATH: 2171 case DT_RUNPATH: 2172 rpath = ld->d_un.d_val; 2173 break; 2174 case DT_FILTER: 2175 fltr = ld->d_un.d_val; 2176 OBJFLTRNDX(lmp) = dyncnt; 2177 FLAGS1(lmp) |= FL1_RT_OBJSFLTR; 2178 break; 2179 case DT_AUXILIARY: 2180 if (!(rtld_flags & RT_FL_NOAUXFLTR)) { 2181 fltr = ld->d_un.d_val; 2182 OBJFLTRNDX(lmp) = dyncnt; 2183 } 2184 FLAGS1(lmp) |= FL1_RT_OBJAFLTR; 2185 break; 2186 case DT_SUNW_FILTER: 2187 SYMSFLTRCNT(lmp)++; 2188 FLAGS1(lmp) |= FL1_RT_SYMSFLTR; 2189 break; 2190 case DT_SUNW_AUXILIARY: 2191 if (!(rtld_flags & RT_FL_NOAUXFLTR)) { 2192 SYMAFLTRCNT(lmp)++; 2193 } 2194 FLAGS1(lmp) |= FL1_RT_SYMAFLTR; 2195 break; 2196 case DT_DEPAUDIT: 2197 if (!(rtld_flags & RT_FL_NOAUDIT)) 2198 audit = ld->d_un.d_val; 2199 break; 2200 case DT_CONFIG: 2201 cfile = ld->d_un.d_val; 2202 break; 2203 case DT_DEBUG: 2204 /* 2205 * DT_DEBUG entries are only created in 2206 * dynamic objects that require an interpretor 2207 * (ie. all dynamic executables and some shared 2208 * objects), and provide for a hand-shake with 2209 * debuggers. This entry is initialized to 2210 * zero by the link-editor. If a debugger has 2211 * us and updated this entry set the debugger 2212 * flag, and finish initializing the debugging 2213 * structure (see setup() also). Switch off any 2214 * configuration object use as most debuggers 2215 * can't handle fixed dynamic executables as 2216 * dependencies, and we can't handle requests 2217 * like object padding for alternative objects. 2218 */ 2219 if (ld->d_un.d_ptr) 2220 rtld_flags |= 2221 (RT_FL_DEBUGGER | RT_FL_NOOBJALT); 2222 ld->d_un.d_ptr = (Addr)&r_debug; 2223 break; 2224 case DT_VERNEED: 2225 VERNEED(lmp) = (Verneed *)(ld->d_un.d_ptr + 2226 base); 2227 break; 2228 case DT_VERNEEDNUM: 2229 /* LINTED */ 2230 VERNEEDNUM(lmp) = (int)ld->d_un.d_val; 2231 break; 2232 case DT_VERDEF: 2233 VERDEF(lmp) = (Verdef *)(ld->d_un.d_ptr + base); 2234 break; 2235 case DT_VERDEFNUM: 2236 /* LINTED */ 2237 VERDEFNUM(lmp) = (int)ld->d_un.d_val; 2238 break; 2239 case DT_VERSYM: 2240 VERSYM(lmp) = (Versym *)(ld->d_un.d_ptr + base); 2241 break; 2242 case DT_BIND_NOW: 2243 if ((ld->d_un.d_val & DF_BIND_NOW) && 2244 ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) { 2245 MODE(lmp) |= RTLD_NOW; 2246 MODE(lmp) &= ~RTLD_LAZY; 2247 } 2248 break; 2249 case DT_FLAGS: 2250 if (ld->d_un.d_val & DF_SYMBOLIC) 2251 FLAGS1(lmp) |= FL1_RT_SYMBOLIC; 2252 if (ld->d_un.d_val & DF_TEXTREL) 2253 FLAGS1(lmp) |= FL1_RT_TEXTREL; 2254 if ((ld->d_un.d_val & DF_BIND_NOW) && 2255 ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) { 2256 MODE(lmp) |= RTLD_NOW; 2257 MODE(lmp) &= ~RTLD_LAZY; 2258 } 2259 /* 2260 * Capture any static TLS use, and enforce that 2261 * this object be non-deletable. 2262 */ 2263 if (ld->d_un.d_val & DF_STATIC_TLS) { 2264 FLAGS1(lmp) |= FL1_RT_TLSSTAT; 2265 MODE(lmp) |= RTLD_NODELETE; 2266 } 2267 break; 2268 case DT_FLAGS_1: 2269 if (ld->d_un.d_val & DF_1_DISPRELPND) 2270 FLAGS1(lmp) |= FL1_RT_DISPREL; 2271 if (ld->d_un.d_val & DF_1_GROUP) 2272 FLAGS(lmp) |= 2273 (FLG_RT_SETGROUP | FLG_RT_HANDLE); 2274 if ((ld->d_un.d_val & DF_1_NOW) && 2275 ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) { 2276 MODE(lmp) |= RTLD_NOW; 2277 MODE(lmp) &= ~RTLD_LAZY; 2278 } 2279 if (ld->d_un.d_val & DF_1_NODELETE) 2280 MODE(lmp) |= RTLD_NODELETE; 2281 if (ld->d_un.d_val & DF_1_INITFIRST) 2282 FLAGS(lmp) |= FLG_RT_INITFRST; 2283 if (ld->d_un.d_val & DF_1_NOOPEN) 2284 FLAGS(lmp) |= FLG_RT_NOOPEN; 2285 if (ld->d_un.d_val & DF_1_LOADFLTR) 2286 FLAGS(lmp) |= FLG_RT_LOADFLTR; 2287 if (ld->d_un.d_val & DF_1_NODUMP) 2288 FLAGS(lmp) |= FLG_RT_NODUMP; 2289 if (ld->d_un.d_val & DF_1_CONFALT) 2290 crle = 1; 2291 if (ld->d_un.d_val & DF_1_DIRECT) 2292 FLAGS1(lmp) |= FL1_RT_DIRECT; 2293 if (ld->d_un.d_val & DF_1_NODEFLIB) 2294 FLAGS1(lmp) |= FL1_RT_NODEFLIB; 2295 if (ld->d_un.d_val & DF_1_ENDFILTEE) 2296 FLAGS1(lmp) |= FL1_RT_ENDFILTE; 2297 if (ld->d_un.d_val & DF_1_TRANS) 2298 FLAGS(lmp) |= FLG_RT_TRANS; 2299 #ifndef EXPAND_RELATIVE 2300 if (ld->d_un.d_val & DF_1_ORIGIN) 2301 FLAGS1(lmp) |= FL1_RT_RELATIVE; 2302 #endif 2303 /* 2304 * If this object identifies itself as an 2305 * interposer, but relocation processing has 2306 * already started, then demote it. It's too 2307 * late to guarantee complete interposition. 2308 */ 2309 /* BEGIN CSTYLED */ 2310 if (ld->d_un.d_val & 2311 (DF_1_INTERPOSE | DF_1_SYMINTPOSE)) { 2312 if (lml->lm_flags & LML_FLG_STARTREL) { 2313 DBG_CALL(Dbg_util_intoolate(lmp)); 2314 if (lml->lm_flags & LML_FLG_TRC_ENABLE) 2315 (void) printf( 2316 MSG_INTL(MSG_LDD_REL_ERR2), 2317 NAME(lmp)); 2318 } else if (ld->d_un.d_val & DF_1_INTERPOSE) 2319 FLAGS(lmp) |= FLG_RT_OBJINTPO; 2320 else 2321 FLAGS(lmp) |= FLG_RT_SYMINTPO; 2322 } 2323 /* END CSTYLED */ 2324 break; 2325 case DT_SYMINFO: 2326 SYMINFO(lmp) = (Syminfo *)(ld->d_un.d_ptr + 2327 base); 2328 break; 2329 case DT_SYMINENT: 2330 SYMINENT(lmp) = ld->d_un.d_val; 2331 break; 2332 case DT_PLTPAD: 2333 PLTPAD(lmp) = (void *)(ld->d_un.d_ptr + base); 2334 break; 2335 case DT_PLTPADSZ: 2336 pltpadsz = ld->d_un.d_val; 2337 break; 2338 case DT_SUNW_RTLDINF: 2339 /* 2340 * Maintain a list of RTLDINFO structures. 2341 * Typically, libc is the only supplier, and 2342 * only one structure is provided. However, 2343 * multiple suppliers and multiple structures 2344 * are supported. For example, one structure 2345 * may provide thread_init, and another 2346 * structure may provide atexit reservations. 2347 */ 2348 if ((rti = alist_append(&lml->lm_rti, 0, 2349 sizeof (Rti_desc), AL_CNT_RTLDINFO)) == 0) { 2350 remove_so(0, lmp); 2351 return (0); 2352 } 2353 rti->rti_lmp = lmp; 2354 rti->rti_info = (void *)(ld->d_un.d_ptr + base); 2355 break; 2356 case DT_SUNW_SORTENT: 2357 SUNWSORTENT(lmp) = ld->d_un.d_val; 2358 break; 2359 case DT_SUNW_SYMSORT: 2360 SUNWSYMSORT(lmp) = 2361 (void *)(ld->d_un.d_ptr + base); 2362 break; 2363 case DT_SUNW_SYMSORTSZ: 2364 SUNWSYMSORTSZ(lmp) = ld->d_un.d_val; 2365 break; 2366 case DT_DEPRECATED_SPARC_REGISTER: 2367 case M_DT_REGISTER: 2368 FLAGS(lmp) |= FLG_RT_REGSYMS; 2369 break; 2370 case M_DT_PLTRESERVE: 2371 PLTRESERVE(lmp) = (void *)(ld->d_un.d_ptr + 2372 base); 2373 break; 2374 } 2375 } 2376 2377 2378 if (PLTPAD(lmp)) { 2379 if (pltpadsz == (Xword)0) 2380 PLTPAD(lmp) = 0; 2381 else 2382 PLTPADEND(lmp) = (void *)((Addr)PLTPAD(lmp) + 2383 pltpadsz); 2384 } 2385 2386 /* 2387 * Allocate Dynamic Info structure 2388 */ 2389 if ((DYNINFO(lmp) = calloc((size_t)dyncnt, 2390 sizeof (Dyninfo))) == 0) { 2391 remove_so(0, lmp); 2392 return (0); 2393 } 2394 DYNINFOCNT(lmp) = dyncnt; 2395 } 2396 2397 /* 2398 * A dynsym contains only global functions. We want to have 2399 * a version of it that also includes local functions, so that 2400 * dladdr() will be able to report names for local functions 2401 * when used to generate a stack trace for a stripped file. 2402 * This version of the dynsym is provided via DT_SUNW_SYMTAB. 2403 * 2404 * In producing DT_SUNW_SYMTAB, ld uses a non-obvious trick 2405 * in order to avoid having to have two copies of the global 2406 * symbols held in DT_SYMTAB: The local symbols are placed in 2407 * a separate section than the globals in the dynsym, but the 2408 * linker conspires to put the data for these two sections adjacent 2409 * to each other. DT_SUNW_SYMTAB points at the top of the local 2410 * symbols, and DT_SUNW_SYMSZ is the combined length of both tables. 2411 * 2412 * If the two sections are not adjacent, then something went wrong 2413 * at link time. We use ASSERT to kill the process if this is 2414 * a debug build. In a production build, we will silently ignore 2415 * the presence of the .ldynsym and proceed. We can detect this 2416 * situation by checking to see that DT_SYMTAB lies in 2417 * the range given by DT_SUNW_SYMTAB/DT_SUNW_SYMSZ. 2418 */ 2419 if ((SUNWSYMTAB(lmp) != NULL) && 2420 (((char *)SYMTAB(lmp) <= (char *)SUNWSYMTAB(lmp)) || 2421 (((char *)SYMTAB(lmp) >= 2422 (SUNWSYMSZ(lmp) + (char *)SUNWSYMTAB(lmp)))))) { 2423 ASSERT(0); 2424 SUNWSYMTAB(lmp) = NULL; 2425 SUNWSYMSZ(lmp) = 0; 2426 } 2427 2428 /* 2429 * If configuration file use hasn't been disabled, and a configuration 2430 * file hasn't already been set via an environment variable, see if any 2431 * application specific configuration file is specified. An LD_CONFIG 2432 * setting is used first, but if this image was generated via crle(1) 2433 * then a default configuration file is a fall-back. 2434 */ 2435 if ((!(rtld_flags & RT_FL_NOCFG)) && (config->c_name == 0)) { 2436 if (cfile) 2437 config->c_name = (const char *)(cfile + 2438 (char *)STRTAB(lmp)); 2439 else if (crle) { 2440 rtld_flags |= RT_FL_CONFAPP; 2441 #ifndef EXPAND_RELATIVE 2442 FLAGS1(lmp) |= FL1_RT_RELATIVE; 2443 #endif 2444 } 2445 } 2446 2447 if (rpath) 2448 RPATH(lmp) = (char *)(rpath + (char *)STRTAB(lmp)); 2449 if (fltr) { 2450 /* 2451 * If this object is a global filter, duplicate the filtee 2452 * string name(s) so that REFNAME() is available in core files. 2453 * This cludge was useful for debuggers at one point, but only 2454 * when the filtee name was an individual full path. 2455 */ 2456 if ((REFNAME(lmp) = strdup(fltr + (char *)STRTAB(lmp))) == 0) { 2457 remove_so(0, lmp); 2458 return (0); 2459 } 2460 } 2461 2462 if (rtld_flags & RT_FL_RELATIVE) 2463 FLAGS1(lmp) |= FL1_RT_RELATIVE; 2464 2465 /* 2466 * For Intel ABI compatibility. It's possible that a JMPREL can be 2467 * specified without any other relocations (e.g. a dynamic executable 2468 * normally only contains .plt relocations). If this is the case then 2469 * no REL, RELSZ or RELENT will have been created. For us to be able 2470 * to traverse the .plt relocations under LD_BIND_NOW we need to know 2471 * the RELENT for these relocations. Refer to elf_reloc() for more 2472 * details. 2473 */ 2474 if (!RELENT(lmp) && JMPREL(lmp)) 2475 RELENT(lmp) = sizeof (Rel); 2476 2477 /* 2478 * Establish any per-object auditing. If we're establishing `main's 2479 * link-map its too early to go searching for audit objects so just 2480 * hold the object name for later (see setup()). 2481 */ 2482 if (audit) { 2483 char *cp = audit + (char *)STRTAB(lmp); 2484 2485 if (*cp) { 2486 if (((AUDITORS(lmp) = 2487 calloc(1, sizeof (Audit_desc))) == 0) || 2488 ((AUDITORS(lmp)->ad_name = strdup(cp)) == 0)) { 2489 remove_so(0, lmp); 2490 return (0); 2491 } 2492 if (lml_main.lm_head) { 2493 if (audit_setup(lmp, AUDITORS(lmp), 0) == 0) { 2494 remove_so(0, lmp); 2495 return (0); 2496 } 2497 FLAGS1(lmp) |= AUDITORS(lmp)->ad_flags; 2498 lml->lm_flags |= LML_FLG_LOCAUDIT; 2499 } 2500 } 2501 } 2502 2503 if ((CONDVAR(lmp) = rt_cond_create()) == 0) { 2504 remove_so(0, lmp); 2505 return (0); 2506 } 2507 if (oname && ((append_alias(lmp, oname, 0)) == 0)) { 2508 remove_so(0, lmp); 2509 return (0); 2510 } 2511 2512 /* 2513 * Add the mapped object to the end of the link map list. 2514 */ 2515 lm_append(lml, lmco, lmp); 2516 return (lmp); 2517 } 2518 2519 /* 2520 * Assign hardware/software capabilities. 2521 */ 2522 void 2523 cap_assign(Cap *cap, Rt_map *lmp) 2524 { 2525 while (cap->c_tag != CA_SUNW_NULL) { 2526 switch (cap->c_tag) { 2527 case CA_SUNW_HW_1: 2528 HWCAP(lmp) = cap->c_un.c_val; 2529 break; 2530 case CA_SUNW_SF_1: 2531 SFCAP(lmp) = cap->c_un.c_val; 2532 } 2533 cap++; 2534 } 2535 } 2536 2537 /* 2538 * Map in an ELF object. 2539 * Takes an open file descriptor for the object to map and its pathname; returns 2540 * a pointer to a Rt_map structure for this object, or 0 on error. 2541 */ 2542 static Rt_map * 2543 elf_map_so(Lm_list *lml, Aliste lmco, const char *pname, const char *oname, 2544 int fd) 2545 { 2546 int i; /* general temporary */ 2547 Off memsize = 0; /* total memory size of pathname */ 2548 Off mentry; /* entry point */ 2549 Ehdr *ehdr; /* ELF header of ld.so */ 2550 Phdr *phdr; /* first Phdr in file */ 2551 Phdr *phdr0; /* Saved first Phdr in file */ 2552 Phdr *pptr; /* working Phdr */ 2553 Phdr *fph = 0; /* first loadable Phdr */ 2554 Phdr *lph; /* last loadable Phdr */ 2555 Phdr *lfph = 0; /* last loadable (filesz != 0) Phdr */ 2556 Phdr *lmph = 0; /* last loadable (memsz != 0) Phdr */ 2557 Phdr *swph = 0; /* program header for SUNWBSS */ 2558 Phdr *tlph = 0; /* program header for PT_TLS */ 2559 Phdr *unwindph = 0; /* program header for PT_SUNW_UNWIND */ 2560 Cap *cap = 0; /* program header for SUNWCAP */ 2561 Dyn *mld = 0; /* DYNAMIC structure for pathname */ 2562 size_t size; /* size of elf and program headers */ 2563 caddr_t faddr = 0; /* mapping address of pathname */ 2564 Rt_map *lmp; /* link map created */ 2565 caddr_t paddr; /* start of padded image */ 2566 Off plen; /* size of image including padding */ 2567 Half etype; 2568 int fixed; 2569 Mmap *mmaps; 2570 uint_t mmapcnt = 0; 2571 Xword align = 0; 2572 2573 /* LINTED */ 2574 ehdr = (Ehdr *)fmap->fm_maddr; 2575 2576 /* 2577 * If this a relocatable object then special processing is required. 2578 */ 2579 if ((etype = ehdr->e_type) == ET_REL) 2580 return (elf_obj_file(lml, lmco, pname, fd)); 2581 2582 /* 2583 * If this isn't a dynamic executable or shared object we can't process 2584 * it. If this is a dynamic executable then all addresses are fixed. 2585 */ 2586 if (etype == ET_EXEC) 2587 fixed = 1; 2588 else if (etype == ET_DYN) 2589 fixed = 0; 2590 else { 2591 eprintf(lml, ERR_ELF, MSG_INTL(MSG_GEN_BADTYPE), pname, 2592 conv_ehdr_type(etype, 0)); 2593 return (0); 2594 } 2595 2596 /* 2597 * If our original mapped page was not large enough to hold all the 2598 * program headers remap them. 2599 */ 2600 size = (size_t)((char *)ehdr->e_phoff + 2601 (ehdr->e_phnum * ehdr->e_phentsize)); 2602 if (size > fmap->fm_fsize) { 2603 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), pname); 2604 return (0); 2605 } 2606 if (size > fmap->fm_msize) { 2607 fmap_setup(); 2608 if ((fmap->fm_maddr = mmap(fmap->fm_maddr, size, PROT_READ, 2609 fmap->fm_mflags, fd, 0)) == MAP_FAILED) { 2610 int err = errno; 2611 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), pname, 2612 strerror(err)); 2613 return (0); 2614 } 2615 fmap->fm_msize = size; 2616 /* LINTED */ 2617 ehdr = (Ehdr *)fmap->fm_maddr; 2618 } 2619 /* LINTED */ 2620 phdr0 = phdr = (Phdr *)((char *)ehdr + ehdr->e_ehsize); 2621 2622 /* 2623 * Get entry point. 2624 */ 2625 mentry = ehdr->e_entry; 2626 2627 /* 2628 * Point at program headers and perform some basic validation. 2629 */ 2630 for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++, 2631 pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) { 2632 if ((pptr->p_type == PT_LOAD) || 2633 (pptr->p_type == PT_SUNWBSS)) { 2634 2635 if (fph == 0) { 2636 fph = pptr; 2637 /* LINTED argument lph is initialized in first pass */ 2638 } else if (pptr->p_vaddr <= lph->p_vaddr) { 2639 eprintf(lml, ERR_ELF, 2640 MSG_INTL(MSG_GEN_INVPRGHDR), pname); 2641 return (0); 2642 } 2643 2644 lph = pptr; 2645 2646 if (pptr->p_memsz) 2647 lmph = pptr; 2648 if (pptr->p_filesz) 2649 lfph = pptr; 2650 if (pptr->p_type == PT_SUNWBSS) 2651 swph = pptr; 2652 if (pptr->p_align > align) 2653 align = pptr->p_align; 2654 2655 } else if (pptr->p_type == PT_DYNAMIC) { 2656 mld = (Dyn *)(pptr->p_vaddr); 2657 } else if ((pptr->p_type == PT_TLS) && pptr->p_memsz) { 2658 tlph = pptr; 2659 } else if (pptr->p_type == PT_SUNWCAP) { 2660 cap = (Cap *)(pptr->p_vaddr); 2661 } else if (pptr->p_type == PT_SUNW_UNWIND) { 2662 unwindph = pptr; 2663 } 2664 } 2665 2666 #if defined(MAP_ALIGN) 2667 /* 2668 * Make sure the maximum page alignment is a power of 2 >= the default 2669 * segment alignment, for use with MAP_ALIGN. 2670 */ 2671 align = S_ROUND(align, M_SEGM_ALIGN); 2672 #endif 2673 2674 /* 2675 * We'd better have at least one loadable segment, together with some 2676 * specified file and memory size. 2677 */ 2678 if ((fph == 0) || (lmph == 0) || (lfph == 0)) { 2679 eprintf(lml, ERR_ELF, MSG_INTL(MSG_GEN_NOLOADSEG), pname); 2680 return (0); 2681 } 2682 2683 /* 2684 * Check that the files size accounts for the loadable sections 2685 * we're going to map in (failure to do this may cause spurious 2686 * bus errors if we're given a truncated file). 2687 */ 2688 if (fmap->fm_fsize < ((size_t)lfph->p_offset + lfph->p_filesz)) { 2689 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), pname); 2690 return (0); 2691 } 2692 2693 /* 2694 * Memsize must be page rounded so that if we add object padding 2695 * at the end it will start at the beginning of a page. 2696 */ 2697 plen = memsize = M_PROUND((lmph->p_vaddr + lmph->p_memsz) - 2698 M_PTRUNC((ulong_t)fph->p_vaddr)); 2699 2700 /* 2701 * Determine if an existing mapping is acceptable. 2702 */ 2703 if (interp && (lml->lm_flags & LML_FLG_BASELM) && 2704 (strcmp(pname, interp->i_name) == 0)) { 2705 /* 2706 * If this is the interpreter then it has already been mapped 2707 * and we have the address so don't map it again. Note that 2708 * the common occurrence of a reference to the interpretor 2709 * (libdl -> ld.so.1) will have been caught during filter 2710 * initialization (see elf_lookup_filtee()). However, some 2711 * ELF implementations are known to record libc.so.1 as the 2712 * interpretor, and thus this test catches this behavior. 2713 */ 2714 paddr = faddr = interp->i_faddr; 2715 2716 } else if ((fixed == 0) && (r_debug.rtd_objpad == 0) && 2717 (memsize <= fmap->fm_msize) && ((fph->p_flags & PF_W) == 0) && 2718 (fph == lph) && (fph->p_filesz == fph->p_memsz) && 2719 (((Xword)fmap->fm_maddr % align) == 0)) { 2720 size_t rsize; 2721 2722 /* 2723 * If the file contains a single segment, and the mapping 2724 * required has already been established from the initial fmap 2725 * mapping, then we don't need to do anything more. Reset the 2726 * fmap address so that any later files start a new fmap. This 2727 * is really an optimization for filters, such as libdl.so, 2728 * libthread, etc. that are constructed to be a single text 2729 * segment. 2730 */ 2731 paddr = faddr = fmap->fm_maddr; 2732 2733 /* 2734 * Free any unused mapping by assigning the fmap buffer to the 2735 * unused region. fmap_setup() will unmap this area and 2736 * establish defaults for future mappings. 2737 */ 2738 rsize = M_PROUND(fph->p_filesz); 2739 fmap->fm_maddr += rsize; 2740 fmap->fm_msize -= rsize; 2741 fmap_setup(); 2742 } 2743 2744 /* 2745 * Allocate a mapping array to retain mapped segment information. 2746 */ 2747 if ((mmaps = calloc(ehdr->e_phnum, sizeof (Mmap))) == 0) 2748 return (0); 2749 2750 /* 2751 * If we're reusing an existing mapping determine the objects etext 2752 * address. Otherwise map the file (which will calculate the etext 2753 * address as part of the mapping process). 2754 */ 2755 if (faddr) { 2756 caddr_t base; 2757 2758 if (fixed) 2759 base = 0; 2760 else 2761 base = faddr; 2762 2763 /* LINTED */ 2764 phdr0 = phdr = (Phdr *)((char *)faddr + ehdr->e_ehsize); 2765 2766 for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++, 2767 pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) { 2768 if (pptr->p_type != PT_LOAD) 2769 continue; 2770 2771 mmaps[mmapcnt].m_vaddr = (pptr->p_vaddr + base); 2772 mmaps[mmapcnt].m_msize = pptr->p_memsz; 2773 mmaps[mmapcnt].m_fsize = pptr->p_filesz; 2774 mmaps[mmapcnt].m_perm = (PROT_READ | PROT_EXEC); 2775 mmapcnt++; 2776 2777 if (!(pptr->p_flags & PF_W)) { 2778 fmap->fm_etext = (ulong_t)pptr->p_vaddr + 2779 (ulong_t)pptr->p_memsz + 2780 (ulong_t)(fixed ? 0 : faddr); 2781 } 2782 } 2783 } else { 2784 /* 2785 * Map the file. 2786 */ 2787 if (!(faddr = elf_map_it(lml, pname, memsize, ehdr, fph, lph, 2788 &phdr, &paddr, &plen, fixed, fd, align, mmaps, &mmapcnt))) 2789 return (0); 2790 } 2791 2792 /* 2793 * Calculate absolute base addresses and entry points. 2794 */ 2795 if (!fixed) { 2796 if (mld) 2797 /* LINTED */ 2798 mld = (Dyn *)((Off)mld + faddr); 2799 if (cap) 2800 /* LINTED */ 2801 cap = (Cap *)((Off)cap + faddr); 2802 mentry += (Off)faddr; 2803 } 2804 2805 /* 2806 * Create new link map structure for newly mapped shared object. 2807 */ 2808 if (!(lmp = elf_new_lm(lml, pname, oname, mld, (ulong_t)faddr, 2809 fmap->fm_etext, lmco, memsize, mentry, (ulong_t)paddr, plen, mmaps, 2810 mmapcnt))) { 2811 (void) munmap((caddr_t)faddr, memsize); 2812 return (0); 2813 } 2814 2815 /* 2816 * Start the system loading in the ELF information we'll be processing. 2817 */ 2818 if (REL(lmp)) { 2819 (void) madvise((void *)ADDR(lmp), (uintptr_t)REL(lmp) + 2820 (uintptr_t)RELSZ(lmp) - (uintptr_t)ADDR(lmp), 2821 MADV_WILLNEED); 2822 } 2823 2824 /* 2825 * If this shared object contains any special segments, record them. 2826 */ 2827 if (swph) { 2828 FLAGS(lmp) |= FLG_RT_SUNWBSS; 2829 SUNWBSS(lmp) = phdr + (swph - phdr0); 2830 } 2831 if (tlph && (tls_assign(lml, lmp, (phdr + (tlph - phdr0))) == 0)) { 2832 remove_so(lml, lmp); 2833 return (0); 2834 } 2835 2836 if (unwindph) 2837 PTUNWIND(lmp) = phdr + (unwindph - phdr0); 2838 2839 if (cap) 2840 cap_assign(cap, lmp); 2841 2842 return (lmp); 2843 } 2844 2845 /* 2846 * Function to correct protection settings. Segments are all mapped initially 2847 * with permissions as given in the segment header. We need to turn on write 2848 * permissions on a text segment if there are any relocations against that 2849 * segment, and them turn write permission back off again before returning 2850 * control to the user. This function turns the permission on or off depending 2851 * on the value of the argument. 2852 */ 2853 int 2854 elf_set_prot(Rt_map *lmp, int permission) 2855 { 2856 Mmap *mmaps; 2857 2858 /* 2859 * If this is an allocated image (ie. a relocatable object) we can't 2860 * mprotect() anything. 2861 */ 2862 if (FLAGS(lmp) & FLG_RT_IMGALLOC) 2863 return (1); 2864 2865 DBG_CALL(Dbg_file_prot(lmp, permission)); 2866 2867 for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++) { 2868 if (mmaps->m_perm & PROT_WRITE) 2869 continue; 2870 2871 if (mprotect(mmaps->m_vaddr, mmaps->m_msize, 2872 (mmaps->m_perm | permission)) == -1) { 2873 int err = errno; 2874 eprintf(LIST(lmp), ERR_FATAL, MSG_INTL(MSG_SYS_MPROT), 2875 NAME(lmp), strerror(err)); 2876 return (0); 2877 } 2878 } 2879 return (1); 2880 } 2881 2882 /* 2883 * Build full pathname of shared object from given directory name and filename. 2884 */ 2885 static char * 2886 elf_get_so(const char *dir, const char *file) 2887 { 2888 static char pname[PATH_MAX]; 2889 2890 (void) snprintf(pname, PATH_MAX, MSG_ORIG(MSG_FMT_PATH), dir, file); 2891 return (pname); 2892 } 2893 2894 /* 2895 * The copy relocation is recorded in a copy structure which will be applied 2896 * after all other relocations are carried out. This provides for copying data 2897 * that must be relocated itself (ie. pointers in shared objects). This 2898 * structure also provides a means of binding RTLD_GROUP dependencies to any 2899 * copy relocations that have been taken from any group members. 2900 * 2901 * If the size of the .bss area available for the copy information is not the 2902 * same as the source of the data inform the user if we're under ldd(1) control 2903 * (this checking was only established in 5.3, so by only issuing an error via 2904 * ldd(1) we maintain the standard set by previous releases). 2905 */ 2906 int 2907 elf_copy_reloc(char *name, Sym *rsym, Rt_map *rlmp, void *radd, Sym *dsym, 2908 Rt_map *dlmp, const void *dadd) 2909 { 2910 Rel_copy rc; 2911 Lm_list *lml = LIST(rlmp); 2912 2913 rc.r_name = name; 2914 rc.r_rsym = rsym; /* the new reference symbol and its */ 2915 rc.r_rlmp = rlmp; /* associated link-map */ 2916 rc.r_dlmp = dlmp; /* the defining link-map */ 2917 rc.r_dsym = dsym; /* the original definition */ 2918 rc.r_radd = radd; 2919 rc.r_dadd = dadd; 2920 2921 if (rsym->st_size > dsym->st_size) 2922 rc.r_size = (size_t)dsym->st_size; 2923 else 2924 rc.r_size = (size_t)rsym->st_size; 2925 2926 if (alist_append(©(dlmp), &rc, sizeof (Rel_copy), 2927 AL_CNT_COPYREL) == 0) { 2928 if (!(lml->lm_flags & LML_FLG_TRC_WARN)) 2929 return (0); 2930 else 2931 return (1); 2932 } 2933 if (!(FLAGS1(dlmp) & FL1_RT_COPYTOOK)) { 2934 if (alist_append(©(rlmp), &dlmp, 2935 sizeof (Rt_map *), AL_CNT_COPYREL) == 0) { 2936 if (!(lml->lm_flags & LML_FLG_TRC_WARN)) 2937 return (0); 2938 else 2939 return (1); 2940 } 2941 FLAGS1(dlmp) |= FL1_RT_COPYTOOK; 2942 } 2943 2944 /* 2945 * If we are tracing (ldd), warn the user if 2946 * 1) the size from the reference symbol differs from the 2947 * copy definition. We can only copy as much data as the 2948 * reference (dynamic executables) entry allows. 2949 * 2) the copy definition has STV_PROTECTED visibility. 2950 */ 2951 if (lml->lm_flags & LML_FLG_TRC_WARN) { 2952 if (rsym->st_size != dsym->st_size) { 2953 (void) printf(MSG_INTL(MSG_LDD_CPY_SIZDIF), 2954 _conv_reloc_type(M_R_COPY), demangle(name), 2955 NAME(rlmp), EC_XWORD(rsym->st_size), 2956 NAME(dlmp), EC_XWORD(dsym->st_size)); 2957 if (rsym->st_size > dsym->st_size) 2958 (void) printf(MSG_INTL(MSG_LDD_CPY_INSDATA), 2959 NAME(dlmp)); 2960 else 2961 (void) printf(MSG_INTL(MSG_LDD_CPY_DATRUNC), 2962 NAME(rlmp)); 2963 } 2964 2965 if (ELF_ST_VISIBILITY(dsym->st_other) == STV_PROTECTED) { 2966 (void) printf(MSG_INTL(MSG_LDD_CPY_PROT), 2967 _conv_reloc_type(M_R_COPY), demangle(name), 2968 NAME(dlmp)); 2969 } 2970 } 2971 2972 DBG_CALL(Dbg_reloc_apply_val(lml, ELF_DBG_RTLD, (Xword)radd, 2973 (Xword)rc.r_size)); 2974 return (1); 2975 } 2976 2977 /* 2978 * Determine the symbol location of an address within a link-map. Look for 2979 * the nearest symbol (whose value is less than or equal to the required 2980 * address). This is the object specific part of dladdr(). 2981 */ 2982 static void 2983 elf_dladdr(ulong_t addr, Rt_map *lmp, Dl_info *dlip, void **info, int flags) 2984 { 2985 ulong_t ndx, cnt, base, _value; 2986 Sym *sym, *_sym = NULL; 2987 const char *str; 2988 int _flags; 2989 uint_t *dynaddr_ndx; 2990 uint_t dynaddr_n = 0; 2991 ulong_t value; 2992 2993 /* 2994 * If SUNWSYMTAB() is non-NULL, then it sees a special version of 2995 * the dynsym that starts with any local function symbols that exist in 2996 * the library and then moves to the data held in SYMTAB(). In this 2997 * case, SUNWSYMSZ tells us how long the symbol table is. The 2998 * availability of local function symbols will enhance the results 2999 * we can provide. 3000 * 3001 * If SUNWSYMTAB() is non-NULL, then there might also be a 3002 * SUNWSYMSORT() vector associated with it. SUNWSYMSORT() contains 3003 * an array of indices into SUNWSYMTAB, sorted by increasing 3004 * address. We can use this to do an O(log N) search instead of a 3005 * brute force search. 3006 * 3007 * If SUNWSYMTAB() is NULL, then SYMTAB() references a dynsym that 3008 * contains only global symbols. In that case, the length of 3009 * the symbol table comes from the nchain field of the related 3010 * symbol lookup hash table. 3011 */ 3012 str = STRTAB(lmp); 3013 if (SUNWSYMSZ(lmp) == NULL) { 3014 sym = SYMTAB(lmp); 3015 /* 3016 * If we don't have a .hash table there are no symbols 3017 * to look at. 3018 */ 3019 if (HASH(lmp) == 0) 3020 return; 3021 cnt = HASH(lmp)[1]; 3022 } else { 3023 sym = SUNWSYMTAB(lmp); 3024 cnt = SUNWSYMSZ(lmp) / SYMENT(lmp); 3025 dynaddr_ndx = SUNWSYMSORT(lmp); 3026 if (dynaddr_ndx != NULL) 3027 dynaddr_n = SUNWSYMSORTSZ(lmp) / SUNWSORTENT(lmp); 3028 } 3029 3030 if (FLAGS(lmp) & FLG_RT_FIXED) 3031 base = 0; 3032 else 3033 base = ADDR(lmp); 3034 3035 if (dynaddr_n > 0) { /* Binary search */ 3036 long low = 0, low_bnd; 3037 long high = dynaddr_n - 1, high_bnd; 3038 long mid; 3039 Sym *mid_sym; 3040 3041 /* 3042 * Note that SUNWSYMSORT only contains symbols types that 3043 * supply memory addresses, so there's no need to check and 3044 * filter out any other types. 3045 */ 3046 low_bnd = low; 3047 high_bnd = high; 3048 while (low <= high) { 3049 mid = (low + high) / 2; 3050 mid_sym = &sym[dynaddr_ndx[mid]]; 3051 value = mid_sym->st_value + base; 3052 if (addr < value) { 3053 if ((sym[dynaddr_ndx[high]].st_value + base) >= 3054 addr) 3055 high_bnd = high; 3056 high = mid - 1; 3057 } else if (addr > value) { 3058 if ((sym[dynaddr_ndx[low]].st_value + base) <= 3059 addr) 3060 low_bnd = low; 3061 low = mid + 1; 3062 } else { 3063 _sym = mid_sym; 3064 _value = value; 3065 break; 3066 } 3067 } 3068 /* 3069 * If the above didn't find it exactly, then we must 3070 * return the closest symbol with a value that doesn't 3071 * exceed the one we are looking for. If that symbol exists, 3072 * it will lie in the range bounded by low_bnd and 3073 * high_bnd. This is a linear search, but a short one. 3074 */ 3075 if (_sym == NULL) { 3076 for (mid = low_bnd; mid <= high_bnd; mid++) { 3077 mid_sym = &sym[dynaddr_ndx[mid]]; 3078 value = mid_sym->st_value + base; 3079 if (addr >= value) { 3080 _sym = mid_sym; 3081 _value = value; 3082 } else { 3083 break; 3084 } 3085 } 3086 } 3087 } else { /* Linear search */ 3088 for (_value = 0, sym++, ndx = 1; ndx < cnt; ndx++, sym++) { 3089 /* 3090 * Skip expected symbol types that are not functions 3091 * or data: 3092 * - A symbol table starts with an undefined symbol 3093 * in slot 0. If we are using SUNWSYMTAB(), 3094 * there will be a second undefined symbol 3095 * right before the globals. 3096 * - The local part of SUNWSYMTAB() contains a 3097 * series of function symbols. Each section 3098 * starts with an initial STT_FILE symbol. 3099 */ 3100 if ((sym->st_shndx == SHN_UNDEF) || 3101 (ELF_ST_TYPE(sym->st_info) == STT_FILE)) 3102 continue; 3103 3104 value = sym->st_value + base; 3105 if (value > addr) 3106 continue; 3107 if (value < _value) 3108 continue; 3109 3110 _sym = sym; 3111 _value = value; 3112 3113 /* 3114 * Note, because we accept local and global symbols 3115 * we could find a section symbol that matches the 3116 * associated address, which means that the symbol 3117 * name will be null. In this case continue the 3118 * search in case we can find a global symbol of 3119 * the same value. 3120 */ 3121 if ((value == addr) && 3122 (ELF_ST_TYPE(sym->st_info) != STT_SECTION)) 3123 break; 3124 } 3125 } 3126 3127 _flags = flags & RTLD_DL_MASK; 3128 if (_sym) { 3129 if (_flags == RTLD_DL_SYMENT) 3130 *info = (void *)_sym; 3131 else if (_flags == RTLD_DL_LINKMAP) 3132 *info = (void *)lmp; 3133 3134 dlip->dli_sname = str + _sym->st_name; 3135 dlip->dli_saddr = (void *)_value; 3136 } else { 3137 /* 3138 * addr lies between the beginning of the mapped segment and 3139 * the first global symbol. We have no symbol to return 3140 * and the caller requires one. We use _START_, the base 3141 * address of the mapping. 3142 */ 3143 3144 if (_flags == RTLD_DL_SYMENT) { 3145 /* 3146 * An actual symbol struct is needed, so we 3147 * construct one for _START_. To do this in a 3148 * fully accurate way requires a different symbol 3149 * for each mapped segment. This requires the 3150 * use of dynamic memory and a mutex. That's too much 3151 * plumbing for a fringe case of limited importance. 3152 * 3153 * Fortunately, we can simplify: 3154 * - Only the st_size and st_info fields are useful 3155 * outside of the linker internals. The others 3156 * reference things that outside code cannot see, 3157 * and can be set to 0. 3158 * - It's just a label and there is no size 3159 * to report. So, the size should be 0. 3160 * This means that only st_info needs a non-zero 3161 * (constant) value. A static struct will suffice. 3162 * It must be const (readonly) so the caller can't 3163 * change its meaning for subsequent callers. 3164 */ 3165 static const Sym fsym = { 0, 0, 0, 3166 ELF_ST_INFO(STB_LOCAL, STT_OBJECT) }; 3167 *info = (void *) &fsym; 3168 } 3169 3170 dlip->dli_sname = MSG_ORIG(MSG_SYM_START); 3171 dlip->dli_saddr = (void *) ADDR(lmp); 3172 } 3173 } 3174 3175 static void 3176 elf_lazy_cleanup(Alist *alp) 3177 { 3178 Rt_map **lmpp; 3179 Aliste off; 3180 3181 /* 3182 * Cleanup any link-maps added to this dynamic list and free it. 3183 */ 3184 for (ALIST_TRAVERSE(alp, off, lmpp)) 3185 FLAGS(*lmpp) &= ~FLG_RT_DLSYM; 3186 free(alp); 3187 } 3188 3189 /* 3190 * This routine is called upon to search for a symbol from the dependencies of 3191 * the initial link-map. To maintain lazy loadings goal of reducing the number 3192 * of objects mapped, any symbol search is first carried out using the objects 3193 * that already exist in the process (either on a link-map list or handle). 3194 * If a symbol can't be found, and lazy dependencies are still pending, this 3195 * routine loads the dependencies in an attempt to locate the symbol. 3196 * 3197 * Only new objects are inspected as we will have already inspected presently 3198 * loaded objects before calling this routine. However, a new object may not 3199 * be new - although the di_lmp might be zero, the object may have been mapped 3200 * as someone elses dependency. Thus there's a possibility of some symbol 3201 * search duplication. 3202 */ 3203 3204 Sym * 3205 elf_lazy_find_sym(Slookup *slp, Rt_map **_lmp, uint_t *binfo) 3206 { 3207 Sym *sym = 0; 3208 Alist * alist = 0; 3209 Aliste off; 3210 Rt_map ** lmpp, * lmp = slp->sl_imap; 3211 const char *name = slp->sl_name; 3212 3213 if (alist_append(&alist, &lmp, sizeof (Rt_map *), AL_CNT_LAZYFIND) == 0) 3214 return (0); 3215 FLAGS(lmp) |= FLG_RT_DLSYM; 3216 3217 for (ALIST_TRAVERSE(alist, off, lmpp)) { 3218 uint_t cnt = 0; 3219 Slookup sl = *slp; 3220 Dyninfo *dip; 3221 3222 /* 3223 * Loop through the DT_NEEDED entries examining each object for 3224 * the symbol. If the symbol is not found the object is in turn 3225 * added to the alist, so that its DT_NEEDED entires may be 3226 * examined. 3227 */ 3228 lmp = *lmpp; 3229 for (dip = DYNINFO(lmp); cnt < DYNINFOCNT(lmp); cnt++, dip++) { 3230 Rt_map *nlmp; 3231 3232 if (((dip->di_flags & FLG_DI_NEEDED) == 0) || 3233 dip->di_info) 3234 continue; 3235 3236 /* 3237 * If this entry defines a lazy dependency try loading 3238 * it. If the file can't be loaded, consider this 3239 * non-fatal and continue the search (lazy loaded 3240 * dependencies need not exist and their loading should 3241 * only be fatal if called from a relocation). 3242 * 3243 * If the file is already loaded and relocated we must 3244 * still inspect it for symbols, even though it might 3245 * have already been searched. This lazy load operation 3246 * might have promoted the permissions of the object, 3247 * and thus made the object applicable for this symbol 3248 * search, whereas before the object might have been 3249 * skipped. 3250 */ 3251 if ((nlmp = elf_lazy_load(lmp, cnt, name)) == 0) 3252 continue; 3253 3254 /* 3255 * If this object isn't yet a part of the dynamic list 3256 * then inspect it for the symbol. If the symbol isn't 3257 * found add the object to the dynamic list so that we 3258 * can inspect its dependencies. 3259 */ 3260 if (FLAGS(nlmp) & FLG_RT_DLSYM) 3261 continue; 3262 3263 sl.sl_imap = nlmp; 3264 if (sym = LM_LOOKUP_SYM(sl.sl_cmap)(&sl, _lmp, binfo)) 3265 break; 3266 3267 /* 3268 * Some dlsym() operations are already traversing a 3269 * link-map (dlopen(0)), and thus there's no need to 3270 * build our own dynamic dependency list. 3271 */ 3272 if ((sl.sl_flags & LKUP_NODESCENT) == 0) { 3273 if (alist_append(&alist, &nlmp, 3274 sizeof (Rt_map *), AL_CNT_LAZYFIND) == 0) { 3275 elf_lazy_cleanup(alist); 3276 return (0); 3277 } 3278 FLAGS(nlmp) |= FLG_RT_DLSYM; 3279 } 3280 } 3281 if (sym) 3282 break; 3283 } 3284 3285 elf_lazy_cleanup(alist); 3286 return (sym); 3287 } 3288 3289 /* 3290 * Warning message for bad r_offset. 3291 */ 3292 void 3293 elf_reloc_bad(Rt_map *lmp, void *rel, uchar_t rtype, ulong_t roffset, 3294 ulong_t rsymndx) 3295 { 3296 const char *name = (char *)0; 3297 Lm_list *lml = LIST(lmp); 3298 int trace; 3299 3300 if ((lml->lm_flags & LML_FLG_TRC_ENABLE) && 3301 (((rtld_flags & RT_FL_SILENCERR) == 0) || 3302 (lml->lm_flags & LML_FLG_TRC_VERBOSE))) 3303 trace = 1; 3304 else 3305 trace = 0; 3306 3307 if ((trace == 0) && (DBG_ENABLED == 0)) 3308 return; 3309 3310 if (rsymndx) { 3311 Sym *symref = (Sym *)((ulong_t)SYMTAB(lmp) + 3312 (rsymndx * SYMENT(lmp))); 3313 3314 if (ELF_ST_BIND(symref->st_info) != STB_LOCAL) 3315 name = (char *)(STRTAB(lmp) + symref->st_name); 3316 } 3317 3318 if (name == 0) 3319 name = MSG_ORIG(MSG_STR_EMPTY); 3320 3321 if (trace) { 3322 const char *rstr; 3323 3324 rstr = _conv_reloc_type((uint_t)rtype); 3325 (void) printf(MSG_INTL(MSG_LDD_REL_ERR1), rstr, name, 3326 EC_ADDR(roffset)); 3327 return; 3328 } 3329 3330 Dbg_reloc_error(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, name); 3331 } 3332 3333 /* 3334 * Resolve a static TLS relocation. 3335 */ 3336 long 3337 elf_static_tls(Rt_map *lmp, Sym *sym, void *rel, uchar_t rtype, char *name, 3338 ulong_t roffset, long value) 3339 { 3340 Lm_list *lml = LIST(lmp); 3341 3342 /* 3343 * Relocations against a static TLS block have limited support once 3344 * process initialization has completed. Any error condition should be 3345 * discovered by testing for DF_STATIC_TLS as part of loading an object, 3346 * however individual relocations are tested in case the dynamic flag 3347 * had not been set when this object was built. 3348 */ 3349 if (PTTLS(lmp) == 0) { 3350 DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, 3351 M_REL_SHT_TYPE, rel, NULL, name)); 3352 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS), 3353 _conv_reloc_type((uint_t)rtype), NAME(lmp), 3354 name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN)); 3355 return (0); 3356 } 3357 3358 /* 3359 * If no static TLS has been set aside for this object, determine if 3360 * any can be obtained. Enforce that any object using static TLS is 3361 * non-deletable. 3362 */ 3363 if (TLSSTATOFF(lmp) == 0) { 3364 FLAGS1(lmp) |= FL1_RT_TLSSTAT; 3365 MODE(lmp) |= RTLD_NODELETE; 3366 3367 if (tls_assign(lml, lmp, PTTLS(lmp)) == 0) { 3368 DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, 3369 M_REL_SHT_TYPE, rel, NULL, name)); 3370 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS), 3371 _conv_reloc_type((uint_t)rtype), NAME(lmp), 3372 name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN)); 3373 return (0); 3374 } 3375 } 3376 3377 /* 3378 * Typically, a static TLS offset is maintained as a symbols value. 3379 * For local symbols that are not apart of the dynamic symbol table, 3380 * the TLS relocation points to a section symbol, and the static TLS 3381 * offset was deposited in the associated GOT table. Make sure the GOT 3382 * is cleared, so that the value isn't reused in do_reloc(). 3383 */ 3384 if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) { 3385 if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION)) { 3386 value = *(long *)roffset; 3387 *(long *)roffset = 0; 3388 } else { 3389 value = sym->st_value; 3390 } 3391 } 3392 return (-(TLSSTATOFF(lmp) - value)); 3393 } 3394