xref: /titanic_51/usr/src/cmd/sgs/rtld/common/elf.c (revision 6a72db4a7fa12c3e0d1c1cf91a07390739fa0fbf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  *	Copyright (c) 1988 AT&T
24  *	  All Rights Reserved
25  *
26  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27  */
28 /*
29  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
30  */
31 
32 /*
33  * Object file dependent support for ELF objects.
34  */
35 
36 #include	<stdio.h>
37 #include	<sys/procfs.h>
38 #include	<sys/mman.h>
39 #include	<sys/debug.h>
40 #include	<string.h>
41 #include	<limits.h>
42 #include	<dlfcn.h>
43 #include	<debug.h>
44 #include	<conv.h>
45 #include	"_rtld.h"
46 #include	"_audit.h"
47 #include	"_elf.h"
48 #include	"_inline_gen.h"
49 #include	"_inline_reloc.h"
50 #include	"msg.h"
51 
52 /*
53  * Default and secure dependency search paths.
54  */
55 static Spath_defn _elf_def_dirs[] = {
56 #if	defined(_ELF64)
57 	{ MSG_ORIG(MSG_PTH_LIB_64),		MSG_PTH_LIB_64_SIZE },
58 	{ MSG_ORIG(MSG_PTH_USRLIB_64),		MSG_PTH_USRLIB_64_SIZE },
59 #else
60 	{ MSG_ORIG(MSG_PTH_LIB),		MSG_PTH_LIB_SIZE },
61 	{ MSG_ORIG(MSG_PTH_USRLIB),		MSG_PTH_USRLIB_SIZE },
62 #endif
63 	{ 0, 0 }
64 };
65 
66 static Spath_defn _elf_sec_dirs[] = {
67 #if	defined(_ELF64)
68 	{ MSG_ORIG(MSG_PTH_LIBSE_64),		MSG_PTH_LIBSE_64_SIZE },
69 	{ MSG_ORIG(MSG_PTH_USRLIBSE_64),	MSG_PTH_USRLIBSE_64_SIZE },
70 #else
71 	{ MSG_ORIG(MSG_PTH_LIBSE),		MSG_PTH_LIBSE_SIZE },
72 	{ MSG_ORIG(MSG_PTH_USRLIBSE),		MSG_PTH_USRLIBSE_SIZE },
73 #endif
74 	{ 0, 0 }
75 };
76 
77 Alist	*elf_def_dirs = NULL;
78 Alist	*elf_sec_dirs = NULL;
79 
80 /*
81  * Defines for local functions.
82  */
83 static void	elf_dladdr(ulong_t, Rt_map *, Dl_info *, void **, int);
84 static Addr	elf_entry_point(void);
85 static int	elf_fix_name(const char *, Rt_map *, Alist **, Aliste, uint_t);
86 static Alist	**elf_get_def_dirs(void);
87 static Alist	**elf_get_sec_dirs(void);
88 static char	*elf_get_so(const char *, const char *, size_t, size_t);
89 static int	elf_needed(Lm_list *, Aliste, Rt_map *, int *);
90 
91 /*
92  * Functions and data accessed through indirect pointers.
93  */
94 Fct elf_fct = {
95 	elf_verify,
96 	elf_new_lmp,
97 	elf_entry_point,
98 	elf_needed,
99 	lookup_sym,
100 	elf_reloc,
101 	elf_get_def_dirs,
102 	elf_get_sec_dirs,
103 	elf_fix_name,
104 	elf_get_so,
105 	elf_dladdr,
106 	dlsym_handle
107 };
108 
109 /*
110  * Default and secure dependency search paths.
111  */
112 static Alist **
113 elf_get_def_dirs()
114 {
115 	if (elf_def_dirs == NULL)
116 		set_dirs(&elf_def_dirs, _elf_def_dirs, LA_SER_DEFAULT);
117 	return (&elf_def_dirs);
118 }
119 
120 static Alist **
121 elf_get_sec_dirs()
122 {
123 	if (elf_sec_dirs == NULL)
124 		set_dirs(&elf_sec_dirs, _elf_sec_dirs, LA_SER_SECURE);
125 	return (&elf_sec_dirs);
126 }
127 
128 /*
129  * Redefine NEEDED name if necessary.
130  */
131 static int
132 elf_fix_name(const char *name, Rt_map *clmp, Alist **alpp, Aliste alni,
133     uint_t orig)
134 {
135 	/*
136 	 * For ABI compliance, if we are asked for ld.so.1, then really give
137 	 * them libsys.so.1 (the SONAME of libsys.so.1 is ld.so.1).
138 	 */
139 	if (((*name == '/') &&
140 	/* BEGIN CSTYLED */
141 #if	defined(_ELF64)
142 	    (strcmp(name, MSG_ORIG(MSG_PTH_RTLD_64)) == 0)) ||
143 #else
144 	    (strcmp(name, MSG_ORIG(MSG_PTH_RTLD)) == 0)) ||
145 #endif
146 	    (strcmp(name, MSG_ORIG(MSG_FIL_RTLD)) == 0)) {
147 		/* END CSTYLED */
148 		Pdesc	*pdp;
149 
150 		DBG_CALL(Dbg_file_fixname(LIST(clmp), name,
151 		    MSG_ORIG(MSG_PTH_LIBSYS)));
152 		if ((pdp = alist_append(alpp, NULL, sizeof (Pdesc),
153 		    alni)) == NULL)
154 			return (0);
155 
156 		pdp->pd_pname = (char *)MSG_ORIG(MSG_PTH_LIBSYS);
157 		pdp->pd_plen = MSG_PTH_LIBSYS_SIZE;
158 		pdp->pd_flags = PD_FLG_PNSLASH;
159 
160 		return (1);
161 	}
162 
163 	return (expand_paths(clmp, name, alpp, alni, orig, 0));
164 }
165 
166 /*
167  * Determine whether this object requires capabilities.
168  */
169 inline static int
170 elf_cap_check(Fdesc *fdp, Ehdr *ehdr, Rej_desc *rej)
171 {
172 	Phdr	*phdr;
173 	Cap	*cap = NULL;
174 	Dyn	*dyn = NULL;
175 	char	*str = NULL;
176 	Addr	base;
177 	uint_t	cnt, dyncnt;
178 
179 	/*
180 	 * If this is a shared object, the base address of the shared object is
181 	 * added to all address values defined within the object.  Otherwise, if
182 	 * this is an executable, all object addresses are used as is.
183 	 */
184 	if (ehdr->e_type == ET_EXEC)
185 		base = 0;
186 	else
187 		base = (Addr)ehdr;
188 
189 	/* LINTED */
190 	phdr = (Phdr *)((char *)ehdr + ehdr->e_phoff);
191 	for (cnt = 0; cnt < ehdr->e_phnum; cnt++, phdr++) {
192 		if (phdr->p_type == PT_DYNAMIC) {
193 			/* LINTED */
194 			dyn = (Dyn *)((uintptr_t)phdr->p_vaddr + base);
195 			dyncnt = phdr->p_filesz / sizeof (Dyn);
196 		} else if (phdr->p_type == PT_SUNWCAP) {
197 			/* LINTED */
198 			cap = (Cap *)((uintptr_t)phdr->p_vaddr + base);
199 		}
200 	}
201 
202 	if (cap) {
203 		/*
204 		 * From the .dynamic section, determine the associated string
205 		 * table.  Required for CA_SUNW_MACH and CA_SUNW_PLAT
206 		 * processing.
207 		 */
208 		while (dyn && dyncnt) {
209 			if (dyn->d_tag == DT_NULL) {
210 				break;
211 			} else if (dyn->d_tag == DT_STRTAB) {
212 				str = (char *)(dyn->d_un.d_ptr + base);
213 				break;
214 			}
215 			dyn++, dyncnt--;
216 		}
217 	}
218 
219 	/*
220 	 * Establish any alternative capabilities, and validate this object
221 	 * if it defines it's own capabilities information.
222 	 */
223 	return (cap_check_fdesc(fdp, cap, str, rej));
224 }
225 
226 /*
227  * Determine if we have been given an ELF file and if so determine if the file
228  * is compatible.  Returns 1 if true, else 0 and sets the reject descriptor
229  * with associated error information.
230  */
231 Fct *
232 elf_verify(caddr_t addr, size_t size, Fdesc *fdp, const char *name,
233     Rej_desc *rej)
234 {
235 	Ehdr	*ehdr;
236 	char	*caddr = (char *)addr;
237 
238 	/*
239 	 * Determine if we're an elf file.  If not simply return, we don't set
240 	 * any rejection information as this test allows use to scroll through
241 	 * the objects we support (ELF, AOUT).
242 	 */
243 	if (size < sizeof (Ehdr) ||
244 	    caddr[EI_MAG0] != ELFMAG0 ||
245 	    caddr[EI_MAG1] != ELFMAG1 ||
246 	    caddr[EI_MAG2] != ELFMAG2 ||
247 	    caddr[EI_MAG3] != ELFMAG3) {
248 		return (NULL);
249 	}
250 
251 	/*
252 	 * Check class and encoding.
253 	 */
254 	/* LINTED */
255 	ehdr = (Ehdr *)addr;
256 	if (ehdr->e_ident[EI_CLASS] != M_CLASS) {
257 		rej->rej_type = SGS_REJ_CLASS;
258 		rej->rej_info = (uint_t)ehdr->e_ident[EI_CLASS];
259 		return (NULL);
260 	}
261 	if (ehdr->e_ident[EI_DATA] != M_DATA) {
262 		rej->rej_type = SGS_REJ_DATA;
263 		rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA];
264 		return (NULL);
265 	}
266 	if ((ehdr->e_type != ET_REL) && (ehdr->e_type != ET_EXEC) &&
267 	    (ehdr->e_type != ET_DYN)) {
268 		rej->rej_type = SGS_REJ_TYPE;
269 		rej->rej_info = (uint_t)ehdr->e_type;
270 		return (NULL);
271 	}
272 
273 	/*
274 	 * Verify ELF version.
275 	 */
276 	if (ehdr->e_version > EV_CURRENT) {
277 		rej->rej_type = SGS_REJ_VERSION;
278 		rej->rej_info = (uint_t)ehdr->e_version;
279 		return (NULL);
280 	}
281 
282 	/*
283 	 * Verify machine specific flags.
284 	 */
285 	if (elf_mach_flags_check(rej, ehdr) == 0)
286 		return (NULL);
287 
288 	/*
289 	 * Verify any capability requirements.  Note, if this object is a shared
290 	 * object that is explicitly defined on the ldd(1) command line, and it
291 	 * contains an incompatible capabilities requirement, then inform the
292 	 * user, but continue processing.
293 	 */
294 	if (elf_cap_check(fdp, ehdr, rej) == 0) {
295 		Rt_map	*lmp = lml_main.lm_head;
296 
297 		if ((lml_main.lm_flags & LML_FLG_TRC_LDDSTUB) && lmp &&
298 		    (FLAGS1(lmp) & FL1_RT_LDDSTUB) && (NEXT(lmp) == NULL)) {
299 			/* LINTED */
300 			(void) printf(MSG_INTL(ldd_warn[rej->rej_type]), name,
301 			    rej->rej_str);
302 			return (&elf_fct);
303 		}
304 		return (NULL);
305 	}
306 	return (&elf_fct);
307 }
308 
309 /*
310  * The runtime linker employs lazy loading to provide the libraries needed for
311  * debugging, preloading .o's and dldump().  As these are seldom used, the
312  * standard startup of ld.so.1 doesn't initialize all the information necessary
313  * to perform plt relocation on ld.so.1's link-map.  The first time lazy loading
314  * is called we get here to perform these initializations:
315  *
316  *  -	elf_needed() is called to establish any ld.so.1 dependencies.  These
317  *	dependencies should all be lazy loaded, so this routine is typically a
318  * 	no-op.  However, we call elf_needed() for completeness, in case any
319  *	NEEDED initialization is required.
320  *
321  *  -	For intel, ld.so.1's JMPSLOT relocations need relative updates. These
322  *	are by default skipped thus delaying all relative relocation processing
323  * 	on every invocation of ld.so.1.
324  */
325 int
326 elf_rtld_load()
327 {
328 	Lm_list	*lml = &lml_rtld;
329 	Rt_map	*lmp = lml->lm_head;
330 
331 	if (lml->lm_flags & LML_FLG_PLTREL)
332 		return (1);
333 
334 	if (elf_needed(lml, ALIST_OFF_DATA, lmp, NULL) == 0)
335 		return (0);
336 
337 #if	defined(__i386)
338 	/*
339 	 * This is a kludge to give ld.so.1 a performance benefit on i386.
340 	 * It's based around two factors.
341 	 *
342 	 *  -	JMPSLOT relocations (PLT's) actually need a relative relocation
343 	 *	applied to the GOT entry so that they can find PLT0.
344 	 *
345 	 *  -	ld.so.1 does not exercise *any* PLT's before it has made a call
346 	 *	to elf_lazy_load().  This is because all dynamic dependencies
347 	 * 	are recorded as lazy dependencies.
348 	 */
349 	(void) elf_reloc_relative_count((ulong_t)JMPREL(lmp),
350 	    (ulong_t)(PLTRELSZ(lmp) / RELENT(lmp)), (ulong_t)RELENT(lmp),
351 	    (ulong_t)ADDR(lmp), lmp, NULL, 0);
352 #endif
353 	lml->lm_flags |= LML_FLG_PLTREL;
354 	return (1);
355 }
356 
357 /*
358  * Lazy load an object.
359  */
360 Rt_map *
361 elf_lazy_load(Rt_map *clmp, Slookup *slp, uint_t ndx, const char *sym,
362     uint_t flags, Grp_hdl **hdl, int *in_nfavl)
363 {
364 	Alist		*palp = NULL;
365 	Rt_map		*nlmp;
366 	Dyninfo		*dip = &DYNINFO(clmp)[ndx], *pdip;
367 	const char	*name;
368 	Lm_list		*lml = LIST(clmp);
369 	Aliste		lmco;
370 
371 	/*
372 	 * If this dependency should be ignored, or has already been processed,
373 	 * we're done.
374 	 */
375 	if (((nlmp = (Rt_map *)dip->di_info) != NULL) ||
376 	    (dip->di_flags & (FLG_DI_IGNORE | FLG_DI_LDD_DONE)))
377 		return (nlmp);
378 
379 	/*
380 	 * If we're running under ldd(1), indicate that this dependency has been
381 	 * processed (see test above).  It doesn't matter whether the object is
382 	 * successfully loaded or not, this flag simply ensures that we don't
383 	 * repeatedly attempt to load an object that has already failed to load.
384 	 * To do so would create multiple failure diagnostics for the same
385 	 * object under ldd(1).
386 	 */
387 	if (lml->lm_flags & LML_FLG_TRC_ENABLE)
388 		dip->di_flags |= FLG_DI_LDD_DONE;
389 
390 	/*
391 	 * Determine the initial dependency name.
392 	 */
393 	name = dip->di_name;
394 	DBG_CALL(Dbg_file_lazyload(clmp, name, sym));
395 
396 	/*
397 	 * If this object needs to establish its own group, make sure a handle
398 	 * is created.
399 	 */
400 	if (dip->di_flags & FLG_DI_GROUP)
401 		flags |= (FLG_RT_SETGROUP | FLG_RT_PUBHDL);
402 
403 	/*
404 	 * Lazy dependencies are identified as DT_NEEDED entries with a
405 	 * DF_P1_LAZYLOAD flag in the previous DT_POSFLAG_1 element.  The
406 	 * dynamic information element that corresponds to the DT_POSFLAG_1
407 	 * entry is free, and thus used to store the present entrance
408 	 * identifier.  This identifier is used to prevent multiple attempts to
409 	 * load a failed lazy loadable dependency within the same runtime linker
410 	 * operation.  However, future attempts to reload this dependency are
411 	 * still possible.
412 	 */
413 	if (ndx && (pdip = dip - 1) && (pdip->di_flags & FLG_DI_POSFLAG1))
414 		pdip->di_info = (void *)slp->sl_id;
415 
416 	/*
417 	 * Expand the requested name if necessary.
418 	 */
419 	if (elf_fix_name(name, clmp, &palp, AL_CNT_NEEDED, 0) == 0)
420 		return (NULL);
421 
422 	/*
423 	 * Establish a link-map control list for this request.
424 	 */
425 	if ((lmco = create_cntl(lml, 0)) == NULL) {
426 		remove_alist(&palp, 1);
427 		return (NULL);
428 	}
429 
430 	/*
431 	 * Load the associated object.
432 	 */
433 	dip->di_info = nlmp =
434 	    load_one(lml, lmco, palp, clmp, MODE(clmp), flags, hdl, in_nfavl);
435 
436 	/*
437 	 * Remove any expanded pathname infrastructure.  Reduce the pending lazy
438 	 * dependency count of the caller, together with the link-map lists
439 	 * count of objects that still have lazy dependencies pending.
440 	 */
441 	remove_alist(&palp, 1);
442 	if (--LAZY(clmp) == 0)
443 		LIST(clmp)->lm_lazy--;
444 
445 	/*
446 	 * Finish processing the objects associated with this request, and
447 	 * create an association between the caller and this dependency.
448 	 */
449 	if (nlmp && ((bind_one(clmp, nlmp, BND_NEEDED) == 0) ||
450 	    ((nlmp = analyze_lmc(lml, lmco, nlmp, clmp, in_nfavl)) == NULL) ||
451 	    (relocate_lmc(lml, lmco, clmp, nlmp, in_nfavl) == 0)))
452 		dip->di_info = nlmp = NULL;
453 
454 	/*
455 	 * If this lazyload has failed, and we've created a new link-map
456 	 * control list to which this request has added objects, then remove
457 	 * all the objects that have been associated to this request.
458 	 */
459 	if ((nlmp == NULL) && (lmco != ALIST_OFF_DATA))
460 		remove_lmc(lml, clmp, lmco, name);
461 
462 	/*
463 	 * Remove any temporary link-map control list.
464 	 */
465 	if (lmco != ALIST_OFF_DATA)
466 		remove_cntl(lml, lmco);
467 
468 	/*
469 	 * If this lazy loading failed, record the fact, and bump the lazy
470 	 * counts.
471 	 */
472 	if (nlmp == NULL) {
473 		dip->di_flags |= FLG_DI_LAZYFAIL;
474 		if (LAZY(clmp)++ == 0)
475 			LIST(clmp)->lm_lazy++;
476 	}
477 
478 	return (nlmp);
479 }
480 
481 /*
482  * Return the entry point of the ELF executable.
483  */
484 static Addr
485 elf_entry_point(void)
486 {
487 	Rt_map	*lmp = lml_main.lm_head;
488 	Ehdr	*ehdr = (Ehdr *)ADDR(lmp);
489 	Addr	addr = (Addr)(ehdr->e_entry);
490 
491 	if ((FLAGS(lmp) & FLG_RT_FIXED) == 0)
492 		addr += ADDR(lmp);
493 
494 	return (addr);
495 }
496 
497 /*
498  * Determine if a dependency requires a particular version and if so verify
499  * that the version exists in the dependency.
500  */
501 int
502 elf_verify_vers(const char *name, Rt_map *clmp, Rt_map *nlmp)
503 {
504 	Verneed		*vnd = VERNEED(clmp);
505 	int		_num, num = VERNEEDNUM(clmp);
506 	char		*cstrs = (char *)STRTAB(clmp);
507 	Lm_list		*lml = LIST(clmp);
508 
509 	/*
510 	 * Traverse the callers version needed information and determine if any
511 	 * specific versions are required from the dependency.
512 	 */
513 	DBG_CALL(Dbg_ver_need_title(LIST(clmp), NAME(clmp)));
514 	for (_num = 1; _num <= num; _num++,
515 	    vnd = (Verneed *)((Xword)vnd + vnd->vn_next)) {
516 		Half		cnt = vnd->vn_cnt;
517 		Vernaux		*vnap;
518 		char		*nstrs, *need;
519 
520 		/*
521 		 * Determine if a needed entry matches this dependency.
522 		 */
523 		need = (char *)(cstrs + vnd->vn_file);
524 		if (strcmp(name, need) != 0)
525 			continue;
526 
527 		if ((lml->lm_flags & LML_FLG_TRC_VERBOSE) &&
528 		    ((FLAGS1(clmp) & FL1_RT_LDDSTUB) == 0))
529 			(void) printf(MSG_INTL(MSG_LDD_VER_FIND), name);
530 
531 		/*
532 		 * Validate that each version required actually exists in the
533 		 * dependency.
534 		 */
535 		nstrs = (char *)STRTAB(nlmp);
536 
537 		for (vnap = (Vernaux *)((Xword)vnd + vnd->vn_aux); cnt;
538 		    cnt--, vnap = (Vernaux *)((Xword)vnap + vnap->vna_next)) {
539 			char		*version, *define;
540 			Verdef		*vdf = VERDEF(nlmp);
541 			ulong_t		_num, num = VERDEFNUM(nlmp);
542 			int		found = 0;
543 
544 			/*
545 			 * Skip validation of versions that are marked
546 			 * INFO. This optimization is used for versions
547 			 * that are inherited by another version. Verification
548 			 * of the inheriting version is sufficient.
549 			 *
550 			 * Such versions are recorded in the object for the
551 			 * benefit of VERSYM entries that refer to them. This
552 			 * provides a purely diagnostic benefit.
553 			 */
554 			if (vnap->vna_flags & VER_FLG_INFO)
555 				continue;
556 
557 			version = (char *)(cstrs + vnap->vna_name);
558 			DBG_CALL(Dbg_ver_need_entry(lml, 0, need, version));
559 
560 			for (_num = 1; _num <= num; _num++,
561 			    vdf = (Verdef *)((Xword)vdf + vdf->vd_next)) {
562 				Verdaux		*vdap;
563 
564 				if (vnap->vna_hash != vdf->vd_hash)
565 					continue;
566 
567 				vdap = (Verdaux *)((Xword)vdf + vdf->vd_aux);
568 				define = (char *)(nstrs + vdap->vda_name);
569 				if (strcmp(version, define) != 0)
570 					continue;
571 
572 				found++;
573 				break;
574 			}
575 
576 			/*
577 			 * If we're being traced print out any matched version
578 			 * when the verbose (-v) option is in effect.  Always
579 			 * print any unmatched versions.
580 			 */
581 			if (lml->lm_flags & LML_FLG_TRC_ENABLE) {
582 				/* BEGIN CSTYLED */
583 				if (found) {
584 				    if (!(lml->lm_flags & LML_FLG_TRC_VERBOSE))
585 					continue;
586 
587 				    (void) printf(MSG_ORIG(MSG_LDD_VER_FOUND),
588 					need, version, NAME(nlmp));
589 				} else {
590 				    if (rtld_flags & RT_FL_SILENCERR)
591 					continue;
592 
593 				    (void) printf(MSG_INTL(MSG_LDD_VER_NFOUND),
594 					need, version);
595 				}
596 				/* END CSTYLED */
597 				continue;
598 			}
599 
600 			/*
601 			 * If the version hasn't been found then this is a
602 			 * candidate for a fatal error condition.  Weak
603 			 * version definition requirements are silently
604 			 * ignored.  Also, if the image inspected for a version
605 			 * definition has no versioning recorded at all then
606 			 * silently ignore this (this provides better backward
607 			 * compatibility to old images created prior to
608 			 * versioning being available).  Both of these skipped
609 			 * diagnostics are available under tracing (see above).
610 			 */
611 			if ((found == 0) && (num != 0) &&
612 			    (!(vnap->vna_flags & VER_FLG_WEAK))) {
613 				eprintf(lml, ERR_FATAL,
614 				    MSG_INTL(MSG_VER_NFOUND), need, version,
615 				    NAME(clmp));
616 				return (0);
617 			}
618 		}
619 	}
620 	DBG_CALL(Dbg_ver_need_done(lml));
621 	return (1);
622 }
623 
624 /*
625  * Search through the dynamic section for DT_NEEDED entries and perform one
626  * of two functions.  If only the first argument is specified then load the
627  * defined shared object, otherwise add the link map representing the defined
628  * link map the the dlopen list.
629  */
630 static int
631 elf_needed(Lm_list *lml, Aliste lmco, Rt_map *clmp, int *in_nfavl)
632 {
633 	Alist		*palp = NULL;
634 	Dyn		*dyn;
635 	Dyninfo		*dip;
636 	Word		lmflags = lml->lm_flags;
637 
638 	/*
639 	 * A DYNINFO() structure is created during link-map generation that
640 	 * parallels the DYN() information, and defines any flags that
641 	 * influence a dependencies loading.
642 	 */
643 	for (dyn = DYN(clmp), dip = DYNINFO(clmp);
644 	    !(dip->di_flags & FLG_DI_IGNORE); dyn++, dip++) {
645 		uint_t		flags = 0, silent = 0;
646 		const char	*name = dip->di_name;
647 		Rt_map		*nlmp = NULL;
648 
649 		if ((dip->di_flags & FLG_DI_NEEDED) == 0)
650 			continue;
651 
652 		/*
653 		 * Skip any deferred dependencies, unless ldd(1) has forced
654 		 * their processing.  By default, deferred dependencies are
655 		 * only processed when an explicit binding to an individual
656 		 * deferred reference is made.
657 		 */
658 		if ((dip->di_flags & FLG_DI_DEFERRED) &&
659 		    ((rtld_flags & RT_FL_DEFERRED) == 0))
660 			continue;
661 
662 		/*
663 		 * NOTE, libc.so.1 can't be lazy loaded.  Although a lazy
664 		 * position flag won't be produced when a RTLDINFO .dynamic
665 		 * entry is found (introduced with the UPM in Solaris 10), it
666 		 * was possible to mark libc for lazy loading on previous
667 		 * releases.  To reduce the overhead of testing for this
668 		 * occurrence, only carry out this check for the first object
669 		 * on the link-map list (there aren't many applications built
670 		 * without libc).
671 		 */
672 		if ((dip->di_flags & FLG_DI_LAZY) && (lml->lm_head == clmp) &&
673 		    (strcmp(name, MSG_ORIG(MSG_FIL_LIBC)) == 0))
674 			dip->di_flags &= ~FLG_DI_LAZY;
675 
676 		/*
677 		 * Don't bring in lazy loaded objects yet unless we've been
678 		 * asked to attempt to load all available objects (crle(1) sets
679 		 * LD_FLAGS=loadavail).  Even under RTLD_NOW we don't process
680 		 * this - RTLD_NOW will cause relocation processing which in
681 		 * turn might trigger lazy loading, but its possible that the
682 		 * object has a lazy loaded file with no bindings (i.e., it
683 		 * should never have been a dependency in the first place).
684 		 */
685 		if (dip->di_flags & FLG_DI_LAZY) {
686 			if ((lmflags & LML_FLG_LOADAVAIL) == 0) {
687 				LAZY(clmp)++;
688 				continue;
689 			}
690 
691 			/*
692 			 * Silence any error messages - see description under
693 			 * elf_lookup_filtee().
694 			 */
695 			if ((rtld_flags & RT_FL_SILENCERR) == 0) {
696 				rtld_flags |= RT_FL_SILENCERR;
697 				silent = 1;
698 			}
699 		}
700 
701 		DBG_CALL(Dbg_file_needed(clmp, name));
702 
703 		/*
704 		 * If we're running under ldd(1), indicate that this dependency
705 		 * has been processed.  It doesn't matter whether the object is
706 		 * successfully loaded or not, this flag simply ensures that we
707 		 * don't repeatedly attempt to load an object that has already
708 		 * failed to load.  To do so would create multiple failure
709 		 * diagnostics for the same object under ldd(1).
710 		 */
711 		if (lml->lm_flags & LML_FLG_TRC_ENABLE)
712 			dip->di_flags |= FLG_DI_LDD_DONE;
713 
714 		/*
715 		 * Identify any group permission requirements.
716 		 */
717 		if (dip->di_flags & FLG_DI_GROUP)
718 			flags = (FLG_RT_SETGROUP | FLG_RT_PUBHDL);
719 
720 		/*
721 		 * Establish the objects name, load it and establish a binding
722 		 * with the caller.
723 		 */
724 		if ((elf_fix_name(name, clmp, &palp, AL_CNT_NEEDED, 0) == 0) ||
725 		    ((nlmp = load_one(lml, lmco, palp, clmp, MODE(clmp),
726 		    flags, 0, in_nfavl)) == NULL) ||
727 		    (bind_one(clmp, nlmp, BND_NEEDED) == 0))
728 			nlmp = NULL;
729 
730 		/*
731 		 * Clean up any infrastructure, including the removal of the
732 		 * error suppression state, if it had been previously set in
733 		 * this routine.
734 		 */
735 		remove_alist(&palp, 0);
736 
737 		if (silent)
738 			rtld_flags &= ~RT_FL_SILENCERR;
739 
740 		if ((dip->di_info = (void *)nlmp) == NULL) {
741 			/*
742 			 * If the object could not be mapped, continue if error
743 			 * suppression is established or we're here with ldd(1).
744 			 */
745 			if ((MODE(clmp) & RTLD_CONFGEN) || (lmflags &
746 			    (LML_FLG_LOADAVAIL | LML_FLG_TRC_ENABLE)))
747 				continue;
748 			else {
749 				remove_alist(&palp, 1);
750 				return (0);
751 			}
752 		}
753 	}
754 
755 	if (LAZY(clmp))
756 		lml->lm_lazy++;
757 
758 	remove_alist(&palp, 1);
759 	return (1);
760 }
761 
762 /*
763  * A null symbol interpretor.  Used if a filter has no associated filtees.
764  */
765 /* ARGSUSED0 */
766 static int
767 elf_null_find_sym(Slookup *slp, Sresult *srp, uint_t *binfo, int *in_nfavl)
768 {
769 	return (0);
770 }
771 
772 /*
773  * Disable filtee use.
774  */
775 static void
776 elf_disable_filtee(Rt_map *lmp, Dyninfo *dip)
777 {
778 	if ((dip->di_flags & FLG_DI_SYMFLTR) == 0) {
779 		/*
780 		 * If this is an object filter, null out the reference name.
781 		 */
782 		if (OBJFLTRNDX(lmp) != FLTR_DISABLED) {
783 			REFNAME(lmp) = NULL;
784 			OBJFLTRNDX(lmp) = FLTR_DISABLED;
785 
786 			/*
787 			 * Indicate that this filtee is no longer available.
788 			 */
789 			if (dip->di_flags & FLG_DI_STDFLTR)
790 				SYMINTP(lmp) = elf_null_find_sym;
791 
792 		}
793 	} else if (dip->di_flags & FLG_DI_STDFLTR) {
794 		/*
795 		 * Indicate that this standard filtee is no longer available.
796 		 */
797 		if (SYMSFLTRCNT(lmp))
798 			SYMSFLTRCNT(lmp)--;
799 	} else {
800 		/*
801 		 * Indicate that this auxiliary filtee is no longer available.
802 		 */
803 		if (SYMAFLTRCNT(lmp))
804 			SYMAFLTRCNT(lmp)--;
805 	}
806 	dip->di_flags &= ~MSK_DI_FILTER;
807 }
808 
809 /*
810  * Find symbol interpreter - filters.
811  * This function is called when the symbols from a shared object should
812  * be resolved from the shared objects filtees instead of from within itself.
813  *
814  * A symbol name of 0 is used to trigger filtee loading.
815  */
816 static int
817 _elf_lookup_filtee(Slookup *slp, Sresult *srp, uint_t *binfo, uint_t ndx,
818     int *in_nfavl)
819 {
820 	const char	*name = slp->sl_name, *filtees;
821 	Rt_map		*clmp = slp->sl_cmap;
822 	Rt_map		*ilmp = slp->sl_imap;
823 	Pdesc		*pdp;
824 	int		any;
825 	Dyninfo		*dip = &DYNINFO(ilmp)[ndx];
826 	Lm_list		*lml = LIST(ilmp);
827 	Aliste		idx;
828 
829 	/*
830 	 * Indicate that the filter has been used.  If a binding already exists
831 	 * to the caller, indicate that this object is referenced.  This insures
832 	 * we don't generate false unreferenced diagnostics from ldd -u/U or
833 	 * debugging.  Don't create a binding regardless, as this filter may
834 	 * have been dlopen()'ed.
835 	 */
836 	if (name && (ilmp != clmp)) {
837 		Word	tracing = (LIST(clmp)->lm_flags &
838 		    (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED));
839 
840 		if (tracing || DBG_ENABLED) {
841 			Bnd_desc 	*bdp;
842 			Aliste		idx;
843 
844 			FLAGS1(ilmp) |= FL1_RT_USED;
845 
846 			if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) {
847 				for (APLIST_TRAVERSE(CALLERS(ilmp), idx, bdp)) {
848 					if (bdp->b_caller == clmp) {
849 						bdp->b_flags |= BND_REFER;
850 						break;
851 					}
852 				}
853 			}
854 		}
855 	}
856 
857 	/*
858 	 * If this is the first call to process this filter, establish the
859 	 * filtee list.  If a configuration file exists, determine if any
860 	 * filtee associations for this filter, and its filtee reference, are
861 	 * defined.  Otherwise, process the filtee reference.  Any token
862 	 * expansion is also completed at this point (i.e., $PLATFORM).
863 	 */
864 	filtees = dip->di_name;
865 	if (dip->di_info == NULL) {
866 		if (rtld_flags2 & RT_FL2_FLTCFG) {
867 			elf_config_flt(lml, PATHNAME(ilmp), filtees,
868 			    (Alist **)&dip->di_info, AL_CNT_FILTEES);
869 		}
870 		if (dip->di_info == NULL) {
871 			DBG_CALL(Dbg_file_filter(lml, NAME(ilmp), filtees, 0));
872 			if ((lml->lm_flags &
873 			    (LML_FLG_TRC_VERBOSE | LML_FLG_TRC_SEARCH)) &&
874 			    ((FLAGS1(ilmp) & FL1_RT_LDDSTUB) == 0))
875 				(void) printf(MSG_INTL(MSG_LDD_FIL_FILTER),
876 				    NAME(ilmp), filtees);
877 
878 			if (expand_paths(ilmp, filtees, (Alist **)&dip->di_info,
879 			    AL_CNT_FILTEES, 0, 0) == 0) {
880 				elf_disable_filtee(ilmp, dip);
881 				return (0);
882 			}
883 		}
884 	}
885 
886 	/*
887 	 * Traverse the filtee list, dlopen()'ing any objects specified and
888 	 * using their group handle to lookup the symbol.
889 	 */
890 	any = 0;
891 	for (ALIST_TRAVERSE((Alist *)dip->di_info, idx, pdp)) {
892 		int	mode;
893 		Grp_hdl	*ghp;
894 		Rt_map	*nlmp = NULL;
895 
896 		if (pdp->pd_plen == 0)
897 			continue;
898 
899 		/*
900 		 * Establish the mode of the filtee from the filter.  As filtees
901 		 * are loaded via a dlopen(), make sure that RTLD_GROUP is set
902 		 * and the filtees aren't global.  It would be nice to have
903 		 * RTLD_FIRST used here also, but as filters got out long before
904 		 * RTLD_FIRST was introduced it's a little too late now.
905 		 */
906 		mode = MODE(ilmp) | RTLD_GROUP;
907 		mode &= ~RTLD_GLOBAL;
908 
909 		/*
910 		 * Insure that any auxiliary filter can locate symbols from its
911 		 * caller.
912 		 */
913 		if (dip->di_flags & FLG_DI_AUXFLTR)
914 			mode |= RTLD_PARENT;
915 
916 		/*
917 		 * Process any capability directory.  Establish a new link-map
918 		 * control list from which to analyze any newly added objects.
919 		 */
920 		if ((pdp->pd_info == NULL) && (pdp->pd_flags & PD_TKN_CAP)) {
921 			const char	*dir = pdp->pd_pname;
922 			Aliste		lmco;
923 
924 			/*
925 			 * Establish a link-map control list for this request.
926 			 */
927 			if ((lmco = create_cntl(lml, 0)) == NULL)
928 				return (NULL);
929 
930 			/*
931 			 * Determine the capability filtees.  If none can be
932 			 * found, provide suitable diagnostics.
933 			 */
934 			DBG_CALL(Dbg_cap_filter(lml, dir, ilmp));
935 			if (cap_filtees((Alist **)&dip->di_info, idx, dir,
936 			    lmco, ilmp, clmp, filtees, mode,
937 			    (FLG_RT_PUBHDL | FLG_RT_CAP), in_nfavl) == 0) {
938 				if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
939 				    (dip->di_flags & FLG_DI_AUXFLTR) &&
940 				    (rtld_flags & RT_FL_WARNFLTR)) {
941 					(void) printf(
942 					    MSG_INTL(MSG_LDD_CAP_NFOUND), dir);
943 				}
944 				DBG_CALL(Dbg_cap_filter(lml, dir, 0));
945 			}
946 
947 			/*
948 			 * Re-establish the originating path name descriptor,
949 			 * as the expansion of capabilities filtees may have
950 			 * re-allocated the controlling Alist.  Mark this
951 			 * original pathname descriptor as unused so that the
952 			 * descriptor isn't revisited for processing.  Any real
953 			 * capabilities filtees have been added as new pathname
954 			 * descriptors following this descriptor.
955 			 */
956 			pdp = alist_item((Alist *)dip->di_info, idx);
957 			pdp->pd_flags &= ~PD_TKN_CAP;
958 			pdp->pd_plen = 0;
959 
960 			/*
961 			 * Now that any capability objects have been processed,
962 			 * remove any temporary link-map control list.
963 			 */
964 			if (lmco != ALIST_OFF_DATA)
965 				remove_cntl(lml, lmco);
966 		}
967 
968 		if (pdp->pd_plen == 0)
969 			continue;
970 
971 		/*
972 		 * Process an individual filtee.
973 		 */
974 		if (pdp->pd_info == NULL) {
975 			const char	*filtee = pdp->pd_pname;
976 			int		audit = 0;
977 
978 			DBG_CALL(Dbg_file_filtee(lml, NAME(ilmp), filtee, 0));
979 
980 			ghp = NULL;
981 
982 			/*
983 			 * Determine if the reference link map is already
984 			 * loaded.  As an optimization compare the filtee with
985 			 * our interpretor.  The most common filter is
986 			 * libdl.so.1, which is a filter on ld.so.1.
987 			 */
988 #if	defined(_ELF64)
989 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD_64)) == 0) {
990 #else
991 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD)) == 0) {
992 #endif
993 				uint_t	hflags, rdflags, cdflags;
994 
995 				/*
996 				 * Establish any flags for the handle (Grp_hdl).
997 				 *
998 				 *  -	This is a special, public, ld.so.1
999 				 *	handle.
1000 				 *  -	Only the first object on this handle
1001 				 *	can supply symbols.
1002 				 *  -	This handle provides a filtee.
1003 				 *
1004 				 * Essentially, this handle allows a caller to
1005 				 * reference the dl*() family of interfaces from
1006 				 * ld.so.1.
1007 				 */
1008 				hflags = (GPH_PUBLIC | GPH_LDSO |
1009 				    GPH_FIRST | GPH_FILTEE);
1010 
1011 				/*
1012 				 * Establish the flags for the referenced
1013 				 * dependency descriptor (Grp_desc).
1014 				 *
1015 				 *  -	ld.so.1 is available for dlsym().
1016 				 *  -	ld.so.1 is available to relocate
1017 				 *	against.
1018 				 *  -	There's no need to add an dependencies
1019 				 * 	to this handle.
1020 				 */
1021 				rdflags = (GPD_DLSYM | GPD_RELOC);
1022 
1023 				/*
1024 				 * Establish the flags for this callers
1025 				 * dependency descriptor (Grp_desc).
1026 				 *
1027 				 *  -   The explicit creation of a handle
1028 				 *	creates a descriptor for the referenced
1029 				 *	object and the parent (caller).
1030 				 */
1031 				cdflags = GPD_PARENT;
1032 
1033 				nlmp = lml_rtld.lm_head;
1034 				if ((ghp = hdl_create(&lml_rtld, nlmp, ilmp,
1035 				    hflags, rdflags, cdflags)) == NULL)
1036 					nlmp = NULL;
1037 
1038 				/*
1039 				 * Establish the filter handle to prevent any
1040 				 * recursion.
1041 				 */
1042 				if (nlmp && ghp)
1043 					pdp->pd_info = (void *)ghp;
1044 
1045 				/*
1046 				 * Audit the filter/filtee established.  Ignore
1047 				 * any return from the auditor, as we can't
1048 				 * allow ignore filtering to ld.so.1, otherwise
1049 				 * nothing is going to work.
1050 				 */
1051 				if (nlmp && ((lml->lm_tflags | AFLAGS(ilmp)) &
1052 				    LML_TFLG_AUD_OBJFILTER))
1053 					(void) audit_objfilter(ilmp, filtees,
1054 					    nlmp, 0);
1055 
1056 			} else {
1057 				Rej_desc	rej = { 0 };
1058 				Fdesc		fd = { 0 };
1059 				Aliste		lmco;
1060 
1061 				/*
1062 				 * Trace the inspection of this file, determine
1063 				 * any auditor substitution, and seed the file
1064 				 * descriptor with the originating name.
1065 				 */
1066 				if (load_trace(lml, pdp, clmp, &fd) == NULL)
1067 					continue;
1068 
1069 				/*
1070 				 * Establish a link-map control list for this
1071 				 * request.
1072 				 */
1073 				if ((lmco = create_cntl(lml, 0)) == NULL)
1074 					return (NULL);
1075 
1076 				/*
1077 				 * Locate and load the filtee.
1078 				 */
1079 				if ((nlmp = load_path(lml, lmco, ilmp, mode,
1080 				    FLG_RT_PUBHDL, &ghp, &fd, &rej,
1081 				    in_nfavl)) == NULL)
1082 					file_notfound(LIST(ilmp), filtee, ilmp,
1083 					    FLG_RT_PUBHDL, &rej);
1084 
1085 				filtee = pdp->pd_pname;
1086 
1087 				/*
1088 				 * Establish the filter handle to prevent any
1089 				 * recursion.
1090 				 */
1091 				if (nlmp && ghp) {
1092 					ghp->gh_flags |= GPH_FILTEE;
1093 					pdp->pd_info = (void *)ghp;
1094 
1095 					FLAGS1(nlmp) |= FL1_RT_USED;
1096 				}
1097 
1098 				/*
1099 				 * Audit the filter/filtee established.  A
1100 				 * return of 0 indicates the auditor wishes to
1101 				 * ignore this filtee.
1102 				 */
1103 				if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) &
1104 				    LML_TFLG_AUD_OBJFILTER)) {
1105 					if (audit_objfilter(ilmp, filtees,
1106 					    nlmp, 0) == 0) {
1107 						audit = 1;
1108 						nlmp = NULL;
1109 					}
1110 				}
1111 
1112 				/*
1113 				 * Finish processing the objects associated with
1114 				 * this request.  Create an association between
1115 				 * this object and the originating filter to
1116 				 * provide sufficient information to tear down
1117 				 * this filtee if necessary.
1118 				 */
1119 				if (nlmp && ghp && (((nlmp = analyze_lmc(lml,
1120 				    lmco, nlmp, clmp, in_nfavl)) == NULL) ||
1121 				    (relocate_lmc(lml, lmco, ilmp, nlmp,
1122 				    in_nfavl) == 0)))
1123 					nlmp = NULL;
1124 
1125 				/*
1126 				 * If the filtee has been successfully
1127 				 * processed, then create an association
1128 				 * between the filter and filtee.  This
1129 				 * association provides sufficient information
1130 				 * to tear down the filter and filtee if
1131 				 * necessary.
1132 				 */
1133 				DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
1134 				if (nlmp && ghp && (hdl_add(ghp, ilmp,
1135 				    GPD_FILTER, NULL) == NULL))
1136 					nlmp = NULL;
1137 
1138 				/*
1139 				 * Generate a diagnostic if the filtee couldn't
1140 				 * be loaded.
1141 				 */
1142 				if (nlmp == NULL)
1143 					DBG_CALL(Dbg_file_filtee(lml, 0, filtee,
1144 					    audit));
1145 
1146 				/*
1147 				 * If this filtee loading has failed, and we've
1148 				 * created a new link-map control list to which
1149 				 * this request has added objects, then remove
1150 				 * all the objects that have been associated to
1151 				 * this request.
1152 				 */
1153 				if ((nlmp == NULL) && (lmco != ALIST_OFF_DATA))
1154 					remove_lmc(lml, clmp, lmco, name);
1155 
1156 				/*
1157 				 * Remove any temporary link-map control list.
1158 				 */
1159 				if (lmco != ALIST_OFF_DATA)
1160 					remove_cntl(lml, lmco);
1161 			}
1162 
1163 			/*
1164 			 * If the filtee couldn't be loaded, null out the
1165 			 * path name descriptor entry, and continue the search.
1166 			 * Otherwise, the group handle is retained for future
1167 			 * symbol searches.
1168 			 */
1169 			if (nlmp == NULL) {
1170 				pdp->pd_info = NULL;
1171 				pdp->pd_plen = 0;
1172 				continue;
1173 			}
1174 		}
1175 
1176 		ghp = (Grp_hdl *)pdp->pd_info;
1177 
1178 		/*
1179 		 * If name is NULL, we're here to trigger filtee loading.
1180 		 * Skip the symbol lookup so that we'll continue looking for
1181 		 * additional filtees.
1182 		 */
1183 		if (name) {
1184 			Grp_desc	*gdp;
1185 			int		ret = 0;
1186 			Aliste		idx;
1187 			Slookup		sl = *slp;
1188 
1189 			sl.sl_flags |= (LKUP_FIRST | LKUP_DLSYM);
1190 			any++;
1191 
1192 			/*
1193 			 * Look for the symbol in the handles dependencies.
1194 			 */
1195 			for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1196 				if ((gdp->gd_flags & GPD_DLSYM) == 0)
1197 					continue;
1198 
1199 				/*
1200 				 * If our parent is a dependency don't look at
1201 				 * it (otherwise we are in a recursive loop).
1202 				 * This situation can occur with auxiliary
1203 				 * filters if the filtee has a dependency on the
1204 				 * filter.  This dependency isn't necessary as
1205 				 * auxiliary filters are opened RTLD_PARENT, but
1206 				 * users may still unknowingly add an explicit
1207 				 * dependency to the parent.
1208 				 */
1209 				if ((sl.sl_imap = gdp->gd_depend) == ilmp)
1210 					continue;
1211 
1212 				if (((ret = SYMINTP(sl.sl_imap)(&sl, srp, binfo,
1213 				    in_nfavl)) != 0) ||
1214 				    (ghp->gh_flags & GPH_FIRST))
1215 					break;
1216 			}
1217 
1218 			/*
1219 			 * If a symbol has been found, indicate the binding
1220 			 * and return the symbol.
1221 			 */
1222 			if (ret) {
1223 				*binfo |= DBG_BINFO_FILTEE;
1224 				return (1);
1225 			}
1226 		}
1227 
1228 		/*
1229 		 * If this object is tagged to terminate filtee processing we're
1230 		 * done.
1231 		 */
1232 		if (FLAGS1(ghp->gh_ownlmp) & FL1_RT_ENDFILTE)
1233 			break;
1234 	}
1235 
1236 	/*
1237 	 * If we're just here to trigger filtee loading then we're done.
1238 	 */
1239 	if (name == NULL)
1240 		return (0);
1241 
1242 	/*
1243 	 * If no filtees have been found for a filter, clean up any path name
1244 	 * descriptors and disable their search completely.  For auxiliary
1245 	 * filters we can reselect the symbol search function so that we never
1246 	 * enter this routine again for this object.  For standard filters we
1247 	 * use the null symbol routine.
1248 	 */
1249 	if (any == 0) {
1250 		remove_alist((Alist **)&(dip->di_info), 1);
1251 		elf_disable_filtee(ilmp, dip);
1252 	}
1253 
1254 	return (0);
1255 }
1256 
1257 /*
1258  * Focal point for disabling error messages for auxiliary filters.  As an
1259  * auxiliary filter allows for filtee use, but provides a fallback should a
1260  * filtee not exist (or fail to load), any errors generated as a consequence of
1261  * trying to load the filtees are typically suppressed.  Setting RT_FL_SILENCERR
1262  * suppresses errors generated by eprintf(), but ensures a debug diagnostic is
1263  * produced.  ldd(1) employs printf(), and here the selection of whether to
1264  * print a diagnostic in regards to auxiliary filters is a little more complex.
1265  *
1266  *   -	The determination of whether to produce an ldd message, or a fatal
1267  *	error message is driven by LML_FLG_TRC_ENABLE.
1268  *   -	More detailed ldd messages may also be driven off of LML_FLG_TRC_WARN,
1269  *	(ldd -d/-r), LML_FLG_TRC_VERBOSE (ldd -v), LML_FLG_TRC_SEARCH (ldd -s),
1270  *	and LML_FLG_TRC_UNREF/LML_FLG_TRC_UNUSED (ldd -U/-u).
1271  *   -	If the calling object is lddstub, then several classes of message are
1272  *	suppressed.  The user isn't trying to diagnose lddstub, this is simply
1273  *	a stub executable employed to preload a user specified library against.
1274  *   -	If RT_FL_SILENCERR is in effect then any generic ldd() messages should
1275  *	be suppressed.  All detailed ldd messages should still be produced.
1276  */
1277 int
1278 elf_lookup_filtee(Slookup *slp, Sresult *srp, uint_t *binfo, uint_t ndx,
1279     int *in_nfavl)
1280 {
1281 	Dyninfo	*dip = &DYNINFO(slp->sl_imap)[ndx];
1282 	int	ret, silent = 0;
1283 
1284 	/*
1285 	 * Make sure this entry is still acting as a filter.  We may have tried
1286 	 * to process this previously, and disabled it if the filtee couldn't
1287 	 * be processed.  However, other entries may provide different filtees
1288 	 * that are yet to be completed.
1289 	 */
1290 	if (dip->di_flags == 0)
1291 		return (0);
1292 
1293 	/*
1294 	 * Indicate whether an error message is required should this filtee not
1295 	 * be found, based on the type of filter.
1296 	 */
1297 	if ((dip->di_flags & FLG_DI_AUXFLTR) &&
1298 	    ((rtld_flags & (RT_FL_WARNFLTR | RT_FL_SILENCERR)) == 0)) {
1299 		rtld_flags |= RT_FL_SILENCERR;
1300 		silent = 1;
1301 	}
1302 
1303 	ret = _elf_lookup_filtee(slp, srp, binfo, ndx, in_nfavl);
1304 
1305 	if (silent)
1306 		rtld_flags &= ~RT_FL_SILENCERR;
1307 
1308 	return (ret);
1309 }
1310 
1311 /*
1312  * Compute the elf hash value (as defined in the ELF access library).
1313  * The form of the hash table is:
1314  *
1315  *	|--------------|
1316  *	| # of buckets |
1317  *	|--------------|
1318  *	| # of chains  |
1319  *	|--------------|
1320  *	|   bucket[]   |
1321  *	|--------------|
1322  *	|   chain[]    |
1323  *	|--------------|
1324  */
1325 ulong_t
1326 elf_hash(const char *name)
1327 {
1328 	uint_t	hval = 0;
1329 
1330 	while (*name) {
1331 		uint_t	g;
1332 		hval = (hval << 4) + *name++;
1333 		if ((g = (hval & 0xf0000000)) != 0)
1334 			hval ^= g >> 24;
1335 		hval &= ~g;
1336 	}
1337 	return ((ulong_t)hval);
1338 }
1339 
1340 /*
1341  * Look up a symbol.  The callers lookup information is passed in the Slookup
1342  * structure, and any resultant binding information is returned in the Sresult
1343  * structure.
1344  */
1345 int
1346 elf_find_sym(Slookup *slp, Sresult *srp, uint_t *binfo, int *in_nfavl)
1347 {
1348 	const char	*name = slp->sl_name;
1349 	Rt_map		*ilmp = slp->sl_imap;
1350 	ulong_t		hash = slp->sl_hash;
1351 	uint_t		ndx, hashoff, buckets, *chainptr;
1352 	Sym		*sym, *symtabptr;
1353 	char		*strtabptr, *strtabname;
1354 	uint_t		flags1;
1355 	Syminfo		*sip;
1356 
1357 	/*
1358 	 * If we're only here to establish a symbols index, skip the diagnostic
1359 	 * used to trace a symbol search.
1360 	 */
1361 	if ((slp->sl_flags & LKUP_SYMNDX) == 0)
1362 		DBG_CALL(Dbg_syms_lookup(ilmp, name, MSG_ORIG(MSG_STR_ELF)));
1363 
1364 	if (HASH(ilmp) == NULL)
1365 		return (0);
1366 
1367 	buckets = HASH(ilmp)[0];
1368 	/* LINTED */
1369 	hashoff = ((uint_t)hash % buckets) + 2;
1370 
1371 	/*
1372 	 * Get the first symbol from the hash chain and initialize the string
1373 	 * and symbol table pointers.
1374 	 */
1375 	if ((ndx = HASH(ilmp)[hashoff]) == 0)
1376 		return (0);
1377 
1378 	chainptr = HASH(ilmp) + 2 + buckets;
1379 	strtabptr = STRTAB(ilmp);
1380 	symtabptr = SYMTAB(ilmp);
1381 
1382 	while (ndx) {
1383 		sym = symtabptr + ndx;
1384 		strtabname = strtabptr + sym->st_name;
1385 
1386 		/*
1387 		 * Compare the symbol found with the name required.  If the
1388 		 * names don't match continue with the next hash entry.
1389 		 */
1390 		if ((*strtabname++ != *name) || strcmp(strtabname, &name[1])) {
1391 			hashoff = ndx + buckets + 2;
1392 			if ((ndx = chainptr[ndx]) != 0)
1393 				continue;
1394 			return (0);
1395 		}
1396 
1397 		/*
1398 		 * Symbols that are defined as hidden within an object usually
1399 		 * have any references from within the same object bound at
1400 		 * link-edit time, thus ld.so.1 is not involved.  However, if
1401 		 * these are capabilities symbols, then references to them must
1402 		 * be resolved at runtime.  A hidden symbol can only be bound
1403 		 * to by the object that defines the symbol.
1404 		 */
1405 		if ((sym->st_shndx != SHN_UNDEF) &&
1406 		    (ELF_ST_VISIBILITY(sym->st_other) == STV_HIDDEN) &&
1407 		    (slp->sl_cmap != ilmp))
1408 			return (0);
1409 
1410 		/*
1411 		 * The Solaris ld does not put DT_VERSYM in the dynamic
1412 		 * section, but the GNU ld does. The GNU runtime linker
1413 		 * interprets the top bit of the 16-bit Versym value
1414 		 * (0x8000) as the "hidden" bit. If this bit is set,
1415 		 * the linker is supposed to act as if that symbol does
1416 		 * not exist. The hidden bit supports their versioning
1417 		 * scheme, which allows multiple incompatible functions
1418 		 * with the same name to exist at different versions
1419 		 * within an object. The Solaris linker does not support this
1420 		 * mechanism, or the model of interface evolution that
1421 		 * it allows, but we honor the hidden bit in GNU ld
1422 		 * produced objects in order to interoperate with them.
1423 		 */
1424 		if (VERSYM(ilmp) && (VERSYM(ilmp)[ndx] & 0x8000)) {
1425 			DBG_CALL(Dbg_syms_ignore_gnuver(ilmp, name,
1426 			    ndx, VERSYM(ilmp)[ndx]));
1427 			return (0);
1428 		}
1429 
1430 		/*
1431 		 * If we're only here to establish a symbol's index, we're done.
1432 		 */
1433 		if (slp->sl_flags & LKUP_SYMNDX) {
1434 			srp->sr_dmap = ilmp;
1435 			srp->sr_sym = sym;
1436 			return (1);
1437 		}
1438 
1439 		/*
1440 		 * If we find a match and the symbol is defined, capture the
1441 		 * symbol pointer and the link map in which it was found.
1442 		 */
1443 		if (sym->st_shndx != SHN_UNDEF) {
1444 			srp->sr_dmap = ilmp;
1445 			srp->sr_sym = sym;
1446 			*binfo |= DBG_BINFO_FOUND;
1447 
1448 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1449 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1450 			    is_sym_interposer(ilmp, sym)))
1451 				*binfo |= DBG_BINFO_INTERPOSE;
1452 			break;
1453 
1454 		/*
1455 		 * If we find a match and the symbol is undefined, the
1456 		 * symbol type is a function, and the value of the symbol
1457 		 * is non zero, then this is a special case.  This allows
1458 		 * the resolution of a function address to the plt[] entry.
1459 		 * See SPARC ABI, Dynamic Linking, Function Addresses for
1460 		 * more details.
1461 		 */
1462 		} else if ((slp->sl_flags & LKUP_SPEC) &&
1463 		    (FLAGS(ilmp) & FLG_RT_ISMAIN) && (sym->st_value != 0) &&
1464 		    (ELF_ST_TYPE(sym->st_info) == STT_FUNC)) {
1465 			srp->sr_dmap = ilmp;
1466 			srp->sr_sym = sym;
1467 			*binfo |= (DBG_BINFO_FOUND | DBG_BINFO_PLTADDR);
1468 
1469 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1470 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1471 			    is_sym_interposer(ilmp, sym)))
1472 				*binfo |= DBG_BINFO_INTERPOSE;
1473 			return (1);
1474 		}
1475 
1476 		/*
1477 		 * Undefined symbol.
1478 		 */
1479 		return (0);
1480 	}
1481 
1482 	/*
1483 	 * We've found a match.  Determine if the defining object contains
1484 	 * symbol binding information.
1485 	 */
1486 	if ((sip = SYMINFO(ilmp)) != NULL)
1487 		sip += ndx;
1488 
1489 	/*
1490 	 * If this definition is a singleton, and we haven't followed a default
1491 	 * symbol search knowing that we're looking for a singleton (presumably
1492 	 * because the symbol definition has been changed since the referring
1493 	 * object was built), then reject this binding so that the caller can
1494 	 * fall back to a standard symbol search.
1495 	 */
1496 	if ((ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON) &&
1497 	    (((slp->sl_flags & LKUP_STANDARD) == 0) ||
1498 	    (((slp->sl_flags & LKUP_SINGLETON) == 0) &&
1499 	    (LIST(ilmp)->lm_flags & LML_FLG_GROUPSEXIST)))) {
1500 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1501 		    DBG_BNDREJ_SINGLE));
1502 		*binfo |= BINFO_REJSINGLE;
1503 		*binfo &= ~DBG_BINFO_MSK;
1504 		return (0);
1505 	}
1506 
1507 	/*
1508 	 * If this is a direct binding request, but the symbol definition has
1509 	 * disabled directly binding to it (presumably because the symbol
1510 	 * definition has been changed since the referring object was built),
1511 	 * reject this binding so that the caller can fall back to a standard
1512 	 * symbol search.
1513 	 */
1514 	if (sip && (slp->sl_flags & LKUP_DIRECT) &&
1515 	    (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT)) {
1516 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1517 		    DBG_BNDREJ_DIRECT));
1518 		*binfo |= BINFO_REJDIRECT;
1519 		*binfo &= ~DBG_BINFO_MSK;
1520 		return (0);
1521 	}
1522 
1523 	/*
1524 	 * If this is a binding request within an RTLD_GROUP family, and the
1525 	 * symbol has disabled directly binding to it, reject this binding so
1526 	 * that the caller can fall back to a standard symbol search.
1527 	 *
1528 	 * Effectively, an RTLD_GROUP family achieves what can now be
1529 	 * established with direct bindings.  However, various symbols have
1530 	 * been tagged as inappropriate for direct binding to (ie. libc:malloc).
1531 	 *
1532 	 * A symbol marked as no-direct cannot be used within a group without
1533 	 * first ensuring that the symbol has not been interposed upon outside
1534 	 * of the group.  A common example occurs when users implement their own
1535 	 * version of malloc() in the executable.  Such a malloc() interposes on
1536 	 * the libc:malloc, and this interposition must be honored within the
1537 	 * group as well.
1538 	 *
1539 	 * Following any rejection, LKUP_WORLD is established as a means of
1540 	 * overriding this test as we return to a standard search.
1541 	 */
1542 	if (sip && (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT) &&
1543 	    ((MODE(slp->sl_cmap) & (RTLD_GROUP | RTLD_WORLD)) == RTLD_GROUP) &&
1544 	    ((slp->sl_flags & LKUP_WORLD) == 0)) {
1545 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1546 		    DBG_BNDREJ_GROUP));
1547 		*binfo |= BINFO_REJGROUP;
1548 		*binfo &= ~DBG_BINFO_MSK;
1549 		return (0);
1550 	}
1551 
1552 	/*
1553 	 * If this symbol is associated with capabilities, then each of the
1554 	 * capabilities instances needs to be compared against the system
1555 	 * capabilities.  The best instance will be chosen to satisfy this
1556 	 * binding.
1557 	 */
1558 	if (CAP(ilmp) && CAPINFO(ilmp) && ELF_C_GROUP(CAPINFO(ilmp)[ndx]) &&
1559 	    (cap_match(srp, ndx, symtabptr, strtabptr) == 0))
1560 		return (0);
1561 
1562 	/*
1563 	 * Determine whether this object is acting as a filter.
1564 	 */
1565 	if (((flags1 = FLAGS1(ilmp)) & MSK_RT_FILTER) == 0)
1566 		return (1);
1567 
1568 	/*
1569 	 * Determine if this object offers per-symbol filtering, and if so,
1570 	 * whether this symbol references a filtee.
1571 	 */
1572 	if (sip && (flags1 & (FL1_RT_SYMSFLTR | FL1_RT_SYMAFLTR))) {
1573 		/*
1574 		 * If this is a standard filter reference, and no standard
1575 		 * filtees remain to be inspected, we're done.  If this is an
1576 		 * auxiliary filter reference, and no auxiliary filtees remain,
1577 		 * we'll fall through in case any object filtering is available.
1578 		 */
1579 		if ((sip->si_flags & SYMINFO_FLG_FILTER) &&
1580 		    (SYMSFLTRCNT(ilmp) == 0))
1581 			return (0);
1582 
1583 		if ((sip->si_flags & SYMINFO_FLG_FILTER) ||
1584 		    ((sip->si_flags & SYMINFO_FLG_AUXILIARY) &&
1585 		    SYMAFLTRCNT(ilmp))) {
1586 			Sresult	sr;
1587 
1588 			/*
1589 			 * Initialize a local symbol result descriptor, using
1590 			 * the original symbol name.
1591 			 */
1592 			SRESULT_INIT(sr, slp->sl_name);
1593 
1594 			/*
1595 			 * This symbol has an associated filtee.  Lookup the
1596 			 * symbol in the filtee, and if it is found return it.
1597 			 * If the symbol doesn't exist, and this is a standard
1598 			 * filter, return an error, otherwise fall through to
1599 			 * catch any object filtering that may be available.
1600 			 */
1601 			if (elf_lookup_filtee(slp, &sr, binfo, sip->si_boundto,
1602 			    in_nfavl)) {
1603 				*srp = sr;
1604 				return (1);
1605 			}
1606 			if (sip->si_flags & SYMINFO_FLG_FILTER)
1607 				return (0);
1608 		}
1609 	}
1610 
1611 	/*
1612 	 * Determine if this object provides global filtering.
1613 	 */
1614 	if (flags1 & (FL1_RT_OBJSFLTR | FL1_RT_OBJAFLTR)) {
1615 		if (OBJFLTRNDX(ilmp) != FLTR_DISABLED) {
1616 			Sresult	sr;
1617 
1618 			/*
1619 			 * Initialize a local symbol result descriptor, using
1620 			 * the original symbol name.
1621 			 */
1622 			SRESULT_INIT(sr, slp->sl_name);
1623 
1624 			/*
1625 			 * This object has an associated filtee.  Lookup the
1626 			 * symbol in the filtee, and if it is found return it.
1627 			 * If the symbol doesn't exist, and this is a standard
1628 			 * filter, return and error, otherwise return the symbol
1629 			 * within the filter itself.
1630 			 */
1631 			if (elf_lookup_filtee(slp, &sr, binfo, OBJFLTRNDX(ilmp),
1632 			    in_nfavl)) {
1633 				*srp = sr;
1634 				return (1);
1635 			}
1636 		}
1637 
1638 		if (flags1 & FL1_RT_OBJSFLTR)
1639 			return (0);
1640 	}
1641 	return (1);
1642 }
1643 
1644 /*
1645  * Create a new Rt_map structure for an ELF object and initialize
1646  * all values.
1647  */
1648 Rt_map *
1649 elf_new_lmp(Lm_list *lml, Aliste lmco, Fdesc *fdp, Addr addr, size_t msize,
1650     void *odyn, Rt_map *clmp, int *in_nfavl)
1651 {
1652 	const char	*name = fdp->fd_nname;
1653 	Rt_map		*lmp;
1654 	Ehdr		*ehdr = (Ehdr *)addr;
1655 	Phdr		*phdr, *tphdr = NULL, *dphdr = NULL, *uphdr = NULL;
1656 	Dyn		*dyn = (Dyn *)odyn;
1657 	Cap		*cap = NULL;
1658 	int		ndx;
1659 	Addr		base, fltr = 0, audit = 0, cfile = 0, crle = 0;
1660 	Xword		rpath = 0;
1661 	size_t		lmsz, rtsz, epsz, dynsz = 0;
1662 	uint_t		dyncnt = 0;
1663 
1664 	DBG_CALL(Dbg_file_elf(lml, name, addr, msize, lml->lm_lmidstr, lmco));
1665 
1666 	/*
1667 	 * If this is a shared object, the base address of the shared object is
1668 	 * added to all address values defined within the object.  Otherwise, if
1669 	 * this is an executable, all object addresses are used as is.
1670 	 */
1671 	if (ehdr->e_type == ET_EXEC)
1672 		base = 0;
1673 	else
1674 		base = addr;
1675 
1676 	/*
1677 	 * Traverse the program header table, picking off required items.  This
1678 	 * traversal also provides for the sizing of the PT_DYNAMIC section.
1679 	 */
1680 	phdr = (Phdr *)((uintptr_t)ehdr + ehdr->e_phoff);
1681 	for (ndx = 0; ndx < (int)ehdr->e_phnum; ndx++,
1682 	    phdr = (Phdr *)((uintptr_t)phdr + ehdr->e_phentsize)) {
1683 		switch (phdr->p_type) {
1684 		case PT_DYNAMIC:
1685 			dphdr = phdr;
1686 			dyn = (Dyn *)((uintptr_t)phdr->p_vaddr + base);
1687 			break;
1688 		case PT_TLS:
1689 			tphdr = phdr;
1690 			break;
1691 		case PT_SUNWCAP:
1692 			cap = (Cap *)((uintptr_t)phdr->p_vaddr + base);
1693 			break;
1694 		case PT_SUNW_UNWIND:
1695 		case PT_SUNW_EH_FRAME:
1696 			uphdr = phdr;
1697 			break;
1698 		default:
1699 			break;
1700 		}
1701 	}
1702 
1703 	/*
1704 	 * Determine the number of PT_DYNAMIC entries for the DYNINFO()
1705 	 * allocation.  Sadly, this is a little larger than we really need,
1706 	 * as there are typically padding DT_NULL entries.  However, adding
1707 	 * this data to the initial link-map allocation is a win.
1708 	 */
1709 	if (dyn) {
1710 		dyncnt = dphdr->p_filesz / sizeof (Dyn);
1711 		dynsz = dyncnt * sizeof (Dyninfo);
1712 	}
1713 
1714 	/*
1715 	 * Allocate space for the link-map, private elf information, and
1716 	 * DYNINFO() data.  Once these are allocated and initialized,
1717 	 * remove_so(0, lmp) can be used to tear down the link-map allocation
1718 	 * should any failures occur.
1719 	 */
1720 	rtsz = S_DROUND(sizeof (Rt_map));
1721 	epsz = S_DROUND(sizeof (Rt_elfp));
1722 	lmsz = rtsz + epsz + dynsz;
1723 	if ((lmp = calloc(lmsz, 1)) == NULL)
1724 		return (NULL);
1725 	ELFPRV(lmp) = (void *)((uintptr_t)lmp + rtsz);
1726 	DYNINFO(lmp) = (Dyninfo *)((uintptr_t)lmp + rtsz + epsz);
1727 	LMSIZE(lmp) = lmsz;
1728 
1729 	/*
1730 	 * All fields not filled in were set to 0 by calloc.
1731 	 */
1732 	NAME(lmp) = (char *)name;
1733 	ADDR(lmp) = addr;
1734 	MSIZE(lmp) = msize;
1735 	SYMINTP(lmp) = elf_find_sym;
1736 	FCT(lmp) = &elf_fct;
1737 	LIST(lmp) = lml;
1738 	OBJFLTRNDX(lmp) = FLTR_DISABLED;
1739 	SORTVAL(lmp) = -1;
1740 	DYN(lmp) = dyn;
1741 	DYNINFOCNT(lmp) = dyncnt;
1742 	PTUNWIND(lmp) = uphdr;
1743 
1744 	if (ehdr->e_type == ET_EXEC)
1745 		FLAGS(lmp) |= FLG_RT_FIXED;
1746 
1747 	/*
1748 	 * Fill in rest of the link map entries with information from the file's
1749 	 * dynamic structure.
1750 	 */
1751 	if (dyn) {
1752 		Dyninfo		*dip;
1753 		uint_t		dynndx;
1754 		Xword		pltpadsz = 0;
1755 		Rti_desc	*rti;
1756 		Dyn		*pdyn;
1757 		Word		lmtflags = lml->lm_tflags;
1758 		int		ignore = 0;
1759 
1760 		/*
1761 		 * Note, we use DT_NULL to terminate processing, and the
1762 		 * dynamic entry count as a fall back.  Normally, a DT_NULL
1763 		 * entry marks the end of the dynamic section.  Any non-NULL
1764 		 * items following the first DT_NULL are silently ignored.
1765 		 * This situation should only occur through use of elfedit(1)
1766 		 * or a similar tool.
1767 		 */
1768 		for (dynndx = 0, pdyn = NULL, dip = DYNINFO(lmp);
1769 		    dynndx < dyncnt; dynndx++, pdyn = dyn++, dip++) {
1770 
1771 			if (ignore) {
1772 				dip->di_flags |= FLG_DI_IGNORE;
1773 				continue;
1774 			}
1775 
1776 			switch ((Xword)dyn->d_tag) {
1777 			case DT_NULL:
1778 				dip->di_flags |= ignore = FLG_DI_IGNORE;
1779 				break;
1780 			case DT_POSFLAG_1:
1781 				dip->di_flags |= FLG_DI_POSFLAG1;
1782 				break;
1783 			case DT_NEEDED:
1784 			case DT_USED:
1785 				dip->di_flags |= FLG_DI_NEEDED;
1786 
1787 				/* BEGIN CSTYLED */
1788 				if (pdyn && (pdyn->d_tag == DT_POSFLAG_1)) {
1789 				    /*
1790 				     * Identify any non-deferred lazy load for
1791 				     * future processing, unless LD_NOLAZYLOAD
1792 				     * has been set.
1793 				     */
1794 				    if ((pdyn->d_un.d_val & DF_P1_LAZYLOAD) &&
1795 					((lmtflags & LML_TFLG_NOLAZYLD) == 0))
1796 					    dip->di_flags |= FLG_DI_LAZY;
1797 
1798 				    /*
1799 				     * Identify any group permission
1800 				     * requirements.
1801 				     */
1802 				    if (pdyn->d_un.d_val & DF_P1_GROUPPERM)
1803 					    dip->di_flags |= FLG_DI_GROUP;
1804 
1805 				    /*
1806 				     * Identify any deferred dependencies.
1807 				     */
1808 				    if (pdyn->d_un.d_val & DF_P1_DEFERRED)
1809 					    dip->di_flags |= FLG_DI_DEFERRED;
1810 				}
1811 				/* END CSTYLED */
1812 				break;
1813 			case DT_SYMTAB:
1814 				SYMTAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1815 				break;
1816 			case DT_SUNW_SYMTAB:
1817 				SUNWSYMTAB(lmp) =
1818 				    (void *)(dyn->d_un.d_ptr + base);
1819 				break;
1820 			case DT_SUNW_SYMSZ:
1821 				SUNWSYMSZ(lmp) = dyn->d_un.d_val;
1822 				break;
1823 			case DT_STRTAB:
1824 				STRTAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1825 				break;
1826 			case DT_SYMENT:
1827 				SYMENT(lmp) = dyn->d_un.d_val;
1828 				break;
1829 			case DT_FEATURE_1:
1830 				if (dyn->d_un.d_val & DTF_1_CONFEXP)
1831 					crle = 1;
1832 				break;
1833 			case DT_MOVESZ:
1834 				MOVESZ(lmp) = dyn->d_un.d_val;
1835 				FLAGS(lmp) |= FLG_RT_MOVE;
1836 				break;
1837 			case DT_MOVEENT:
1838 				MOVEENT(lmp) = dyn->d_un.d_val;
1839 				break;
1840 			case DT_MOVETAB:
1841 				MOVETAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1842 				break;
1843 			case DT_REL:
1844 			case DT_RELA:
1845 				/*
1846 				 * At this time, ld.so. can only handle one
1847 				 * type of relocation per object.
1848 				 */
1849 				REL(lmp) = (void *)(dyn->d_un.d_ptr + base);
1850 				break;
1851 			case DT_RELSZ:
1852 			case DT_RELASZ:
1853 				RELSZ(lmp) = dyn->d_un.d_val;
1854 				break;
1855 			case DT_RELENT:
1856 			case DT_RELAENT:
1857 				RELENT(lmp) = dyn->d_un.d_val;
1858 				break;
1859 			case DT_RELCOUNT:
1860 			case DT_RELACOUNT:
1861 				RELACOUNT(lmp) = (uint_t)dyn->d_un.d_val;
1862 				break;
1863 			case DT_HASH:
1864 				HASH(lmp) = (uint_t *)(dyn->d_un.d_ptr + base);
1865 				break;
1866 			case DT_PLTGOT:
1867 				PLTGOT(lmp) =
1868 				    (uint_t *)(dyn->d_un.d_ptr + base);
1869 				break;
1870 			case DT_PLTRELSZ:
1871 				PLTRELSZ(lmp) = dyn->d_un.d_val;
1872 				break;
1873 			case DT_JMPREL:
1874 				JMPREL(lmp) = (void *)(dyn->d_un.d_ptr + base);
1875 				break;
1876 			case DT_INIT:
1877 				if (dyn->d_un.d_ptr != NULL)
1878 					INIT(lmp) =
1879 					    (void (*)())(dyn->d_un.d_ptr +
1880 					    base);
1881 				break;
1882 			case DT_FINI:
1883 				if (dyn->d_un.d_ptr != NULL)
1884 					FINI(lmp) =
1885 					    (void (*)())(dyn->d_un.d_ptr +
1886 					    base);
1887 				break;
1888 			case DT_INIT_ARRAY:
1889 				INITARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1890 				    base);
1891 				break;
1892 			case DT_INIT_ARRAYSZ:
1893 				INITARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1894 				break;
1895 			case DT_FINI_ARRAY:
1896 				FINIARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1897 				    base);
1898 				break;
1899 			case DT_FINI_ARRAYSZ:
1900 				FINIARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1901 				break;
1902 			case DT_PREINIT_ARRAY:
1903 				PREINITARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1904 				    base);
1905 				break;
1906 			case DT_PREINIT_ARRAYSZ:
1907 				PREINITARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1908 				break;
1909 			case DT_RPATH:
1910 			case DT_RUNPATH:
1911 				rpath = dyn->d_un.d_val;
1912 				break;
1913 			case DT_FILTER:
1914 				dip->di_flags |= FLG_DI_STDFLTR;
1915 				fltr = dyn->d_un.d_val;
1916 				OBJFLTRNDX(lmp) = dynndx;
1917 				FLAGS1(lmp) |= FL1_RT_OBJSFLTR;
1918 				break;
1919 			case DT_AUXILIARY:
1920 				dip->di_flags |= FLG_DI_AUXFLTR;
1921 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
1922 					fltr = dyn->d_un.d_val;
1923 					OBJFLTRNDX(lmp) = dynndx;
1924 				}
1925 				FLAGS1(lmp) |= FL1_RT_OBJAFLTR;
1926 				break;
1927 			case DT_SUNW_FILTER:
1928 				dip->di_flags |=
1929 				    (FLG_DI_STDFLTR | FLG_DI_SYMFLTR);
1930 				SYMSFLTRCNT(lmp)++;
1931 				FLAGS1(lmp) |= FL1_RT_SYMSFLTR;
1932 				break;
1933 			case DT_SUNW_AUXILIARY:
1934 				dip->di_flags |=
1935 				    (FLG_DI_AUXFLTR | FLG_DI_SYMFLTR);
1936 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
1937 					SYMAFLTRCNT(lmp)++;
1938 				}
1939 				FLAGS1(lmp) |= FL1_RT_SYMAFLTR;
1940 				break;
1941 			case DT_DEPAUDIT:
1942 				if (!(rtld_flags & RT_FL_NOAUDIT)) {
1943 					audit = dyn->d_un.d_val;
1944 					FLAGS1(lmp) |= FL1_RT_DEPAUD;
1945 				}
1946 				break;
1947 			case DT_CONFIG:
1948 				cfile = dyn->d_un.d_val;
1949 				break;
1950 			case DT_DEBUG:
1951 				/*
1952 				 * DT_DEBUG entries are only created in
1953 				 * dynamic objects that require an interpretor
1954 				 * (ie. all dynamic executables and some shared
1955 				 * objects), and provide for a hand-shake with
1956 				 * old debuggers.  This entry is initialized to
1957 				 * zero by the link-editor.  If a debugger is
1958 				 * monitoring us, and has updated this entry,
1959 				 * set the debugger monitor flag, and finish
1960 				 * initializing the debugging structure.  See
1961 				 * setup().  Also, switch off any configuration
1962 				 * object use as most debuggers can't handle
1963 				 * fixed dynamic executables as dependencies.
1964 				 */
1965 				if (dyn->d_un.d_ptr)
1966 					rtld_flags |=
1967 					    (RT_FL_DEBUGGER | RT_FL_NOOBJALT);
1968 				dyn->d_un.d_ptr = (Addr)&r_debug;
1969 				break;
1970 			case DT_VERNEED:
1971 				VERNEED(lmp) = (Verneed *)(dyn->d_un.d_ptr +
1972 				    base);
1973 				break;
1974 			case DT_VERNEEDNUM:
1975 				/* LINTED */
1976 				VERNEEDNUM(lmp) = (int)dyn->d_un.d_val;
1977 				break;
1978 			case DT_VERDEF:
1979 				VERDEF(lmp) = (Verdef *)(dyn->d_un.d_ptr +
1980 				    base);
1981 				break;
1982 			case DT_VERDEFNUM:
1983 				/* LINTED */
1984 				VERDEFNUM(lmp) = (int)dyn->d_un.d_val;
1985 				break;
1986 			case DT_VERSYM:
1987 				/*
1988 				 * The Solaris ld does not produce DT_VERSYM,
1989 				 * but the GNU ld does, in order to support
1990 				 * their style of versioning, which differs
1991 				 * from ours in some ways, while using the
1992 				 * same data structures. The presence of
1993 				 * DT_VERSYM therefore means that GNU
1994 				 * versioning rules apply to the given file.
1995 				 * If DT_VERSYM is not present, then Solaris
1996 				 * versioning rules apply.
1997 				 */
1998 				VERSYM(lmp) = (Versym *)(dyn->d_un.d_ptr +
1999 				    base);
2000 				break;
2001 			case DT_BIND_NOW:
2002 				if ((dyn->d_un.d_val & DF_BIND_NOW) &&
2003 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2004 					MODE(lmp) |= RTLD_NOW;
2005 					MODE(lmp) &= ~RTLD_LAZY;
2006 				}
2007 				break;
2008 			case DT_FLAGS:
2009 				FLAGS1(lmp) |= FL1_RT_DTFLAGS;
2010 				if (dyn->d_un.d_val & DF_SYMBOLIC)
2011 					FLAGS1(lmp) |= FL1_RT_SYMBOLIC;
2012 				if ((dyn->d_un.d_val & DF_BIND_NOW) &&
2013 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2014 					MODE(lmp) |= RTLD_NOW;
2015 					MODE(lmp) &= ~RTLD_LAZY;
2016 				}
2017 				/*
2018 				 * Capture any static TLS use, and enforce that
2019 				 * this object be non-deletable.
2020 				 */
2021 				if (dyn->d_un.d_val & DF_STATIC_TLS) {
2022 					FLAGS1(lmp) |= FL1_RT_TLSSTAT;
2023 					MODE(lmp) |= RTLD_NODELETE;
2024 				}
2025 				break;
2026 			case DT_FLAGS_1:
2027 				if (dyn->d_un.d_val & DF_1_DISPRELPND)
2028 					FLAGS1(lmp) |= FL1_RT_DISPREL;
2029 				if (dyn->d_un.d_val & DF_1_GROUP)
2030 					FLAGS(lmp) |=
2031 					    (FLG_RT_SETGROUP | FLG_RT_PUBHDL);
2032 				if ((dyn->d_un.d_val & DF_1_NOW) &&
2033 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2034 					MODE(lmp) |= RTLD_NOW;
2035 					MODE(lmp) &= ~RTLD_LAZY;
2036 				}
2037 				if (dyn->d_un.d_val & DF_1_NODELETE)
2038 					MODE(lmp) |= RTLD_NODELETE;
2039 				if (dyn->d_un.d_val & DF_1_INITFIRST)
2040 					FLAGS(lmp) |= FLG_RT_INITFRST;
2041 				if (dyn->d_un.d_val & DF_1_NOOPEN)
2042 					FLAGS(lmp) |= FLG_RT_NOOPEN;
2043 				if (dyn->d_un.d_val & DF_1_LOADFLTR)
2044 					FLAGS(lmp) |= FLG_RT_LOADFLTR;
2045 				if (dyn->d_un.d_val & DF_1_NODUMP)
2046 					FLAGS(lmp) |= FLG_RT_NODUMP;
2047 				if (dyn->d_un.d_val & DF_1_CONFALT)
2048 					crle = 1;
2049 				if (dyn->d_un.d_val & DF_1_DIRECT)
2050 					FLAGS1(lmp) |= FL1_RT_DIRECT;
2051 				if (dyn->d_un.d_val & DF_1_NODEFLIB)
2052 					FLAGS1(lmp) |= FL1_RT_NODEFLIB;
2053 				if (dyn->d_un.d_val & DF_1_ENDFILTEE)
2054 					FLAGS1(lmp) |= FL1_RT_ENDFILTE;
2055 				if (dyn->d_un.d_val & DF_1_TRANS)
2056 					FLAGS(lmp) |= FLG_RT_TRANS;
2057 
2058 				/*
2059 				 * Global auditing is only meaningful when
2060 				 * specified by the initiating object of the
2061 				 * process - typically the dynamic executable.
2062 				 * If this is the initiating object, its link-
2063 				 * map will not yet have been added to the
2064 				 * link-map list, and consequently the link-map
2065 				 * list is empty.  (see setup()).
2066 				 */
2067 				if (dyn->d_un.d_val & DF_1_GLOBAUDIT) {
2068 					if (lml_main.lm_head == NULL)
2069 						FLAGS1(lmp) |= FL1_RT_GLOBAUD;
2070 					else
2071 						DBG_CALL(Dbg_audit_ignore(lmp));
2072 				}
2073 
2074 				/*
2075 				 * If this object identifies itself as an
2076 				 * interposer, but relocation processing has
2077 				 * already started, then demote it.  It's too
2078 				 * late to guarantee complete interposition.
2079 				 */
2080 				/* BEGIN CSTYLED */
2081 				if (dyn->d_un.d_val &
2082 				    (DF_1_INTERPOSE | DF_1_SYMINTPOSE)) {
2083 				    if (lml->lm_flags & LML_FLG_STARTREL) {
2084 					DBG_CALL(Dbg_util_intoolate(lmp));
2085 					if (lml->lm_flags & LML_FLG_TRC_ENABLE)
2086 					    (void) printf(
2087 						MSG_INTL(MSG_LDD_REL_ERR2),
2088 						NAME(lmp));
2089 				    } else if (dyn->d_un.d_val & DF_1_INTERPOSE)
2090 					FLAGS(lmp) |= FLG_RT_OBJINTPO;
2091 				    else
2092 					FLAGS(lmp) |= FLG_RT_SYMINTPO;
2093 				}
2094 				/* END CSTYLED */
2095 				break;
2096 			case DT_SYMINFO:
2097 				SYMINFO(lmp) = (Syminfo *)(dyn->d_un.d_ptr +
2098 				    base);
2099 				break;
2100 			case DT_SYMINENT:
2101 				SYMINENT(lmp) = dyn->d_un.d_val;
2102 				break;
2103 			case DT_PLTPAD:
2104 				PLTPAD(lmp) = (void *)(dyn->d_un.d_ptr + base);
2105 				break;
2106 			case DT_PLTPADSZ:
2107 				pltpadsz = dyn->d_un.d_val;
2108 				break;
2109 			case DT_SUNW_RTLDINF:
2110 				/*
2111 				 * Maintain a list of RTLDINFO structures.
2112 				 * Typically, libc is the only supplier, and
2113 				 * only one structure is provided.  However,
2114 				 * multiple suppliers and multiple structures
2115 				 * are supported.  For example, one structure
2116 				 * may provide thread_init, and another
2117 				 * structure may provide atexit reservations.
2118 				 */
2119 				if ((rti = alist_append(&lml->lm_rti, NULL,
2120 				    sizeof (Rti_desc),
2121 				    AL_CNT_RTLDINFO)) == NULL) {
2122 					remove_so(0, lmp, clmp);
2123 					return (NULL);
2124 				}
2125 				rti->rti_lmp = lmp;
2126 				rti->rti_info = (void *)(dyn->d_un.d_ptr +
2127 				    base);
2128 				break;
2129 			case DT_SUNW_SORTENT:
2130 				SUNWSORTENT(lmp) = dyn->d_un.d_val;
2131 				break;
2132 			case DT_SUNW_SYMSORT:
2133 				SUNWSYMSORT(lmp) =
2134 				    (void *)(dyn->d_un.d_ptr + base);
2135 				break;
2136 			case DT_SUNW_SYMSORTSZ:
2137 				SUNWSYMSORTSZ(lmp) = dyn->d_un.d_val;
2138 				break;
2139 			case DT_DEPRECATED_SPARC_REGISTER:
2140 			case M_DT_REGISTER:
2141 				dip->di_flags |= FLG_DI_REGISTER;
2142 				FLAGS(lmp) |= FLG_RT_REGSYMS;
2143 				break;
2144 			case DT_SUNW_CAP:
2145 				CAP(lmp) = (void *)(dyn->d_un.d_ptr + base);
2146 				break;
2147 			case DT_SUNW_CAPINFO:
2148 				CAPINFO(lmp) = (void *)(dyn->d_un.d_ptr + base);
2149 				break;
2150 			case DT_SUNW_CAPCHAIN:
2151 				CAPCHAIN(lmp) = (void *)(dyn->d_un.d_ptr +
2152 				    base);
2153 				break;
2154 			case DT_SUNW_CAPCHAINENT:
2155 				CAPCHAINENT(lmp) = dyn->d_un.d_val;
2156 				break;
2157 			case DT_SUNW_CAPCHAINSZ:
2158 				CAPCHAINSZ(lmp) = dyn->d_un.d_val;
2159 				break;
2160 			}
2161 		}
2162 
2163 		/*
2164 		 * Update any Dyninfo string pointers now that STRTAB() is
2165 		 * known.
2166 		 */
2167 		for (dynndx = 0, dyn = DYN(lmp), dip = DYNINFO(lmp);
2168 		    !(dip->di_flags & FLG_DI_IGNORE); dyn++, dip++) {
2169 
2170 			switch ((Xword)dyn->d_tag) {
2171 			case DT_NEEDED:
2172 			case DT_USED:
2173 			case DT_FILTER:
2174 			case DT_AUXILIARY:
2175 			case DT_SUNW_FILTER:
2176 			case DT_SUNW_AUXILIARY:
2177 				dip->di_name = STRTAB(lmp) + dyn->d_un.d_val;
2178 				break;
2179 			}
2180 		}
2181 
2182 		/*
2183 		 * Assign any padding.
2184 		 */
2185 		if (PLTPAD(lmp)) {
2186 			if (pltpadsz == (Xword)0)
2187 				PLTPAD(lmp) = NULL;
2188 			else
2189 				PLTPADEND(lmp) = (void *)((Addr)PLTPAD(lmp) +
2190 				    pltpadsz);
2191 		}
2192 	}
2193 
2194 	/*
2195 	 * A dynsym contains only global functions. We want to have
2196 	 * a version of it that also includes local functions, so that
2197 	 * dladdr() will be able to report names for local functions
2198 	 * when used to generate a stack trace for a stripped file.
2199 	 * This version of the dynsym is provided via DT_SUNW_SYMTAB.
2200 	 *
2201 	 * In producing DT_SUNW_SYMTAB, ld uses a non-obvious trick
2202 	 * in order to avoid having to have two copies of the global
2203 	 * symbols held in DT_SYMTAB: The local symbols are placed in
2204 	 * a separate section than the globals in the dynsym, but the
2205 	 * linker conspires to put the data for these two sections adjacent
2206 	 * to each other. DT_SUNW_SYMTAB points at the top of the local
2207 	 * symbols, and DT_SUNW_SYMSZ is the combined length of both tables.
2208 	 *
2209 	 * If the two sections are not adjacent, then something went wrong
2210 	 * at link time. We use ASSERT to kill the process if this is
2211 	 * a debug build. In a production build, we will silently ignore
2212 	 * the presence of the .ldynsym and proceed. We can detect this
2213 	 * situation by checking to see that DT_SYMTAB lies in
2214 	 * the range given by DT_SUNW_SYMTAB/DT_SUNW_SYMSZ.
2215 	 */
2216 	if ((SUNWSYMTAB(lmp) != NULL) &&
2217 	    (((char *)SYMTAB(lmp) <= (char *)SUNWSYMTAB(lmp)) ||
2218 	    (((char *)SYMTAB(lmp) >=
2219 	    (SUNWSYMSZ(lmp) + (char *)SUNWSYMTAB(lmp)))))) {
2220 		ASSERT(0);
2221 		SUNWSYMTAB(lmp) = NULL;
2222 		SUNWSYMSZ(lmp) = 0;
2223 	}
2224 
2225 	/*
2226 	 * If configuration file use hasn't been disabled, and a configuration
2227 	 * file hasn't already been set via an environment variable, see if any
2228 	 * application specific configuration file is specified.  An LD_CONFIG
2229 	 * setting is used first, but if this image was generated via crle(1)
2230 	 * then a default configuration file is a fall-back.
2231 	 */
2232 	if ((!(rtld_flags & RT_FL_NOCFG)) && (config->c_name == NULL)) {
2233 		if (cfile)
2234 			config->c_name = (const char *)(cfile +
2235 			    (char *)STRTAB(lmp));
2236 		else if (crle)
2237 			rtld_flags |= RT_FL_CONFAPP;
2238 	}
2239 
2240 	if (rpath)
2241 		RPATH(lmp) = (char *)(rpath + (char *)STRTAB(lmp));
2242 	if (fltr)
2243 		REFNAME(lmp) = (char *)(fltr + (char *)STRTAB(lmp));
2244 
2245 	/*
2246 	 * For Intel ABI compatibility.  It's possible that a JMPREL can be
2247 	 * specified without any other relocations (e.g. a dynamic executable
2248 	 * normally only contains .plt relocations).  If this is the case then
2249 	 * no REL, RELSZ or RELENT will have been created.  For us to be able
2250 	 * to traverse the .plt relocations under LD_BIND_NOW we need to know
2251 	 * the RELENT for these relocations.  Refer to elf_reloc() for more
2252 	 * details.
2253 	 */
2254 	if (!RELENT(lmp) && JMPREL(lmp))
2255 		RELENT(lmp) = sizeof (M_RELOC);
2256 
2257 	/*
2258 	 * Establish any per-object auditing.  If we're establishing main's
2259 	 * link-map its too early to go searching for audit objects so just
2260 	 * hold the object name for later (see setup()).
2261 	 */
2262 	if (audit) {
2263 		char	*cp = audit + (char *)STRTAB(lmp);
2264 
2265 		if (*cp) {
2266 			if (((AUDITORS(lmp) =
2267 			    calloc(1, sizeof (Audit_desc))) == NULL) ||
2268 			    ((AUDITORS(lmp)->ad_name = strdup(cp)) == NULL)) {
2269 				remove_so(0, lmp, clmp);
2270 				return (NULL);
2271 			}
2272 			if (lml_main.lm_head) {
2273 				if (audit_setup(lmp, AUDITORS(lmp), 0,
2274 				    in_nfavl) == 0) {
2275 					remove_so(0, lmp, clmp);
2276 					return (NULL);
2277 				}
2278 				AFLAGS(lmp) |= AUDITORS(lmp)->ad_flags;
2279 				lml->lm_flags |= LML_FLG_LOCAUDIT;
2280 			}
2281 		}
2282 	}
2283 
2284 	if (tphdr && (tls_assign(lml, lmp, tphdr) == 0)) {
2285 		remove_so(0, lmp, clmp);
2286 		return (NULL);
2287 	}
2288 
2289 	/*
2290 	 * A capabilities section should be identified by a DT_SUNW_CAP entry,
2291 	 * and if non-empty object capabilities are included, a PT_SUNWCAP
2292 	 * header should reference the section.  Make sure CAP() is set
2293 	 * regardless.
2294 	 */
2295 	if ((CAP(lmp) == NULL) && cap)
2296 		CAP(lmp) = cap;
2297 
2298 	/*
2299 	 * Make sure any capabilities information or chain can be handled.
2300 	 */
2301 	if (CAPINFO(lmp) && (CAPINFO(lmp)[0] > CAPINFO_CURRENT))
2302 		CAPINFO(lmp) = NULL;
2303 	if (CAPCHAIN(lmp) && (CAPCHAIN(lmp)[0] > CAPCHAIN_CURRENT))
2304 		CAPCHAIN(lmp) = NULL;
2305 
2306 	/*
2307 	 * As part of processing dependencies, a file descriptor is populated
2308 	 * with capabilities information following validation.
2309 	 */
2310 	if (fdp->fd_flags & FLG_FD_ALTCHECK) {
2311 		FLAGS1(lmp) |= FL1_RT_ALTCHECK;
2312 		CAPSET(lmp) = fdp->fd_scapset;
2313 
2314 		if (fdp->fd_flags & FLG_FD_ALTCAP)
2315 			FLAGS1(lmp) |= FL1_RT_ALTCAP;
2316 
2317 	} else if ((cap = CAP(lmp)) != NULL) {
2318 		/*
2319 		 * Processing of the a.out and ld.so.1 does not involve a file
2320 		 * descriptor as exec() did all the work, so capture the
2321 		 * capabilities for these cases.
2322 		 */
2323 		while (cap->c_tag != CA_SUNW_NULL) {
2324 			switch (cap->c_tag) {
2325 			case CA_SUNW_HW_1:
2326 				CAPSET(lmp).sc_hw_1 = cap->c_un.c_val;
2327 				break;
2328 			case CA_SUNW_SF_1:
2329 				CAPSET(lmp).sc_sf_1 = cap->c_un.c_val;
2330 				break;
2331 			case CA_SUNW_HW_2:
2332 				CAPSET(lmp).sc_hw_2 = cap->c_un.c_val;
2333 				break;
2334 			case CA_SUNW_PLAT:
2335 				CAPSET(lmp).sc_plat = STRTAB(lmp) +
2336 				    cap->c_un.c_ptr;
2337 				break;
2338 			case CA_SUNW_MACH:
2339 				CAPSET(lmp).sc_mach = STRTAB(lmp) +
2340 				    cap->c_un.c_ptr;
2341 				break;
2342 			}
2343 			cap++;
2344 		}
2345 	}
2346 
2347 	/*
2348 	 * If a capabilities chain table exists, duplicate it.  The chain table
2349 	 * is inspected for each initial call to a capabilities family lead
2350 	 * symbol.  From this chain, each family member is inspected to
2351 	 * determine the 'best' family member.  The chain table is then updated
2352 	 * so that the best member is immediately selected for any further
2353 	 * family searches.
2354 	 */
2355 	if (CAPCHAIN(lmp)) {
2356 		Capchain	*capchain;
2357 
2358 		if ((capchain = calloc(CAPCHAINSZ(lmp), 1)) == NULL)
2359 			return (NULL);
2360 		(void) memcpy(capchain, CAPCHAIN(lmp), CAPCHAINSZ(lmp));
2361 		CAPCHAIN(lmp) = capchain;
2362 	}
2363 
2364 	/*
2365 	 * Add the mapped object to the end of the link map list.
2366 	 */
2367 	lm_append(lml, lmco, lmp);
2368 
2369 	/*
2370 	 * Start the system loading in the ELF information we'll be processing.
2371 	 */
2372 	if (REL(lmp)) {
2373 		(void) madvise((void *)ADDR(lmp), (uintptr_t)REL(lmp) +
2374 		    (uintptr_t)RELSZ(lmp) - (uintptr_t)ADDR(lmp),
2375 		    MADV_WILLNEED);
2376 	}
2377 	return (lmp);
2378 }
2379 
2380 /*
2381  * Build full pathname of shared object from given directory name and filename.
2382  */
2383 static char *
2384 elf_get_so(const char *dir, const char *file, size_t dlen, size_t flen)
2385 {
2386 	static char	pname[PATH_MAX];
2387 
2388 	(void) strncpy(pname, dir, dlen);
2389 	pname[dlen++] = '/';
2390 	(void) strncpy(&pname[dlen], file, flen + 1);
2391 	return (pname);
2392 }
2393 
2394 /*
2395  * The copy relocation is recorded in a copy structure which will be applied
2396  * after all other relocations are carried out.  This provides for copying data
2397  * that must be relocated itself (ie. pointers in shared objects).  This
2398  * structure also provides a means of binding RTLD_GROUP dependencies to any
2399  * copy relocations that have been taken from any group members.
2400  *
2401  * If the size of the .bss area available for the copy information is not the
2402  * same as the source of the data inform the user if we're under ldd(1) control
2403  * (this checking was only established in 5.3, so by only issuing an error via
2404  * ldd(1) we maintain the standard set by previous releases).
2405  */
2406 int
2407 elf_copy_reloc(char *name, Sym *rsym, Rt_map *rlmp, void *radd, Sym *dsym,
2408     Rt_map *dlmp, const void *dadd)
2409 {
2410 	Rel_copy	rc;
2411 	Lm_list		*lml = LIST(rlmp);
2412 
2413 	rc.r_name = name;
2414 	rc.r_rsym = rsym;		/* the new reference symbol and its */
2415 	rc.r_rlmp = rlmp;		/*	associated link-map */
2416 	rc.r_dlmp = dlmp;		/* the defining link-map */
2417 	rc.r_dsym = dsym;		/* the original definition */
2418 	rc.r_radd = radd;
2419 	rc.r_dadd = dadd;
2420 
2421 	if (rsym->st_size > dsym->st_size)
2422 		rc.r_size = (size_t)dsym->st_size;
2423 	else
2424 		rc.r_size = (size_t)rsym->st_size;
2425 
2426 	if (alist_append(&COPY_R(dlmp), &rc, sizeof (Rel_copy),
2427 	    AL_CNT_COPYREL) == NULL) {
2428 		if (!(lml->lm_flags & LML_FLG_TRC_WARN))
2429 			return (0);
2430 		else
2431 			return (1);
2432 	}
2433 	if (!(FLAGS1(dlmp) & FL1_RT_COPYTOOK)) {
2434 		if (aplist_append(&COPY_S(rlmp), dlmp,
2435 		    AL_CNT_COPYREL) == NULL) {
2436 			if (!(lml->lm_flags & LML_FLG_TRC_WARN))
2437 				return (0);
2438 			else
2439 				return (1);
2440 		}
2441 		FLAGS1(dlmp) |= FL1_RT_COPYTOOK;
2442 	}
2443 
2444 	/*
2445 	 * If we are tracing (ldd), warn the user if
2446 	 *	1) the size from the reference symbol differs from the
2447 	 *	   copy definition. We can only copy as much data as the
2448 	 *	   reference (dynamic executables) entry allows.
2449 	 *	2) the copy definition has STV_PROTECTED visibility.
2450 	 */
2451 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
2452 		if (rsym->st_size != dsym->st_size) {
2453 			(void) printf(MSG_INTL(MSG_LDD_CPY_SIZDIF),
2454 			    _conv_reloc_type(M_R_COPY), demangle(name),
2455 			    NAME(rlmp), EC_XWORD(rsym->st_size),
2456 			    NAME(dlmp), EC_XWORD(dsym->st_size));
2457 			if (rsym->st_size > dsym->st_size)
2458 				(void) printf(MSG_INTL(MSG_LDD_CPY_INSDATA),
2459 				    NAME(dlmp));
2460 			else
2461 				(void) printf(MSG_INTL(MSG_LDD_CPY_DATRUNC),
2462 				    NAME(rlmp));
2463 		}
2464 
2465 		if (ELF_ST_VISIBILITY(dsym->st_other) == STV_PROTECTED) {
2466 			(void) printf(MSG_INTL(MSG_LDD_CPY_PROT),
2467 			    _conv_reloc_type(M_R_COPY), demangle(name),
2468 			    NAME(dlmp));
2469 		}
2470 	}
2471 
2472 	DBG_CALL(Dbg_reloc_apply_val(lml, ELF_DBG_RTLD, (Xword)radd,
2473 	    (Xword)rc.r_size));
2474 	return (1);
2475 }
2476 
2477 /*
2478  * Determine the symbol location of an address within a link-map.  Look for
2479  * the nearest symbol (whose value is less than or equal to the required
2480  * address).  This is the object specific part of dladdr().
2481  */
2482 static void
2483 elf_dladdr(ulong_t addr, Rt_map *lmp, Dl_info *dlip, void **info, int flags)
2484 {
2485 	ulong_t		ndx, cnt, base, _value;
2486 	Sym		*sym, *_sym = NULL;
2487 	const char	*str;
2488 	int		_flags;
2489 	uint_t		*dynaddr_ndx;
2490 	uint_t		dynaddr_n = 0;
2491 	ulong_t		value;
2492 
2493 	/*
2494 	 * If SUNWSYMTAB() is non-NULL, then it sees a special version of
2495 	 * the dynsym that starts with any local function symbols that exist in
2496 	 * the library and then moves to the data held in SYMTAB(). In this
2497 	 * case, SUNWSYMSZ tells us how long the symbol table is. The
2498 	 * availability of local function symbols will enhance the results
2499 	 * we can provide.
2500 	 *
2501 	 * If SUNWSYMTAB() is non-NULL, then there might also be a
2502 	 * SUNWSYMSORT() vector associated with it. SUNWSYMSORT() contains
2503 	 * an array of indices into SUNWSYMTAB, sorted by increasing
2504 	 * address. We can use this to do an O(log N) search instead of a
2505 	 * brute force search.
2506 	 *
2507 	 * If SUNWSYMTAB() is NULL, then SYMTAB() references a dynsym that
2508 	 * contains only global symbols. In that case, the length of
2509 	 * the symbol table comes from the nchain field of the related
2510 	 * symbol lookup hash table.
2511 	 */
2512 	str = STRTAB(lmp);
2513 	if (SUNWSYMSZ(lmp) == NULL) {
2514 		sym = SYMTAB(lmp);
2515 		/*
2516 		 * If we don't have a .hash table there are no symbols
2517 		 * to look at.
2518 		 */
2519 		if (HASH(lmp) == NULL)
2520 			return;
2521 		cnt = HASH(lmp)[1];
2522 	} else {
2523 		sym = SUNWSYMTAB(lmp);
2524 		cnt = SUNWSYMSZ(lmp) / SYMENT(lmp);
2525 		dynaddr_ndx = SUNWSYMSORT(lmp);
2526 		if (dynaddr_ndx != NULL)
2527 			dynaddr_n = SUNWSYMSORTSZ(lmp) / SUNWSORTENT(lmp);
2528 	}
2529 
2530 	if (FLAGS(lmp) & FLG_RT_FIXED)
2531 		base = 0;
2532 	else
2533 		base = ADDR(lmp);
2534 
2535 	if (dynaddr_n > 0) {		/* Binary search */
2536 		long	low = 0, low_bnd;
2537 		long	high = dynaddr_n - 1, high_bnd;
2538 		long	mid;
2539 		Sym	*mid_sym;
2540 
2541 		/*
2542 		 * Note that SUNWSYMSORT only contains symbols types that
2543 		 * supply memory addresses, so there's no need to check and
2544 		 * filter out any other types.
2545 		 */
2546 		low_bnd = low;
2547 		high_bnd = high;
2548 		while (low <= high) {
2549 			mid = (low + high) / 2;
2550 			mid_sym = &sym[dynaddr_ndx[mid]];
2551 			value = mid_sym->st_value + base;
2552 			if (addr < value) {
2553 				if ((sym[dynaddr_ndx[high]].st_value + base) >=
2554 				    addr)
2555 					high_bnd = high;
2556 				high = mid - 1;
2557 			} else if (addr > value) {
2558 				if ((sym[dynaddr_ndx[low]].st_value + base) <=
2559 				    addr)
2560 					low_bnd = low;
2561 				low = mid + 1;
2562 			} else {
2563 				_sym = mid_sym;
2564 				_value = value;
2565 				break;
2566 			}
2567 		}
2568 		/*
2569 		 * If the above didn't find it exactly, then we must
2570 		 * return the closest symbol with a value that doesn't
2571 		 * exceed the one we are looking for. If that symbol exists,
2572 		 * it will lie in the range bounded by low_bnd and
2573 		 * high_bnd. This is a linear search, but a short one.
2574 		 */
2575 		if (_sym == NULL) {
2576 			for (mid = low_bnd; mid <= high_bnd; mid++) {
2577 				mid_sym = &sym[dynaddr_ndx[mid]];
2578 				value = mid_sym->st_value + base;
2579 				if (addr >= value) {
2580 					_sym = mid_sym;
2581 					_value = value;
2582 				} else {
2583 					break;
2584 				}
2585 			}
2586 		}
2587 	} else {			/* Linear search */
2588 		for (_value = 0, sym++, ndx = 1; ndx < cnt; ndx++, sym++) {
2589 			/*
2590 			 * Skip expected symbol types that are not functions
2591 			 * or data:
2592 			 *	- A symbol table starts with an undefined symbol
2593 			 *		in slot 0. If we are using SUNWSYMTAB(),
2594 			 *		there will be a second undefined symbol
2595 			 *		right before the globals.
2596 			 *	- The local part of SUNWSYMTAB() contains a
2597 			 *		series of function symbols. Each section
2598 			 *		starts with an initial STT_FILE symbol.
2599 			 */
2600 			if ((sym->st_shndx == SHN_UNDEF) ||
2601 			    (ELF_ST_TYPE(sym->st_info) == STT_FILE))
2602 				continue;
2603 
2604 			value = sym->st_value + base;
2605 			if (value > addr)
2606 				continue;
2607 			if (value < _value)
2608 				continue;
2609 
2610 			_sym = sym;
2611 			_value = value;
2612 
2613 			/*
2614 			 * Note, because we accept local and global symbols
2615 			 * we could find a section symbol that matches the
2616 			 * associated address, which means that the symbol
2617 			 * name will be null.  In this case continue the
2618 			 * search in case we can find a global symbol of
2619 			 * the same value.
2620 			 */
2621 			if ((value == addr) &&
2622 			    (ELF_ST_TYPE(sym->st_info) != STT_SECTION))
2623 				break;
2624 		}
2625 	}
2626 
2627 	_flags = flags & RTLD_DL_MASK;
2628 	if (_sym) {
2629 		if (_flags == RTLD_DL_SYMENT)
2630 			*info = (void *)_sym;
2631 		else if (_flags == RTLD_DL_LINKMAP)
2632 			*info = (void *)lmp;
2633 
2634 		dlip->dli_sname = str + _sym->st_name;
2635 		dlip->dli_saddr = (void *)_value;
2636 	} else {
2637 		/*
2638 		 * addr lies between the beginning of the mapped segment and
2639 		 * the first global symbol. We have no symbol to return
2640 		 * and the caller requires one. We use _START_, the base
2641 		 * address of the mapping.
2642 		 */
2643 
2644 		if (_flags == RTLD_DL_SYMENT) {
2645 			/*
2646 			 * An actual symbol struct is needed, so we
2647 			 * construct one for _START_. To do this in a
2648 			 * fully accurate way requires a different symbol
2649 			 * for each mapped segment. This requires the
2650 			 * use of dynamic memory and a mutex. That's too much
2651 			 * plumbing for a fringe case of limited importance.
2652 			 *
2653 			 * Fortunately, we can simplify:
2654 			 *    - Only the st_size and st_info fields are useful
2655 			 *	outside of the linker internals. The others
2656 			 *	reference things that outside code cannot see,
2657 			 *	and can be set to 0.
2658 			 *    - It's just a label and there is no size
2659 			 *	to report. So, the size should be 0.
2660 			 * This means that only st_info needs a non-zero
2661 			 * (constant) value. A static struct will suffice.
2662 			 * It must be const (readonly) so the caller can't
2663 			 * change its meaning for subsequent callers.
2664 			 */
2665 			static const Sym fsym = { 0, 0, 0,
2666 			    ELF_ST_INFO(STB_LOCAL, STT_OBJECT) };
2667 			*info = (void *) &fsym;
2668 		}
2669 
2670 		dlip->dli_sname = MSG_ORIG(MSG_SYM_START);
2671 		dlip->dli_saddr = (void *) ADDR(lmp);
2672 	}
2673 }
2674 
2675 /*
2676  * This routine is called as a last fall-back to search for a symbol from a
2677  * standard relocation or dlsym().  To maintain lazy loadings goal of reducing
2678  * the number of objects mapped, any symbol search is first carried out using
2679  * the objects that already exist in the process (either on a link-map list or
2680  * handle).  If a symbol can't be found, and lazy dependencies are still
2681  * pending, this routine loads the dependencies in an attempt to locate the
2682  * symbol.
2683  */
2684 int
2685 elf_lazy_find_sym(Slookup *slp, Sresult *srp, uint_t *binfo, int *in_nfavl)
2686 {
2687 	static APlist	*alist = NULL;
2688 	Aliste		idx1;
2689 	Rt_map		*lmp1, *lmp = slp->sl_imap, *clmp = slp->sl_cmap;
2690 	const char	*name = slp->sl_name;
2691 	Slookup		sl1 = *slp;
2692 	Lm_list		*lml;
2693 	Lm_cntl		*lmc;
2694 
2695 	/*
2696 	 * It's quite possible we've been here before to process objects,
2697 	 * therefore reinitialize our dynamic list.
2698 	 */
2699 	if (alist)
2700 		aplist_reset(alist);
2701 
2702 	/*
2703 	 * Discard any relocation index from further symbol searches.  This
2704 	 * index has already been used to trigger any necessary lazy-loads,
2705 	 * and it might be because one of these lazy loads has failed that
2706 	 * we're performing this fallback.  By removing the relocation index
2707 	 * we don't try and perform the same failed lazy loading activity again.
2708 	 */
2709 	sl1.sl_rsymndx = 0;
2710 
2711 	/*
2712 	 * Determine the callers link-map list so that we can monitor whether
2713 	 * new objects have been added.
2714 	 */
2715 	lml = LIST(clmp);
2716 	lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(clmp));
2717 
2718 	/*
2719 	 * Generate a local list of new objects to process.  This list can grow
2720 	 * as each object supplies its own lazy dependencies.
2721 	 */
2722 	if (aplist_append(&alist, lmp, AL_CNT_LAZYFIND) == NULL)
2723 		return (NULL);
2724 
2725 	for (APLIST_TRAVERSE(alist, idx1, lmp1)) {
2726 		uint_t	dynndx;
2727 		Dyninfo	*dip, *pdip;
2728 
2729 		/*
2730 		 * Loop through the lazy DT_NEEDED entries examining each object
2731 		 * for the required symbol.  If the symbol is not found, the
2732 		 * object is in turn added to the local alist, so that the
2733 		 * objects lazy DT_NEEDED entries can be examined.
2734 		 */
2735 		lmp = lmp1;
2736 		for (dynndx = 0, dip = DYNINFO(lmp), pdip = NULL;
2737 		    !(dip->di_flags & FLG_DI_IGNORE); dynndx++, pdip = dip++) {
2738 			Grp_hdl		*ghp;
2739 			Grp_desc	*gdp;
2740 			Rt_map		*nlmp, *llmp;
2741 			Slookup		sl2;
2742 			Sresult		sr;
2743 			Aliste		idx2;
2744 
2745 			if (((dip->di_flags & FLG_DI_LAZY) == 0) ||
2746 			    dip->di_info)
2747 				continue;
2748 
2749 			/*
2750 			 * If this object has already failed to lazy load, and
2751 			 * we're still processing the same runtime linker
2752 			 * operation that produced the failure, don't bother
2753 			 * to try and load the object again.
2754 			 */
2755 			if ((dip->di_flags & FLG_DI_LAZYFAIL) && pdip &&
2756 			    (pdip->di_flags & FLG_DI_POSFLAG1)) {
2757 				if (pdip->di_info == (void *)ld_entry_cnt)
2758 					continue;
2759 
2760 				dip->di_flags &= ~FLG_DI_LAZYFAIL;
2761 				pdip->di_info = NULL;
2762 			}
2763 
2764 			/*
2765 			 * Determine the last link-map presently on the callers
2766 			 * link-map control list.
2767 			 */
2768 			llmp = lmc->lc_tail;
2769 
2770 			/*
2771 			 * Try loading this lazy dependency.  If the object
2772 			 * can't be loaded, consider this non-fatal and continue
2773 			 * the search.  Lazy loaded dependencies need not exist
2774 			 * and their loading should only turn out to be fatal
2775 			 * if they are required to satisfy a relocation.
2776 			 *
2777 			 * A successful lazy load can mean one of two things:
2778 			 *
2779 			 *  -	new objects have been loaded, in which case the
2780 			 * 	objects will have been analyzed, relocated, and
2781 			 * 	finally moved to the callers control list.
2782 			 *  -	the objects are already loaded, and this lazy
2783 			 *	load has simply associated the referenced object
2784 			 *	with it's lazy dependencies.
2785 			 *
2786 			 * If new objects are loaded, look in these objects
2787 			 * first.  Note, a new object can be the object being
2788 			 * referenced by this lazy load, however we can also
2789 			 * descend into multiple lazy loads as we relocate this
2790 			 * reference.
2791 			 *
2792 			 * If the symbol hasn't been found, use the referenced
2793 			 * objects handle, as it might have dependencies on
2794 			 * objects that are already loaded.  Note that existing
2795 			 * objects might have already been searched and skipped
2796 			 * as non-available to this caller.   However, a lazy
2797 			 * load might have caused the promotion of modes, or
2798 			 * added this object to the family of the caller.  In
2799 			 * either case, the handle associated with the object
2800 			 * is then used to carry out the symbol search.
2801 			 */
2802 			if ((nlmp = elf_lazy_load(lmp, &sl1, dynndx, name,
2803 			    FLG_RT_PRIHDL, &ghp, in_nfavl)) == NULL)
2804 				continue;
2805 
2806 			if (NEXT_RT_MAP(llmp)) {
2807 				/*
2808 				 * Look in any new objects.
2809 				 */
2810 				sl1.sl_imap = NEXT_RT_MAP(llmp);
2811 				sl1.sl_flags &= ~LKUP_STDRELOC;
2812 
2813 				/*
2814 				 * Initialize a local symbol result descriptor,
2815 				 * using the original symbol name.
2816 				 */
2817 				SRESULT_INIT(sr, slp->sl_name);
2818 
2819 				if (lookup_sym(&sl1, &sr, binfo, in_nfavl)) {
2820 					*srp = sr;
2821 					return (1);
2822 				}
2823 			}
2824 
2825 			/*
2826 			 * Use the objects handle to inspect the family of
2827 			 * objects associated with the handle.  Note, there's
2828 			 * a possibility of overlap with the above search,
2829 			 * should a lazy load bring in new objects and
2830 			 * reference existing objects.
2831 			 */
2832 			sl2 = sl1;
2833 			for (ALIST_TRAVERSE(ghp->gh_depends, idx2, gdp)) {
2834 				if ((gdp->gd_depend != NEXT_RT_MAP(llmp)) &&
2835 				    (gdp->gd_flags & GPD_DLSYM)) {
2836 
2837 					sl2.sl_imap = gdp->gd_depend;
2838 					sl2.sl_flags |= LKUP_FIRST;
2839 
2840 					/*
2841 					 * Initialize a local symbol result
2842 					 * descriptor, using the original
2843 					 * symbol name.
2844 					 */
2845 					SRESULT_INIT(sr, slp->sl_name);
2846 
2847 					if (lookup_sym(&sl2, &sr, binfo,
2848 					    in_nfavl)) {
2849 						*srp = sr;
2850 						return (1);
2851 					}
2852 				}
2853 			}
2854 
2855 			/*
2856 			 * Some dlsym() operations are already traversing a
2857 			 * link-map (dlopen(0)), and thus there's no need to
2858 			 * save them on the dynamic dependency list.
2859 			 */
2860 			if (slp->sl_flags & LKUP_NODESCENT)
2861 				continue;
2862 
2863 			if (aplist_test(&alist, nlmp, AL_CNT_LAZYFIND) == NULL)
2864 				return (0);
2865 		}
2866 	}
2867 
2868 	return (0);
2869 }
2870 
2871 /*
2872  * Warning message for bad r_offset.
2873  */
2874 void
2875 elf_reloc_bad(Rt_map *lmp, void *rel, uchar_t rtype, ulong_t roffset,
2876     ulong_t rsymndx)
2877 {
2878 	const char	*name = NULL;
2879 	Lm_list		*lml = LIST(lmp);
2880 	int		trace;
2881 
2882 	if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
2883 	    (((rtld_flags & RT_FL_SILENCERR) == 0) ||
2884 	    (lml->lm_flags & LML_FLG_TRC_VERBOSE)))
2885 		trace = 1;
2886 	else
2887 		trace = 0;
2888 
2889 	if ((trace == 0) && (DBG_ENABLED == 0))
2890 		return;
2891 
2892 	if (rsymndx) {
2893 		Sym	*symref = (Sym *)((ulong_t)SYMTAB(lmp) +
2894 		    (rsymndx * SYMENT(lmp)));
2895 
2896 		if (ELF_ST_BIND(symref->st_info) != STB_LOCAL)
2897 			name = (char *)(STRTAB(lmp) + symref->st_name);
2898 	}
2899 
2900 	if (name == NULL)
2901 		name = MSG_INTL(MSG_STR_UNKNOWN);
2902 
2903 	if (trace) {
2904 		const char *rstr;
2905 
2906 		rstr = _conv_reloc_type((uint_t)rtype);
2907 		(void) printf(MSG_INTL(MSG_LDD_REL_ERR1), rstr, name,
2908 		    EC_ADDR(roffset));
2909 		return;
2910 	}
2911 
2912 	Dbg_reloc_error(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, name);
2913 }
2914 
2915 /*
2916  * Resolve a static TLS relocation.
2917  */
2918 long
2919 elf_static_tls(Rt_map *lmp, Sym *sym, void *rel, uchar_t rtype, char *name,
2920     ulong_t roffset, long value)
2921 {
2922 	Lm_list	*lml = LIST(lmp);
2923 
2924 	/*
2925 	 * Relocations against a static TLS block have limited support once
2926 	 * process initialization has completed.  Any error condition should be
2927 	 * discovered by testing for DF_STATIC_TLS as part of loading an object,
2928 	 * however individual relocations are tested in case the dynamic flag
2929 	 * had not been set when this object was built.
2930 	 */
2931 	if (PTTLS(lmp) == NULL) {
2932 		DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
2933 		    M_REL_SHT_TYPE, rel, NULL, 0, name));
2934 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
2935 		    _conv_reloc_type((uint_t)rtype), NAME(lmp),
2936 		    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
2937 		return (0);
2938 	}
2939 
2940 	/*
2941 	 * If no static TLS has been set aside for this object, determine if
2942 	 * any can be obtained.  Enforce that any object using static TLS is
2943 	 * non-deletable.
2944 	 */
2945 	if (TLSSTATOFF(lmp) == 0) {
2946 		FLAGS1(lmp) |= FL1_RT_TLSSTAT;
2947 		MODE(lmp) |= RTLD_NODELETE;
2948 
2949 		if (tls_assign(lml, lmp, PTTLS(lmp)) == 0) {
2950 			DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
2951 			    M_REL_SHT_TYPE, rel, NULL, 0, name));
2952 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
2953 			    _conv_reloc_type((uint_t)rtype), NAME(lmp),
2954 			    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
2955 			return (0);
2956 		}
2957 	}
2958 
2959 	/*
2960 	 * Typically, a static TLS offset is maintained as a symbols value.
2961 	 * For local symbols that are not apart of the dynamic symbol table,
2962 	 * the TLS relocation points to a section symbol, and the static TLS
2963 	 * offset was deposited in the associated GOT table.  Make sure the GOT
2964 	 * is cleared, so that the value isn't reused in do_reloc().
2965 	 */
2966 	if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
2967 		if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION)) {
2968 			value = *(long *)roffset;
2969 			*(long *)roffset = 0;
2970 		} else {
2971 			value = sym->st_value;
2972 		}
2973 	}
2974 	return (-(TLSSTATOFF(lmp) - value));
2975 }
2976 
2977 /*
2978  * If the symbol is not found and the reference was not to a weak symbol, report
2979  * an error.  Weak references may be unresolved.
2980  */
2981 int
2982 elf_reloc_error(Rt_map *lmp, const char *name, void *rel, uint_t binfo)
2983 {
2984 	Lm_list	*lml = LIST(lmp);
2985 
2986 	/*
2987 	 * Under crle(1), relocation failures are ignored.
2988 	 */
2989 	if (lml->lm_flags & LML_FLG_IGNRELERR)
2990 		return (1);
2991 
2992 	/*
2993 	 * Under ldd(1), unresolved references are reported.  However, if the
2994 	 * original reference is EXTERN or PARENT these references are ignored
2995 	 * unless ldd's -p option is in effect.
2996 	 */
2997 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
2998 		if (((binfo & DBG_BINFO_REF_MSK) == 0) ||
2999 		    ((lml->lm_flags & LML_FLG_TRC_NOPAREXT) != 0)) {
3000 			(void) printf(MSG_INTL(MSG_LDD_SYM_NFOUND),
3001 			    demangle(name), NAME(lmp));
3002 		}
3003 		return (1);
3004 	}
3005 
3006 	/*
3007 	 * Otherwise, the unresolved references is fatal.
3008 	 */
3009 	DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel,
3010 	    NULL, 0, name));
3011 	eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
3012 	    demangle(name));
3013 
3014 	return (0);
3015 }
3016