1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * This file contains the functions responsible for opening the output file 33 * image, associating the appropriate input elf structures with the new image, 34 * and obtaining new elf structures to define the new image. 35 */ 36 #include <stdio.h> 37 #include <sys/stat.h> 38 #include <fcntl.h> 39 #include <link.h> 40 #include <errno.h> 41 #include <string.h> 42 #include <limits.h> 43 #include <debug.h> 44 #include "msg.h" 45 #include "_libld.h" 46 47 /* 48 * Determine a least common multiplier. Input sections contain an alignment 49 * requirement, which elf_update() uses to insure that the section is aligned 50 * correctly off of the base of the elf image. We must also insure that the 51 * sections mapping is congruent with this alignment requirement. For each 52 * input section associated with a loadable segment determine whether the 53 * segments alignment must be adjusted to compensate for a sections alignment 54 * requirements. 55 */ 56 Xword 57 ld_lcm(Xword a, Xword b) 58 { 59 Xword _r, _a, _b; 60 61 if ((_a = a) == 0) 62 return (b); 63 if ((_b = b) == 0) 64 return (a); 65 66 if (_a > _b) 67 _a = b, _b = a; 68 while ((_r = _b % _a) != 0) 69 _b = _a, _a = _r; 70 return ((a / _a) * b); 71 } 72 73 /* 74 * Open the output file and insure the correct access modes. 75 */ 76 uintptr_t 77 ld_open_outfile(Ofl_desc * ofl) 78 { 79 mode_t mask, mode; 80 struct stat status; 81 int exists = 0; 82 83 /* 84 * Determine the required file mode from the type of output file we 85 * are creating. 86 */ 87 if (ofl->ofl_flags & (FLG_OF_EXEC | FLG_OF_SHAROBJ)) 88 mode = 0777; 89 else 90 mode = 0666; 91 92 /* 93 * Determine if the output file already exists. 94 */ 95 if (stat(ofl->ofl_name, &status) == 0) 96 exists++; 97 98 /* 99 * Open (or create) the output file name (ofl_fd acts as a global 100 * flag to ldexit() signifying whether the output file should be 101 * removed or not on error). 102 */ 103 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR | O_CREAT | O_TRUNC, 104 mode)) < 0) { 105 int err = errno; 106 107 eprintf(ofl->ofl_lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 108 ofl->ofl_name, strerror(err)); 109 return (S_ERROR); 110 } 111 112 /* 113 * If we've just created this file the modes will be fine, however if 114 * the file had already existed make sure the modes are correct. 115 */ 116 if (exists) { 117 /* 118 * If the output file is not a regular file, don't change the 119 * mode, or allow it to be deleted. This allows root users to 120 * specify /dev/null output file for verification links. 121 */ 122 if ((status.st_mode & S_IFMT) != S_IFREG) { 123 ofl->ofl_flags1 |= FLG_OF1_NONREG; 124 } else { 125 mask = umask(0); 126 (void) umask(mask); 127 (void) chmod(ofl->ofl_name, mode & ~mask); 128 } 129 } 130 131 return (1); 132 } 133 134 135 /* 136 * If we are creating a memory model we need to update the present memory image. 137 * First we need to call elf_update(ELF_C_NULL) which will calculate the offsets 138 * of each section and its associated data buffers. From this information we 139 * can then determine what padding is required. 140 * Two actions are necessary to convert the present disc image into a memory 141 * image: 142 * 143 * o Loadable segments must be padded so that the next segments virtual 144 * address and file offset are the same. 145 * 146 * o NOBITS sections must be converted into allocated, null filled sections. 147 */ 148 static uintptr_t 149 pad_outfile(Ofl_desc *ofl) 150 { 151 Listnode *lnp; 152 off_t offset; 153 Elf_Scn *oscn = 0; 154 Sg_desc *sgp; 155 Ehdr *ehdr; 156 157 /* 158 * Update all the elf structures. This will assign offsets to the 159 * section headers and data buffers as they relate to the new image. 160 */ 161 if (elf_update(ofl->ofl_welf, ELF_C_NULL) == -1) { 162 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 163 ofl->ofl_name); 164 return (S_ERROR); 165 } 166 if ((ehdr = elf_getehdr(ofl->ofl_welf)) == NULL) { 167 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 168 ofl->ofl_name); 169 return (S_ERROR); 170 } 171 172 /* 173 * Initialize the offset by skipping the Elf header and program 174 * headers. 175 */ 176 offset = ehdr->e_phoff + (ehdr->e_phnum * ehdr->e_phentsize); 177 178 /* 179 * Traverse the segment list looking for loadable segments. 180 */ 181 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp, sgp)) { 182 Phdr *phdr = &(sgp->sg_phdr); 183 Os_desc **ospp, *osp; 184 Aliste off; 185 186 /* 187 * If we've already processed a loadable segment, the `scn' 188 * variable will be initialized to the last section that was 189 * part of that segment. Add sufficient padding to this section 190 * to cause the next segments virtual address and file offset to 191 * be the same. 192 */ 193 if (oscn && (phdr->p_type == PT_LOAD)) { 194 Elf_Data * data; 195 size_t size; 196 197 size = (size_t)(S_ROUND(offset, phdr->p_align) - 198 offset); 199 200 if ((data = elf_newdata(oscn)) == NULL) { 201 eprintf(ofl->ofl_lml, ERR_ELF, 202 MSG_INTL(MSG_ELF_NEWDATA), ofl->ofl_name); 203 return (S_ERROR); 204 } 205 if ((data->d_buf = libld_calloc(size, 1)) == 0) 206 return (S_ERROR); 207 208 data->d_type = ELF_T_BYTE; 209 data->d_size = size; 210 data->d_align = 1; 211 data->d_version = ofl->ofl_dehdr->e_version; 212 } 213 214 /* 215 * Traverse the output sections for this segment calculating the 216 * offset of each section. Retain the final section descriptor 217 * as this will be where any padding buffer will be added. 218 */ 219 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 220 Shdr *shdr; 221 222 osp = *ospp; 223 shdr = osp->os_shdr; 224 225 offset = (off_t)S_ROUND(offset, shdr->sh_addralign); 226 offset += shdr->sh_size; 227 228 /* 229 * If this is a NOBITS output section convert all of 230 * its associated input sections into real, null filled, 231 * data buffers, and change the section to PROGBITS. 232 */ 233 if (shdr->sh_type == SHT_NOBITS) 234 shdr->sh_type = SHT_PROGBITS; 235 } 236 237 /* 238 * If this is a loadable segment retain the last output section 239 * descriptor. This acts both as a flag that a loadable 240 * segment has been seen, and as the segment to which a padding 241 * buffer will be added. 242 */ 243 if (phdr->p_type == PT_LOAD) 244 oscn = osp->os_scn; 245 } 246 return (1); 247 } 248 249 /* 250 * Create the elf structures that allow the input data to be associated with the 251 * new image: 252 * 253 * o define the new elf image using elf_begin(), 254 * 255 * o obtain an elf header for the image, 256 * 257 * o traverse the input segments and create a program header array 258 * to define the required segments, 259 * 260 * o traverse the output sections for each segment assigning a new 261 * section descriptor and section header for each, 262 * 263 * o traverse the input sections associated with each output section 264 * and assign a new data descriptor to each (each output section 265 * becomes a linked list of input data buffers). 266 */ 267 uintptr_t 268 ld_create_outfile(Ofl_desc *ofl) 269 { 270 Listnode *lnp1; 271 Sg_desc *sgp; 272 Os_desc **ospp; 273 Is_desc *isp; 274 Elf_Scn *scn; 275 Elf_Data *tlsdata = 0; 276 Shdr *shdr; 277 Aliste off; 278 Word flags = ofl->ofl_flags; 279 size_t ndx = 0, fndx = 0; 280 Elf_Cmd cmd; 281 Boolean fixalign = FALSE; 282 int fd, nseg = 0, shidx = 0, dataidx = 0, ptloadidx = 0; 283 284 /* 285 * If FLG_OF1_NOHDR was set in map_parse() or FLG_OF1_VADDR was set, 286 * we need to do alignment adjustment. 287 */ 288 if (ofl->ofl_flags1 & (FLG_OF1_NOHDR | FLG_OF1_VADDR)) { 289 fixalign = TRUE; 290 } 291 292 if (flags & FLG_OF_MEMORY) { 293 cmd = ELF_C_IMAGE; 294 fd = 0; 295 } else { 296 fd = ofl->ofl_fd; 297 cmd = ELF_C_WRITE; 298 } 299 300 /* 301 * If there are any ordered section, handle them here. 302 */ 303 if ((ofl->ofl_ordered.head != NULL) && 304 (ld_sort_ordered(ofl) == S_ERROR)) 305 return (S_ERROR); 306 307 /* 308 * Tell the access library about our new temporary file. 309 */ 310 if ((ofl->ofl_welf = elf_begin(fd, cmd, 0)) == NULL) { 311 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 312 ofl->ofl_name); 313 return (S_ERROR); 314 } 315 316 /* 317 * Obtain a new Elf header. 318 */ 319 if ((ofl->ofl_nehdr = elf_newehdr(ofl->ofl_welf)) == NULL) { 320 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWEHDR), 321 ofl->ofl_name); 322 return (S_ERROR); 323 } 324 ofl->ofl_nehdr->e_machine = ofl->ofl_dehdr->e_machine; 325 326 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD)); 327 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 328 int frst = 0; 329 Phdr *phdr = &(sgp->sg_phdr); 330 Word ptype = phdr->p_type; 331 332 /* 333 * Count the number of segments that will go in the program 334 * header table. If a segment is empty, ignore it. 335 */ 336 if (!(flags & FLG_OF_RELOBJ)) { 337 if (ptype == PT_PHDR) { 338 /* 339 * If we are generating an interp section (and 340 * thus an associated PT_INTERP program header 341 * entry) also generate a PT_PHDR program header 342 * entry. This allows the kernel to generate 343 * the appropriate aux vector entries to pass to 344 * the interpreter (refer to exec/elf/elf.c). 345 * Note that if an image was generated with an 346 * interp section, but no associated PT_PHDR 347 * program header entry, the kernel will simply 348 * pass the interpreter an open file descriptor 349 * when the image is executed). 350 */ 351 if (ofl->ofl_osinterp) 352 nseg++; 353 } else if (ptype == PT_INTERP) { 354 if (ofl->ofl_osinterp) 355 nseg++; 356 } else if (ptype == PT_DYNAMIC) { 357 if (flags & FLG_OF_DYNAMIC) 358 nseg++; 359 } else if (ptype == PT_TLS) { 360 if (flags & FLG_OF_TLSPHDR) 361 nseg++; 362 #if (defined(__i386) || defined(__amd64)) && defined(_ELF64) 363 } else if (ptype == PT_SUNW_UNWIND) { 364 if (ofl->ofl_unwindhdr) 365 nseg++; 366 #endif 367 } else if (ptype == PT_SUNWBSS) { 368 if (ofl->ofl_issunwbss) 369 nseg++; 370 } else if (ptype == PT_SUNWSTACK) { 371 nseg++; 372 } else if (ptype == PT_SUNWDTRACE) { 373 if (ofl->ofl_dtracesym) 374 nseg++; 375 } else if (ptype == PT_SUNWCAP) { 376 if (ofl->ofl_oscap) 377 nseg++; 378 } else if ((sgp->sg_osdescs != NULL) || 379 (sgp->sg_flags & FLG_SG_EMPTY)) { 380 if (((sgp->sg_flags & FLG_SG_EMPTY) == 0) && 381 ((sgp->sg_flags & FLG_SG_PHREQ) == 0)) { 382 /* 383 * If this is a segment for which 384 * we are not making a program header, 385 * don't increment nseg 386 */ 387 ptype = (sgp->sg_phdr).p_type = PT_NULL; 388 } else if (ptype != PT_NULL) 389 nseg++; 390 } 391 } 392 393 /* 394 * If the first loadable segment has the ?N flag, 395 * then ?N will be on. 396 */ 397 if ((ptype == PT_LOAD) && (ptloadidx == 0)) { 398 ptloadidx++; 399 if (sgp->sg_flags & FLG_SG_NOHDR) { 400 fixalign = TRUE; 401 ofl->ofl_flags1 |= FLG_OF1_NOHDR; 402 } 403 } 404 405 shidx = 0; 406 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 407 Listnode *lnp2; 408 Os_desc *osp = *ospp; 409 410 shidx++; 411 412 /* 413 * Get a section descriptor for the section. 414 */ 415 if ((scn = elf_newscn(ofl->ofl_welf)) == NULL) { 416 eprintf(ofl->ofl_lml, ERR_ELF, 417 MSG_INTL(MSG_ELF_NEWSCN), ofl->ofl_name); 418 return (S_ERROR); 419 } 420 osp->os_scn = scn; 421 422 /* 423 * Get a new section header table entry and copy the 424 * pertinent information from the in-core descriptor. 425 * As we had originally allocated the section header 426 * (refer place_section()) we might as well free it up. 427 */ 428 if ((shdr = elf_getshdr(scn)) == NULL) { 429 eprintf(ofl->ofl_lml, ERR_ELF, 430 MSG_INTL(MSG_ELF_GETSHDR), ofl->ofl_name); 431 return (S_ERROR); 432 } 433 *shdr = *(osp->os_shdr); 434 435 if ((fixalign == TRUE) && (ptype == PT_LOAD) && 436 (shidx == 1)) 437 sgp->sg_fscn = scn; 438 439 osp->os_shdr = shdr; 440 441 /* 442 * Knock off the SHF_ORDERED & SHF_LINK_ORDER flags. 443 */ 444 osp->os_shdr->sh_flags &= ~ALL_SHF_ORDER; 445 446 /* 447 * If we are not building a RELOBJ - we strip 448 * off the SHF_GROUP flag (if present). 449 */ 450 if ((ofl->ofl_flags & FLG_OF_RELOBJ) == 0) 451 osp->os_shdr->sh_flags &= ~SHF_GROUP; 452 453 /* 454 * If this is a TLS section, save it so that the PT_TLS 455 * program header information can be established after 456 * the output image has been initialy created. At this 457 * point, all TLS input sections are ordered as they 458 * will appear in the output image. 459 */ 460 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 461 (osp->os_shdr->sh_flags & SHF_TLS)) { 462 if (list_appendc(&ofl->ofl_ostlsseg, osp) == 0) 463 return (S_ERROR); 464 } 465 466 dataidx = 0; 467 for (LIST_TRAVERSE(&(osp->os_isdescs), lnp2, isp)) { 468 Elf_Data * data; 469 Ifl_desc * ifl = isp->is_file; 470 471 /* 472 * At this point we know whether a section has 473 * been referenced. If it hasn't, and the whole 474 * file hasn't been referenced (which would have 475 * been caught in ignore_section_processing()), 476 * give a diagnostic (-D unused,detail) or 477 * discard the section if -zignore is in effect. 478 */ 479 if (ifl && 480 (((ifl->ifl_flags & FLG_IF_FILEREF) == 0) || 481 ((ptype == PT_LOAD) && 482 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 483 (isp->is_shdr->sh_size > 0)))) { 484 Lm_list *lml = ofl->ofl_lml; 485 486 if (ifl->ifl_flags & FLG_IF_IGNORE) { 487 isp->is_flags |= FLG_IS_DISCARD; 488 DBG_CALL(Dbg_unused_sec(lml, isp)); 489 continue; 490 } else 491 DBG_CALL(Dbg_unused_sec(lml, isp)); 492 } 493 494 dataidx++; 495 496 /* 497 * If this section provides no data, and isn't 498 * referenced, then it can be discarded as well. 499 * Note, if this is the first input section 500 * associated to an output section, let it 501 * through, there may be a legitimate reason why 502 * the user wants a null section. Discarding 503 * additional sections is intended to remove the 504 * empty clutter the compilers have a habit of 505 * creating. Don't provide an unused diagnostic 506 * as these sections aren't typically the users 507 * creation. 508 */ 509 if (ifl && dataidx && 510 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 511 (isp->is_shdr->sh_size == 0)) { 512 isp->is_flags |= FLG_IS_DISCARD; 513 continue; 514 } 515 516 /* 517 * Create new output data buffers for each of 518 * the input data buffers, thus linking the new 519 * buffers to the new elf output structures. 520 * Simply make the new data buffers point to 521 * the old data. 522 */ 523 if ((data = elf_newdata(scn)) == NULL) { 524 eprintf(ofl->ofl_lml, ERR_ELF, 525 MSG_INTL(MSG_ELF_NEWDATA), 526 ofl->ofl_name); 527 return (S_ERROR); 528 } 529 *data = *(isp->is_indata); 530 531 if ((fixalign == TRUE) && (ptype == PT_LOAD) && 532 (shidx == 1) && (dataidx == 1)) { 533 data->d_align = sgp->sg_addralign; 534 } 535 isp->is_indata = data; 536 537 /* 538 * Save the first TLS data buffer, as this is 539 * the start of the TLS segment. Realign this 540 * buffer based on the alignment requirements 541 * of all the TLS input sections. 542 */ 543 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 544 (isp->is_shdr->sh_flags & SHF_TLS)) { 545 if (tlsdata == 0) 546 tlsdata = data; 547 tlsdata->d_align = 548 ld_lcm(tlsdata->d_align, 549 isp->is_shdr->sh_addralign); 550 } 551 552 #if defined(_ELF64) && defined(_ILP32) 553 /* 554 * 4106312, the 32-bit ELF64 version of ld 555 * needs to be able to create large .bss 556 * sections. The d_size member of Elf_Data 557 * only allows 32-bits in _ILP32, so we build 558 * multiple data-items that each fit into 32- 559 * bits. libelf (4106398) can summ these up 560 * into a 64-bit quantity. This only works 561 * for NOBITS sections which don't have any 562 * real data to maintain and don't require 563 * large file support. 564 */ 565 if (isp->is_shdr->sh_type == SHT_NOBITS) { 566 Xword sz = isp->is_shdr->sh_size; 567 568 while (sz >> 32) { 569 data->d_size = SIZE_MAX; 570 sz -= (Xword)SIZE_MAX; 571 if ((data = 572 elf_newdata(scn)) == NULL) 573 return (S_ERROR); 574 } 575 data->d_size = (size_t)sz; 576 } 577 #endif 578 579 /* 580 * If this segment requires rounding realign the 581 * first data buffer associated with the first 582 * section. 583 */ 584 if ((frst++ == 0) && 585 (sgp->sg_flags & FLG_SG_ROUND)) { 586 Xword align; 587 588 if (data->d_align) 589 align = (Xword) 590 S_ROUND(data->d_align, 591 sgp->sg_round); 592 else 593 align = sgp->sg_round; 594 595 data->d_align = (size_t)align; 596 } 597 } 598 599 /* 600 * Clear the szoutrels counter so that it can be used 601 * again in the building of relocs. See machrel.c. 602 */ 603 osp->os_szoutrels = 0; 604 } 605 } 606 607 /* 608 * Build an empty PHDR. 609 */ 610 if (nseg) { 611 if ((ofl->ofl_phdr = elf_newphdr(ofl->ofl_welf, 612 nseg)) == NULL) { 613 eprintf(ofl->ofl_lml, ERR_ELF, 614 MSG_INTL(MSG_ELF_NEWPHDR), ofl->ofl_name); 615 return (S_ERROR); 616 } 617 } 618 619 /* 620 * If we need to generate a memory model, pad the image. 621 */ 622 if (flags & FLG_OF_MEMORY) { 623 if (pad_outfile(ofl) == S_ERROR) 624 return (S_ERROR); 625 } 626 627 /* 628 * After all the basic input file processing, all data pointers are 629 * referencing two types of memory: 630 * 631 * o allocated memory, ie. elf structures, internal link 632 * editor structures, and any new sections that have been 633 * created. 634 * 635 * o original input file mmap'ed memory, ie. the actual data 636 * sections of the input file images. 637 * 638 * Up until now, the only memory modifications have been carried out on 639 * the allocated memory. Before carrying out any relocations, write the 640 * new output file image and reassign any necessary data pointers to the 641 * output files memory image. This insures that any relocation 642 * modifications are made to the output file image and not to the input 643 * file image, thus preventing the creation of dirty pages and reducing 644 * the overall swap space requirement. 645 * 646 * Write out the elf structure so as to create the new file image. 647 */ 648 if ((ofl->ofl_size = (size_t)elf_update(ofl->ofl_welf, 649 ELF_C_WRIMAGE)) == (size_t)-1) { 650 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 651 ofl->ofl_name); 652 return (S_ERROR); 653 } 654 655 /* 656 * Initialize the true `ofl' information with the memory images address 657 * and size. This will be used to write() out the image once any 658 * relocation processing has been completed. We also use this image 659 * information to setup a new Elf descriptor, which is used to obtain 660 * all the necessary elf pointers within the new output image. 661 */ 662 if ((ofl->ofl_elf = elf_begin(0, ELF_C_IMAGE, 663 ofl->ofl_welf)) == NULL) { 664 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 665 ofl->ofl_name); 666 return (S_ERROR); 667 } 668 if ((ofl->ofl_nehdr = elf_getehdr(ofl->ofl_elf)) == NULL) { 669 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 670 ofl->ofl_name); 671 return (S_ERROR); 672 } 673 if (!(flags & FLG_OF_RELOBJ)) 674 if ((ofl->ofl_phdr = elf_getphdr(ofl->ofl_elf)) == NULL) { 675 eprintf(ofl->ofl_lml, ERR_ELF, 676 MSG_INTL(MSG_ELF_GETPHDR), ofl->ofl_name); 677 return (S_ERROR); 678 } 679 680 /* 681 * Reinitialize the section descriptors, section headers and obtain new 682 * output data buffer pointers (these will be used to perform any 683 * relocations). 684 */ 685 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 686 Phdr *_phdr = &(sgp->sg_phdr); 687 Os_desc **ospp; 688 Aliste off; 689 Boolean recorded = FALSE; 690 691 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 692 Os_desc *osp = *ospp; 693 694 if ((osp->os_scn = elf_getscn(ofl->ofl_elf, ++ndx)) == 695 NULL) { 696 eprintf(ofl->ofl_lml, ERR_ELF, 697 MSG_INTL(MSG_ELF_GETSCN), ofl->ofl_name, 698 ndx); 699 return (S_ERROR); 700 } 701 if ((osp->os_shdr = elf_getshdr(osp->os_scn)) == 702 NULL) { 703 eprintf(ofl->ofl_lml, ERR_ELF, 704 MSG_INTL(MSG_ELF_GETSHDR), ofl->ofl_name); 705 return (S_ERROR); 706 } 707 if ((fixalign == TRUE) && (sgp->sg_fscn != 0) && 708 (recorded == FALSE)) { 709 Elf_Scn *scn; 710 711 scn = sgp->sg_fscn; 712 if ((fndx = elf_ndxscn(scn)) == SHN_UNDEF) { 713 eprintf(ofl->ofl_lml, ERR_ELF, 714 MSG_INTL(MSG_ELF_NDXSCN), 715 ofl->ofl_name); 716 return (S_ERROR); 717 } 718 if (ndx == fndx) { 719 sgp->sg_fscn = osp->os_scn; 720 recorded = TRUE; 721 } 722 } 723 724 if ((osp->os_outdata = 725 elf_getdata(osp->os_scn, NULL)) == NULL) { 726 eprintf(ofl->ofl_lml, ERR_ELF, 727 MSG_INTL(MSG_ELF_GETDATA), ofl->ofl_name); 728 return (S_ERROR); 729 } 730 731 /* 732 * If this section is part of a loadable segment insure 733 * that the segments alignment is appropriate. 734 */ 735 if (_phdr->p_type == PT_LOAD) { 736 _phdr->p_align = ld_lcm(_phdr->p_align, 737 osp->os_shdr->sh_addralign); 738 } 739 } 740 } 741 return (1); 742 } 743