xref: /titanic_51/usr/src/cmd/sgs/libld/common/outfile.c (revision 183971bab0e50aa34f0476451276612019e36db5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  *	Copyright (c) 1988 AT&T
24  *	  All Rights Reserved
25  *
26  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * This file contains the functions responsible for opening the output file
32  * image, associating the appropriate input elf structures with the new image,
33  * and obtaining new elf structures to define the new image.
34  */
35 #include	<stdio.h>
36 #include	<sys/stat.h>
37 #include	<fcntl.h>
38 #include	<link.h>
39 #include	<errno.h>
40 #include	<string.h>
41 #include	<limits.h>
42 #include	<debug.h>
43 #include	<unistd.h>
44 #include	"msg.h"
45 #include	"_libld.h"
46 
47 /*
48  * Determine a least common multiplier.  Input sections contain an alignment
49  * requirement, which elf_update() uses to insure that the section is aligned
50  * correctly off of the base of the elf image.  We must also insure that the
51  * sections mapping is congruent with this alignment requirement.  For each
52  * input section associated with a loadable segment determine whether the
53  * segments alignment must be adjusted to compensate for a sections alignment
54  * requirements.
55  */
56 Xword
57 ld_lcm(Xword a, Xword b)
58 {
59 	Xword	_r, _a, _b;
60 
61 	if ((_a = a) == 0)
62 		return (b);
63 	if ((_b = b) == 0)
64 		return (a);
65 
66 	if (_a > _b)
67 		_a = b, _b = a;
68 	while ((_r = _b % _a) != 0)
69 		_b = _a, _a = _r;
70 	return ((a / _a) * b);
71 }
72 
73 /*
74  * Open the output file and insure the correct access modes.
75  */
76 uintptr_t
77 ld_open_outfile(Ofl_desc * ofl)
78 {
79 	mode_t		mode;
80 	struct stat	status;
81 
82 	/*
83 	 * Determine the required file mode from the type of output file we
84 	 * are creating.
85 	 */
86 	mode = (ofl->ofl_flags & (FLG_OF_EXEC | FLG_OF_SHAROBJ))
87 	    ? 0777 : 0666;
88 
89 	/* Determine if the output file already exists */
90 	if (stat(ofl->ofl_name, &status) == 0) {
91 		if ((status.st_mode & S_IFMT) != S_IFREG) {
92 			/*
93 			 * It is not a regular file, so don't delete it
94 			 * or allow it to be deleted.  This allows root
95 			 * users to specify /dev/null output file for
96 			 * verification links.
97 			 */
98 			ofl->ofl_flags1 |= FLG_OF1_NONREG;
99 		} else {
100 			/*
101 			 * It's a regular file, so unlink it. In standard
102 			 * Unix fashion, the old file will continue to
103 			 * exist until its link count drops to 0 and no
104 			 * process has the file open. In the meantime, we
105 			 * create a new file (inode) under the same name,
106 			 * available for new use.
107 			 *
108 			 * The advantage of this policy is that creating
109 			 * a new executable or sharable library does not
110 			 * corrupt existing processes using the old file.
111 			 * A possible disadvantage is that if the existing
112 			 * file has a (link_count > 1), the other names will
113 			 * continue to reference the old inode, thus
114 			 * breaking the link.
115 			 *
116 			 * A subtlety here is that POSIX says we are not
117 			 * supposed to replace a non-writable file, which
118 			 * is something that unlink() is happy to do. The
119 			 * only 100% reliable test against this is to open
120 			 * the file for non-destructive write access. If the
121 			 * open succeeds, we are clear to unlink it, and if
122 			 * not, then the error generated is the error we
123 			 * need to report.
124 			 */
125 			if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR,
126 			    mode)) < 0) {
127 				int	err = errno;
128 
129 				if (err != ENOENT) {
130 					eprintf(ofl->ofl_lml, ERR_FATAL,
131 					    MSG_INTL(MSG_SYS_OPEN),
132 					    ofl->ofl_name, strerror(err));
133 					return (S_ERROR);
134 				}
135 			} else {
136 				(void) close(ofl->ofl_fd);
137 			}
138 
139 			if ((unlink(ofl->ofl_name) == -1) &&
140 			    (errno != ENOENT)) {
141 				int err = errno;
142 
143 				eprintf(ofl->ofl_lml, ERR_FATAL,
144 				    MSG_INTL(MSG_SYS_UNLINK),
145 				    ofl->ofl_name, strerror(err));
146 				return (S_ERROR);
147 			}
148 		}
149 	}
150 
151 	/*
152 	 * Open (or create) the output file name (ofl_fd acts as a global
153 	 * flag to ldexit() signifying whether the output file should be
154 	 * removed or not on error).
155 	 */
156 	if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR | O_CREAT | O_TRUNC,
157 	    mode)) < 0) {
158 		int	err = errno;
159 
160 		eprintf(ofl->ofl_lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
161 		    ofl->ofl_name, strerror(err));
162 		return (S_ERROR);
163 	}
164 
165 	return (1);
166 }
167 
168 
169 /*
170  * If we are creating a memory model we need to update the present memory image.
171  * First we need to call elf_update(ELF_C_NULL) which will calculate the offsets
172  * of each section and its associated data buffers.  From this information we
173  * can then determine what padding is required.
174  * Two actions are necessary to convert the present disc image into a memory
175  * image:
176  *
177  *  o	Loadable segments must be padded so that the next segments virtual
178  *	address and file offset are the same.
179  *
180  *  o	NOBITS sections must be converted into allocated, null filled sections.
181  */
182 static uintptr_t
183 pad_outfile(Ofl_desc *ofl)
184 {
185 	Aliste		idx1;
186 	off_t		offset;
187 	Elf_Scn		*oscn = 0;
188 	Sg_desc		*sgp;
189 	Ehdr		*ehdr;
190 
191 	/*
192 	 * Update all the elf structures.  This will assign offsets to the
193 	 * section headers and data buffers as they relate to the new image.
194 	 */
195 	if (elf_update(ofl->ofl_welf, ELF_C_NULL) == -1) {
196 		eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE),
197 		    ofl->ofl_name);
198 		return (S_ERROR);
199 	}
200 	if ((ehdr = elf_getehdr(ofl->ofl_welf)) == NULL) {
201 		eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR),
202 		    ofl->ofl_name);
203 		return (S_ERROR);
204 	}
205 
206 	/*
207 	 * Initialize the offset by skipping the Elf header and program
208 	 * headers.
209 	 */
210 	offset = ehdr->e_phoff + (ehdr->e_phnum * ehdr->e_phentsize);
211 
212 	/*
213 	 * Traverse the segment list looking for loadable segments.
214 	 */
215 	for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
216 		Phdr	*phdr = &(sgp->sg_phdr);
217 		Os_desc	*osp;
218 		Aliste	idx2;
219 
220 		/*
221 		 * If we've already processed a loadable segment, the `scn'
222 		 * variable will be initialized to the last section that was
223 		 * part of that segment.  Add sufficient padding to this section
224 		 * to cause the next segments virtual address and file offset to
225 		 * be the same.
226 		 */
227 		if (oscn && (phdr->p_type == PT_LOAD)) {
228 			Elf_Data *	data;
229 			size_t 		size;
230 
231 			size = (size_t)(S_ROUND(offset, phdr->p_align) -
232 			    offset);
233 
234 			if ((data = elf_newdata(oscn)) == NULL) {
235 				eprintf(ofl->ofl_lml, ERR_ELF,
236 				    MSG_INTL(MSG_ELF_NEWDATA), ofl->ofl_name);
237 				return (S_ERROR);
238 			}
239 			if ((data->d_buf = libld_calloc(size, 1)) == 0)
240 				return (S_ERROR);
241 
242 			data->d_type = ELF_T_BYTE;
243 			data->d_size = size;
244 			data->d_align = 1;
245 			data->d_version = ofl->ofl_dehdr->e_version;
246 		}
247 
248 		/*
249 		 * Traverse the output sections for this segment calculating the
250 		 * offset of each section. Retain the final section descriptor
251 		 * as this will be where any padding buffer will be added.
252 		 */
253 		for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
254 			Shdr	*shdr = osp->os_shdr;
255 
256 			offset = (off_t)S_ROUND(offset, shdr->sh_addralign);
257 			offset += shdr->sh_size;
258 
259 			/*
260 			 * If this is a NOBITS output section convert all of
261 			 * its associated input sections into real, null filled,
262 			 * data buffers, and change the section to PROGBITS.
263 			 */
264 			if (shdr->sh_type == SHT_NOBITS)
265 				shdr->sh_type = SHT_PROGBITS;
266 		}
267 
268 		/*
269 		 * If this is a loadable segment retain the last output section
270 		 * descriptor.  This acts both as a flag that a loadable
271 		 * segment has been seen, and as the segment to which a padding
272 		 * buffer will be added.
273 		 */
274 		if (phdr->p_type == PT_LOAD)
275 			oscn = osp->os_scn;
276 	}
277 	return (1);
278 }
279 
280 /*
281  * Create an output section.  The first instance of an input section triggers
282  * the creation of a new output section.
283  */
284 static uintptr_t
285 create_outsec(Ofl_desc *ofl, Sg_desc *sgp, Os_desc *osp, Word ptype, int shidx,
286     Boolean fixalign)
287 {
288 	Elf_Scn	*scn;
289 	Shdr	*shdr;
290 
291 	/*
292 	 * Get a section descriptor for the section.
293 	 */
294 	if ((scn = elf_newscn(ofl->ofl_welf)) == NULL) {
295 		eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWSCN),
296 		    ofl->ofl_name);
297 		return (S_ERROR);
298 	}
299 	osp->os_scn = scn;
300 
301 	/*
302 	 * Get a new section header table entry and copy the pertinent
303 	 * information from the in-core descriptor.
304 	 */
305 	if ((shdr = elf_getshdr(scn)) == NULL) {
306 		eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR),
307 		    ofl->ofl_name);
308 		return (S_ERROR);
309 	}
310 	*shdr = *(osp->os_shdr);
311 	osp->os_shdr = shdr;
312 
313 	/*
314 	 * If this is the first section within a loadable segment, and the
315 	 * alignment needs to be updated, record this section.
316 	 */
317 	if ((fixalign == TRUE) && (ptype == PT_LOAD) && (shidx == 1))
318 		sgp->sg_fscn = scn;
319 
320 	/*
321 	 * If not building a relocatable object, remove any of the
322 	 * following flags, as they have been acted upon and are not
323 	 * meaningful in the output:
324 	 *	SHF_ORDERED, SHF_LINK_ORDER, SHF_GROUP
325 	 * For relocatable objects, we allow them to propagate to
326 	 * the output object to be handled by the next linker that
327 	 * sees them.
328 	 */
329 	if ((ofl->ofl_flags & FLG_OF_RELOBJ) == 0)
330 		osp->os_shdr->sh_flags &= ~(ALL_SHF_ORDER|SHF_GROUP);
331 
332 	/*
333 	 * If this is a TLS section, save it so that the PT_TLS program header
334 	 * information can be established after the output image has been
335 	 * initially created.  At this point, all TLS input sections are ordered
336 	 * as they will appear in the output image.
337 	 */
338 	if ((ofl->ofl_flags & FLG_OF_TLSPHDR) &&
339 	    (osp->os_shdr->sh_flags & SHF_TLS) &&
340 	    (aplist_append(&ofl->ofl_ostlsseg, osp,
341 	    AL_CNT_OFL_OSTLSSEG) == NULL))
342 		return (S_ERROR);
343 
344 	return (0);
345 }
346 
347 /*
348  * Create the elf structures that allow the input data to be associated with the
349  * new image:
350  *
351  *	o	define the new elf image using elf_begin(),
352  *
353  *	o	obtain an elf header for the image,
354  *
355  *	o	traverse the input segments and create a program header array
356  *		to define the required segments,
357  *
358  *	o 	traverse the output sections for each segment assigning a new
359  *		section descriptor and section header for each,
360  *
361  *	o	traverse the input sections associated with each output section
362  *		and assign a new data descriptor to each (each output section
363  *		becomes a linked list of input data buffers).
364  */
365 uintptr_t
366 ld_create_outfile(Ofl_desc *ofl)
367 {
368 	Sg_desc		*sgp;
369 	Os_desc		*osp;
370 	Is_desc		*isp;
371 	Elf_Data	*tlsdata = 0;
372 	Aliste		idx1;
373 	ofl_flag_t	flags = ofl->ofl_flags;
374 	ofl_flag_t	flags1 = ofl->ofl_flags1;
375 	size_t		ndx;
376 	Elf_Cmd		cmd;
377 	Boolean		fixalign = FALSE;
378 	int		fd, nseg = 0, shidx, dataidx, ptloadidx = 0;
379 
380 	/*
381 	 * If DF_1_NOHDR was set in map_parse() or FLG_OF1_VADDR was set,
382 	 * we need to do alignment adjustment.
383 	 */
384 	if ((flags1 & FLG_OF1_VADDR) ||
385 	    (ofl->ofl_dtflags_1 & DF_1_NOHDR)) {
386 		fixalign = TRUE;
387 	}
388 
389 	if (flags1 & FLG_OF1_MEMORY) {
390 		cmd = ELF_C_IMAGE;
391 		fd = 0;
392 	} else {
393 		fd = ofl->ofl_fd;
394 		cmd = ELF_C_WRITE;
395 	}
396 
397 	/*
398 	 * If there are any ordered sections, handle them here.
399 	 */
400 	if ((ofl->ofl_ordered != NULL) &&
401 	    (ld_sort_ordered(ofl) == S_ERROR))
402 		return (S_ERROR);
403 
404 	/*
405 	 * Tell the access library about our new temporary file.
406 	 */
407 	if ((ofl->ofl_welf = elf_begin(fd, cmd, 0)) == NULL) {
408 		eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN),
409 		    ofl->ofl_name);
410 		return (S_ERROR);
411 	}
412 
413 	/*
414 	 * Obtain a new Elf header.
415 	 */
416 	if ((ofl->ofl_nehdr = elf_newehdr(ofl->ofl_welf)) == NULL) {
417 		eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWEHDR),
418 		    ofl->ofl_name);
419 		return (S_ERROR);
420 	}
421 	ofl->ofl_nehdr->e_machine = ofl->ofl_dehdr->e_machine;
422 
423 	DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD));
424 	for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
425 		int	frst = 0;
426 		Phdr	*phdr = &(sgp->sg_phdr);
427 		Word	ptype = phdr->p_type;
428 		Aliste	idx2;
429 
430 		/*
431 		 * Count the number of segments that will go in the program
432 		 * header table. If a segment is empty, ignore it.
433 		 */
434 		if (!(flags & FLG_OF_RELOBJ)) {
435 			/*
436 			 * If the program header type belongs to the os range,
437 			 * the resulting object is ELFOSABI_SOLARIS.
438 			 */
439 			if ((ptype >= PT_LOOS) && (ptype <= PT_HIOS))
440 				ofl->ofl_flags |= FLG_OF_OSABI;
441 
442 			if (ptype == PT_PHDR) {
443 				/*
444 				 * If we are generating an interp section (and
445 				 * thus an associated PT_INTERP program header
446 				 * entry) also generate a PT_PHDR program header
447 				 * entry.  This allows the kernel to generate
448 				 * the appropriate aux vector entries to pass to
449 				 * the interpreter (refer to exec/elf/elf.c).
450 				 * Note that if an image was generated with an
451 				 * interp section, but no associated PT_PHDR
452 				 * program header entry, the kernel will simply
453 				 * pass the interpreter an open file descriptor
454 				 * when the image is executed).
455 				 */
456 				if (ofl->ofl_osinterp)
457 					nseg++;
458 			} else if (ptype == PT_INTERP) {
459 				if (ofl->ofl_osinterp)
460 					nseg++;
461 			} else if (ptype == PT_DYNAMIC) {
462 				if (flags & FLG_OF_DYNAMIC)
463 					nseg++;
464 			} else if (ptype == PT_TLS) {
465 				if (flags & FLG_OF_TLSPHDR)
466 					nseg++;
467 			} else if (ptype == PT_SUNW_UNWIND) {
468 				if (ofl->ofl_unwindhdr)
469 					nseg++;
470 			} else if (ptype == PT_SUNWDTRACE) {
471 				if (ofl->ofl_dtracesym)
472 					nseg++;
473 			} else if (ptype == PT_SUNWCAP) {
474 				if (ofl->ofl_oscap)
475 					nseg++;
476 			} else if (sgp->sg_flags & FLG_SG_EMPTY) {
477 					nseg++;
478 			} else if (sgp->sg_osdescs != NULL) {
479 				if ((sgp->sg_flags & FLG_SG_PHREQ) == 0) {
480 					/*
481 					 * If this is a segment for which
482 					 * we are not making a program header,
483 					 * don't increment nseg
484 					 */
485 					ptype = (sgp->sg_phdr).p_type = PT_NULL;
486 				} else if (ptype != PT_NULL)
487 					nseg++;
488 			}
489 		}
490 
491 		/*
492 		 * Establish any processing unique to the first loadable
493 		 * segment.
494 		 */
495 		if ((ptype == PT_LOAD) && (ptloadidx == 0)) {
496 			ptloadidx++;
497 
498 			/*
499 			 * If the first loadable segment has the ?N flag then
500 			 * alignments of following segments need to be fixed,
501 			 * plus a .dynamic FLAGS1 setting is required.
502 			 */
503 			if (sgp->sg_flags & FLG_SG_NOHDR) {
504 				fixalign = TRUE;
505 				ofl->ofl_dtflags_1 |= DF_1_NOHDR;
506 			}
507 		}
508 
509 		shidx = 0;
510 		for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
511 			Aliste	idx3;
512 
513 			dataidx = 0;
514 			for (APLIST_TRAVERSE(osp->os_isdescs, idx3, isp)) {
515 				Elf_Data	*data;
516 				Ifl_desc	*ifl = isp->is_file;
517 
518 				/*
519 				 * An input section in the list that has
520 				 * been previously marked to be discarded
521 				 * should be completely ignored.
522 				 */
523 				if (isp->is_flags & FLG_IS_DISCARD)
524 					continue;
525 
526 				/*
527 				 * At this point we know whether a section has
528 				 * been referenced.  If it hasn't, and the whole
529 				 * file hasn't been referenced (which would have
530 				 * been caught in ignore_section_processing()),
531 				 * give a diagnostic (-D unused,detail) or
532 				 * discard the section if -zignore is in effect.
533 				 */
534 				if (ifl &&
535 				    (((ifl->ifl_flags & FLG_IF_FILEREF) == 0) ||
536 				    ((ptype == PT_LOAD) &&
537 				    ((isp->is_flags & FLG_IS_SECTREF) == 0) &&
538 				    (isp->is_shdr->sh_size > 0)))) {
539 					Lm_list	*lml = ofl->ofl_lml;
540 
541 					if (ifl->ifl_flags & FLG_IF_IGNORE) {
542 						isp->is_flags |= FLG_IS_DISCARD;
543 						DBG_CALL(Dbg_unused_sec(lml,
544 						    isp));
545 						continue;
546 					} else {
547 						DBG_CALL(Dbg_unused_sec(lml,
548 						    isp));
549 					}
550 				}
551 
552 				/*
553 				 * If this section provides no data, and isn't
554 				 * referenced, then it can be discarded as well.
555 				 * Note, if this is the first input section
556 				 * associated to an output section, let it
557 				 * through, there may be a legitimate reason why
558 				 * the user wants a null section.  Discarding
559 				 * additional sections is intended to remove the
560 				 * empty clutter the compilers have a habit of
561 				 * creating.  Don't provide an unused diagnostic
562 				 * as these sections aren't typically the users
563 				 * creation.
564 				 */
565 				if (ifl && dataidx &&
566 				    ((isp->is_flags & FLG_IS_SECTREF) == 0) &&
567 				    (isp->is_shdr->sh_size == 0)) {
568 					isp->is_flags |= FLG_IS_DISCARD;
569 					continue;
570 				}
571 
572 				/*
573 				 * The first input section triggers the creation
574 				 * of the associated output section.
575 				 */
576 				if (osp->os_scn == NULL) {
577 					shidx++;
578 
579 					if (create_outsec(ofl, sgp, osp, ptype,
580 					    shidx, fixalign) == S_ERROR)
581 						return (S_ERROR);
582 				}
583 
584 				dataidx++;
585 
586 				/*
587 				 * Create a new output data buffer for each
588 				 * input data buffer, thus linking the new
589 				 * buffers to the new elf output structures.
590 				 * Simply make the new data buffers point to
591 				 * the old data.
592 				 */
593 				if ((data = elf_newdata(osp->os_scn)) == NULL) {
594 					eprintf(ofl->ofl_lml, ERR_ELF,
595 					    MSG_INTL(MSG_ELF_NEWDATA),
596 					    ofl->ofl_name);
597 					return (S_ERROR);
598 				}
599 				*data = *(isp->is_indata);
600 				isp->is_indata = data;
601 
602 				if ((fixalign == TRUE) && (ptype == PT_LOAD) &&
603 				    (shidx == 1) && (dataidx == 1))
604 					data->d_align = sgp->sg_addralign;
605 
606 				/*
607 				 * Save the first TLS data buffer, as this is
608 				 * the start of the TLS segment. Realign this
609 				 * buffer based on the alignment requirements
610 				 * of all the TLS input sections.
611 				 */
612 				if ((flags & FLG_OF_TLSPHDR) &&
613 				    (isp->is_shdr->sh_flags & SHF_TLS)) {
614 					if (tlsdata == 0)
615 						tlsdata = data;
616 					tlsdata->d_align =
617 					    ld_lcm(tlsdata->d_align,
618 					    isp->is_shdr->sh_addralign);
619 				}
620 
621 #if	defined(_ELF64) && defined(_ILP32)
622 				/*
623 				 * 4106312, the 32-bit ELF64 version of ld
624 				 * needs to be able to create large .bss
625 				 * sections.  The d_size member of Elf_Data
626 				 * only allows 32-bits in _ILP32, so we build
627 				 * multiple data-items that each fit into 32-
628 				 * bits.  libelf (4106398) can summ these up
629 				 * into a 64-bit quantity.  This only works
630 				 * for NOBITS sections which don't have any
631 				 * real data to maintain and don't require
632 				 * large file support.
633 				 */
634 				if (isp->is_shdr->sh_type == SHT_NOBITS) {
635 					Xword sz = isp->is_shdr->sh_size;
636 
637 					while (sz >> 32) {
638 						data->d_size = SIZE_MAX;
639 						sz -= (Xword)SIZE_MAX;
640 
641 						data = elf_newdata(osp->os_scn);
642 						if (data == NULL)
643 							return (S_ERROR);
644 					}
645 					data->d_size = (size_t)sz;
646 				}
647 #endif
648 
649 				/*
650 				 * If this segment requires rounding realign the
651 				 * first data buffer associated with the first
652 				 * section.
653 				 */
654 				if ((frst++ == 0) &&
655 				    (sgp->sg_flags & FLG_SG_ROUND)) {
656 					Xword    align;
657 
658 					if (data->d_align)
659 						align = (Xword)
660 						    S_ROUND(data->d_align,
661 						    sgp->sg_round);
662 					else
663 						align = sgp->sg_round;
664 
665 					data->d_align = (size_t)align;
666 				}
667 			}
668 
669 			/*
670 			 * Clear the szoutrels counter so that it can be used
671 			 * again in the building of relocs.  See machrel.c.
672 			 */
673 			osp->os_szoutrels = 0;
674 		}
675 	}
676 
677 	/*
678 	 * Did we use ELF features from the osabi range? If so,
679 	 * update the ELF header osabi fields. If this doesn't happen,
680 	 * those fields remain 0, reflecting a generic System V ELF ABI.
681 	 */
682 	if (ofl->ofl_flags & FLG_OF_OSABI) {
683 		ofl->ofl_nehdr->e_ident[EI_OSABI] = ELFOSABI_SOLARIS;
684 		ofl->ofl_nehdr->e_ident[EI_ABIVERSION] = EAV_SUNW_CURRENT;
685 	}
686 
687 	/*
688 	 * Build an empty PHDR.
689 	 */
690 	if (nseg) {
691 		if ((ofl->ofl_phdr = elf_newphdr(ofl->ofl_welf,
692 		    nseg)) == NULL) {
693 			eprintf(ofl->ofl_lml, ERR_ELF,
694 			    MSG_INTL(MSG_ELF_NEWPHDR), ofl->ofl_name);
695 			return (S_ERROR);
696 		}
697 	}
698 
699 	/*
700 	 * If we need to generate a memory model, pad the image.
701 	 */
702 	if (flags1 & FLG_OF1_MEMORY) {
703 		if (pad_outfile(ofl) == S_ERROR)
704 			return (S_ERROR);
705 	}
706 
707 	/*
708 	 * After all the basic input file processing, all data pointers are
709 	 * referencing two types of memory:
710 	 *
711 	 *	o	allocated memory, ie. elf structures, internal link
712 	 *		editor structures, and any new sections that have been
713 	 *		created.
714 	 *
715 	 *	o	original input file mmap'ed memory, ie. the actual data
716 	 *		sections of the input file images.
717 	 *
718 	 * Up until now, the only memory modifications have been carried out on
719 	 * the allocated memory.  Before carrying out any relocations, write the
720 	 * new output file image and reassign any necessary data pointers to the
721 	 * output files memory image.  This insures that any relocation
722 	 * modifications are made to the output file image and not to the input
723 	 * file image, thus preventing the creation of dirty pages and reducing
724 	 * the overall swap space requirement.
725 	 *
726 	 * Write out the elf structure so as to create the new file image.
727 	 */
728 	if ((ofl->ofl_size = (size_t)elf_update(ofl->ofl_welf,
729 	    ELF_C_WRIMAGE)) == (size_t)-1) {
730 		eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE),
731 		    ofl->ofl_name);
732 		return (S_ERROR);
733 	}
734 
735 	/*
736 	 * Initialize the true `ofl' information with the memory images address
737 	 * and size.  This will be used to write() out the image once any
738 	 * relocation processing has been completed.  We also use this image
739 	 * information to setup a new Elf descriptor, which is used to obtain
740 	 * all the necessary elf pointers within the new output image.
741 	 */
742 	if ((ofl->ofl_elf = elf_begin(0, ELF_C_IMAGE,
743 	    ofl->ofl_welf)) == NULL) {
744 		eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN),
745 		    ofl->ofl_name);
746 		return (S_ERROR);
747 	}
748 	if ((ofl->ofl_nehdr = elf_getehdr(ofl->ofl_elf)) == NULL) {
749 		eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR),
750 		    ofl->ofl_name);
751 		return (S_ERROR);
752 	}
753 	if (!(flags & FLG_OF_RELOBJ))
754 		if ((ofl->ofl_phdr = elf_getphdr(ofl->ofl_elf)) == NULL) {
755 			eprintf(ofl->ofl_lml, ERR_ELF,
756 			    MSG_INTL(MSG_ELF_GETPHDR), ofl->ofl_name);
757 			return (S_ERROR);
758 		}
759 
760 	/*
761 	 * Reinitialize the section descriptors, section headers and obtain new
762 	 * output data buffer pointers (these will be used to perform any
763 	 * relocations).
764 	 */
765 	ndx = 0;
766 	for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
767 		Phdr	*_phdr = &(sgp->sg_phdr);
768 		Os_desc	*osp;
769 		Aliste	idx2;
770 		Boolean	recorded = FALSE;
771 
772 		for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
773 			/*
774 			 * Make sure that an output section was originally
775 			 * created.  Input sections that had been marked as
776 			 * discarded may have made an output section
777 			 * unnecessary.  Remove this alist entry so that
778 			 * future output section descriptor processing doesn't
779 			 * have to compensate for this empty section.
780 			 */
781 			if (osp->os_scn == NULL) {
782 				aplist_delete(sgp->sg_osdescs, &idx2);
783 				continue;
784 			}
785 			if ((osp->os_scn =
786 			    elf_getscn(ofl->ofl_elf, ++ndx)) == NULL) {
787 				eprintf(ofl->ofl_lml, ERR_ELF,
788 				    MSG_INTL(MSG_ELF_GETSCN), ofl->ofl_name,
789 				    ndx);
790 				return (S_ERROR);
791 			}
792 			if ((osp->os_shdr =
793 			    elf_getshdr(osp->os_scn)) == NULL) {
794 				eprintf(ofl->ofl_lml, ERR_ELF,
795 				    MSG_INTL(MSG_ELF_GETSHDR), ofl->ofl_name);
796 				return (S_ERROR);
797 			}
798 			if ((fixalign == TRUE) && sgp->sg_fscn &&
799 			    (recorded == FALSE)) {
800 				size_t	fndx;
801 				Elf_Scn *scn;
802 
803 				scn = sgp->sg_fscn;
804 				if ((fndx = elf_ndxscn(scn)) == SHN_UNDEF) {
805 					eprintf(ofl->ofl_lml, ERR_ELF,
806 					    MSG_INTL(MSG_ELF_NDXSCN),
807 					    ofl->ofl_name);
808 					return (S_ERROR);
809 				}
810 				if (ndx == fndx) {
811 					sgp->sg_fscn = osp->os_scn;
812 					recorded = TRUE;
813 				}
814 			}
815 
816 			if ((osp->os_outdata =
817 			    elf_getdata(osp->os_scn, NULL)) == NULL) {
818 				eprintf(ofl->ofl_lml, ERR_ELF,
819 				    MSG_INTL(MSG_ELF_GETDATA), ofl->ofl_name);
820 				return (S_ERROR);
821 			}
822 
823 			/*
824 			 * If this section is part of a loadable segment insure
825 			 * that the segments alignment is appropriate.
826 			 */
827 			if (_phdr->p_type == PT_LOAD) {
828 				_phdr->p_align = ld_lcm(_phdr->p_align,
829 				    osp->os_shdr->sh_addralign);
830 			}
831 		}
832 	}
833 	return (1);
834 }
835