xref: /titanic_51/usr/src/cmd/sgs/elfedit/common/elfedit.c (revision fc51f9bbbff02dbd8c3adf640b1a184ceeb58fa5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include	<sys/types.h>
28 #include	<sys/stat.h>
29 #include	<sys/wait.h>
30 #include	<stdarg.h>
31 #include	<fcntl.h>
32 #include	<stdlib.h>
33 #include	<stdio.h>
34 #include	<signal.h>
35 #include	<dirent.h>
36 #include	<libelf.h>
37 #include	<gelf.h>
38 #include	<conv.h>
39 #include	<dlfcn.h>
40 #include	<link.h>
41 #include	<stdarg.h>
42 #include	<libgen.h>
43 #include	<libintl.h>
44 #include	<locale.h>
45 #include	<unistd.h>
46 #include	<errno.h>
47 #include	<ctype.h>
48 #include	<limits.h>
49 #include	<strings.h>
50 #include	<sgs.h>
51 #include	"msg.h"
52 #include	"_elfedit.h"
53 #include	<debug.h>	/* liblddb */
54 
55 
56 
57 /*
58  * Column at which elfedit_format_command_usage() will wrap the
59  * generated usage string if the wrap argument is True (1).
60  */
61 #define	USAGE_WRAP_COL 55
62 
63 
64 
65 
66 /*
67  * Type used to represent a string buffer that can grow as needed
68  * to hold strings of arbitrary length. The user should declare
69  * variables of this type sa static. The strbuf_ensure_size() function
70  * is used to ensure that it has a minimum desired size.
71  */
72 typedef struct {
73 	char *buf;		/* String buffer */
74 	size_t n;		/* Size of buffer */
75 } STRBUF;
76 
77 
78 
79 
80 /*
81  * Types used by tokenize_user_cmd() to represent the result of
82  * spliting a user command into individual tokens.
83  */
84 typedef struct {
85 	char	*tok_str;	/* Token string */
86 	size_t	tok_len;	/* strlen(str) */
87 	size_t	tok_line_off;	/* Token offset in original string */
88 } TOK_ELT;
89 typedef struct {
90 	size_t	tokst_cmd_len;	/* Length of original user command, without */
91 				/*	newline or NULL termination chars */
92 	size_t	tokst_str_size;	/* Space needed to hold all the resulting */
93 				/*	tokens, including terminating NULL */
94 	TOK_ELT	*tokst_buf;	/* The array of tokens */
95 	size_t	tokst_cnt;	/* # of tokens in array */
96 	size_t	tokst_bufsize;	/* capacity of array */
97 } TOK_STATE;
98 
99 
100 
101 
102 /* State block used by gettok_init() and gettok() */
103 typedef struct {
104 	const char	*gtok_buf;	/* Addr of buffer containing string */
105 	char		*gtok_cur_buf;	/* Addr withing buffer for next token */
106 	int		gtok_inc_null_final; /* True if final NULL token used */
107 	int		gtok_null_seen;	/* True when NULL byte seen */
108 	TOK_ELT		gtok_last_token; /* Last token parsed */
109 
110 } GETTOK_STATE;
111 
112 
113 
114 
115 /*
116  * The elfedit_cpl_*() functions are used for command line completion.
117  * Currently this uses the tecla library, but to allow for changing the
118  * library used, we hide all tecla interfaces from our modules. Instead,
119  * cmd_match_fcn() builds an ELFEDIT_CPL_STATE struct, and we pass the
120  * address of that struct as an opaque handle to the modules. Since the
121  * pointer is opaque, the contents of ELFEDIT_CPL_STATE are free to change
122  * as necessary.
123  */
124 typedef struct {
125 	WordCompletion	*ecpl_cpl;		/* tecla handle */
126 	const char	*ecpl_line;		/* raw input line */
127 	int		ecpl_word_start;	/* start offset within line */
128 	int		ecpl_word_end;		/* offset just past token */
129 	/*
130 	 * ecpl_add_mod_colon is a secret handshake between
131 	 * elfedit_cpl_command() and  elfedit_cpl_add_match(). It adds
132 	 * ':' to end of matched modules.
133 	 */
134 	int		ecpl_add_mod_colon;
135 	const char	*ecpl_token_str;	/* token being completed */
136 	size_t		ecpl_token_len;		/* strlen(ecpl_token_str) */
137 } ELFEDIT_CPL_STATE;
138 
139 
140 
141 
142 /* This structure maintains elfedit global state */
143 STATE_T state;
144 
145 
146 
147 /*
148  * Define a pair of static global variables that contain the
149  * ISA strings that correspond to %i and %I tokens in module search
150  * paths.
151  *
152  *	isa_i_str - The ISA string for the currently running program
153  *	isa_I_str - For 64-bit programs, the same as isa_i_str. For
154  *		32-bit programs, an empty string.
155  */
156 #ifdef __sparc
157 #ifdef __sparcv9
158 static const char *isa_i_str = MSG_ORIG(MSG_ISA_SPARC_64);
159 static const char *isa_I_str = MSG_ORIG(MSG_ISA_SPARC_64);
160 #else
161 static const char *isa_i_str = MSG_ORIG(MSG_ISA_SPARC_32);
162 static const char *isa_I_str = MSG_ORIG(MSG_STR_EMPTY);
163 #endif
164 #endif
165 
166 #ifdef __i386
167 static const char *isa_i_str = MSG_ORIG(MSG_ISA_X86_32);
168 static const char *isa_I_str = MSG_ORIG(MSG_STR_EMPTY);
169 #endif
170 #ifdef __amd64
171 static const char *isa_i_str = MSG_ORIG(MSG_ISA_X86_64);
172 static const char *isa_I_str = MSG_ORIG(MSG_ISA_X86_64);
173 #endif
174 
175 
176 
177 /* Forward declarations */
178 static void free_user_cmds(void);
179 static void elfedit_pager_cleanup(void);
180 
181 
182 
183 /*
184  * We supply this function for the msg module
185  */
186 const char *
187 _elfedit_msg(Msg mid)
188 {
189 	return (gettext(MSG_ORIG(mid)));
190 }
191 
192 
193 /*
194  * Copy at most min(cpsize, dstsize-1) bytes from src into dst,
195  * truncating src if necessary.  The  result is always null-terminated.
196  *
197  * entry:
198  *	dst - Destination buffer
199  *	src - Source string
200  *	dstsize - sizeof(dst)
201  *
202  * note:
203  *	This is similar to strncpy(), but with two modifications:
204  *	1) You specify the number of characters to copy, not just
205  *		the size of the destination. Hence, you can copy non-NULL
206  *		terminated strings.
207  *	2) The destination is guaranteed to be NULL terminated. strncpy()
208  *		does not terminate a completely full buffer.
209  */
210 static void
211 elfedit_strnbcpy(char *dst, const char *src, size_t cpsize, size_t dstsize)
212 {
213 	if (cpsize >= dstsize)
214 		cpsize = dstsize - 1;
215 	if (cpsize > 0)
216 		(void) strncpy(dst, src, cpsize + 1);
217 	dst[cpsize] = '\0';
218 }
219 
220 
221 /*
222  * Calls exit() on behalf of elfedit.
223  */
224 void
225 elfedit_exit(int status)
226 {
227 	if (state.file.present) {
228 		/* Exiting with unflushed changes pending? Issue debug notice */
229 		if (state.file.dirty)
230 			elfedit_msg(ELFEDIT_MSG_DEBUG,
231 			    MSG_INTL(MSG_DEBUG_DIRTYEXIT));
232 
233 		/*
234 		 * If the edit file is marked for unlink on exit, then
235 		 * take care of it here.
236 		 */
237 		if (state.file.unlink_on_exit) {
238 			elfedit_msg(ELFEDIT_MSG_DEBUG,
239 			    MSG_INTL(MSG_DEBUG_UNLINKFILE),
240 			    state.file.outfile);
241 			(void) unlink(state.file.outfile);
242 		}
243 	}
244 
245 	exit(status);
246 }
247 
248 
249 /*
250  * Standard message function for elfedit. All user visible
251  * output, for error or informational reasons, should go through
252  * this function.
253  *
254  * entry:
255  *	type - Type of message. One of the ELFEDIT_MSG_* values.
256  *	format, ... - As per the printf() family
257  *
258  * exit:
259  *	The desired message has been output. For informational
260  *	messages, control returns to the caller. For errors,
261  *	this routine will terminate execution or strip the execution
262  *	stack and return control directly to the outer control loop.
263  *	In either case, the caller will not receive control.
264  */
265 /*PRINTFLIKE2*/
266 void
267 elfedit_msg(elfedit_msg_t type, const char *format, ...)
268 {
269 	typedef enum {			/* What to do after finished */
270 		DISP_RET = 0,		/* Return to caller */
271 		DISP_JMP = 1, 		/* if (interactive) longjmp else exit */
272 		DISP_EXIT = 2		/* exit under all circumstances */
273 	} DISP;
274 
275 	va_list args;
276 	FILE *stream = stderr;
277 	DISP disp = DISP_RET;
278 	int do_output = 1;
279 	int need_prefix = 1;
280 
281 	va_start(args, format);
282 
283 	switch (type) {
284 	case ELFEDIT_MSG_ERR:
285 	case ELFEDIT_MSG_CMDUSAGE:
286 		disp = DISP_JMP;
287 		break;
288 	case ELFEDIT_MSG_FATAL:
289 		disp = DISP_EXIT;
290 		break;
291 	case ELFEDIT_MSG_USAGE:
292 		need_prefix = 0;
293 		break;
294 	case ELFEDIT_MSG_DEBUG:
295 		if (!(state.flags & ELFEDIT_F_DEBUG))
296 			return;
297 		stream = stdout;
298 		break;
299 	case ELFEDIT_MSG_QUIET:
300 		do_output = 0;
301 		disp = DISP_JMP;
302 		break;
303 	}
304 
305 
306 	/*
307 	 * If there is a pager process running, we are returning to the
308 	 * caller, and the output is going to stdout, then let the
309 	 * pager handle it instead of writing it directly from this process.
310 	 * That way, the output gets paged along with everything else.
311 	 *
312 	 * If there is a pager process running, and we are not returning
313 	 * to the caller, then end the pager process now, before we generate
314 	 * any new output. This allows for any text buffered in the pager
315 	 * pipe to be output before the new stuff.
316 	 */
317 	if (state.pager.fptr != NULL) {
318 		if (disp == DISP_RET) {
319 			if (stream == stdout)
320 				stream = state.pager.fptr;
321 		} else {
322 			elfedit_pager_cleanup();
323 		}
324 	}
325 
326 	/*
327 	 * If this message is coming from within the libtecla command
328 	 * completion code, call gl_normal_io() to give the library notice.
329 	 * That function sets the tty back to cooked mode and advances
330 	 * the cursor to the beginning of the next line so that our output
331 	 * will appear properly. When we return to the command completion code,
332 	 * tecla will re-enter raw mode and redraw the current command line.
333 	 */
334 	if (state.input.in_tecla)
335 		(void) gl_normal_io(state.input.gl);
336 
337 	if (do_output) {
338 		if (need_prefix)
339 			(void) fprintf(stream, MSG_ORIG(MSG_STR_ELFEDIT));
340 		(void) vfprintf(stream, format, args);
341 		(void) fflush(stream);
342 	}
343 	va_end(args);
344 
345 	/*
346 	 * If this is an error, then we do not return to the caller.
347 	 * The action taken depends on whether the outer loop has registered
348 	 * a jump buffer for us or not.
349 	 */
350 	if (disp != DISP_RET) {
351 		if (state.msg_jbuf.active && (disp == DISP_JMP)) {
352 			/* Free the user command list */
353 			free_user_cmds();
354 
355 			/* Clean up to reflect effect of non-local goto */
356 			state.input.in_tecla = FALSE;
357 
358 			/* Jump to the outer loop to resume */
359 			siglongjmp(state.msg_jbuf.env, 1);
360 		} else {
361 			elfedit_exit(1);
362 		}
363 	}
364 }
365 
366 
367 /*
368  * Wrapper on elfedit_msg() that issues an error that results from
369  * a call to libelf.
370  *
371  * entry:
372  *	file - Name of ELF object
373  *	libelf_rtn_name - Name of routine that was called
374  *
375  * exit:
376  *	An error has been issued that shows the routine called
377  *	and the libelf error string for it from elf_errmsg().
378  *	This routine does not return to the caller.
379  */
380 void
381 elfedit_elferr(const char *file, const char *libelf_rtn_name)
382 {
383 	const char *errstr = elf_errmsg(elf_errno());
384 
385 	elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_LIBELF), file,
386 	    libelf_rtn_name, errstr ? errstr : MSG_INTL(MSG_FMT_UNKNOWN));
387 }
388 
389 
390 /*
391  * Start an output pager process for elfedit_printf()/elfedit_write() to use.
392  *
393  * note:
394  *	If this elfedit session is not interactive, then no pager is
395  *	started. Paging is only intended for interactive use. The caller
396  *	is not supposed to worry about this point, but simply to use
397  *	this function to flag situations in which paging might be needed.
398  */
399 void
400 elfedit_pager_init(void)
401 {
402 	const char	*errstr;
403 	const char	*cmd;
404 	int		err;
405 
406 	/*
407 	 * If there is no pager process running, start one.
408 	 * Only do this for interactive sessions --- elfedit_pager()
409 	 * won't use a pager in batch mode.
410 	 */
411 	if (state.msg_jbuf.active && state.input.full_tty &&
412 	    (state.pager.fptr == NULL)) {
413 		/*
414 		 * If the user has the PAGER environment variable set,
415 		 * then we will use that program. Otherwise we default
416 		 * to /bin/more.
417 		 */
418 		cmd = getenv(MSG_ORIG(MSG_STR_PAGER));
419 		if ((cmd == NULL) || (*cmd == '\0'))
420 			cmd = MSG_ORIG(MSG_STR_BINMORE);
421 
422 		/*
423 		 * The popen() manpage says that on failure, it "may set errno",
424 		 * which is somewhat ambiguous. We explicitly zero it here, and
425 		 * assume that any change is due to popen() failing.
426 		 */
427 		errno = 0;
428 		state.pager.fptr = popen(cmd, MSG_ORIG(MSG_STR_W));
429 		if (state.pager.fptr == NULL) {
430 			err = errno;
431 			errstr = (err == 0) ? MSG_INTL(MSG_ERR_UNKNOWNSYSERR) :
432 			    strerror(err);
433 			elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTEXEC),
434 			    MSG_ORIG(MSG_STR_ELFEDIT), cmd, errstr);
435 		}
436 	}
437 }
438 
439 
440 /*
441  * If there is a pager process present, close it out.
442  *
443  * note:
444  *	This function is called from within elfedit_msg(), and as
445  *	such, must not use elfedit_msg() to report errors. Furthermore,
446  *	any such errors are not a sufficient reason to terminate the process
447  *	or to longjmp(). This is a rare case where errors are written
448  *	directly to stderr.
449  */
450 static void
451 elfedit_pager_cleanup(void)
452 {
453 	if (state.pager.fptr != NULL) {
454 		if (pclose(state.pager.fptr) == -1)
455 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_PAGERFINI));
456 
457 		state.pager.fptr = NULL;
458 	}
459 }
460 
461 
462 /*
463  * Print general formtted text for the user, using printf()-style
464  * formatting. Uses the pager process if one has been started, or
465  * stdout otherwise.
466  */
467 void
468 elfedit_printf(const char *format, ...)
469 {
470 	va_list	args;
471 	int	err;
472 	FILE	*fptr;
473 	int	pager;
474 	int	broken_pipe = 0;
475 
476 	/*
477 	 * If there is a pager process, then use it. Otherwise write
478 	 * directly to stdout.
479 	 */
480 	pager = (state.pager.fptr != NULL);
481 	fptr = pager ? state.pager.fptr : stdout;
482 
483 	va_start(args, format);
484 	errno = 0;
485 	err = vfprintf(fptr, format, args);
486 
487 	/* Did we fail because a child pager process has exited? */
488 	broken_pipe = pager && (err < 0) && (errno == EPIPE);
489 
490 	va_end(args);
491 
492 	/*
493 	 * On error, we simply issue the error without cleaning up
494 	 * the pager process. The message code handles that as a standard
495 	 * part of error processing.
496 	 *
497 	 * We handle failure due to an exited pager process differently
498 	 * than a normal error, because it is usually due to the user
499 	 * intentionally telling it to.
500 	 */
501 	if (err < 0) {
502 		if (broken_pipe)
503 			elfedit_msg(ELFEDIT_MSG_QUIET, MSG_ORIG(MSG_STR_NULL));
504 		else
505 			elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_PRINTF));
506 	}
507 }
508 
509 
510 /*
511  * Some our modules use liblddb routines to format ELF output.
512  * In order to ensure that such output is sent to the pager pipe
513  * when there is one, and stdout otherwise, we redefine the dbg_print()
514  * function here.
515  *
516  * This item should be defined NODIRECT.
517  */
518 /* PRINTFLIKE2 */
519 void
520 dbg_print(Lm_list *lml, const char *format, ...)
521 {
522 	va_list	ap;
523 	int	err;
524 	FILE	*fptr;
525 	int	pager;
526 	int	broken_pipe = 0;
527 
528 #if	defined(lint)
529 	/*
530 	 * The lml argument is only meaningful for diagnostics sent to ld.so.1.
531 	 * Supress the lint error by making a dummy assignment.
532 	 */
533 	lml = 0;
534 #endif
535 
536 	/*
537 	 * If there is a pager process, then use it. Otherwise write
538 	 * directly to stdout.
539 	 */
540 	pager = (state.pager.fptr != NULL);
541 	fptr = pager ? state.pager.fptr : stdout;
542 
543 	va_start(ap, format);
544 	errno = 0;
545 	err = vfprintf(fptr, format, ap);
546 	if (err >= 0)
547 		err = fprintf(fptr, MSG_ORIG(MSG_STR_NL));
548 
549 	/* Did we fail because a child pager process has exited? */
550 	broken_pipe = (err < 0) && pager && (errno == EPIPE);
551 
552 	va_end(ap);
553 
554 	/*
555 	 * On error, we simply issue the error without cleaning up
556 	 * the pager process. The message code handles that as a standard
557 	 * part of error processing.
558 	 *
559 	 * We handle failure due to an exited pager process differently
560 	 * than a normal error, because it is usually due to the user
561 	 * intentionally telling it to.
562 	 */
563 	if (err < 0) {
564 		if (broken_pipe)
565 			elfedit_msg(ELFEDIT_MSG_QUIET, MSG_ORIG(MSG_STR_NULL));
566 		else
567 			elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_PRINTF));
568 	}
569 }
570 
571 
572 /*
573  * Write raw bytes of text in a manner similar to fwrite().
574  * Uses the pager process if one has been started, or
575  * stdout otherwise.
576  */
577 void
578 elfedit_write(const void *ptr, size_t size)
579 {
580 	FILE	*fptr;
581 	int	err;
582 
583 	/*
584 	 * If there is a pager process, then use it. Otherwise write
585 	 * directly to stdout.
586 	 */
587 	fptr = (state.pager.fptr == NULL) ? stdout : state.pager.fptr;
588 
589 	if (fwrite(ptr, 1, size, fptr) != size) {
590 		err = errno;
591 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_FWRITE),
592 		    strerror(err));
593 	}
594 }
595 
596 
597 /*
598  * Convert the NULL terminated string to the form used by the C
599  * language to represent literal strings. See conv_str_to_c_literal()
600  * for details.
601  *
602  * This routine differs from conv_str_to_c_literal() in two ways:
603  *	1) String is NULL terminated instead of counted
604  *	2) Signature of outfunc
605  *
606  * entry:
607  *	str - String to be processed
608  *	outfunc - Function to be called to move output characters. Note
609  *		that this function has the same signature as elfedit_write(),
610  *		and that function can be used to write the characters to
611  *		the output.
612  *
613  * exit:
614  *	The string has been processed, with the resulting data passed
615  *	to outfunc for processing.
616  */
617 static void
618 elfedit_str_to_c_literal_cb(const void *ptr, size_t size, void *uvalue)
619 {
620 	elfedit_write_func_t *outfunc = (elfedit_write_func_t *)uvalue;
621 
622 	(* outfunc)(ptr, size);
623 
624 }
625 void
626 elfedit_str_to_c_literal(const char *str, elfedit_write_func_t *outfunc)
627 {
628 	conv_str_to_c_literal(str, strlen(str),
629 	    elfedit_str_to_c_literal_cb, (void *) outfunc);
630 }
631 
632 
633 /*
634  * Wrappers on malloc() and realloc() that check the result for success
635  * and issue an error if not. The caller can use the result of these
636  * functions without checking for a NULL pointer, as we do not return to
637  * the caller in the failure case.
638  */
639 void *
640 elfedit_malloc(const char *item_name, size_t size)
641 {
642 	void *m;
643 
644 	m = malloc(size);
645 	if (m == NULL) {
646 		int err = errno;
647 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_MALLOC),
648 		    item_name, strerror(err));
649 	}
650 
651 	return (m);
652 }
653 
654 void *
655 elfedit_realloc(const char *item_name, void *ptr, size_t size)
656 {
657 	void *m;
658 
659 	m = realloc(ptr, size);
660 	if (m == NULL) {
661 		int err = errno;
662 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_MALLOC),
663 		    item_name, strerror(err));
664 	}
665 
666 	return (m);
667 }
668 
669 
670 /*
671  * Ensure that the given buffer has room for n bytes of data.
672  */
673 static void
674 strbuf_ensure_size(STRBUF *str, size_t size)
675 {
676 #define	INITIAL_STR_ALLOC 128
677 
678 	size_t n;
679 
680 	n = (str->n == 0) ? INITIAL_STR_ALLOC : str->n;
681 	while (size > n)	/* Double buffer until string fits */
682 		n *= 2;
683 	if (n != str->n) {		/* Alloc new string buffer if needed */
684 		str->buf = elfedit_realloc(MSG_INTL(MSG_ALLOC_UCMDSTR),
685 		    str->buf, n);
686 		str->n = n;
687 	}
688 
689 #undef	INITIAL_STR_ALLOC
690 }
691 
692 
693 /*
694  * Extract the argument/option information for the next item referenced
695  * by optarg, and advance the pointer to the next item.
696  *
697  * entry:
698  *	optarg - Address of pointer to argument or option array
699  *	item - Struct to be filled in.
700  *
701  * exit:
702  *	The item block has been filled in with the information for
703  *	the next item in the optarg array. *optarg has been advanced
704  *	to the next item.
705  */
706 void
707 elfedit_next_optarg(elfedit_cmd_optarg_t **optarg, elfedit_optarg_item_t *item)
708 {
709 	/*
710 	 * Array of inheritable options/arguments. Indexed by one less
711 	 * than the corresponding ELFEDIT_STDOA_ value.
712 	 */
713 	static const elfedit_optarg_item_t stdoa[] = {
714 		/* ELFEDIT_STDOA_O */
715 		{ MSG_ORIG(MSG_STR_MINUS_O), MSG_ORIG(MSG_STR_OUTSTYLE),
716 		    /* MSG_INTL(MSG_STDOA_OPTDESC_O) */
717 		    (elfedit_i18nhdl_t)MSG_STDOA_OPTDESC_O,
718 		    ELFEDIT_CMDOA_F_VALUE },
719 
720 		/* ELFEDIT_STDOA_AND */
721 		{ MSG_ORIG(MSG_STR_MINUS_AND), NULL,
722 		    /* MSG_INTL(MSG_STDOA_OPTDESC_AND) */
723 		    (elfedit_i18nhdl_t)MSG_STDOA_OPTDESC_AND, 0 },
724 
725 		/* ELFEDIT_STDOA_CMP */
726 		{ MSG_ORIG(MSG_STR_MINUS_CMP), NULL,
727 		    /* MSG_INTL(MSG_STDOA_OPTDESC_CMP) */
728 		    (elfedit_i18nhdl_t)MSG_STDOA_OPTDESC_CMP, 0 },
729 
730 		/* ELFEDIT_STDOA_OR */
731 		{ MSG_ORIG(MSG_STR_MINUS_OR), NULL,
732 		    /* MSG_INTL(MSG_STDOA_OPTDESC_OR) */
733 		    (elfedit_i18nhdl_t)MSG_STDOA_OPTDESC_OR, 0 },
734 	};
735 
736 	elfedit_cmd_optarg_t *oa;
737 
738 
739 	/* Grab first item, advance the callers pointer over it */
740 	oa = (*optarg)++;
741 
742 	if (oa->oa_flags & ELFEDIT_CMDOA_F_INHERIT) {
743 		/* Values are pre-chewed in the stdoa array above */
744 		*item = stdoa[((uintptr_t)oa->oa_name) - 1];
745 
746 		/*
747 		 * Set the inherited flag so that elfedit_optarg_helpstr()
748 		 * can tell who is responsible for translating the help string.
749 		 */
750 		item->oai_flags |= ELFEDIT_CMDOA_F_INHERIT;
751 	} else {	/* Non-inherited item */
752 		item->oai_name = oa->oa_name;
753 		if ((oa->oa_flags & ELFEDIT_CMDOA_F_VALUE) != 0) {
754 			item->oai_vname = oa[1].oa_name;
755 
756 			/* Advance users pointer past value element */
757 			(*optarg)++;
758 		} else {
759 			item->oai_vname = NULL;
760 		}
761 		item->oai_help = oa->oa_help;
762 		item->oai_flags = oa->oa_flags;
763 	}
764 
765 	/*
766 	 * The module determines the idmask and excmask fields whether
767 	 * or not inheritance is in play.
768 	 */
769 	item->oai_idmask = oa->oa_idmask;
770 	item->oai_excmask = oa->oa_excmask;
771 }
772 
773 
774 
775 /*
776  * Return the help string for an option/argument item, as returned
777  * by elfedit_next_optarg(). This routine handles the details of
778  * knowing whether the string is provided by elfedit itself (inherited),
779  * or needs to be translated by the module.
780  */
781 const char *
782 elfedit_optarg_helpstr(elfeditGC_module_t *mod, elfedit_optarg_item_t *item)
783 {
784 	/*
785 	 * The help string from an inherited item comes right out
786 	 * of the main elfedit string table.
787 	 */
788 	if (item->oai_flags & ELFEDIT_CMDOA_F_INHERIT)
789 		return (MSG_INTL((Msg) item->oai_help));
790 
791 	/*
792 	 * If the string is defined by the module, then we need to
793 	 * have the module translate it for us.
794 	 */
795 	return ((* mod->mod_i18nhdl_to_str)(item->oai_help));
796 }
797 
798 
799 
800 /*
801  * Used by usage_optarg() to insert a character into the output buffer,
802  * advancing the buffer pointer and current column, and reducing the
803  * amount of remaining space.
804  */
805 static void
806 usage_optarg_insert_ch(int ch, char **cur, size_t *n, size_t *cur_col)
807 {
808 
809 	*(*cur)++ = ch;
810 	**cur = '\0';
811 	(*n)--;
812 	(*cur_col)++;
813 }
814 
815 /*
816  * Used by usage_optarg() to insert a string into the output
817  * buffer, advancing the buffer pointer and current column, and reducing
818  * the amount of remaining space.
819  */
820 static void
821 usage_optarg_insert_str(char **cur, size_t *n, size_t *cur_col,
822     const char *format, ...)
823 {
824 	size_t len;
825 	va_list args;
826 
827 	va_start(args, format);
828 	len = vsnprintf(*cur, *n, format, args);
829 	va_end(args);
830 
831 	*cur += len;
832 	*n -= len;
833 	*cur_col += len;
834 }
835 /*
836  * Used by usage_optarg() to insert an optarg item string into the output
837  * buffer, advancing the buffer pointer and current column, and reducing
838  * the amount of remaining space.
839  */
840 static void
841 usage_optarg_insert_item(elfedit_optarg_item_t *item, char **cur,
842     size_t *n, size_t *cur_col)
843 {
844 	size_t len;
845 
846 	if (item->oai_flags & ELFEDIT_CMDOA_F_VALUE) {
847 		len = snprintf(*cur, *n, MSG_ORIG(MSG_STR_HLPOPTARG2),
848 		    item->oai_name, item->oai_vname);
849 	} else {
850 		len = snprintf(*cur, *n, MSG_ORIG(MSG_STR_HLPOPTARG),
851 		    item->oai_name);
852 	}
853 	*cur += len;
854 	*n -= len;
855 	*cur_col += len;
856 }
857 
858 
859 
860 /*
861  * Write the options/arguments to the usage string.
862  *
863  * entry:
864  *	main_buf_n - Size of main buffer from which buf and buf_n are
865  *		allocated.
866  *	buf - Address of pointer to where next item is to be placed.
867  *	buf_n - Address of count of remaining bytes in buffer
868  *	buf_cur_col - Address of current output column for current line
869  *		of generated string.
870  *	optarg - Options list
871  *	isopt - True if these are options, false for arguments.
872  *	wrap_str - String to indent wrapped lines. If NULL, lines
873  *		are not wrapped
874  */
875 static void
876 usage_optarg(size_t main_buf_n, char **buf, size_t *buf_n, size_t *buf_cur_col,
877     elfedit_cmd_optarg_t *optarg, int isopt, const char *wrap_str)
878 {
879 	/*
880 	 * An option can be combined into a simple format if it lacks
881 	 * these flags and is only one character in length.
882 	 */
883 	static const elfedit_cmd_oa_flag_t exflags =
884 	    (ELFEDIT_CMDOA_F_VALUE | ELFEDIT_CMDOA_F_MULT);
885 
886 	/*
887 	 * A static buffer, which is grown as needed to accomodate
888 	 * the maximum usage string seen.
889 	 */
890 	static STRBUF simple_str;
891 
892 	char			*cur = *buf;
893 	size_t			n = *buf_n;
894 	size_t			cur_col = *buf_cur_col;
895 	int			len;
896 	int			use_simple = 0;
897 	elfedit_optarg_item_t	item;
898 	elfedit_cmd_oa_mask_t	optmask = 0;
899 	int			use_bkt;
900 
901 	/*
902 	 * If processing options, pull the 1-character ones that don't have
903 	 * an associated value and don't have any mutual exclusion issues into
904 	 * a single combination string to go at the beginning of the usage.
905 	 */
906 	if (isopt) {
907 		elfedit_cmd_optarg_t *tmp_optarg = optarg;
908 		char *s;
909 
910 		/*
911 		 * The simple string is guaranteed to fit in the same
912 		 * amount of space reserved for the main buffer.
913 		 */
914 		strbuf_ensure_size(&simple_str, main_buf_n);
915 		s = simple_str.buf;
916 		*s++ = ' ';
917 		*s++ = '[';
918 		*s++ = '-';
919 		while (tmp_optarg->oa_name != NULL) {
920 			elfedit_next_optarg(&tmp_optarg, &item);
921 			if (((item.oai_flags & exflags) == 0) &&
922 			    (item.oai_name[2] == '\0') &&
923 			    (item.oai_excmask == 0)) {
924 				optmask |= item.oai_idmask;
925 				*s++ = item.oai_name[1];
926 			}
927 		}
928 
929 		/*
930 		 * If we found more than one, then finish the string and
931 		 * add it. Don't do this for a single option, because
932 		 * it looks better in that case if the option shows up
933 		 * in alphabetical order rather than being hoisted.
934 		 */
935 		use_simple = (s > (simple_str.buf + 4));
936 		if (use_simple) {
937 			*s++ = ']';
938 			*s++ = '\0';
939 			usage_optarg_insert_str(&cur, &n, &cur_col,
940 			    MSG_ORIG(MSG_STR_HLPOPTARG), simple_str.buf);
941 		} else {
942 			/* Not using it, so reset the cumulative options mask */
943 			optmask = 0;
944 		}
945 	}
946 
947 	while (optarg->oa_name != NULL) {
948 		elfedit_next_optarg(&optarg, &item);
949 
950 		if (isopt) {
951 			/*
952 			 * If this is an option that was pulled into the
953 			 * combination string above, then skip over it.
954 			 */
955 			if (use_simple && ((item.oai_flags & exflags) == 0) &&
956 			    (item.oai_name[2] == '\0') &&
957 			    (item.oai_excmask == 0))
958 				continue;
959 
960 			/*
961 			 * If this is a mutual exclusion option that was
962 			 * picked up out of order by a previous iteration
963 			 * of this loop, then skip over it.
964 			 */
965 			if ((optmask & item.oai_idmask) != 0)
966 				continue;
967 
968 			/* Add this item to the accumulating options mask */
969 			optmask |= item.oai_idmask;
970 		}
971 
972 		/* Wrap line, or insert blank separator */
973 		if ((wrap_str != NULL) && (cur_col > USAGE_WRAP_COL)) {
974 			len = snprintf(cur, n, MSG_ORIG(MSG_FMT_WRAPUSAGE),
975 			    wrap_str);
976 			cur += len;
977 			n -= len;
978 			cur_col = len - 1;   /* Don't count the newline */
979 		} else {
980 			usage_optarg_insert_ch(' ', &cur, &n, &cur_col);
981 		}
982 
983 		use_bkt = (item.oai_flags & ELFEDIT_CMDOA_F_OPT) || isopt;
984 		if (use_bkt)
985 			usage_optarg_insert_ch('[', &cur, &n, &cur_col);
986 
987 		/* Add the item to the buffer */
988 		usage_optarg_insert_item(&item, &cur, &n, &cur_col);
989 
990 		/*
991 		 * If this item has a non-zero mutual exclusion mask,
992 		 * then look for the other items and display them all
993 		 * together with alternation (|). Note that plain arguments
994 		 * cannot have a non-0 exclusion mask, so this is
995 		 * effectively options-only (isopt != 0).
996 		 */
997 		if (item.oai_excmask != 0) {
998 			elfedit_cmd_optarg_t *tmp_optarg = optarg;
999 			elfedit_optarg_item_t tmp_item;
1000 
1001 			/*
1002 			 * When showing alternation, elipses for multiple
1003 			 * copies need to appear inside the [] brackets.
1004 			 */
1005 			if (item.oai_flags & ELFEDIT_CMDOA_F_MULT)
1006 				usage_optarg_insert_str(&cur, &n, &cur_col,
1007 				    MSG_ORIG(MSG_STR_ELIPSES));
1008 
1009 
1010 			while (tmp_optarg->oa_name != NULL) {
1011 				elfedit_next_optarg(&tmp_optarg, &tmp_item);
1012 				if ((item.oai_excmask & tmp_item.oai_idmask) ==
1013 				    0)
1014 					continue;
1015 				usage_optarg_insert_str(&cur, &n, &cur_col,
1016 				    MSG_ORIG(MSG_STR_SP_BAR_SP));
1017 				usage_optarg_insert_item(&tmp_item,
1018 				    &cur, &n, &cur_col);
1019 
1020 				/*
1021 				 * Add it to the mask of seen options.
1022 				 * This will keep us from showing it twice.
1023 				 */
1024 				optmask |= tmp_item.oai_idmask;
1025 			}
1026 		}
1027 		if (use_bkt)
1028 			usage_optarg_insert_ch(']', &cur, &n, &cur_col);
1029 
1030 		/*
1031 		 * If alternation was not shown above (non-zero exclusion mask)
1032 		 * then the elipses for multiple copies are shown outside
1033 		 * any [] brackets.
1034 		 */
1035 		if ((item.oai_excmask == 0) &&
1036 		    (item.oai_flags & ELFEDIT_CMDOA_F_MULT))
1037 			usage_optarg_insert_str(&cur, &n, &cur_col,
1038 			    MSG_ORIG(MSG_STR_ELIPSES));
1039 
1040 	}
1041 
1042 	*buf = cur;
1043 	*buf_n = n;
1044 	*buf_cur_col = cur_col;
1045 }
1046 
1047 
1048 
1049 /*
1050  * Format the usage string for a command into a static buffer and
1051  * return the pointer to the user. The resultant string is valid
1052  * until the next call to this routine, and which point it
1053  * will be overwritten or the memory is freed.
1054  *
1055  * entry:
1056  *	mod, cmd - Module and command definitions for command to be described
1057  *	wrap_str - NULL, or string to be used to indent when
1058  *		lines are wrapped. If NULL, no wrapping is done, and
1059  *		all output is on a single line.
1060  *	cur_col - Starting column at which the string will be displayed.
1061  *		Ignored if wrap_str is NULL.
1062  */
1063 const char *
1064 elfedit_format_command_usage(elfeditGC_module_t *mod, elfeditGC_cmd_t *cmd,
1065     const char *wrap_str, size_t cur_col)
1066 {
1067 
1068 	/*
1069 	 * A static buffer, which is grown as needed to accomodate
1070 	 * the maximum usage string seen.
1071 	 */
1072 	static STRBUF str;
1073 
1074 	elfedit_cmd_optarg_t	*optarg;
1075 	size_t			len, n, elipses_len;
1076 	char			*cur;
1077 	elfedit_optarg_item_t	item;
1078 
1079 	/*
1080 	 * Estimate a worst case size for the usage string:
1081 	 *	- module name
1082 	 *	- lengths of the strings
1083 	 *	- every option or argument is enclosed in brackets
1084 	 *	- space in between each item, with an alternation (" | ")
1085 	 *	- elipses will be displayed with each option and argument
1086 	 */
1087 	n = strlen(mod->mod_name) + strlen(cmd->cmd_name[0]) + 6;
1088 	elipses_len = strlen(MSG_ORIG(MSG_STR_ELIPSES));
1089 	if ((optarg = cmd->cmd_opt) != NULL)
1090 		while (optarg->oa_name != NULL) {
1091 			elfedit_next_optarg(&optarg, &item);
1092 			n += strlen(item.oai_name) + 5 + elipses_len;
1093 		}
1094 	if ((optarg = cmd->cmd_args) != NULL)
1095 		while (optarg->oa_name != NULL) {
1096 			elfedit_next_optarg(&optarg, &item);
1097 			n += strlen(item.oai_name) + 5 + elipses_len;
1098 		}
1099 	n++;			/* Null termination */
1100 
1101 	/*
1102 	 * If wrapping lines, we insert a newline and then wrap_str
1103 	 * every USAGE_WRAP_COL characters.
1104 	 */
1105 	if (wrap_str != NULL)
1106 		n += ((n + USAGE_WRAP_COL) / USAGE_WRAP_COL) *
1107 		    (strlen(wrap_str) + 1);
1108 
1109 	strbuf_ensure_size(&str, n);
1110 
1111 	/* Command name */
1112 	cur = str.buf;
1113 	n = str.n;
1114 	if (strcmp(mod->mod_name, MSG_ORIG(MSG_MOD_SYS)) == 0)
1115 		len = snprintf(cur, n, MSG_ORIG(MSG_FMT_SYSCMD),
1116 		    cmd->cmd_name[0]);
1117 	else
1118 		len = snprintf(cur, n, MSG_ORIG(MSG_FMT_MODCMD),
1119 		    mod->mod_name, cmd->cmd_name[0]);
1120 	cur += len;
1121 	n -= len;
1122 	cur_col += len;
1123 
1124 	if (cmd->cmd_opt != NULL)
1125 		usage_optarg(str.n, &cur, &n, &cur_col, cmd->cmd_opt,
1126 		    1, wrap_str);
1127 	if (cmd->cmd_args != NULL)
1128 		usage_optarg(str.n, &cur, &n, &cur_col, cmd->cmd_args,
1129 		    0, wrap_str);
1130 
1131 	return (str.buf);
1132 }
1133 
1134 /*
1135  * Wrapper on elfedit_msg() that issues an ELFEDIT_MSG_USAGE
1136  * error giving usage information for the command currently
1137  * referenced by state.cur_cmd.
1138  */
1139 void
1140 elfedit_command_usage(void)
1141 {
1142 	elfedit_msg(ELFEDIT_MSG_CMDUSAGE, MSG_INTL(MSG_USAGE_CMD),
1143 	    elfedit_format_command_usage(state.cur_cmd->ucmd_mod,
1144 	    state.cur_cmd->ucmd_cmd, NULL, 0));
1145 }
1146 
1147 
1148 /*
1149  * This function allows the loadable modules to get the command line
1150  * flags.
1151  */
1152 elfedit_flag_t
1153 elfedit_flags(void)
1154 {
1155 	return (state.flags);
1156 }
1157 
1158 /*
1159  * This function is used to register a per-command invocation output style
1160  * that will momentarily override the global output style for the duration
1161  * of the current command. This function must only be called by an
1162  * active command.
1163  *
1164  * entry:
1165  *	str - One of the valid strings for the output style
1166  */
1167 void
1168 elfedit_set_cmd_outstyle(const char *str)
1169 {
1170 	if ((state.cur_cmd != NULL) && (str != NULL)) {
1171 		if (elfedit_atooutstyle(str, &state.cur_cmd->ucmd_ostyle) == 0)
1172 			elfedit_msg(ELFEDIT_MSG_ERR,
1173 			    MSG_INTL(MSG_ERR_BADOSTYLE), str);
1174 		state.cur_cmd->ucmd_ostyle_set = 1;
1175 	}
1176 }
1177 
1178 /*
1179  * This function allows the loadable modules to get the output style.
1180  */
1181 elfedit_outstyle_t
1182 elfedit_outstyle(void)
1183 {
1184 	/*
1185 	 * If there is an active  per-command output style,
1186 	 * return it.
1187 	 */
1188 	if ((state.cur_cmd != NULL) && (state.cur_cmd->ucmd_ostyle_set))
1189 		return (state.cur_cmd->ucmd_ostyle);
1190 
1191 
1192 	return (state.outstyle);
1193 }
1194 
1195 /*
1196  * Return the command descriptor of the currently executing command.
1197  * For use only by the modules or code called by the modules.
1198  */
1199 elfeditGC_cmd_t *
1200 elfedit_curcmd(void)
1201 {
1202 	return (state.cur_cmd->ucmd_cmd);
1203 }
1204 
1205 /*
1206  * Build a dynamically allocated elfedit_obj_state_t struct that
1207  * contains a cache of the ELF file contents. This pre-chewed form
1208  * is fed to each command, reducing the amount of ELF boilerplate
1209  * code each command needs to contain.
1210  *
1211  * entry:
1212  *	file - Name of file to process
1213  *
1214  * exit:
1215  *	Fills state.elf with the necessary information for the open file.
1216  *
1217  * note: The resulting elfedit_obj_state_t is allocated from a single
1218  *	piece of memory, such that a single call to free() suffices
1219  *	to release it as well as any memory it references.
1220  */
1221 static void
1222 init_obj_state(const char *file)
1223 {
1224 	int	fd;
1225 	Elf	*elf;
1226 	int	open_flag;
1227 
1228 	/*
1229 	 * In readonly mode, we open the file readonly so that it is
1230 	 * impossible to modify the file by accident. This also allows
1231 	 * us to access readonly files, perhaps in a case where we don't
1232 	 * intend to change it.
1233 	 *
1234 	 * We always use ELF_C_RDWR with elf_begin(), even in a readonly
1235 	 * session. This allows us to modify the in-memory image, which
1236 	 * can be useful when examining a file, even though we don't intend
1237 	 * to modify the on-disk data. The file is not writable in
1238 	 * this case, and we don't call elf_update(), so it is safe to do so.
1239 	 */
1240 	open_flag = ((state.flags & ELFEDIT_F_READONLY) ? O_RDONLY : O_RDWR);
1241 	if ((fd = open(file, open_flag)) == -1) {
1242 		int err = errno;
1243 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTOPNFILE),
1244 		    file, strerror(err));
1245 	}
1246 	(void) elf_version(EV_CURRENT);
1247 	elf = elf_begin(fd, ELF_C_RDWR, NULL);
1248 	if (elf == NULL) {
1249 		(void) close(fd);
1250 		elfedit_elferr(file, MSG_ORIG(MSG_ELF_BEGIN));
1251 		/*NOTREACHED*/
1252 	}
1253 
1254 	/* We only handle standalone ELF files */
1255 	switch (elf_kind(elf)) {
1256 	case ELF_K_AR:
1257 		(void) close(fd);
1258 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_NOAR), file);
1259 		break;
1260 	case ELF_K_ELF:
1261 		break;
1262 	default:
1263 		(void) close(fd);
1264 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_UNRECELFFILE),
1265 		    file);
1266 		break;
1267 	}
1268 
1269 	/*
1270 	 * Tell libelf that we take responsibility for object layout.
1271 	 * Otherwise, it will compute "proper" values for layout and
1272 	 * alignment fields, and these values can overwrite the values
1273 	 * set in the elfedit session. We are modifying existing
1274 	 * objects --- the layout concerns have already been dealt
1275 	 * with when the object was built.
1276 	 */
1277 	(void) elf_flagelf(elf, ELF_C_SET, ELF_F_LAYOUT);
1278 
1279 	/* Fill in state.elf.obj_state */
1280 	state.elf.elfclass = gelf_getclass(elf);
1281 	switch (state.elf.elfclass) {
1282 	case ELFCLASS32:
1283 		elfedit32_init_obj_state(file, fd, elf);
1284 		break;
1285 	case ELFCLASS64:
1286 		elfedit64_init_obj_state(file, fd, elf);
1287 		break;
1288 	default:
1289 		(void) close(fd);
1290 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_BADELFCLASS),
1291 		    file);
1292 		break;
1293 	}
1294 }
1295 
1296 
1297 #ifdef DEBUG_MODULE_LIST
1298 /*
1299  * Debug routine. Dump the module list to stdout.
1300  */
1301 static void
1302 dbg_module_list(char *title)
1303 {
1304 	MODLIST_T *m;
1305 
1306 	printf("<MODULE LIST: %s>\n", title);
1307 	for (m = state.modlist; m != NULL; m = m->next) {
1308 		printf("Module: >%s<\n", m->mod->mod_name);
1309 		printf("    hdl:  %llx\n", m->dl_hdl);
1310 		printf("    path: >%s<\n", m->path ? m->path : "<builtin>");
1311 	}
1312 	printf("<END OF MODULE LIST>\n");
1313 }
1314 #endif
1315 
1316 
1317 /*
1318  * Search the module list for the named module.
1319  *
1320  * entry:
1321  *	name - Name of module to find
1322  *	insdef - Address of variable to receive address of predecessor
1323  *		node to the desired one.
1324  *
1325  * exit:
1326  *	If the module is it is found, this routine returns the pointer to
1327  *	its MODLIST_T structure. *insdef references the predecessor node, or
1328  *	is NULL if the found item is at the head of the list.
1329  *
1330  *	If the module is not found, NULL is returned. *insdef references
1331  *	the predecessor node of the position where an entry for this module
1332  *	would be placed, or NULL if it would go at the beginning.
1333  */
1334 static MODLIST_T *
1335 module_loaded(const char *name, MODLIST_T **insdef)
1336 {
1337 	MODLIST_T	*moddef;
1338 	int		cmp;
1339 
1340 	*insdef = NULL;
1341 	moddef = state.modlist;
1342 	if (moddef != NULL) {
1343 		cmp = strcasecmp(name, moddef->ml_mod->mod_name);
1344 		if (cmp == 0) {		/* Desired module is first in list */
1345 			return (moddef);
1346 		} else if (cmp > 0) {	/* cmp > 0: Insert in middle/end */
1347 			*insdef = moddef;
1348 			moddef = moddef->ml_next;
1349 			cmp = -1;
1350 			while (moddef && (cmp < 0)) {
1351 				cmp = strcasecmp(moddef->ml_mod->mod_name,
1352 				    name);
1353 				if (cmp == 0)
1354 					return (moddef);
1355 				if (cmp < 0) {
1356 					*insdef = moddef;
1357 					moddef = (*insdef)->ml_next;
1358 				}
1359 			}
1360 		}
1361 	}
1362 
1363 	return (NULL);
1364 }
1365 
1366 
1367 /*
1368  * Determine if a file is a sharable object based on its file path.
1369  * If path ends in a .so, followed optionally by a period and 1 or more
1370  * digits, we say that it is and return a pointer to the first character
1371  * of the suffix. Otherwise NULL is returned.
1372  */
1373 static const char *
1374 path_is_so(const char *path)
1375 {
1376 	int		dotso_len;
1377 	const char	*tail;
1378 	size_t		len;
1379 
1380 	len = strlen(path);
1381 	if (len == 0)
1382 		return (NULL);
1383 	tail = path + len;
1384 	if (isdigit(*(tail - 1))) {
1385 		while ((tail > path) && isdigit(*(tail - 1)))
1386 			tail--;
1387 		if ((tail <= path) || (*tail != '.'))
1388 			return (NULL);
1389 	}
1390 	dotso_len = strlen(MSG_ORIG(MSG_STR_DOTSO));
1391 	if ((tail - path) < dotso_len)
1392 		return (NULL);
1393 	tail -= dotso_len;
1394 	if (strncmp(tail, MSG_ORIG(MSG_STR_DOTSO), dotso_len) == 0)
1395 		return (tail);
1396 
1397 	return (NULL);
1398 }
1399 
1400 
1401 /*
1402  * Locate the start of the unsuffixed file name within path. Returns pointer
1403  * to first character of that name in path.
1404  *
1405  * entry:
1406  *	path - Path to be examined.
1407  *	tail - NULL, or pointer to position at tail of path from which
1408  *		the search for '/' characters should start. If NULL,
1409  *		strlen() is used to locate the end of the string.
1410  *	buf - NULL, or buffer to receive a copy of the characters that
1411  *		lie between the start of the filename and tail.
1412  *	bufsize - sizeof(buf)
1413  *
1414  * exit:
1415  *	The pointer to the first character of the unsuffixed file name
1416  *	within path is returned. If buf is non-NULL, the characters
1417  *	lying between that point and tail (or the end of path if tail
1418  *	is NULL) are copied into buf.
1419  */
1420 static const char *
1421 elfedit_basename(const char *path, const char *tail, char *buf, size_t bufsiz)
1422 {
1423 	const char 	*s;
1424 
1425 	if (tail == NULL)
1426 		tail = path + strlen(path);
1427 	s = tail;
1428 	while ((s > path) && (*(s - 1) != '/'))
1429 		s--;
1430 	if (buf != NULL)
1431 		elfedit_strnbcpy(buf, s, tail - s, bufsiz);
1432 	return (s);
1433 }
1434 
1435 
1436 /*
1437  * Issue an error on behalf of load_module(), taking care to release
1438  * resources that routine may have aquired:
1439  *
1440  * entry:
1441  *	moddef - NULL, or a module definition to be released via free()
1442  *	dl_hdl - NULL, or a handle to a sharable object to release via
1443  *		dlclose().
1444  *	dl_path - If dl_hdl is non-NULL, the path to the sharable object
1445  *		file that was loaded.
1446  *	format - A format string to pass to elfedit_msg(), containing
1447  *		no more than (3) %s format codes, and no other format codes.
1448  *	[s1-s4] - Strings to pass to elfedit_msg() to satisfy the four
1449  *		allowed %s codes in format. Should be set to NULL if the
1450  *		format string does not need them.
1451  *
1452  * note:
1453  *	This routine makes a copy of the s1-s4 strings before freeing any
1454  *	memory or unmapping the sharable library. It is therefore safe to
1455  *	use strings from moddef, or from the sharable library (which will
1456  *	be unmapped) to satisfy the other arguments s1-s4.
1457  */
1458 static void
1459 load_module_err(MODLIST_T *moddef, void *dl_hdl, const char *dl_path,
1460     const char *format, const char *s1, const char *s2, const char *s3,
1461     const char *s4)
1462 {
1463 #define	SCRBUFSIZE (PATH_MAX + 256)   /* A path, plus some extra */
1464 
1465 	char s1_buf[SCRBUFSIZE];
1466 	char s2_buf[SCRBUFSIZE];
1467 	char s3_buf[SCRBUFSIZE];
1468 	char s4_buf[SCRBUFSIZE];
1469 
1470 	/*
1471 	 * The caller may provide strings for s1-s3 that are from
1472 	 * moddef. If we free moddef, the printf() will die on access
1473 	 * to free memory. We could push back on the user and force
1474 	 * each call to carefully make copies of such data. However, this
1475 	 * is an easy case to miss. Furthermore, this is an error case,
1476 	 * and machine efficiency is not the main issue. We therefore make
1477 	 * copies of the s1-s3 strings here into auto variables, and then
1478 	 * use those copies. The user is freed from worrying about it.
1479 	 *
1480 	 * We use oversized stack based buffers instead of malloc() to
1481 	 * reduce the number of ways that things can go wrong while
1482 	 * reporting the error.
1483 	 */
1484 	if (s1 != NULL)
1485 		(void) strlcpy(s1_buf, s1, sizeof (s1_buf));
1486 	if (s2 != NULL)
1487 		(void) strlcpy(s2_buf, s2, sizeof (s2_buf));
1488 	if (s3 != NULL)
1489 		(void) strlcpy(s3_buf, s3, sizeof (s3_buf));
1490 	if (s4 != NULL)
1491 		(void) strlcpy(s4_buf, s4, sizeof (s4_buf));
1492 
1493 
1494 	if (moddef != NULL)
1495 		free(moddef);
1496 
1497 	if ((dl_hdl != NULL) && (dlclose(dl_hdl) != 0))
1498 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTDLCLOSE),
1499 		    dl_path, dlerror());
1500 
1501 	elfedit_msg(ELFEDIT_MSG_ERR, format, s1_buf, s2_buf, s3_buf, s4_buf);
1502 #undef	SCRBUFSIZE
1503 }
1504 
1505 
1506 /*
1507  * Load a module sharable object for load_module().
1508  *
1509  * entry:
1510  *	path - Path of file to open
1511  *	moddef - If this function issues a non-returning error, it will
1512  *		first return the memory referenced by moddef. This argument
1513  *		is not used otherwise.
1514  *	must_exist - If True, we consider it to be an error if the file given
1515  *		by path does not exist. If False, no error is issued
1516  *		and a NULL value is quietly returned.
1517  *
1518  * exit:
1519  *	Returns a handle to the loaded object on success, or NULL if no
1520  *	file was loaded.
1521  */
1522 static void *
1523 load_module_dlopen(const char *path, MODLIST_T *moddef, int must_exist)
1524 {
1525 	int	fd;
1526 	void	*hdl;
1527 
1528 	/*
1529 	 * If the file is not required to exist, and it doesn't, then
1530 	 * we want to quietly return without an error.
1531 	 */
1532 	if (!must_exist) {
1533 		fd = open(path, O_RDONLY);
1534 		if (fd >= 0) {
1535 			(void) close(fd);
1536 		} else if (errno == ENOENT) {
1537 			return (NULL);
1538 		}
1539 	}
1540 
1541 	if ((hdl = dlopen(path, RTLD_LAZY|RTLD_FIRST)) == NULL)
1542 		load_module_err(moddef, NULL, NULL,
1543 		    MSG_INTL(MSG_ERR_CNTDLOPEN), path, dlerror(), NULL, NULL);
1544 
1545 	return (hdl);
1546 }
1547 
1548 
1549 /*
1550  * Sanity check option arguments to prevent common errors. The rest of
1551  * elfedit assumes these tests have been done, and does not check
1552  * again.
1553  */
1554 static void
1555 validate_optarg(elfedit_cmd_optarg_t *optarg, int isopt, MODLIST_T *moddef,
1556     const char *mod_name, const char *cmd_name,
1557     void *dl_hdl, const char *dl_path)
1558 {
1559 #define	FAIL(_msg) errmsg = _msg; goto fail
1560 
1561 	Msg errmsg;
1562 	elfedit_cmd_oa_mask_t	optmask = 0;
1563 
1564 	for (; optarg->oa_name != NULL; optarg++) {
1565 		/*
1566 		 * If ELFEDIT_CMDOA_F_INHERIT is set:
1567 		 *	- oa_name must be a value in the range of
1568 		 *		known ELFEDIT_STDOA_ values.
1569 		 *	- oa_help must be NULL
1570 		 *	- ELFEDIT_CMDOA_F_INHERIT must be the only flag set
1571 		 */
1572 		if (optarg->oa_flags & ELFEDIT_CMDOA_F_INHERIT) {
1573 			if ((((uintptr_t)optarg->oa_name) >
1574 			    ELFEDIT_NUM_STDOA) ||
1575 			    (optarg->oa_help != 0) ||
1576 			    (optarg->oa_flags != ELFEDIT_CMDOA_F_INHERIT))
1577 				/*
1578 				 * Can't use FAIL --- oa_name is not a valid
1579 				 * string, and load_module_err() looks at args.
1580 				 */
1581 				load_module_err(moddef, dl_hdl, dl_path,
1582 				    MSG_INTL(MSG_ERR_BADSTDOA), dl_path,
1583 				    mod_name, cmd_name, NULL);
1584 			continue;
1585 		}
1586 
1587 		if (isopt) {
1588 			/*
1589 			 * Option name must start with a '-', and must
1590 			 * have at one following character.
1591 			 */
1592 			if (optarg->oa_name[0] != '-') {
1593 				/* MSG_INTL(MSG_ERR_OPT_MODPRE) */
1594 				FAIL(MSG_ERR_OPT_MODPRE);
1595 			}
1596 			if (optarg->oa_name[1] == '\0') {
1597 				/* MSG_INTL(MSG_ERR_OPT_MODLEN) */
1598 				FAIL(MSG_ERR_OPT_MODLEN);
1599 			}
1600 
1601 			/*
1602 			 * oa_idmask must be 0, or it must have a single
1603 			 * bit set (a power of 2).oa_excmask must be 0
1604 			 * if oa_idmask is 0
1605 			 */
1606 			if (optarg->oa_idmask == 0) {
1607 				if (optarg->oa_excmask != 0) {
1608 					/* MSG_INTL(MSG_ERR_OPT_EXCMASKN0) */
1609 					FAIL(MSG_ERR_OPT_EXCMASKN0);
1610 				}
1611 			} else {
1612 				if (elfedit_bits_set(optarg->oa_idmask,
1613 				    sizeof (optarg->oa_idmask)) != 1) {
1614 					/* MSG_INTL(MSG_ERR_OPT_IDMASKPOW2) */
1615 					FAIL(MSG_ERR_OPT_IDMASKPOW2);
1616 				}
1617 
1618 				/* Non-zero idmask must be unique */
1619 				if ((optarg->oa_idmask & optmask) != 0) {
1620 					/* MSG_INTL(MSG_ERR_OPT_IDMASKUNIQ) */
1621 					FAIL(MSG_ERR_OPT_IDMASKUNIQ);
1622 				}
1623 
1624 				/* Add this one to the overall mask */
1625 				optmask |= optarg->oa_idmask;
1626 			}
1627 		} else {
1628 			/*
1629 			 * Argument name cannot start with a'-', and must
1630 			 * not be a null string.
1631 			 */
1632 			if (optarg->oa_name[0] == '-') {
1633 				/* MSG_INTL(MSG_ERR_ARG_MODPRE) */
1634 				FAIL(MSG_ERR_ARG_MODPRE);
1635 			}
1636 			if (optarg->oa_name[1] == '\0') {
1637 				/* MSG_INTL(MSG_ERR_ARG_MODLEN) */
1638 				FAIL(MSG_ERR_ARG_MODLEN);
1639 			}
1640 
1641 
1642 			/* oa_idmask and oa_excmask must both be 0 */
1643 			if ((optarg->oa_idmask != 0) ||
1644 			    (optarg->oa_excmask != 0)) {
1645 				/* MSG_INTL(MSG_ERR_ARG_MASKNOT0) */
1646 				FAIL(MSG_ERR_ARG_MASKNOT0);
1647 			}
1648 
1649 		}
1650 
1651 		/*
1652 		 * If it takes a value, make sure that we are
1653 		 * processing options, because CMDOA_F_VALUE is not
1654 		 * allowed for plain arguments. Then check the following
1655 		 * item in the list:
1656 		 *	- There must be a following item.
1657 		 *	- oa_name must be non-NULL. This is the only field
1658 		 *		that is used by elfedit.
1659 		 *	- oa_help, oa_flags, oa_idmask, and oa_excmask
1660 		 *		must be 0.
1661 		 */
1662 		if (optarg->oa_flags & ELFEDIT_CMDOA_F_VALUE) {
1663 			elfedit_cmd_optarg_t *oa1 = optarg + 1;
1664 
1665 			if (!isopt) {
1666 				/* MSG_INTL(MSG_ERR_ARG_CMDOA_VAL) */
1667 				FAIL(MSG_ERR_ARG_CMDOA_VAL);
1668 			}
1669 
1670 			if ((optarg + 1)->oa_name == NULL) {
1671 				/* MSG_INTL(MSG_ERR_BADMODOPTVAL) */
1672 				FAIL(MSG_ERR_BADMODOPTVAL);
1673 			}
1674 
1675 			if (oa1->oa_name == NULL) {
1676 				/* MSG_INTL(MSG_ERR_CMDOA_VALNAM) */
1677 				FAIL(MSG_ERR_CMDOA_VALNAM);
1678 			}
1679 			if ((oa1->oa_help != NULL) || (oa1->oa_flags != 0) ||
1680 			    (oa1->oa_idmask != 0) || (oa1->oa_excmask != 0)) {
1681 				/* MSG_INTL(MSG_ERR_CMDOA_VALNOT0) */
1682 				FAIL(MSG_ERR_CMDOA_VALNOT0);
1683 			}
1684 			optarg++;
1685 		}
1686 	}
1687 
1688 
1689 	return;
1690 
1691 fail:
1692 	load_module_err(moddef, dl_hdl, dl_path, MSG_INTL(errmsg),
1693 	    dl_path, mod_name, cmd_name, optarg->oa_name);
1694 }
1695 
1696 /*
1697  * Look up the specified module, loading the module if necessary,
1698  * and return its definition, or NULL on failure.
1699  *
1700  * entry:
1701  *	name - Name of module to load. If name contains a '/' character or has
1702  *		a ".so" suffix, then it is taken to be an absolute file path,
1703  *		and is used directly as is. If name does not contain a '/'
1704  *		character, then we look for it against the locations in
1705  *		the module path, addint the '.so' suffix, and taking the first
1706  *		one we find.
1707  *	must_exist - If True, we consider it to be an error if we are unable
1708  *		to locate a file to load and the module does not already exist.
1709  *		If False, NULL is returned quietly in this case.
1710  *	allow_abs - True if absolute paths are allowed. False to disallow
1711  *		them.
1712  *
1713  * note:
1714  *	If the path is absolute, then we load the file and take the module
1715  *	name from the data returned by its elfedit_init() function. If a
1716  *	module of that name is already loaded, it is unloaded and replaced
1717  *	with the new one.
1718  *
1719  *	If the path is non absolute, then we check to see if the module has
1720  *	already been loaded, and if so, we return that module definition.
1721  *	In this case, nothing new is loaded. If the module has not been loaded,
1722  *	we search the path for it and load it. If the module name provided
1723  *	by the elfedit_init() function does not match the name of the file,
1724  *	an error results.
1725  */
1726 elfeditGC_module_t *
1727 elfedit_load_module(const char *name, int must_exist, int allow_abs)
1728 {
1729 	elfedit_init_func_t	*init_func;
1730 	elfeditGC_module_t	*mod;
1731 	MODLIST_T		*moddef, *insdef;
1732 	const char		*path;
1733 	char			path_buf[PATH_MAX + 1];
1734 	void			*hdl;
1735 	size_t			i;
1736 	int			is_abs_path;
1737 	elfeditGC_cmd_t		*cmd;
1738 
1739 	/*
1740 	 * If the name includes a .so suffix, or has any '/' characters,
1741 	 * then it is an absolute path that we use as is to load the named
1742 	 * file. Otherwise, we iterate over the path, adding the .so suffix
1743 	 * and load the first file that matches.
1744 	 */
1745 	is_abs_path = (path_is_so(name) != NULL) ||
1746 	    (name != elfedit_basename(name, NULL, NULL, 0));
1747 
1748 	if (is_abs_path && !allow_abs)
1749 		load_module_err(NULL, NULL, NULL,
1750 		    MSG_INTL(MSG_ERR_UNRECMOD), name, NULL, NULL, NULL);
1751 
1752 	/*
1753 	 * If this is a non-absolute path, search for the module already
1754 	 * having been loaded, and return it if so.
1755 	 */
1756 	if (!is_abs_path) {
1757 		moddef = module_loaded(name, &insdef);
1758 		if (moddef != NULL)
1759 			return (moddef->ml_mod);
1760 		/*
1761 		 * As a result of module_loaded(), insdef now contains the
1762 		 * immediate predecessor node for the new one, or NULL if
1763 		 * it goes at the front. In the absolute-path case, we take
1764 		 * care of this below, after the sharable object is loaded.
1765 		 */
1766 	}
1767 
1768 	/*
1769 	 * malloc() a module definition block before trying to dlopen().
1770 	 * Doing things in the other order can cause the dlopen()'d object
1771 	 * to leak: If elfedit_malloc() fails, it can cause a jump to the
1772 	 * outer command loop without returning to the caller. Hence,
1773 	 * there will be no opportunity to clean up. Allocaing the module
1774 	 * first allows us to free it if necessary.
1775 	 */
1776 	moddef = elfedit_malloc(MSG_INTL(MSG_ALLOC_MODDEF),
1777 	    sizeof (*moddef) + PATH_MAX + 1);
1778 	moddef->ml_path = ((char *)moddef) + sizeof (*moddef);
1779 
1780 	if (is_abs_path) {
1781 		path = name;
1782 		hdl = load_module_dlopen(name, moddef, must_exist);
1783 	} else {
1784 		hdl = NULL;
1785 		path = path_buf;
1786 		for (i = 0; i < state.modpath.n; i++) {
1787 			if (snprintf(path_buf, sizeof (path_buf),
1788 			    MSG_ORIG(MSG_FMT_BLDSOPATH), state.modpath.seg[i],
1789 			    name) > sizeof (path_buf))
1790 				load_module_err(moddef, NULL, NULL,
1791 				    MSG_INTL(MSG_ERR_PATHTOOLONG),
1792 				    state.modpath.seg[i], name, NULL, NULL);
1793 			hdl = load_module_dlopen(path, moddef, 0);
1794 		}
1795 		if (must_exist && (hdl == NULL))
1796 			load_module_err(moddef, NULL, NULL,
1797 			    MSG_INTL(MSG_ERR_UNRECMOD), name, NULL, NULL, NULL);
1798 	}
1799 
1800 	if (hdl == NULL) {
1801 		free(moddef);
1802 		return (NULL);
1803 	}
1804 
1805 	if (state.elf.elfclass == ELFCLASS32) {
1806 		init_func = (elfedit_init_func_t *)
1807 		    dlsym(hdl, MSG_ORIG(MSG_STR_ELFEDITINIT32));
1808 	} else {
1809 		init_func = (elfedit_init_func_t *)
1810 		    dlsym(hdl, MSG_ORIG(MSG_STR_ELFEDITINIT64));
1811 	}
1812 	if (init_func == NULL)
1813 		load_module_err(moddef, hdl, path,
1814 		    MSG_INTL(MSG_ERR_SONOTMOD), path, NULL, NULL, NULL);
1815 
1816 	/*
1817 	 * Note that the init function will be passing us an
1818 	 * elfedit[32|64]_module_t pointer, which we cast to the
1819 	 * generic module pointer type in order to be able to manage
1820 	 * either type with one set of code.
1821 	 */
1822 	if (!(mod = (elfeditGC_module_t *)(* init_func)(ELFEDIT_VER_CURRENT)))
1823 		load_module_err(moddef, hdl, path,
1824 		    MSG_INTL(MSG_ERR_BADMODLOAD), path, NULL, NULL, NULL);
1825 
1826 	/*
1827 	 * Enforce some rules, to help module developers:
1828 	 *	- The primary name of a command must not be
1829 	 *		the empty string ("").
1830 	 *	- Options must start with a '-' followed by at least
1831 	 *		one character.
1832 	 *	- Arguments and options must be well formed.
1833 	 */
1834 	for (cmd = mod->mod_cmds; cmd->cmd_func != NULL; cmd++) {
1835 		if (**cmd->cmd_name == '\0')
1836 			load_module_err(moddef, hdl, path,
1837 			    MSG_INTL(MSG_ERR_NULLPRICMDNAM), mod->mod_name,
1838 			    NULL, NULL, NULL);
1839 
1840 		if (cmd->cmd_args != NULL)
1841 			validate_optarg(cmd->cmd_args, 0, moddef, mod->mod_name,
1842 			    cmd->cmd_name[0], hdl, path);
1843 		if (cmd->cmd_opt != NULL)
1844 			validate_optarg(cmd->cmd_opt, 1, moddef, mod->mod_name,
1845 			    cmd->cmd_name[0], hdl, path);
1846 	}
1847 
1848 	/*
1849 	 * Check the name the module provides. How we handle this depends
1850 	 * on whether the path is absolute or the result of a path search.
1851 	 */
1852 	if (is_abs_path) {
1853 		MODLIST_T *old_moddef = module_loaded(mod->mod_name, &insdef);
1854 
1855 		if (old_moddef != NULL) {	/* Replace existing */
1856 			free(moddef);		/* Rare case: Don't need it */
1857 			/*
1858 			 * Be sure we don't unload builtin modules!
1859 			 * These have a NULL dl_hdl field.
1860 			 */
1861 			if (old_moddef->ml_dl_hdl == NULL)
1862 				load_module_err(NULL, hdl, path,
1863 				    MSG_INTL(MSG_ERR_CNTULSMOD),
1864 				    old_moddef->ml_mod->mod_name, NULL,
1865 				    NULL, NULL);
1866 
1867 			/* Unload existing */
1868 			if (dlclose(old_moddef->ml_dl_hdl) != 0)
1869 				elfedit_msg(ELFEDIT_MSG_ERR,
1870 				    MSG_INTL(MSG_ERR_CNTDLCLOSE),
1871 				    old_moddef->ml_path, dlerror());
1872 			elfedit_msg(ELFEDIT_MSG_DEBUG,
1873 			    MSG_INTL(MSG_DEBUG_MODUNLOAD),
1874 			    old_moddef->ml_mod->mod_name, old_moddef->ml_path);
1875 			old_moddef->ml_mod = mod;
1876 			old_moddef->ml_dl_hdl = hdl;
1877 			(void) strlcpy((char *)old_moddef->ml_path, path,
1878 			    PATH_MAX + 1);
1879 			elfedit_msg(ELFEDIT_MSG_DEBUG,
1880 			    MSG_INTL(MSG_DEBUG_MODLOAD),
1881 			    old_moddef->ml_mod->mod_name, path);
1882 			return (old_moddef->ml_mod);
1883 		}
1884 		/*
1885 		 * insdef now contains the insertion point for the absolute
1886 		 * path case.
1887 		 */
1888 	} else {
1889 		/* If the names don't match, then error */
1890 		if (strcasecmp(name, mod->mod_name) != 0)
1891 			load_module_err(moddef, hdl, path,
1892 			    MSG_INTL(MSG_ERR_BADMODNAME),
1893 			    mod->mod_name, name, path, NULL);
1894 	}
1895 
1896 	/*
1897 	 * Link module into the module list. If insdef is NULL,
1898 	 * it goes at the head. If insdef is non-NULL, it goes immediately
1899 	 * after
1900 	 */
1901 	if (insdef == NULL) {
1902 		moddef->ml_next = state.modlist;
1903 		state.modlist = moddef;
1904 	} else {
1905 		moddef->ml_next = insdef->ml_next;
1906 		insdef->ml_next = moddef;
1907 	}
1908 	moddef->ml_mod = mod;
1909 	moddef->ml_dl_hdl = hdl;
1910 	(void) strlcpy((char *)moddef->ml_path, path, PATH_MAX + 1);
1911 
1912 	elfedit_msg(ELFEDIT_MSG_DEBUG, MSG_INTL(MSG_DEBUG_MODLOAD),
1913 	    moddef->ml_mod->mod_name, path);
1914 
1915 	return (moddef->ml_mod);
1916 }
1917 
1918 
1919 /*
1920  * Unload the specified module
1921  */
1922 void
1923 elfedit_unload_module(const char *name)
1924 {
1925 	MODLIST_T	*moddef, *insdef;
1926 
1927 	moddef = module_loaded(name, &insdef);
1928 	if (moddef == NULL)
1929 		return;
1930 
1931 	/* Built in modules cannot be unloaded. They have a NULL dl_hdl field */
1932 	if (moddef->ml_dl_hdl == NULL)
1933 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTULSMOD),
1934 		    moddef->ml_mod->mod_name);
1935 
1936 	/*
1937 	 * When we unload it, the name string goes with it. So
1938 	 * announce it while we still can without having to make a copy.
1939 	 */
1940 	elfedit_msg(ELFEDIT_MSG_DEBUG, MSG_INTL(MSG_DEBUG_MODUNLOAD),
1941 	    moddef->ml_mod->mod_name, moddef->ml_path);
1942 
1943 	/*
1944 	 * Close it before going further. On failure, we'll jump, and the
1945 	 * record will remain in the module list. On success,
1946 	 * we'll retain control, and can safely remove it.
1947 	 */
1948 	if (dlclose(moddef->ml_dl_hdl) != 0)
1949 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTDLCLOSE),
1950 		    moddef->ml_path, dlerror());
1951 
1952 	/* Unlink the record from the module list */
1953 	if (insdef == NULL)
1954 		state.modlist = moddef->ml_next;
1955 	else
1956 		insdef->ml_next = moddef->ml_next;
1957 
1958 	/* Release the memory */
1959 	free(moddef);
1960 }
1961 
1962 
1963 /*
1964  * Load all sharable objects found in the specified directory.
1965  *
1966  * entry:
1967  *	dirpath - Path of directory to process.
1968  *	must_exist - If True, it is an error if diropen() fails to open
1969  *		the given directory. Of False, we quietly ignore it and return.
1970  *	abs_path - If True, files are loaded using their literal paths.
1971  *		If False, their module name is extracted from the dirpath
1972  *		and a path based search is used to locate it.
1973  */
1974 void
1975 elfedit_load_moddir(const char *dirpath, int must_exist, int abs_path)
1976 {
1977 	char		path[PATH_MAX + 1];
1978 	DIR		*dir;
1979 	struct dirent	*dp;
1980 	const char 	*tail;
1981 
1982 	dir = opendir(dirpath);
1983 	if (dir == NULL) {
1984 		int err = errno;
1985 
1986 		if (!must_exist && (err == ENOENT))
1987 			return;
1988 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTOPNDIR),
1989 		    dirpath, strerror(err));
1990 		/*NOTREACHED*/
1991 	}
1992 
1993 	while (dp = readdir(dir)) {
1994 		if ((tail = path_is_so(dp->d_name)) != NULL) {
1995 			if (abs_path) {
1996 				(void) snprintf(path, sizeof (path),
1997 				    MSG_ORIG(MSG_FMT_BLDPATH), dirpath,
1998 				    dp->d_name);
1999 			} else {
2000 				(void) elfedit_basename(dp->d_name, tail,
2001 				    path, sizeof (path));
2002 			}
2003 			(void) elfedit_load_module(path, must_exist, 1);
2004 		}
2005 	}
2006 	(void) closedir(dir);
2007 }
2008 
2009 
2010 /*
2011  * Follow the module load path, and load the first module found for each
2012  * given name.
2013  */
2014 void
2015 elfedit_load_modpath(void)
2016 {
2017 	size_t		i;
2018 
2019 	for (i = 0; i < state.modpath.n; i++)
2020 		elfedit_load_moddir(state.modpath.seg[i], 0, 0);
2021 }
2022 
2023 /*
2024  * Given a module definition, look for the specified command.
2025  * Returns the command if found, and NULL otherwise.
2026  */
2027 static elfeditGC_cmd_t *
2028 find_cmd(elfeditGC_module_t *mod, const char *name)
2029 {
2030 	elfeditGC_cmd_t *cmd;
2031 	const char **cmd_name;
2032 
2033 	for (cmd = mod->mod_cmds; cmd->cmd_func != NULL; cmd++)
2034 		for (cmd_name = cmd->cmd_name; *cmd_name; cmd_name++)
2035 			if (strcasecmp(name, *cmd_name) == 0) {
2036 				if (cmd_name != cmd->cmd_name)
2037 					elfedit_msg(ELFEDIT_MSG_DEBUG,
2038 					    MSG_INTL(MSG_DEBUG_CMDALIAS),
2039 					    mod->mod_name, *cmd_name,
2040 					    mod->mod_name, *cmd->cmd_name);
2041 				return (cmd);
2042 			}
2043 
2044 	return (NULL);
2045 }
2046 
2047 
2048 /*
2049  * Given a command name, return its command definition.
2050  *
2051  * entry:
2052  *	name - Command to be looked up
2053  *	must_exist - If True, we consider it to be an error if the command
2054  *		does not exist. If False, NULL is returned quietly in
2055  *		this case.
2056  *	mod_ret - NULL, or address of a variable to receive the
2057  *		module definition block of the module containing
2058  *		the command.
2059  *
2060  * exit:
2061  *	On success, returns a pointer to the command definition, and
2062  *	if mod_ret is non-NULL, *mod_ret receives a pointer to the
2063  *	module definition. On failure, must_exist determines the
2064  *	action taken: If must_exist is True, an error is issued and
2065  *	control does not return to the caller. If must_exist is False,
2066  *	NULL is quietly returned.
2067  *
2068  * note:
2069  *	A ':' in name is used to delimit the module and command names.
2070  *	If it is omitted, or if it is the first non-whitespace character
2071  *	in the name, then the built in sys: module is implied.
2072  */
2073 elfeditGC_cmd_t *
2074 elfedit_find_command(const char *name, int must_exist,
2075     elfeditGC_module_t **mod_ret)
2076 {
2077 	elfeditGC_module_t	*mod;
2078 	const char		*mod_str;
2079 	const char		*cmd_str;
2080 	char			mod_buf[ELFEDIT_MAXMODNAM + 1];
2081 	size_t			n;
2082 	elfeditGC_cmd_t		*cmd;
2083 
2084 
2085 	cmd_str = strstr(name, MSG_ORIG(MSG_STR_COLON));
2086 	if (cmd_str == NULL) {		/* No module name -> sys: */
2087 		mod_str = MSG_ORIG(MSG_MOD_SYS);
2088 		cmd_str = name;
2089 	} else if (cmd_str == name) {	/* Empty module name -> sys: */
2090 		mod_str = MSG_ORIG(MSG_MOD_SYS);
2091 		cmd_str++;		/* Skip the colon */
2092 	} else {			/* Have both module and command */
2093 		n = cmd_str - name;
2094 		if (n >= sizeof (mod_buf)) {
2095 			if (must_exist)
2096 				elfedit_msg(ELFEDIT_MSG_ERR,
2097 				    MSG_INTL(MSG_ERR_MODNAMTOOLONG), name);
2098 			return (NULL);
2099 		}
2100 		(void) strlcpy(mod_buf, name, n + 1);
2101 		mod_str = mod_buf;
2102 		cmd_str++;
2103 	}
2104 
2105 	/* Lookup/load module. Won't return on error */
2106 	mod = elfedit_load_module(mod_str, must_exist, 0);
2107 	if (mod == NULL)
2108 		return (NULL);
2109 
2110 	/* Locate the command */
2111 	cmd = find_cmd(mod, cmd_str);
2112 	if (cmd == NULL) {
2113 		if (must_exist) {
2114 			/*
2115 			 * Catch empty command in order to provide
2116 			 * a better error message.
2117 			 */
2118 			if (*cmd_str == '\0') {
2119 				elfedit_msg(ELFEDIT_MSG_ERR,
2120 				    MSG_INTL(MSG_ERR_MODNOCMD), mod_str);
2121 			} else {
2122 				elfedit_msg(ELFEDIT_MSG_ERR,
2123 				    MSG_INTL(MSG_ERR_UNRECCMD),
2124 				    mod_str, cmd_str);
2125 			}
2126 		}
2127 	} else {
2128 		if (mod_ret != NULL)
2129 			*mod_ret = mod;
2130 	}
2131 	return (cmd);
2132 }
2133 
2134 
2135 /*
2136  * Release all user command blocks found on state.ucmd
2137  */
2138 static void
2139 free_user_cmds(void)
2140 {
2141 	USER_CMD_T *next;
2142 
2143 	while (state.ucmd.list) {
2144 		next = state.ucmd.list->ucmd_next;
2145 		free(state.ucmd.list);
2146 		state.ucmd.list = next;
2147 	}
2148 	state.ucmd.tail = NULL;
2149 	state.ucmd.n = 0;
2150 	state.cur_cmd = NULL;
2151 }
2152 
2153 
2154 /*
2155  * Process all user command blocks found on state.ucmd, and then
2156  * remove them from the list.
2157  */
2158 static void
2159 dispatch_user_cmds()
2160 {
2161 	USER_CMD_T		*ucmd;
2162 	elfedit_cmdret_t	cmd_ret;
2163 
2164 	ucmd = state.ucmd.list;
2165 	if (ucmd) {
2166 		/* Do them, in order */
2167 		for (; ucmd; ucmd = ucmd->ucmd_next) {
2168 			state.cur_cmd = ucmd;
2169 			if (!state.msg_jbuf.active)
2170 				elfedit_msg(ELFEDIT_MSG_DEBUG,
2171 				    MSG_INTL(MSG_DEBUG_EXECCMD),
2172 				    ucmd->ucmd_orig_str);
2173 			/*
2174 			 * The cmd_func field is the generic definition.
2175 			 * We need to cast it to the type that matches
2176 			 * the proper ELFCLASS before calling it.
2177 			 */
2178 			if (state.elf.elfclass == ELFCLASS32) {
2179 				elfedit32_cmd_func_t *cmd_func =
2180 				    (elfedit32_cmd_func_t *)
2181 				    ucmd->ucmd_cmd->cmd_func;
2182 
2183 				cmd_ret = (* cmd_func)(state.elf.obj_state.s32,
2184 				    ucmd->ucmd_argc, ucmd->ucmd_argv);
2185 			} else {
2186 				elfedit64_cmd_func_t *cmd_func =
2187 				    (elfedit64_cmd_func_t *)
2188 				    ucmd->ucmd_cmd->cmd_func;
2189 
2190 				cmd_ret = (* cmd_func)(state.elf.obj_state.s64,
2191 				    ucmd->ucmd_argc, ucmd->ucmd_argv);
2192 			}
2193 			state.cur_cmd = NULL;
2194 			/* If a pager was started, wrap it up */
2195 			elfedit_pager_cleanup();
2196 
2197 			switch (cmd_ret) {
2198 			case ELFEDIT_CMDRET_MOD_OS_MACH:
2199 				/*
2200 				 * Inform the elfconst module that the machine
2201 				 * or osabi has has changed. It may be necessary
2202 				 * to fetch new strings from libconv.
2203 				 */
2204 				state.elf.elfconst_ehdr_change = 1;
2205 				/*FALLTHROUGH*/
2206 			case ELFEDIT_CMDRET_MOD:
2207 				/*
2208 				 * Command modified the output ELF image,
2209 				 * mark the file as needing a flush to disk.
2210 				 */
2211 				state.file.dirty = 1;
2212 				break;
2213 			case ELFEDIT_CMDRET_FLUSH:
2214 				/*
2215 				 * Command flushed the output file,
2216 				 * clear the dirty bit.
2217 				 */
2218 				state.file.dirty = 0;
2219 			}
2220 		}
2221 		free_user_cmds();
2222 	}
2223 }
2224 
2225 
2226 /*
2227  * Given the pointer to the character following a '\' character in
2228  * a C style literal, return the ASCII character code it represents,
2229  * and advance the string pointer to the character following the last
2230  * character in the escape sequence.
2231  *
2232  * entry:
2233  *	str - Address of string pointer to first character following
2234  *		the backslash.
2235  *
2236  * exit:
2237  *	If the character is not valid, an error is thrown and this routine
2238  *	does not return to its caller. Otherwise, it returns the ASCII
2239  *	code for the translated character, and *str has been advanced.
2240  */
2241 static int
2242 translate_c_esc(char **str)
2243 {
2244 	char *s = *str;
2245 	int	ch;
2246 	int	i;
2247 
2248 	ch = *s++;
2249 	switch (ch) {
2250 	case 'a':
2251 		ch = '\a';
2252 		break;
2253 	case 'b':
2254 		ch = '\b';
2255 		break;
2256 	case 'f':
2257 		ch = '\f';
2258 		break;
2259 	case 'n':
2260 		ch = '\n';
2261 		break;
2262 	case 'r':
2263 		ch = '\r';
2264 		break;
2265 	case 't':
2266 		ch = '\t';
2267 		break;
2268 	case 'v':
2269 		ch = '\v';
2270 		break;
2271 
2272 	case '0':
2273 	case '1':
2274 	case '2':
2275 	case '3':
2276 	case '4':
2277 	case '5':
2278 	case '6':
2279 	case '7':
2280 		/* Octal constant: There can be up to 3 digits */
2281 		ch -= '0';
2282 		for (i = 0; i < 2; i++) {
2283 			if ((*s < '0') || (*s > '7'))
2284 				break;
2285 			ch = (ch << 3) + (*s++ - '0');
2286 		}
2287 		break;
2288 
2289 	/*
2290 	 * There are some cases where ch already has the desired value.
2291 	 * These cases exist simply to remove the special meaning that
2292 	 * character would otherwise have. We need to match them to
2293 	 * prevent them from falling into the default error case.
2294 	 */
2295 	case '\\':
2296 	case '\'':
2297 	case '"':
2298 		break;
2299 
2300 	default:
2301 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_BADCESC), ch);
2302 		break;
2303 	}
2304 
2305 	*str = s;
2306 	return (ch);
2307 }
2308 
2309 
2310 /*
2311  * Prepare a GETTOK_STATE struct for gettok().
2312  *
2313  * entry:
2314  *	gettok_state - gettok state block to use
2315  *	str - Writable buffer to tokenize. Note that gettok()
2316  *		is allowed to change the contents of this buffer.
2317  *	inc_null_final - If the line ends in whitespace instead of
2318  *		immediately hitting a NULL, and inc_null_final is TRUE,
2319  *		then a null final token is generated. Otherwise trailing
2320  *		whitespace is ignored.
2321  */
2322 static void
2323 gettok_init(GETTOK_STATE *gettok_state, char *buf, int inc_null_final)
2324 {
2325 	gettok_state->gtok_buf = gettok_state->gtok_cur_buf = buf;
2326 	gettok_state->gtok_inc_null_final = inc_null_final;
2327 	gettok_state->gtok_null_seen = 0;
2328 }
2329 
2330 
2331 /*
2332  * Locate the next token from the buffer.
2333  *
2334  * entry:
2335  *	gettok_state - State of gettok() operation. Initialized
2336  *		by gettok_init(), and passed to gettok().
2337  *
2338  * exit:
2339  *	If a token is found, gettok_state->gtok_last_token is filled in
2340  *	with the details and True (1) is returned. If no token is found,
2341  *	False (1) is returned, and the contents of
2342  *	gettok_state->gtok_last_token are undefined.
2343  *
2344  * note:
2345  *	- The token returned references the memory in gettok_state->gtok_buf.
2346  *		The caller should not modify the buffer until all such
2347  *		pointers have been discarded.
2348  *	- This routine will modify the contents of gettok_state->gtok_buf
2349  *		as necessary to remove quotes and eliminate escape
2350  *		(\)characters.
2351  */
2352 static int
2353 gettok(GETTOK_STATE *gettok_state)
2354 {
2355 	char	*str = gettok_state->gtok_cur_buf;
2356 	char	*look;
2357 	int	quote_ch = '\0';
2358 
2359 	/* Skip leading whitespace */
2360 	while (isspace(*str))
2361 		str++;
2362 
2363 	if (*str == '\0') {
2364 		/*
2365 		 * If user requested it, and there was whitespace at the
2366 		 * end, then generate one last null token.
2367 		 */
2368 		if (gettok_state->gtok_inc_null_final &&
2369 		    !gettok_state->gtok_null_seen) {
2370 			gettok_state->gtok_inc_null_final = 0;
2371 			gettok_state->gtok_null_seen = 1;
2372 			gettok_state->gtok_last_token.tok_str = str;
2373 			gettok_state->gtok_last_token.tok_len = 0;
2374 			gettok_state->gtok_last_token.tok_line_off =
2375 			    str - gettok_state->gtok_buf;
2376 			return (1);
2377 		}
2378 		gettok_state->gtok_null_seen = 1;
2379 		return (0);
2380 	}
2381 
2382 	/*
2383 	 * Read token: The standard delimiter is whitespace, but
2384 	 * we honor either single or double quotes. Also, we honor
2385 	 * backslash escapes.
2386 	 */
2387 	gettok_state->gtok_last_token.tok_str = look = str;
2388 	gettok_state->gtok_last_token.tok_line_off =
2389 	    look - gettok_state->gtok_buf;
2390 	for (; *look; look++) {
2391 		if (*look == quote_ch) {	/* Terminates active quote */
2392 			quote_ch = '\0';
2393 			continue;
2394 		}
2395 
2396 		if (quote_ch == '\0') {		/* No quote currently active */
2397 			if ((*look == '\'') || (*look == '"')) {
2398 				quote_ch = *look;	/* New active quote */
2399 				continue;
2400 			}
2401 			if (isspace(*look))
2402 				break;
2403 		}
2404 
2405 		/*
2406 		 * The semantics of the backslash character depends on
2407 		 * the quote style in use:
2408 		 *	- Within single quotes, backslash is not
2409 		 *		an escape character, and is taken literally.
2410 		 *	- If outside of quotes, the backslash is an escape
2411 		 *		character. The backslash is ignored and the
2412 		 *		following character is taken literally, losing
2413 		 *		any special properties it normally has.
2414 		 *	- Within double quotes, backslash works like a
2415 		 *		backslash escape within a C literal. Certain
2416 		 *		escapes are recognized and replaced with their
2417 		 *		special character. Any others are an error.
2418 		 */
2419 		if (*look == '\\') {
2420 			if (quote_ch == '\'') {
2421 				*str++ = *look;
2422 				continue;
2423 			}
2424 
2425 			look++;
2426 			if (*look == '\0') {	/* Esc applied to NULL term? */
2427 				elfedit_msg(ELFEDIT_MSG_ERR,
2428 				    MSG_INTL(MSG_ERR_ESCEOL));
2429 				/*NOTREACHED*/
2430 			}
2431 
2432 			if (quote_ch == '"') {
2433 				*str++ = translate_c_esc(&look);
2434 				look--;		/* for() will advance by 1 */
2435 				continue;
2436 			}
2437 		}
2438 
2439 		if (look != str)
2440 			*str = *look;
2441 		str++;
2442 	}
2443 
2444 	/* Don't allow unterminated quoted tokens */
2445 	if (quote_ch != '\0')
2446 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_UNTERMQUOTE),
2447 		    quote_ch);
2448 
2449 	gettok_state->gtok_last_token.tok_len = str -
2450 	    gettok_state->gtok_last_token.tok_str;
2451 	gettok_state->gtok_null_seen = *look == '\0';
2452 	if (!gettok_state->gtok_null_seen)
2453 		look++;
2454 	*str = '\0';
2455 	gettok_state->gtok_cur_buf = look;
2456 
2457 #ifdef DEBUG_GETTOK
2458 	printf("GETTOK >");
2459 	elfedit_str_to_c_literal(gettok_state->gtok_last_token.tok_str,
2460 	    elfedit_write);
2461 	printf("< \tlen(%d) offset(%d)\n",
2462 	    gettok_state->gtok_last_token.tok_len,
2463 	    gettok_state->gtok_last_token.tok_line_off);
2464 #endif
2465 
2466 	return (1);
2467 }
2468 
2469 
2470 /*
2471  * Tokenize the user command string, and return a pointer to the
2472  * TOK_STATE buffer maintained by this function. That buffer contains
2473  * the tokenized strings.
2474  *
2475  * entry:
2476  *	user_cmd_str - String to tokenize
2477  *	len - # of characters in user_cmd_str to examine. If
2478  *		(len < 0), then the complete string is processed
2479  *		stopping with the NULL termination. Otherwise,
2480  *		processing stops after len characters, and any
2481  *		remaining characters are ignored.
2482  *	inc_null_final - If True, and if user_cmd_str has whitespace
2483  *		at the end following the last non-null token, then
2484  *		a final null token will be included. If False, null
2485  *		tokens are ignored.
2486  *
2487  * note:
2488  *	This routine returns pointers to internally allocated memory.
2489  *	The caller must not alter anything contained in the TOK_STATE
2490  *	buffer returned. Furthermore, the the contents of TOK_STATE
2491  *	are only valid until the next call to tokenize_user_cmd().
2492  */
2493 static TOK_STATE *
2494 tokenize_user_cmd(const char *user_cmd_str, size_t len, int inc_null_final)
2495 {
2496 #define	INITIAL_TOK_ALLOC 5
2497 
2498 	/*
2499 	 * As we parse the user command, we need temporary space to
2500 	 * hold the tokens. We do this by dynamically allocating a string
2501 	 * buffer and a token array, and doubling them as necessary. This
2502 	 * is a single threaded application, so static variables suffice.
2503 	 */
2504 	static STRBUF str;
2505 	static TOK_STATE tokst;
2506 
2507 	GETTOK_STATE	gettok_state;
2508 	size_t		n;
2509 
2510 	/*
2511 	 * Make a copy we can modify. If (len == 0), take the entire
2512 	 * string. Otherwise limit it to the specified length.
2513 	 */
2514 	tokst.tokst_cmd_len = strlen(user_cmd_str);
2515 	if ((len > 0) && (len < tokst.tokst_cmd_len))
2516 		tokst.tokst_cmd_len = len;
2517 	tokst.tokst_cmd_len++;	/* Room for NULL termination */
2518 	strbuf_ensure_size(&str, tokst.tokst_cmd_len);
2519 	(void) strlcpy(str.buf, user_cmd_str, tokst.tokst_cmd_len);
2520 
2521 	/* Trim off any newline character that might be present */
2522 	if ((tokst.tokst_cmd_len > 1) &&
2523 	    (str.buf[tokst.tokst_cmd_len - 2] == '\n')) {
2524 		tokst.tokst_cmd_len--;
2525 		str.buf[tokst.tokst_cmd_len - 1] = '\0';
2526 	}
2527 
2528 	/* Tokenize the user command string into tok struct */
2529 	gettok_init(&gettok_state, str.buf, inc_null_final);
2530 	tokst.tokst_str_size = 0;	/* Space needed for token strings */
2531 	for (tokst.tokst_cnt = 0; gettok(&gettok_state) != 0;
2532 	    tokst.tokst_cnt++) {
2533 		/* If we need more room, expand the token buffer */
2534 		if (tokst.tokst_cnt >= tokst.tokst_bufsize) {
2535 			n = (tokst.tokst_bufsize == 0) ?
2536 			    INITIAL_TOK_ALLOC : (tokst.tokst_bufsize * 2);
2537 			tokst.tokst_buf = elfedit_realloc(
2538 			    MSG_INTL(MSG_ALLOC_TOKBUF), tokst.tokst_buf,
2539 			    n * sizeof (*tokst.tokst_buf));
2540 			tokst.tokst_bufsize = n;
2541 		}
2542 		tokst.tokst_str_size +=
2543 		    gettok_state.gtok_last_token.tok_len + 1;
2544 		tokst.tokst_buf[tokst.tokst_cnt] = gettok_state.gtok_last_token;
2545 	}
2546 	/* fold the command token to lowercase */
2547 	if (tokst.tokst_cnt > 0) {
2548 		char *s;
2549 
2550 		for (s = tokst.tokst_buf[0].tok_str; *s; s++)
2551 			if (isupper(*s))
2552 				*s = tolower(*s);
2553 	}
2554 
2555 	return (&tokst);
2556 
2557 #undef	INITIAL_TOK_ALLOC
2558 }
2559 
2560 
2561 /*
2562  * Parse the user command string, and put an entry for it at the end
2563  * of state.ucmd.
2564  */
2565 static void
2566 parse_user_cmd(const char *user_cmd_str)
2567 {
2568 	TOK_STATE	*tokst;
2569 	char		*s;
2570 	size_t		n;
2571 	size_t		len;
2572 	USER_CMD_T	*ucmd;
2573 	elfeditGC_module_t *mod;
2574 	elfeditGC_cmd_t	*cmd;
2575 
2576 	/*
2577 	 * Break it into tokens. If there are none, then it is
2578 	 * an empty command and is ignored.
2579 	 */
2580 	tokst = tokenize_user_cmd(user_cmd_str, -1, 0);
2581 	if (tokst->tokst_cnt == 0)
2582 		return;
2583 
2584 	/* Find the command. Won't return on error */
2585 	cmd = elfedit_find_command(tokst->tokst_buf[0].tok_str, 1, &mod);
2586 
2587 	/*
2588 	 * If there is no ELF file being edited, then only commands
2589 	 * from the sys: module are allowed.
2590 	 */
2591 	if ((state.file.present == 0) &&
2592 	    (strcmp(mod->mod_name, MSG_ORIG(MSG_MOD_SYS)) != 0))
2593 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_NOFILSYSONLY),
2594 		    mod->mod_name, cmd->cmd_name[0]);
2595 
2596 
2597 	/* Allocate, fill in, and insert a USER_CMD_T block */
2598 	n = S_DROUND(sizeof (USER_CMD_T));
2599 	ucmd = elfedit_malloc(MSG_INTL(MSG_ALLOC_UCMD),
2600 	    n + (sizeof (char *) * (tokst->tokst_cnt - 1)) +
2601 	    tokst->tokst_cmd_len + tokst->tokst_str_size);
2602 	ucmd->ucmd_next = NULL;
2603 	ucmd->ucmd_argc = tokst->tokst_cnt - 1;
2604 	/*LINTED E_BAD_PTR_CAST_ALIGN*/
2605 	ucmd->ucmd_argv = (const char **)(n + (char *)ucmd);
2606 	ucmd->ucmd_orig_str = (char *)(ucmd->ucmd_argv + ucmd->ucmd_argc);
2607 	(void) strncpy(ucmd->ucmd_orig_str, user_cmd_str, tokst->tokst_cmd_len);
2608 	ucmd->ucmd_mod = mod;
2609 	ucmd->ucmd_cmd = cmd;
2610 	ucmd->ucmd_ostyle_set = 0;
2611 	s = ucmd->ucmd_orig_str + tokst->tokst_cmd_len;
2612 	for (n = 1; n < tokst->tokst_cnt; n++) {
2613 		len = tokst->tokst_buf[n].tok_len + 1;
2614 		ucmd->ucmd_argv[n - 1] = s;
2615 		(void) strncpy(s, tokst->tokst_buf[n].tok_str, len);
2616 		s += len;
2617 	}
2618 	if (state.ucmd.list == NULL) {
2619 		state.ucmd.list = state.ucmd.tail = ucmd;
2620 	} else {
2621 		state.ucmd.tail->ucmd_next = ucmd;
2622 		state.ucmd.tail = ucmd;
2623 	}
2624 	state.ucmd.n++;
2625 }
2626 
2627 
2628 /*
2629  * Copy infile to a new file with the name given by outfile.
2630  */
2631 static void
2632 create_outfile(const char *infile, const char *outfile)
2633 {
2634 	pid_t pid;
2635 	int statloc;
2636 	struct stat statbuf;
2637 
2638 
2639 	pid = fork();
2640 	switch (pid) {
2641 	case -1:			/* Unable to create process */
2642 		{
2643 			int err = errno;
2644 			elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTFORK),
2645 			    strerror(err));
2646 		}
2647 		/*NOTREACHED*/
2648 		return;
2649 
2650 	case 0:
2651 		(void) execl(MSG_ORIG(MSG_STR_BINCP),
2652 		    MSG_ORIG(MSG_STR_BINCP), infile, outfile, NULL);
2653 		/*
2654 		 * exec() only returns on error. This is the child process,
2655 		 * so we want to stay away from the usual error mechanism
2656 		 * and handle things directly.
2657 		 */
2658 		{
2659 			int err = errno;
2660 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_CNTEXEC),
2661 			    MSG_ORIG(MSG_STR_ELFEDIT),
2662 			    MSG_ORIG(MSG_STR_BINCP), strerror(err));
2663 		}
2664 		exit(1);
2665 		/*NOTREACHED*/
2666 	}
2667 
2668 	/* This is the parent: Wait for the child to terminate */
2669 	if (waitpid(pid, &statloc,  0) != pid) {
2670 		int err = errno;
2671 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTWAIT),
2672 		    strerror(err));
2673 	}
2674 	/*
2675 	 * If the child failed, then terminate the process. There is no
2676 	 * need for an error message, because the child will have taken
2677 	 * care of that.
2678 	 */
2679 	if (!WIFEXITED(statloc) || (WEXITSTATUS(statloc) != 0))
2680 		exit(1);
2681 
2682 	/* Make sure the copy allows user write access */
2683 	if (stat(outfile, &statbuf) == -1) {
2684 		int err = errno;
2685 		(void) unlink(outfile);
2686 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTSTAT),
2687 		    outfile, strerror(err));
2688 	}
2689 	if ((statbuf.st_mode & S_IWUSR) == 0) {
2690 		/* Only keep permission bits, and add user write */
2691 		statbuf.st_mode |= S_IWUSR;
2692 		statbuf.st_mode &= 07777;   /* Only keep the permission bits */
2693 		if (chmod(outfile, statbuf.st_mode) == -1) {
2694 			int err = errno;
2695 			(void) unlink(outfile);
2696 			elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTCHMOD),
2697 			    outfile, strerror(err));
2698 		}
2699 	}
2700 }
2701 
2702 /*
2703  * Given a module path string, determine how long the resulting path will
2704  * be when all % tokens have been expanded.
2705  *
2706  * entry:
2707  *	path - Path for which expanded length is desired
2708  *	origin_root - Root of $ORIGIN  tree containing running elfedit program
2709  *
2710  * exit:
2711  *	Returns the value strlen() will give for the expanded path.
2712  */
2713 static size_t
2714 modpath_strlen(const char *path, const char *origin_root)
2715 {
2716 	size_t len = 0;
2717 	const char *s;
2718 
2719 	s = path;
2720 	len = 0;
2721 	for (s = path; *s != '\0'; s++) {
2722 		if (*s == '%') {
2723 			s++;
2724 			switch (*s) {
2725 			case 'i':	/* ISA of running elfedit */
2726 				len += strlen(isa_i_str);
2727 				break;
2728 			case 'I':	/* "" for 32-bit, same as %i for 64 */
2729 				len += strlen(isa_I_str);
2730 				break;
2731 			case 'o':	/* Insert default path */
2732 				len +=
2733 				    modpath_strlen(MSG_ORIG(MSG_STR_MODPATH),
2734 				    origin_root);
2735 				break;
2736 			case 'r':	/* root of tree with running elfedit */
2737 				len += strlen(origin_root);
2738 				break;
2739 
2740 			case '%':	/* %% is reduced to just '%' */
2741 				len++;
2742 				break;
2743 			default:	/* All other % codes are reserved */
2744 				elfedit_msg(ELFEDIT_MSG_ERR,
2745 				    MSG_INTL(MSG_ERR_BADPATHCODE), *s);
2746 				/*NOTREACHED*/
2747 				break;
2748 			}
2749 		} else {	/* Non-% character passes straight through */
2750 			len++;
2751 		}
2752 	}
2753 
2754 	return (len);
2755 }
2756 
2757 
2758 /*
2759  * Given a module path string, and a buffer large enough to hold the results,
2760  * fill the buffer with the expanded path.
2761  *
2762  * entry:
2763  *	path - Path for which expanded length is desired
2764  *	origin_root - Root of tree containing running elfedit program
2765  *	buf - Buffer to receive the result. buf must as large or larger
2766  *		than the value given by modpath_strlen().
2767  *
2768  * exit:
2769  *	Returns pointer to location following the last character
2770  *	written to buf. A NULL byte is written to that address.
2771  */
2772 static char *
2773 modpath_expand(const char *path, const char *origin_root, char *buf)
2774 {
2775 	size_t len;
2776 	const char *cp_str;
2777 
2778 	for (; *path != '\0'; path++) {
2779 		if (*path == '%') {
2780 			path++;
2781 			cp_str = NULL;
2782 			switch (*path) {
2783 			case 'i':	/* ISA of running elfedit */
2784 				cp_str = isa_i_str;
2785 				break;
2786 			case 'I':	/* "" for 32-bit, same as %i for 64 */
2787 				cp_str = isa_I_str;
2788 				break;
2789 			case 'o':	/* Insert default path */
2790 				buf = modpath_expand(MSG_ORIG(MSG_STR_MODPATH),
2791 				    origin_root, buf);
2792 				break;
2793 			case 'r':
2794 				cp_str = origin_root;
2795 				break;
2796 			case '%':	/* %% is reduced to just '%' */
2797 				*buf++ = *path;
2798 				break;
2799 			default:	/* All other % codes are reserved */
2800 				elfedit_msg(ELFEDIT_MSG_ERR,
2801 				    MSG_INTL(MSG_ERR_BADPATHCODE), *path);
2802 				/*NOTREACHED*/
2803 				break;
2804 			}
2805 			if ((cp_str != NULL) && ((len = strlen(cp_str)) > 0)) {
2806 				bcopy(cp_str, buf, len);
2807 				buf += len;
2808 			}
2809 		} else {	/* Non-% character passes straight through */
2810 			*buf++ = *path;
2811 		}
2812 	}
2813 
2814 	*buf = '\0';
2815 	return (buf);
2816 }
2817 
2818 
2819 /*
2820  * Establish the module search path: state.modpath
2821  *
2822  * The path used comes from the following sources, taking the first
2823  * one that has a value, and ignoring any others:
2824  *
2825  *	- ELFEDIT_PATH environment variable
2826  *	- -L command line argument
2827  *	- Default value
2828  *
2829  * entry:
2830  *	path - NULL, or the value of the -L command line argument
2831  *
2832  * exit:
2833  *	state.modpath has been filled in
2834  */
2835 static void
2836 establish_modpath(const char *cmdline_path)
2837 {
2838 	char origin_root[PATH_MAX + 1];	/* Where elfedit binary is */
2839 	const char	*path;		/* Initial path */
2840 	char		*expath;	/* Expanded path */
2841 	size_t		len;
2842 	char		*src, *dst;
2843 
2844 	path = getenv(MSG_ORIG(MSG_STR_ENVVAR));
2845 	if (path == NULL)
2846 		path = cmdline_path;
2847 	if (path == NULL)
2848 		path = MSG_ORIG(MSG_STR_MODPATH);
2849 
2850 
2851 	/*
2852 	 * Root of tree containing running for running program. 32-bit elfedit
2853 	 * is installed in /usr/bin, and 64-bit elfedit is one level lower
2854 	 * in an ISA-specific subdirectory. So, we find the root by
2855 	 * getting the $ORGIN of the current running program, and trimming
2856 	 * off the last 2 (32-bit) or 3 (64-bit) directories.
2857 	 *
2858 	 * On a standard system, this will simply yield '/'. However,
2859 	 * doing it this way allows us to run elfedit from a proto area,
2860 	 * and pick up modules from the same proto area instead of those
2861 	 * installed on the system.
2862 	 */
2863 	if (dlinfo(RTLD_SELF, RTLD_DI_ORIGIN, &origin_root) == -1)
2864 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTGETORIGIN));
2865 	len = (sizeof (char *) == 8) ? 3 : 2;
2866 	src = origin_root + strlen(origin_root);
2867 	while ((src > origin_root) && (len > 0)) {
2868 		if (*(src - 1) == '/')
2869 			len--;
2870 		src--;
2871 	}
2872 	*src = '\0';
2873 
2874 
2875 	/*
2876 	 * Calculate space needed to hold expanded path. Note that
2877 	 * this assumes that MSG_STR_MODPATH will never contain a '%o'
2878 	 * code, and so, the expansion is not recursive. The codes allowed
2879 	 * are:
2880 	 *	%i - ISA of running elfedit (sparc, sparcv9, etc)
2881 	 *	%I - 64-bit ISA: Same as %i for 64-bit versions of elfedit,
2882 	 *		but yields empty string for 32-bit ISAs.
2883 	 *	%o - The original (default) path.
2884 	 *	%r - Root of tree holding elfedit program.
2885 	 *	%% - A single %
2886 	 *
2887 	 * A % followed by anything else is an error. This allows us to
2888 	 * add new codes in the future without backward compatability issues.
2889 	 */
2890 	len = modpath_strlen(path, origin_root);
2891 
2892 	expath = elfedit_malloc(MSG_INTL(MSG_ALLOC_EXPATH), len + 1);
2893 	(void) modpath_expand(path, origin_root, expath);
2894 
2895 	/*
2896 	 * Count path segments, eliminate extra '/', and replace ':'
2897 	 * with NULL.
2898 	 */
2899 	state.modpath.n = 1;
2900 	for (src = dst = expath; *src; src++) {
2901 		if (*src == '/') {
2902 			switch (*(src + 1)) {
2903 			case '/':
2904 			case ':':
2905 			case '\0':
2906 				continue;
2907 			}
2908 		}
2909 		if (*src == ':') {
2910 			state.modpath.n++;
2911 			*dst = '\0';
2912 		} else if (src != dst) {
2913 			*dst = *src;
2914 		}
2915 		dst++;
2916 	}
2917 	if (src != dst)
2918 		*dst = '\0';
2919 
2920 	state.modpath.seg = elfedit_malloc(MSG_INTL(MSG_ALLOC_PATHARR),
2921 	    sizeof (state.modpath.seg[0]) * state.modpath.n);
2922 
2923 	src = expath;
2924 	for (len = 0; len < state.modpath.n; len++) {
2925 		if (*src == '\0') {
2926 			state.modpath.seg[len] = MSG_ORIG(MSG_STR_DOT);
2927 			src++;
2928 		} else {
2929 			state.modpath.seg[len] = src;
2930 			src += strlen(src) + 1;
2931 		}
2932 	}
2933 }
2934 
2935 /*
2936  * When interactive (reading commands from a tty), we catch
2937  * SIGINT in order to restart the outer command loop.
2938  */
2939 /*ARGSUSED*/
2940 static void
2941 sigint_handler(int sig, siginfo_t *sip, void *ucp)
2942 {
2943 	/* Jump to the outer loop to resume */
2944 	if (state.msg_jbuf.active) {
2945 		state.msg_jbuf.active = 0;
2946 		siglongjmp(state.msg_jbuf.env, 1);
2947 	}
2948 }
2949 
2950 
2951 static void
2952 usage(int full)
2953 {
2954 	elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_BRIEF));
2955 	if (full) {
2956 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL1));
2957 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL2));
2958 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL3));
2959 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL4));
2960 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL5));
2961 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL6));
2962 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL_LAST));
2963 	}
2964 	elfedit_exit(2);
2965 }
2966 
2967 
2968 /*
2969  * In order to complete commands, we need to know about them,
2970  * which means that we need to force all the modules to be
2971  * loaded. This is a relatively expensive operation, so we use
2972  * this function, which avoids doing it more than once in a session.
2973  */
2974 static void
2975 elfedit_cpl_load_modules(void)
2976 {
2977 	static int loaded;
2978 
2979 	if (!loaded) {
2980 		elfedit_load_modpath();
2981 		loaded = 1;	/* Don't do it again */
2982 	}
2983 }
2984 
2985 /*
2986  * Compare the token to the given string, and if they share a common
2987  * initial sequence, add the tail of string to the tecla command completion
2988  * buffer:
2989  *
2990  * entry:
2991  *	cpldata - Current completion state
2992  *	str - String to match against token
2993  *	casefold - True to allow case insensitive completion, False
2994  *		if case must match exactly.
2995  */
2996 void
2997 elfedit_cpl_match(void *cpldata, const char *str, int casefold)
2998 {
2999 	ELFEDIT_CPL_STATE *cstate = (ELFEDIT_CPL_STATE *) cpldata;
3000 	const char	*cont_suffix;
3001 	const char	*type_suffix;
3002 
3003 	/*
3004 	 * Reasons to return immediately:
3005 	 *	- NULL strings have no completion value
3006 	 *	- The string is shorter than the existing item being completed
3007 	 */
3008 	if ((str == NULL) || (*str == '\0') ||
3009 	    ((cstate->ecpl_token_len != 0) &&
3010 	    ((strlen(str) < cstate->ecpl_token_len))))
3011 		return;
3012 
3013 	/* If the string does not share the existing prefix, don't use it */
3014 	if (casefold) {
3015 		if (strncasecmp(cstate->ecpl_token_str, str,
3016 		    cstate->ecpl_token_len) != 0)
3017 			return;
3018 	} else {
3019 		if (strncmp(cstate->ecpl_token_str, str,
3020 		    cstate->ecpl_token_len) != 0)
3021 			return;
3022 	}
3023 
3024 	if (cstate->ecpl_add_mod_colon) {
3025 		cont_suffix = type_suffix = MSG_ORIG(MSG_STR_COLON);
3026 	} else {
3027 		cont_suffix = MSG_ORIG(MSG_STR_SPACE);
3028 		type_suffix = NULL;
3029 	}
3030 	(void) cpl_add_completion(cstate->ecpl_cpl, cstate->ecpl_line,
3031 	    cstate->ecpl_word_start, cstate->ecpl_word_end,
3032 	    str + cstate->ecpl_token_len, type_suffix, cont_suffix);
3033 
3034 }
3035 
3036 
3037 /*
3038  * Convenience wrapper on elfedit_cpl_match(): Format an unsigned
3039  * 32-bit integer as a string and enter the result for command completion.
3040  */
3041 void
3042 elfedit_cpl_ndx(void *cpldata, uint_t ndx)
3043 {
3044 	Conv_inv_buf_t	buf;
3045 
3046 	(void) snprintf(buf.buf, sizeof (buf.buf),
3047 	    MSG_ORIG(MSG_FMT_WORDVAL), ndx);
3048 	elfedit_cpl_match(cpldata, buf.buf, 0);
3049 }
3050 
3051 
3052 /*
3053  * Compare the token to the names of the commands from the given module,
3054  * and if they share a common initial sequence, add the tail of string
3055  * to the tecla command completion buffer:
3056  *
3057  * entry:
3058  *	tok_buf - Token user has entered
3059  *	tok_len - strlen(tok_buf)
3060  *	mod - Module definition from which commands should be matched
3061  *	cpl, line, word_start, word_end, cont_suffix - As documented
3062  *		for gl_get_line() and cpl_add_completion.
3063  */
3064 static void
3065 match_module_cmds(ELFEDIT_CPL_STATE *cstate, elfeditGC_module_t *mod)
3066 {
3067 	elfeditGC_cmd_t *cmd;
3068 	const char **cmd_name;
3069 
3070 	for (cmd = mod->mod_cmds; cmd->cmd_func != NULL; cmd++)
3071 		for (cmd_name = cmd->cmd_name; *cmd_name; cmd_name++)
3072 			elfedit_cpl_match(cstate, *cmd_name, 1);
3073 }
3074 
3075 
3076 /*
3077  * Compare the token to the known module names, and add those that
3078  * match to the list of alternatives via elfedit_cpl_match().
3079  *
3080  * entry:
3081  *	load_all_modules - If True, causes all modules to be loaded
3082  *		before processing is done. If False, only the modules
3083  *		currently seen will be used.
3084  */
3085 void
3086 elfedit_cpl_module(void *cpldata, int load_all_modules)
3087 {
3088 	ELFEDIT_CPL_STATE	*cstate = (ELFEDIT_CPL_STATE *) cpldata;
3089 	MODLIST_T		*modlist;
3090 
3091 	if (load_all_modules)
3092 		elfedit_cpl_load_modules();
3093 
3094 	for (modlist = state.modlist; modlist != NULL;
3095 	    modlist = modlist->ml_next) {
3096 		elfedit_cpl_match(cstate, modlist->ml_mod->mod_name, 1);
3097 	}
3098 }
3099 
3100 
3101 /*
3102  * Compare the token to all the known commands, and add those that
3103  * match to the list of alternatives.
3104  *
3105  * note:
3106  *	This routine will force modules to be loaded as necessary to
3107  *	obtain the names it needs to match.
3108  */
3109 void
3110 elfedit_cpl_command(void *cpldata)
3111 {
3112 	ELFEDIT_CPL_STATE	*cstate = (ELFEDIT_CPL_STATE *) cpldata;
3113 	ELFEDIT_CPL_STATE	colon_state;
3114 	const char		*colon_pos;
3115 	MODLIST_T		*modlist;
3116 	MODLIST_T		*insdef;
3117 	char			buf[128];
3118 
3119 	/*
3120 	 * Is there a colon in the command? If so, locate its offset within
3121 	 * the raw input line.
3122 	 */
3123 	for (colon_pos = cstate->ecpl_token_str;
3124 	    *colon_pos && (*colon_pos != ':'); colon_pos++)
3125 		;
3126 
3127 	/*
3128 	 * If no colon was seen, then we are completing a module name,
3129 	 * or one of the commands from 'sys:'
3130 	 */
3131 	if (*colon_pos == '\0') {
3132 		/*
3133 		 * Setting cstate->add_mod_colon tells elfedit_cpl_match()
3134 		 * to add an implicit ':' to the names it matches. We use it
3135 		 * here so the user doesn't have to enter the ':' manually.
3136 		 * Hiding this in the opaque state instead of making it
3137 		 * an argument to that function gives us the ability to
3138 		 * change it later without breaking the published interface.
3139 		 */
3140 		cstate->ecpl_add_mod_colon = 1;
3141 		elfedit_cpl_module(cpldata, 1);
3142 		cstate->ecpl_add_mod_colon = 0;
3143 
3144 		/* Add bare (no sys: prefix) commands from the sys: module */
3145 		match_module_cmds(cstate,
3146 		    elfedit_load_module(MSG_ORIG(MSG_MOD_SYS), 1, 0));
3147 
3148 		return;
3149 	}
3150 
3151 	/*
3152 	 * A colon was seen, so we have a module name. Extract the name,
3153 	 * substituting 'sys' for the case where the given name is empty.
3154 	 */
3155 	if (colon_pos == 0)
3156 		(void) strlcpy(buf, MSG_ORIG(MSG_MOD_SYS), sizeof (buf));
3157 	else
3158 		elfedit_strnbcpy(buf, cstate->ecpl_token_str,
3159 		    colon_pos - cstate->ecpl_token_str, sizeof (buf));
3160 
3161 	/*
3162 	 * Locate the module. If it isn't already loaded, make an explicit
3163 	 * attempt to load it and try again. If a module definition is
3164 	 * obtained, process the commands it supplies.
3165 	 */
3166 	modlist = module_loaded(buf, &insdef);
3167 	if (modlist == NULL) {
3168 		(void) elfedit_load_module(buf, 0, 0);
3169 		modlist = module_loaded(buf, &insdef);
3170 	}
3171 	if (modlist != NULL) {
3172 		/*
3173 		 * Make a copy of the cstate, and adjust the line and
3174 		 * token so that the new one starts just past the colon
3175 		 * character. We know that the colon exists because
3176 		 * of the preceeding test that found it. Therefore, we do
3177 		 * not need to test against running off the end of the
3178 		 * string here.
3179 		 */
3180 		colon_state = *cstate;
3181 		while (colon_state.ecpl_line[colon_state.ecpl_word_start] !=
3182 		    ':')
3183 			colon_state.ecpl_word_start++;
3184 		while (*colon_state.ecpl_token_str != ':') {
3185 			colon_state.ecpl_token_str++;
3186 			colon_state.ecpl_token_len--;
3187 		}
3188 		/* Skip past the ':' character */
3189 		colon_state.ecpl_word_start++;
3190 		colon_state.ecpl_token_str++;
3191 		colon_state.ecpl_token_len--;
3192 
3193 		match_module_cmds(&colon_state, modlist->ml_mod);
3194 	}
3195 }
3196 
3197 
3198 /*
3199  * Command completion function for use with libtacla.
3200  */
3201 /*ARGSUSED1*/
3202 static int
3203 cmd_match_fcn(WordCompletion *cpl, void *data, const char *line, int word_end)
3204 {
3205 	const char		*argv[ELFEDIT_MAXCPLARGS];
3206 	ELFEDIT_CPL_STATE	cstate;
3207 	TOK_STATE		*tokst;
3208 	int			ndx;
3209 	int			i;
3210 	elfeditGC_module_t	*mod;
3211 	elfeditGC_cmd_t		*cmd;
3212 	int			num_opt;
3213 	int			opt_term_seen;
3214 	int			skip_one;
3215 	elfedit_cmd_optarg_t	*optarg;
3216 	elfedit_optarg_item_t	item;
3217 	int			ostyle_ndx = -1;
3218 
3219 	/*
3220 	 * For debugging, enable the following block. It tells the tecla
3221 	 * library that the program using is going to write to stdout.
3222 	 * It will put the tty back into normal mode, and it will cause
3223 	 * tecla to redraw the current input line when it gets control back.
3224 	 */
3225 #ifdef DEBUG_CMD_MATCH
3226 	gl_normal_io(state.input.gl);
3227 #endif
3228 
3229 	/*
3230 	 * Tokenize the line up through word_end. The last token in
3231 	 * the list is the one requiring completion.
3232 	 */
3233 	tokst = tokenize_user_cmd(line, word_end, 1);
3234 	if (tokst->tokst_cnt == 0)
3235 		return (0);
3236 
3237 	/* Set up the cstate block, containing the completion state */
3238 	ndx = tokst->tokst_cnt - 1;	/* Index of token to complete */
3239 	cstate.ecpl_cpl = cpl;
3240 	cstate.ecpl_line = line;
3241 	cstate.ecpl_word_start = tokst->tokst_buf[ndx].tok_line_off;
3242 	cstate.ecpl_word_end = word_end;
3243 	cstate.ecpl_add_mod_colon = 0;
3244 	cstate.ecpl_token_str = tokst->tokst_buf[ndx].tok_str;
3245 	cstate.ecpl_token_len = tokst->tokst_buf[ndx].tok_len;
3246 
3247 	/*
3248 	 * If there is only one token, then we are completing the
3249 	 * command itself.
3250 	 */
3251 	if (ndx == 0) {
3252 		elfedit_cpl_command(&cstate);
3253 		return (0);
3254 	}
3255 
3256 	/*
3257 	 * There is more than one token. Use the first one to
3258 	 * locate the definition for the command. If we don't have
3259 	 * a definition for the command, then there's nothing more
3260 	 * we can do.
3261 	 */
3262 	cmd = elfedit_find_command(tokst->tokst_buf[0].tok_str, 0, &mod);
3263 	if (cmd == NULL)
3264 		return (0);
3265 
3266 	/*
3267 	 * Since we know the command, give them a quick usage message.
3268 	 * It may be that they just need a quick reminder about the form
3269 	 * of the command and the options.
3270 	 */
3271 	(void) gl_normal_io(state.input.gl);
3272 	elfedit_printf(MSG_INTL(MSG_USAGE_CMD),
3273 	    elfedit_format_command_usage(mod, cmd, NULL, 0));
3274 
3275 
3276 	/*
3277 	 * We have a generous setting for ELFEDIT_MAXCPLARGS, so there
3278 	 * should always be plenty of room. If there's not room, we
3279 	 * can't proceed.
3280 	 */
3281 	if (ndx >= ELFEDIT_MAXCPLARGS)
3282 		return (0);
3283 
3284 	/*
3285 	 * Put pointers to the tokens into argv, and determine how
3286 	 * many of the tokens are optional arguments.
3287 	 *
3288 	 * We consider the final optional argument to be the rightmost
3289 	 * argument that starts with a '-'. If a '--' is seen, then
3290 	 * we stop there, and any argument that follows is a plain argument
3291 	 * (even if it starts with '-').
3292 	 *
3293 	 * We look for an inherited '-o' option, because we are willing
3294 	 * to supply command completion for these values.
3295 	 */
3296 	num_opt = 0;
3297 	opt_term_seen = 0;
3298 	skip_one = 0;
3299 	for (i = 0; i < ndx; i++) {
3300 		argv[i] = tokst->tokst_buf[i + 1].tok_str;
3301 		if (opt_term_seen || skip_one) {
3302 			skip_one = 0;
3303 			continue;
3304 		}
3305 		skip_one = 0;
3306 		ostyle_ndx = -1;
3307 		if ((strcmp(argv[i], MSG_ORIG(MSG_STR_MINUS_MINUS)) == NULL) ||
3308 		    (*argv[i] != '-')) {
3309 			opt_term_seen = 1;
3310 			continue;
3311 		}
3312 		num_opt = i + 1;
3313 		/*
3314 		 * If it is a recognised ELFEDIT_CMDOA_F_VALUE option,
3315 		 * then the item following it is the associated value.
3316 		 * Check for this and skip the value.
3317 		 *
3318 		 * At the same time, look for STDOA_OPT_O inherited
3319 		 * options. We want to identify the index of any such
3320 		 * item. Although the option is simply "-o", we are willing
3321 		 * to treat any option that starts with "-o" as a potential
3322 		 * STDOA_OPT_O. This lets us to command completion for things
3323 		 * like "-onum", and is otherwise harmless, the only cost
3324 		 * being a few additional strcmps by the cpl code.
3325 		 */
3326 		if ((optarg = cmd->cmd_opt) == NULL)
3327 			continue;
3328 		while (optarg->oa_name != NULL) {
3329 			int is_ostyle_optarg =
3330 			    (optarg->oa_flags & ELFEDIT_CMDOA_F_INHERIT) &&
3331 			    (optarg->oa_name == ELFEDIT_STDOA_OPT_O);
3332 
3333 			elfedit_next_optarg(&optarg, &item);
3334 			if (item.oai_flags & ELFEDIT_CMDOA_F_VALUE) {
3335 				if (is_ostyle_optarg && (strncmp(argv[i],
3336 				    MSG_ORIG(MSG_STR_MINUS_O), 2) == 0))
3337 					ostyle_ndx = i + 1;
3338 
3339 				if (strcmp(item.oai_name, argv[i]) == 0) {
3340 					num_opt = i + 2;
3341 					skip_one = 1;
3342 					break;
3343 				}
3344 				/*
3345 				 * If it didn't match "-o" exactly, but it is
3346 				 * ostyle_ndx, then it is a potential combined
3347 				 * STDOA_OPT_O, as discussed above. It counts
3348 				 * as a single argument.
3349 				 */
3350 				if (ostyle_ndx == ndx)
3351 					break;
3352 			}
3353 		}
3354 	}
3355 
3356 #ifdef DEBUG_CMD_MATCH
3357 	(void) printf("NDX(%d) NUM_OPT(%d) ostyle_ndx(%d)\n", ndx, num_opt,
3358 	    ostyle_ndx);
3359 #endif
3360 
3361 	if (ostyle_ndx != -1) {
3362 		/*
3363 		 * If ostyle_ndx is one less than ndx, and ndx is
3364 		 * the same as num_opt, then we have a definitive
3365 		 * STDOA_OPT_O inherited outstyle option. We supply
3366 		 * the value strings, and are done.
3367 		 */
3368 		if ((ostyle_ndx == (ndx - 1)) && (ndx == num_opt)) {
3369 			elfedit_cpl_atoconst(&cstate, ELFEDIT_CONST_OUTSTYLE);
3370 			return (0);
3371 		}
3372 
3373 		/*
3374 		 * If ostyle is the same as ndx, then we have an option
3375 		 * staring with "-o" that may end up being a STDOA_OPT_O,
3376 		 * and we are still inside that token. In this case, we
3377 		 * supply completion strings that include the leading
3378 		 * "-o" followed by the values, without a space
3379 		 * (i.e. "-onum"). We then fall through, allowing any
3380 		 * other options starting with "-o" to be added
3381 		 * below. elfedit_cpl_match() will throw out the incorrect
3382 		 * options, so it is harmless to add these extra items in
3383 		 * the worst case, and useful otherwise.
3384 		 */
3385 		if (ostyle_ndx == ndx)
3386 			elfedit_cpl_atoconst(&cstate,
3387 			    ELFEDIT_CONST_OUTSTYLE_MO);
3388 	}
3389 
3390 	/*
3391 	 * If (ndx <= num_opt), then the token needing completion
3392 	 * is an option. If the leading '-' is there, then we should fill
3393 	 * in all of the option alternatives. If anything follows the '-'
3394 	 * though, we assume that the user has already figured out what
3395 	 * option to use, and we leave well enough alone.
3396 	 *
3397 	 * Note that we are intentionally ignoring a related case
3398 	 * where supplying option strings would be legal: In the case
3399 	 * where we are one past the last option (ndx == (num_opt + 1)),
3400 	 * and the current option is an empty string, the argument can
3401 	 * be either a plain argument or an option --- the user needs to
3402 	 * enter the next character before we can tell. It would be
3403 	 * OK to enter the option strings in this case. However, consider
3404 	 * what happens when the first plain argument to the command does
3405 	 * not provide any command completion (e.g. it is a plain integer).
3406 	 * In this case, tecla will see that all the alternatives start
3407 	 * with '-', and will insert a '-' into the input. If the user
3408 	 * intends the next argument to be plain, they will have to delete
3409 	 * this '-', which is annoying. Worse than that, they may be confused
3410 	 * by it, and think that the plain argument is not allowed there.
3411 	 * The best solution is to not supply option strings unless the
3412 	 * user first enters the '-'.
3413 	 */
3414 	if ((ndx <= num_opt) && (argv[ndx - 1][0] == '-')) {
3415 		if ((optarg = cmd->cmd_opt) != NULL) {
3416 			while (optarg->oa_name != NULL) {
3417 				elfedit_next_optarg(&optarg, &item);
3418 				elfedit_cpl_match(&cstate, item.oai_name, 1);
3419 			}
3420 		}
3421 		return (0);
3422 	}
3423 
3424 	/*
3425 	 * At this point we know that ndx and num_opt are not equal.
3426 	 * If num_opt is larger than ndx, then we have an ELFEDIT_CMDOA_F_VALUE
3427 	 * argument at the end, and the following value has not been entered.
3428 	 *
3429 	 * If ndx is greater than num_opt, it means that we are looking
3430 	 * at a plain argument (or in the case where (ndx == (num_opt + 1)),
3431 	 * a *potential* plain argument.
3432 	 *
3433 	 * If the command has a completion function registered, then we
3434 	 * hand off the remaining work to it. The cmd_cplfunc field is
3435 	 * the generic definition. We need to cast it to the type that matches
3436 	 * the proper ELFCLASS before calling it.
3437 	 */
3438 	if (state.elf.elfclass == ELFCLASS32) {
3439 		elfedit32_cmdcpl_func_t *cmdcpl_func =
3440 		    (elfedit32_cmdcpl_func_t *)cmd->cmd_cplfunc;
3441 
3442 		if (cmdcpl_func != NULL)
3443 			(* cmdcpl_func)(state.elf.obj_state.s32,
3444 			    &cstate, ndx, argv, num_opt);
3445 	} else {
3446 		elfedit64_cmdcpl_func_t *cmdcpl_func =
3447 		    (elfedit64_cmdcpl_func_t *)cmd->cmd_cplfunc;
3448 
3449 		if (cmdcpl_func != NULL)
3450 			(* cmdcpl_func)(state.elf.obj_state.s64,
3451 			    &cstate, ndx, argv, num_opt);
3452 	}
3453 
3454 	return (0);
3455 }
3456 
3457 
3458 /*
3459  * Read a line of input from stdin, and return pointer to it.
3460  *
3461  * This routine uses a private buffer, so the contents of the returned
3462  * string are only good until the next call.
3463  */
3464 static const char *
3465 read_cmd(void)
3466 {
3467 	char *s;
3468 
3469 	if (state.input.full_tty) {
3470 		state.input.in_tecla = TRUE;
3471 		s = gl_get_line(state.input.gl,
3472 		    MSG_ORIG(MSG_STR_PROMPT), NULL, -1);
3473 		state.input.in_tecla = FALSE;
3474 		/*
3475 		 * gl_get_line() returns NULL for EOF or for error. EOF is fine,
3476 		 * but we need to catch and report anything else. Since
3477 		 * reading from stdin is critical to our operation, an
3478 		 * error implies that we cannot recover and must exit.
3479 		 */
3480 		if ((s == NULL) &&
3481 		    (gl_return_status(state.input.gl) == GLR_ERROR)) {
3482 			elfedit_msg(ELFEDIT_MSG_FATAL, MSG_INTL(MSG_ERR_GLREAD),
3483 			    gl_error_message(state.input.gl, NULL, 0));
3484 		}
3485 	} else {
3486 		/*
3487 		 * This should be a dynamically sized buffer, but for now,
3488 		 * I'm going to take a simpler path.
3489 		 */
3490 		static char cmd_buf[ELFEDIT_MAXCMD + 1];
3491 
3492 		s = fgets(cmd_buf, sizeof (cmd_buf), stdin);
3493 	}
3494 
3495 	/* Return user string, or 'quit' on EOF */
3496 	return (s ? s : MSG_ORIG(MSG_SYS_CMD_QUIT));
3497 }
3498 
3499 int
3500 main(int argc, char **argv, char **envp)
3501 {
3502 	/*
3503 	 * Note: This function can use setjmp()/longjmp() which does
3504 	 * not preserve the values of auto/register variables. Hence,
3505 	 * variables that need their values preserved across a jump must
3506 	 * be marked volatile, or must not be auto/register.
3507 	 *
3508 	 * Volatile can be messy, because it requires explictly casting
3509 	 * away the attribute when passing it to functions, or declaring
3510 	 * those functions with the attribute as well. In a single threaded
3511 	 * program like this one, an easier approach is to make things
3512 	 * static. That can be done here, or by putting things in the
3513 	 * 'state' structure.
3514 	 */
3515 
3516 	int		c, i;
3517 	int		num_batch = 0;
3518 	char		**batch_list = NULL;
3519 	const char	*modpath = NULL;
3520 
3521 	/*
3522 	 * Always have liblddb display unclipped section names.
3523 	 * This global is exported by liblddb, and declared in debug.h.
3524 	 */
3525 	dbg_desc->d_extra |= DBG_E_LONG;
3526 
3527 	opterr = 0;
3528 	while ((c = getopt(argc, argv, MSG_ORIG(MSG_STR_OPTIONS))) != EOF) {
3529 		switch (c) {
3530 		case 'a':
3531 			state.flags |= ELFEDIT_F_AUTOPRINT;
3532 			break;
3533 
3534 		case 'd':
3535 			state.flags |= ELFEDIT_F_DEBUG;
3536 			break;
3537 
3538 		case 'e':
3539 			/*
3540 			 * Delay parsing the -e options until after the call to
3541 			 * conv_check_native() so that we won't bother loading
3542 			 * modules of the wrong class.
3543 			 */
3544 			if (batch_list == NULL)
3545 				batch_list = elfedit_malloc(
3546 				    MSG_INTL(MSG_ALLOC_BATCHLST),
3547 				    sizeof (*batch_list) * (argc - 1));
3548 			batch_list[num_batch++] = optarg;
3549 			break;
3550 
3551 		case 'L':
3552 			modpath = optarg;
3553 			break;
3554 
3555 		case 'o':
3556 			if (elfedit_atooutstyle(optarg, &state.outstyle) == 0)
3557 				usage(1);
3558 			break;
3559 
3560 		case 'r':
3561 			state.flags |= ELFEDIT_F_READONLY;
3562 			break;
3563 
3564 		case '?':
3565 			usage(1);
3566 		}
3567 	}
3568 
3569 	/*
3570 	 * We allow 0, 1, or 2 files:
3571 	 *
3572 	 * The no-file case is an extremely limited mode, in which the
3573 	 * only commands allowed to execute come from the sys: module.
3574 	 * This mode exists primarily to allow easy access to the help
3575 	 * facility.
3576 	 *
3577 	 * To get full access to elfedit's capablities, there must
3578 	 * be an input file. If this is not a readonly
3579 	 * session, then an optional second output file is allowed.
3580 	 *
3581 	 * In the case where two files are given and the session is
3582 	 * readonly, use a full usage message, because the simple
3583 	 * one isn't enough for the user to understand their error.
3584 	 * Otherwise, the simple usage message suffices.
3585 	 */
3586 	argc = argc - optind;
3587 	if ((argc == 2) && (state.flags & ELFEDIT_F_READONLY))
3588 		usage(1);
3589 	if (argc > 2)
3590 		usage(0);
3591 
3592 	state.file.present = (argc != 0);
3593 
3594 	/*
3595 	 * If we have a file to edit, and unless told otherwise by the
3596 	 * caller, we try to run the 64-bit version of this program
3597 	 * when the system is capable of it. If that fails, then we
3598 	 * continue on with the currently running version.
3599 	 *
3600 	 * To force 32-bit execution on a 64-bit host, set the
3601 	 * LD_NOEXEC_64 environment variable to a non-empty value.
3602 	 *
3603 	 * There is no reason to bother with this if in "no file" mode.
3604 	 */
3605 	if (state.file.present != 0)
3606 		(void) conv_check_native(argv, envp);
3607 
3608 	elfedit_msg(ELFEDIT_MSG_DEBUG, MSG_INTL(MSG_DEBUG_VERSION),
3609 	    (sizeof (char *) == 8) ? 64 : 32);
3610 
3611 	/*
3612 	 * Put a module definition for the builtin system module on the
3613 	 * module list. We know it starts out empty, so we do not have
3614 	 * to go through a more general insertion process than this.
3615 	 */
3616 	state.modlist = elfedit_sys_init(ELFEDIT_VER_CURRENT);
3617 
3618 	/* Establish the search path for loadable modules */
3619 	establish_modpath(modpath);
3620 
3621 	/*
3622 	 * Now that we are running the final version of this program,
3623 	 * deal with the input/output file(s).
3624 	 */
3625 	if (state.file.present == 0) {
3626 		/*
3627 		 * This is arbitrary --- we simply need to be able to
3628 		 * load modules so that we can access their help strings
3629 		 * and command completion functions. Without a file, we
3630 		 * will refuse to call commands from any module other
3631 		 * than sys. Those commands have been written to be aware
3632 		 * of the case where there is no input file, and are
3633 		 * therefore safe to run.
3634 		 */
3635 		state.elf.elfclass = ELFCLASS32;
3636 		elfedit_msg(ELFEDIT_MSG_DEBUG, MSG_INTL(MSG_DEBUG_NOFILE));
3637 
3638 	} else {
3639 		state.file.infile = argv[optind];
3640 		if (argc == 1) {
3641 			state.file.outfile = state.file.infile;
3642 			if (state.flags & ELFEDIT_F_READONLY)
3643 				elfedit_msg(ELFEDIT_MSG_DEBUG,
3644 				    MSG_INTL(MSG_DEBUG_READONLY));
3645 			else
3646 				elfedit_msg(ELFEDIT_MSG_DEBUG,
3647 				    MSG_INTL(MSG_DEBUG_INPLACEWARN),
3648 				    state.file.infile);
3649 		} else {
3650 			state.file.outfile = argv[optind + 1];
3651 			create_outfile(state.file.infile, state.file.outfile);
3652 			elfedit_msg(ELFEDIT_MSG_DEBUG,
3653 			    MSG_INTL(MSG_DEBUG_CPFILE),
3654 			    state.file.infile, state.file.outfile);
3655 			/*
3656 			 * We are editing a copy of the original file that we
3657 			 * just created. If we should exit before the edits are
3658 			 * updated, then we want to unlink this copy so that we
3659 			 * don't leave junk lying around. Once an update
3660 			 * succeeds however, we'll leave it in place even
3661 			 * if an error occurs afterwards.
3662 			 */
3663 			state.file.unlink_on_exit = 1;
3664 			optind++;	/* Edit copy instead of the original */
3665 		}
3666 
3667 		init_obj_state(state.file.outfile);
3668 	}
3669 
3670 
3671 	/*
3672 	 * Process commands.
3673 	 *
3674 	 * If any -e options were used, then do them and
3675 	 * immediately exit. On error, exit immediately without
3676 	 * updating the target ELF file. On success, the 'write'
3677 	 * and 'quit' commands are implicit in this mode.
3678 	 *
3679 	 * If no -e options are used, read commands from stdin.
3680 	 * quit must be explicitly used. Exit is implicit on EOF.
3681 	 * If stdin is a tty, then errors do not cause the editor
3682 	 * to terminate. Rather, the error message is printed, and the
3683 	 * user prompted to continue.
3684 	 */
3685 	if (batch_list != NULL) {	/* -e was used */
3686 		/* Compile the commands */
3687 		for (i = 0; i < num_batch; i++)
3688 			parse_user_cmd(batch_list[i]);
3689 		free(batch_list);
3690 
3691 		/*
3692 		 * 'write' and 'quit' are implicit in this mode.
3693 		 * Add them as well.
3694 		 */
3695 		if ((state.flags & ELFEDIT_F_READONLY) == 0)
3696 			parse_user_cmd(MSG_ORIG(MSG_SYS_CMD_WRITE));
3697 		parse_user_cmd(MSG_ORIG(MSG_SYS_CMD_QUIT));
3698 
3699 		/* And run them. This won't return, thanks to the 'quit' */
3700 		dispatch_user_cmds();
3701 	} else {
3702 		state.input.is_tty = isatty(fileno(stdin));
3703 		state.input.full_tty = state.input.is_tty &&
3704 		    isatty(fileno(stdout));
3705 
3706 		if (state.input.full_tty) {
3707 			struct sigaction act;
3708 
3709 			act.sa_sigaction = sigint_handler;
3710 			(void) sigemptyset(&act.sa_mask);
3711 			act.sa_flags = 0;
3712 			if (sigaction(SIGINT, &act, NULL) == -1) {
3713 				int err = errno;
3714 				elfedit_msg(ELFEDIT_MSG_ERR,
3715 				    MSG_INTL(MSG_ERR_SIGACTION), strerror(err));
3716 			}
3717 			/*
3718 			 * If pager process exits before we are done
3719 			 * writing, we can see SIGPIPE. Prevent it
3720 			 * from killing the process.
3721 			 */
3722 			(void) sigignore(SIGPIPE);
3723 
3724 			/* Open tecla handle for command line editing */
3725 			state.input.gl = new_GetLine(ELFEDIT_MAXCMD,
3726 			    ELFEDIT_MAXHIST);
3727 			/* Register our command completion function */
3728 			(void) gl_customize_completion(state.input.gl,
3729 			    NULL, cmd_match_fcn);
3730 
3731 			/*
3732 			 * Make autoprint the default for interactive
3733 			 * sessions.
3734 			 */
3735 			state.flags |= ELFEDIT_F_AUTOPRINT;
3736 		}
3737 		for (;;) {
3738 			/*
3739 			 * If this is an interactive session, then use
3740 			 * sigsetjmp()/siglongjmp() to recover from bad
3741 			 * commands and keep going. A non-0 return from
3742 			 * sigsetjmp() means that an error just occurred.
3743 			 * In that case, we simply restart this loop.
3744 			 */
3745 			if (state.input.is_tty) {
3746 				if (sigsetjmp(state.msg_jbuf.env, 1) != 0) {
3747 					if (state.input.full_tty)
3748 						gl_abandon_line(state.input.gl);
3749 					continue;
3750 				}
3751 				state.msg_jbuf.active = TRUE;
3752 			}
3753 
3754 			/*
3755 			 * Force all output out before each command.
3756 			 * This is a no-OP when a tty is in use, but
3757 			 * in a pipeline, it ensures that the block
3758 			 * mode buffering doesn't delay output past
3759 			 * the completion of each command.
3760 			 *
3761 			 * If we didn't do this, the output would eventually
3762 			 * arrive at its destination, but the lag can be
3763 			 * annoying when you pipe the output into a tool
3764 			 * that displays the results in real time.
3765 			 */
3766 			(void) fflush(stdout);
3767 			(void) fflush(stderr);
3768 
3769 			parse_user_cmd(read_cmd());
3770 			dispatch_user_cmds();
3771 			state.msg_jbuf.active = FALSE;
3772 		}
3773 	}
3774 
3775 
3776 	/*NOTREACHED*/
3777 	return (0);
3778 }
3779