xref: /titanic_51/usr/src/cmd/mdb/common/modules/genunix/kmem.c (revision a9478106a12424322498e53cf7cd75bd8a4d6004)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright 2011 Joyent, Inc.  All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <mdb/mdb_param.h>
32 #include <mdb/mdb_modapi.h>
33 #include <mdb/mdb_ctf.h>
34 #include <mdb/mdb_whatis.h>
35 #include <sys/cpuvar.h>
36 #include <sys/kmem_impl.h>
37 #include <sys/vmem_impl.h>
38 #include <sys/machelf.h>
39 #include <sys/modctl.h>
40 #include <sys/kobj.h>
41 #include <sys/panic.h>
42 #include <sys/stack.h>
43 #include <sys/sysmacros.h>
44 #include <vm/page.h>
45 
46 #include "avl.h"
47 #include "combined.h"
48 #include "dist.h"
49 #include "kmem.h"
50 #include "list.h"
51 
52 #define	dprintf(x) if (mdb_debug_level) { \
53 	mdb_printf("kmem debug: ");  \
54 	/*CSTYLED*/\
55 	mdb_printf x ;\
56 }
57 
58 #define	KM_ALLOCATED		0x01
59 #define	KM_FREE			0x02
60 #define	KM_BUFCTL		0x04
61 #define	KM_CONSTRUCTED		0x08	/* only constructed free buffers */
62 #define	KM_HASH			0x10
63 
64 static int mdb_debug_level = 0;
65 
66 /*ARGSUSED*/
67 static int
68 kmem_init_walkers(uintptr_t addr, const kmem_cache_t *c, void *ignored)
69 {
70 	mdb_walker_t w;
71 	char descr[64];
72 
73 	(void) mdb_snprintf(descr, sizeof (descr),
74 	    "walk the %s cache", c->cache_name);
75 
76 	w.walk_name = c->cache_name;
77 	w.walk_descr = descr;
78 	w.walk_init = kmem_walk_init;
79 	w.walk_step = kmem_walk_step;
80 	w.walk_fini = kmem_walk_fini;
81 	w.walk_init_arg = (void *)addr;
82 
83 	if (mdb_add_walker(&w) == -1)
84 		mdb_warn("failed to add %s walker", c->cache_name);
85 
86 	return (WALK_NEXT);
87 }
88 
89 /*ARGSUSED*/
90 int
91 kmem_debug(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
92 {
93 	mdb_debug_level ^= 1;
94 
95 	mdb_printf("kmem: debugging is now %s\n",
96 	    mdb_debug_level ? "on" : "off");
97 
98 	return (DCMD_OK);
99 }
100 
101 int
102 kmem_cache_walk_init(mdb_walk_state_t *wsp)
103 {
104 	GElf_Sym sym;
105 
106 	if (mdb_lookup_by_name("kmem_caches", &sym) == -1) {
107 		mdb_warn("couldn't find kmem_caches");
108 		return (WALK_ERR);
109 	}
110 
111 	wsp->walk_addr = (uintptr_t)sym.st_value;
112 
113 	return (list_walk_init_named(wsp, "cache list", "cache"));
114 }
115 
116 int
117 kmem_cpu_cache_walk_init(mdb_walk_state_t *wsp)
118 {
119 	if (wsp->walk_addr == NULL) {
120 		mdb_warn("kmem_cpu_cache doesn't support global walks");
121 		return (WALK_ERR);
122 	}
123 
124 	if (mdb_layered_walk("cpu", wsp) == -1) {
125 		mdb_warn("couldn't walk 'cpu'");
126 		return (WALK_ERR);
127 	}
128 
129 	wsp->walk_data = (void *)wsp->walk_addr;
130 
131 	return (WALK_NEXT);
132 }
133 
134 int
135 kmem_cpu_cache_walk_step(mdb_walk_state_t *wsp)
136 {
137 	uintptr_t caddr = (uintptr_t)wsp->walk_data;
138 	const cpu_t *cpu = wsp->walk_layer;
139 	kmem_cpu_cache_t cc;
140 
141 	caddr += OFFSETOF(kmem_cache_t, cache_cpu[cpu->cpu_seqid]);
142 
143 	if (mdb_vread(&cc, sizeof (kmem_cpu_cache_t), caddr) == -1) {
144 		mdb_warn("couldn't read kmem_cpu_cache at %p", caddr);
145 		return (WALK_ERR);
146 	}
147 
148 	return (wsp->walk_callback(caddr, &cc, wsp->walk_cbdata));
149 }
150 
151 static int
152 kmem_slab_check(void *p, uintptr_t saddr, void *arg)
153 {
154 	kmem_slab_t *sp = p;
155 	uintptr_t caddr = (uintptr_t)arg;
156 	if ((uintptr_t)sp->slab_cache != caddr) {
157 		mdb_warn("slab %p isn't in cache %p (in cache %p)\n",
158 		    saddr, caddr, sp->slab_cache);
159 		return (-1);
160 	}
161 
162 	return (0);
163 }
164 
165 static int
166 kmem_partial_slab_check(void *p, uintptr_t saddr, void *arg)
167 {
168 	kmem_slab_t *sp = p;
169 
170 	int rc = kmem_slab_check(p, saddr, arg);
171 	if (rc != 0) {
172 		return (rc);
173 	}
174 
175 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
176 		mdb_warn("slab %p is not a partial slab\n", saddr);
177 		return (-1);
178 	}
179 
180 	return (0);
181 }
182 
183 static int
184 kmem_complete_slab_check(void *p, uintptr_t saddr, void *arg)
185 {
186 	kmem_slab_t *sp = p;
187 
188 	int rc = kmem_slab_check(p, saddr, arg);
189 	if (rc != 0) {
190 		return (rc);
191 	}
192 
193 	if (!KMEM_SLAB_IS_ALL_USED(sp)) {
194 		mdb_warn("slab %p is not completely allocated\n", saddr);
195 		return (-1);
196 	}
197 
198 	return (0);
199 }
200 
201 typedef struct {
202 	uintptr_t kns_cache_addr;
203 	int kns_nslabs;
204 } kmem_nth_slab_t;
205 
206 static int
207 kmem_nth_slab_check(void *p, uintptr_t saddr, void *arg)
208 {
209 	kmem_nth_slab_t *chkp = arg;
210 
211 	int rc = kmem_slab_check(p, saddr, (void *)chkp->kns_cache_addr);
212 	if (rc != 0) {
213 		return (rc);
214 	}
215 
216 	return (chkp->kns_nslabs-- == 0 ? 1 : 0);
217 }
218 
219 static int
220 kmem_complete_slab_walk_init(mdb_walk_state_t *wsp)
221 {
222 	uintptr_t caddr = wsp->walk_addr;
223 
224 	wsp->walk_addr = (uintptr_t)(caddr +
225 	    offsetof(kmem_cache_t, cache_complete_slabs));
226 
227 	return (list_walk_init_checked(wsp, "slab list", "slab",
228 	    kmem_complete_slab_check, (void *)caddr));
229 }
230 
231 static int
232 kmem_partial_slab_walk_init(mdb_walk_state_t *wsp)
233 {
234 	uintptr_t caddr = wsp->walk_addr;
235 
236 	wsp->walk_addr = (uintptr_t)(caddr +
237 	    offsetof(kmem_cache_t, cache_partial_slabs));
238 
239 	return (avl_walk_init_checked(wsp, "slab list", "slab",
240 	    kmem_partial_slab_check, (void *)caddr));
241 }
242 
243 int
244 kmem_slab_walk_init(mdb_walk_state_t *wsp)
245 {
246 	uintptr_t caddr = wsp->walk_addr;
247 
248 	if (caddr == NULL) {
249 		mdb_warn("kmem_slab doesn't support global walks\n");
250 		return (WALK_ERR);
251 	}
252 
253 	combined_walk_init(wsp);
254 	combined_walk_add(wsp,
255 	    kmem_complete_slab_walk_init, list_walk_step, list_walk_fini);
256 	combined_walk_add(wsp,
257 	    kmem_partial_slab_walk_init, avl_walk_step, avl_walk_fini);
258 
259 	return (WALK_NEXT);
260 }
261 
262 static int
263 kmem_first_complete_slab_walk_init(mdb_walk_state_t *wsp)
264 {
265 	uintptr_t caddr = wsp->walk_addr;
266 	kmem_nth_slab_t *chk;
267 
268 	chk = mdb_alloc(sizeof (kmem_nth_slab_t),
269 	    UM_SLEEP | UM_GC);
270 	chk->kns_cache_addr = caddr;
271 	chk->kns_nslabs = 1;
272 	wsp->walk_addr = (uintptr_t)(caddr +
273 	    offsetof(kmem_cache_t, cache_complete_slabs));
274 
275 	return (list_walk_init_checked(wsp, "slab list", "slab",
276 	    kmem_nth_slab_check, chk));
277 }
278 
279 int
280 kmem_slab_walk_partial_init(mdb_walk_state_t *wsp)
281 {
282 	uintptr_t caddr = wsp->walk_addr;
283 	kmem_cache_t c;
284 
285 	if (caddr == NULL) {
286 		mdb_warn("kmem_slab_partial doesn't support global walks\n");
287 		return (WALK_ERR);
288 	}
289 
290 	if (mdb_vread(&c, sizeof (c), caddr) == -1) {
291 		mdb_warn("couldn't read kmem_cache at %p", caddr);
292 		return (WALK_ERR);
293 	}
294 
295 	combined_walk_init(wsp);
296 
297 	/*
298 	 * Some consumers (umem_walk_step(), in particular) require at
299 	 * least one callback if there are any buffers in the cache.  So
300 	 * if there are *no* partial slabs, report the first full slab, if
301 	 * any.
302 	 *
303 	 * Yes, this is ugly, but it's cleaner than the other possibilities.
304 	 */
305 	if (c.cache_partial_slabs.avl_numnodes == 0) {
306 		combined_walk_add(wsp, kmem_first_complete_slab_walk_init,
307 		    list_walk_step, list_walk_fini);
308 	} else {
309 		combined_walk_add(wsp, kmem_partial_slab_walk_init,
310 		    avl_walk_step, avl_walk_fini);
311 	}
312 
313 	return (WALK_NEXT);
314 }
315 
316 int
317 kmem_cache(uintptr_t addr, uint_t flags, int ac, const mdb_arg_t *argv)
318 {
319 	kmem_cache_t c;
320 	const char *filter = NULL;
321 
322 	if (mdb_getopts(ac, argv,
323 	    'n', MDB_OPT_STR, &filter,
324 	    NULL) != ac) {
325 		return (DCMD_USAGE);
326 	}
327 
328 	if (!(flags & DCMD_ADDRSPEC)) {
329 		if (mdb_walk_dcmd("kmem_cache", "kmem_cache", ac, argv) == -1) {
330 			mdb_warn("can't walk kmem_cache");
331 			return (DCMD_ERR);
332 		}
333 		return (DCMD_OK);
334 	}
335 
336 	if (DCMD_HDRSPEC(flags))
337 		mdb_printf("%-?s %-25s %4s %6s %8s %8s\n", "ADDR", "NAME",
338 		    "FLAG", "CFLAG", "BUFSIZE", "BUFTOTL");
339 
340 	if (mdb_vread(&c, sizeof (c), addr) == -1) {
341 		mdb_warn("couldn't read kmem_cache at %p", addr);
342 		return (DCMD_ERR);
343 	}
344 
345 	if ((filter != NULL) && (strstr(c.cache_name, filter) == NULL))
346 		return (DCMD_OK);
347 
348 	mdb_printf("%0?p %-25s %04x %06x %8ld %8lld\n", addr, c.cache_name,
349 	    c.cache_flags, c.cache_cflags, c.cache_bufsize, c.cache_buftotal);
350 
351 	return (DCMD_OK);
352 }
353 
354 void
355 kmem_cache_help(void)
356 {
357 	mdb_printf("%s", "Print kernel memory caches.\n\n");
358 	mdb_dec_indent(2);
359 	mdb_printf("%<b>OPTIONS%</b>\n");
360 	mdb_inc_indent(2);
361 	mdb_printf("%s",
362 "  -n name\n"
363 "        name of kmem cache (or matching partial name)\n"
364 "\n"
365 "Column\tDescription\n"
366 "\n"
367 "ADDR\t\taddress of kmem cache\n"
368 "NAME\t\tname of kmem cache\n"
369 "FLAG\t\tvarious cache state flags\n"
370 "CFLAG\t\tcache creation flags\n"
371 "BUFSIZE\tobject size in bytes\n"
372 "BUFTOTL\tcurrent total buffers in cache (allocated and free)\n");
373 }
374 
375 #define	LABEL_WIDTH	11
376 static void
377 kmem_slabs_print_dist(uint_t *ks_bucket, size_t buffers_per_slab,
378     size_t maxbuckets, size_t minbucketsize)
379 {
380 	uint64_t total;
381 	int buckets;
382 	int i;
383 	const int *distarray;
384 	int complete[2];
385 
386 	buckets = buffers_per_slab;
387 
388 	total = 0;
389 	for (i = 0; i <= buffers_per_slab; i++)
390 		total += ks_bucket[i];
391 
392 	if (maxbuckets > 1)
393 		buckets = MIN(buckets, maxbuckets);
394 
395 	if (minbucketsize > 1) {
396 		/*
397 		 * minbucketsize does not apply to the first bucket reserved
398 		 * for completely allocated slabs
399 		 */
400 		buckets = MIN(buckets, 1 + ((buffers_per_slab - 1) /
401 		    minbucketsize));
402 		if ((buckets < 2) && (buffers_per_slab > 1)) {
403 			buckets = 2;
404 			minbucketsize = (buffers_per_slab - 1);
405 		}
406 	}
407 
408 	/*
409 	 * The first printed bucket is reserved for completely allocated slabs.
410 	 * Passing (buckets - 1) excludes that bucket from the generated
411 	 * distribution, since we're handling it as a special case.
412 	 */
413 	complete[0] = buffers_per_slab;
414 	complete[1] = buffers_per_slab + 1;
415 	distarray = dist_linear(buckets - 1, 1, buffers_per_slab - 1);
416 
417 	mdb_printf("%*s\n", LABEL_WIDTH, "Allocated");
418 	dist_print_header("Buffers", LABEL_WIDTH, "Slabs");
419 
420 	dist_print_bucket(complete, 0, ks_bucket, total, LABEL_WIDTH);
421 	/*
422 	 * Print bucket ranges in descending order after the first bucket for
423 	 * completely allocated slabs, so a person can see immediately whether
424 	 * or not there is fragmentation without having to scan possibly
425 	 * multiple screens of output. Starting at (buckets - 2) excludes the
426 	 * extra terminating bucket.
427 	 */
428 	for (i = buckets - 2; i >= 0; i--) {
429 		dist_print_bucket(distarray, i, ks_bucket, total, LABEL_WIDTH);
430 	}
431 	mdb_printf("\n");
432 }
433 #undef LABEL_WIDTH
434 
435 /*ARGSUSED*/
436 static int
437 kmem_first_slab(uintptr_t addr, const kmem_slab_t *sp, boolean_t *is_slab)
438 {
439 	*is_slab = B_TRUE;
440 	return (WALK_DONE);
441 }
442 
443 /*ARGSUSED*/
444 static int
445 kmem_first_partial_slab(uintptr_t addr, const kmem_slab_t *sp,
446     boolean_t *is_slab)
447 {
448 	/*
449 	 * The "kmem_partial_slab" walker reports the first full slab if there
450 	 * are no partial slabs (for the sake of consumers that require at least
451 	 * one callback if there are any buffers in the cache).
452 	 */
453 	*is_slab = KMEM_SLAB_IS_PARTIAL(sp);
454 	return (WALK_DONE);
455 }
456 
457 typedef struct kmem_slab_usage {
458 	int ksu_refcnt;			/* count of allocated buffers on slab */
459 	boolean_t ksu_nomove;		/* slab marked non-reclaimable */
460 } kmem_slab_usage_t;
461 
462 typedef struct kmem_slab_stats {
463 	const kmem_cache_t *ks_cp;
464 	int ks_slabs;			/* slabs in cache */
465 	int ks_partial_slabs;		/* partially allocated slabs in cache */
466 	uint64_t ks_unused_buffers;	/* total unused buffers in cache */
467 	int ks_max_buffers_per_slab;	/* max buffers per slab */
468 	int ks_usage_len;		/* ks_usage array length */
469 	kmem_slab_usage_t *ks_usage;	/* partial slab usage */
470 	uint_t *ks_bucket;		/* slab usage distribution */
471 } kmem_slab_stats_t;
472 
473 /*ARGSUSED*/
474 static int
475 kmem_slablist_stat(uintptr_t addr, const kmem_slab_t *sp,
476     kmem_slab_stats_t *ks)
477 {
478 	kmem_slab_usage_t *ksu;
479 	long unused;
480 
481 	ks->ks_slabs++;
482 	ks->ks_bucket[sp->slab_refcnt]++;
483 
484 	unused = (sp->slab_chunks - sp->slab_refcnt);
485 	if (unused == 0) {
486 		return (WALK_NEXT);
487 	}
488 
489 	ks->ks_partial_slabs++;
490 	ks->ks_unused_buffers += unused;
491 
492 	if (ks->ks_partial_slabs > ks->ks_usage_len) {
493 		kmem_slab_usage_t *usage;
494 		int len = ks->ks_usage_len;
495 
496 		len = (len == 0 ? 16 : len * 2);
497 		usage = mdb_zalloc(len * sizeof (kmem_slab_usage_t), UM_SLEEP);
498 		if (ks->ks_usage != NULL) {
499 			bcopy(ks->ks_usage, usage,
500 			    ks->ks_usage_len * sizeof (kmem_slab_usage_t));
501 			mdb_free(ks->ks_usage,
502 			    ks->ks_usage_len * sizeof (kmem_slab_usage_t));
503 		}
504 		ks->ks_usage = usage;
505 		ks->ks_usage_len = len;
506 	}
507 
508 	ksu = &ks->ks_usage[ks->ks_partial_slabs - 1];
509 	ksu->ksu_refcnt = sp->slab_refcnt;
510 	ksu->ksu_nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
511 	return (WALK_NEXT);
512 }
513 
514 static void
515 kmem_slabs_header()
516 {
517 	mdb_printf("%-25s %8s %8s %9s %9s %6s\n",
518 	    "", "", "Partial", "", "Unused", "");
519 	mdb_printf("%-25s %8s %8s %9s %9s %6s\n",
520 	    "Cache Name", "Slabs", "Slabs", "Buffers", "Buffers", "Waste");
521 	mdb_printf("%-25s %8s %8s %9s %9s %6s\n",
522 	    "-------------------------", "--------", "--------", "---------",
523 	    "---------", "------");
524 }
525 
526 int
527 kmem_slabs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
528 {
529 	kmem_cache_t c;
530 	kmem_slab_stats_t stats;
531 	mdb_walk_cb_t cb;
532 	int pct;
533 	int tenths_pct;
534 	size_t maxbuckets = 1;
535 	size_t minbucketsize = 0;
536 	const char *filter = NULL;
537 	const char *name = NULL;
538 	uint_t opt_v = FALSE;
539 	boolean_t buckets = B_FALSE;
540 	boolean_t skip = B_FALSE;
541 
542 	if (mdb_getopts(argc, argv,
543 	    'B', MDB_OPT_UINTPTR, &minbucketsize,
544 	    'b', MDB_OPT_UINTPTR, &maxbuckets,
545 	    'n', MDB_OPT_STR, &filter,
546 	    'N', MDB_OPT_STR, &name,
547 	    'v', MDB_OPT_SETBITS, TRUE, &opt_v,
548 	    NULL) != argc) {
549 		return (DCMD_USAGE);
550 	}
551 
552 	if ((maxbuckets != 1) || (minbucketsize != 0)) {
553 		buckets = B_TRUE;
554 	}
555 
556 	if (!(flags & DCMD_ADDRSPEC)) {
557 		if (mdb_walk_dcmd("kmem_cache", "kmem_slabs", argc,
558 		    argv) == -1) {
559 			mdb_warn("can't walk kmem_cache");
560 			return (DCMD_ERR);
561 		}
562 		return (DCMD_OK);
563 	}
564 
565 	if (mdb_vread(&c, sizeof (c), addr) == -1) {
566 		mdb_warn("couldn't read kmem_cache at %p", addr);
567 		return (DCMD_ERR);
568 	}
569 
570 	if (name == NULL) {
571 		skip = ((filter != NULL) &&
572 		    (strstr(c.cache_name, filter) == NULL));
573 	} else if (filter == NULL) {
574 		skip = (strcmp(c.cache_name, name) != 0);
575 	} else {
576 		/* match either -n or -N */
577 		skip = ((strcmp(c.cache_name, name) != 0) &&
578 		    (strstr(c.cache_name, filter) == NULL));
579 	}
580 
581 	if (!(opt_v || buckets) && DCMD_HDRSPEC(flags)) {
582 		kmem_slabs_header();
583 	} else if ((opt_v || buckets) && !skip) {
584 		if (DCMD_HDRSPEC(flags)) {
585 			kmem_slabs_header();
586 		} else {
587 			boolean_t is_slab = B_FALSE;
588 			const char *walker_name;
589 			if (opt_v) {
590 				cb = (mdb_walk_cb_t)kmem_first_partial_slab;
591 				walker_name = "kmem_slab_partial";
592 			} else {
593 				cb = (mdb_walk_cb_t)kmem_first_slab;
594 				walker_name = "kmem_slab";
595 			}
596 			(void) mdb_pwalk(walker_name, cb, &is_slab, addr);
597 			if (is_slab) {
598 				kmem_slabs_header();
599 			}
600 		}
601 	}
602 
603 	if (skip) {
604 		return (DCMD_OK);
605 	}
606 
607 	bzero(&stats, sizeof (kmem_slab_stats_t));
608 	stats.ks_cp = &c;
609 	stats.ks_max_buffers_per_slab = c.cache_maxchunks;
610 	/* +1 to include a zero bucket */
611 	stats.ks_bucket = mdb_zalloc((stats.ks_max_buffers_per_slab + 1) *
612 	    sizeof (*stats.ks_bucket), UM_SLEEP);
613 	cb = (mdb_walk_cb_t)kmem_slablist_stat;
614 	(void) mdb_pwalk("kmem_slab", cb, &stats, addr);
615 
616 	if (c.cache_buftotal == 0) {
617 		pct = 0;
618 		tenths_pct = 0;
619 	} else {
620 		uint64_t n = stats.ks_unused_buffers * 10000;
621 		pct = (int)(n / c.cache_buftotal);
622 		tenths_pct = pct - ((pct / 100) * 100);
623 		tenths_pct = (tenths_pct + 5) / 10; /* round nearest tenth */
624 		if (tenths_pct == 10) {
625 			pct += 100;
626 			tenths_pct = 0;
627 		}
628 	}
629 
630 	pct /= 100;
631 	mdb_printf("%-25s %8d %8d %9lld %9lld %3d.%1d%%\n", c.cache_name,
632 	    stats.ks_slabs, stats.ks_partial_slabs, c.cache_buftotal,
633 	    stats.ks_unused_buffers, pct, tenths_pct);
634 
635 	if (maxbuckets == 0) {
636 		maxbuckets = stats.ks_max_buffers_per_slab;
637 	}
638 
639 	if (((maxbuckets > 1) || (minbucketsize > 0)) &&
640 	    (stats.ks_slabs > 0)) {
641 		mdb_printf("\n");
642 		kmem_slabs_print_dist(stats.ks_bucket,
643 		    stats.ks_max_buffers_per_slab, maxbuckets, minbucketsize);
644 	}
645 
646 	mdb_free(stats.ks_bucket, (stats.ks_max_buffers_per_slab + 1) *
647 	    sizeof (*stats.ks_bucket));
648 
649 	if (!opt_v) {
650 		return (DCMD_OK);
651 	}
652 
653 	if (opt_v && (stats.ks_partial_slabs > 0)) {
654 		int i;
655 		kmem_slab_usage_t *ksu;
656 
657 		mdb_printf("  %d complete (%d), %d partial:",
658 		    (stats.ks_slabs - stats.ks_partial_slabs),
659 		    stats.ks_max_buffers_per_slab,
660 		    stats.ks_partial_slabs);
661 
662 		for (i = 0; i < stats.ks_partial_slabs; i++) {
663 			ksu = &stats.ks_usage[i];
664 			mdb_printf(" %d%s", ksu->ksu_refcnt,
665 			    (ksu->ksu_nomove ? "*" : ""));
666 		}
667 		mdb_printf("\n\n");
668 	}
669 
670 	if (stats.ks_usage_len > 0) {
671 		mdb_free(stats.ks_usage,
672 		    stats.ks_usage_len * sizeof (kmem_slab_usage_t));
673 	}
674 
675 	return (DCMD_OK);
676 }
677 
678 void
679 kmem_slabs_help(void)
680 {
681 	mdb_printf("%s",
682 "Display slab usage per kmem cache.\n\n");
683 	mdb_dec_indent(2);
684 	mdb_printf("%<b>OPTIONS%</b>\n");
685 	mdb_inc_indent(2);
686 	mdb_printf("%s",
687 "  -n name\n"
688 "        name of kmem cache (or matching partial name)\n"
689 "  -N name\n"
690 "        exact name of kmem cache\n"
691 "  -b maxbins\n"
692 "        Print a distribution of allocated buffers per slab using at\n"
693 "        most maxbins bins. The first bin is reserved for completely\n"
694 "        allocated slabs. Setting maxbins to zero (-b 0) has the same\n"
695 "        effect as specifying the maximum allocated buffers per slab\n"
696 "        or setting minbinsize to 1 (-B 1).\n"
697 "  -B minbinsize\n"
698 "        Print a distribution of allocated buffers per slab, making\n"
699 "        all bins (except the first, reserved for completely allocated\n"
700 "        slabs) at least minbinsize buffers apart.\n"
701 "  -v    verbose output: List the allocated buffer count of each partial\n"
702 "        slab on the free list in order from front to back to show how\n"
703 "        closely the slabs are ordered by usage. For example\n"
704 "\n"
705 "          10 complete, 3 partial (8): 7 3 1\n"
706 "\n"
707 "        means there are thirteen slabs with eight buffers each, including\n"
708 "        three partially allocated slabs with less than all eight buffers\n"
709 "        allocated.\n"
710 "\n"
711 "        Buffer allocations are always from the front of the partial slab\n"
712 "        list. When a buffer is freed from a completely used slab, that\n"
713 "        slab is added to the front of the partial slab list. Assuming\n"
714 "        that all buffers are equally likely to be freed soon, the\n"
715 "        desired order of partial slabs is most-used at the front of the\n"
716 "        list and least-used at the back (as in the example above).\n"
717 "        However, if a slab contains an allocated buffer that will not\n"
718 "        soon be freed, it would be better for that slab to be at the\n"
719 "        front where all of its buffers can be allocated. Taking a slab\n"
720 "        off the partial slab list (either with all buffers freed or all\n"
721 "        buffers allocated) reduces cache fragmentation.\n"
722 "\n"
723 "        A slab's allocated buffer count representing a partial slab (9 in\n"
724 "        the example below) may be marked as follows:\n"
725 "\n"
726 "        9*   An asterisk indicates that kmem has marked the slab non-\n"
727 "        reclaimable because the kmem client refused to move one of the\n"
728 "        slab's buffers. Since kmem does not expect to completely free the\n"
729 "        slab, it moves it to the front of the list in the hope of\n"
730 "        completely allocating it instead. A slab marked with an asterisk\n"
731 "        stays marked for as long as it remains on the partial slab list.\n"
732 "\n"
733 "Column\t\tDescription\n"
734 "\n"
735 "Cache Name\t\tname of kmem cache\n"
736 "Slabs\t\t\ttotal slab count\n"
737 "Partial Slabs\t\tcount of partially allocated slabs on the free list\n"
738 "Buffers\t\ttotal buffer count (Slabs * (buffers per slab))\n"
739 "Unused Buffers\tcount of unallocated buffers across all partial slabs\n"
740 "Waste\t\t\t(Unused Buffers / Buffers) does not include space\n"
741 "\t\t\t  for accounting structures (debug mode), slab\n"
742 "\t\t\t  coloring (incremental small offsets to stagger\n"
743 "\t\t\t  buffer alignment), or the per-CPU magazine layer\n");
744 }
745 
746 static int
747 addrcmp(const void *lhs, const void *rhs)
748 {
749 	uintptr_t p1 = *((uintptr_t *)lhs);
750 	uintptr_t p2 = *((uintptr_t *)rhs);
751 
752 	if (p1 < p2)
753 		return (-1);
754 	if (p1 > p2)
755 		return (1);
756 	return (0);
757 }
758 
759 static int
760 bufctlcmp(const kmem_bufctl_audit_t **lhs, const kmem_bufctl_audit_t **rhs)
761 {
762 	const kmem_bufctl_audit_t *bcp1 = *lhs;
763 	const kmem_bufctl_audit_t *bcp2 = *rhs;
764 
765 	if (bcp1->bc_timestamp > bcp2->bc_timestamp)
766 		return (-1);
767 
768 	if (bcp1->bc_timestamp < bcp2->bc_timestamp)
769 		return (1);
770 
771 	return (0);
772 }
773 
774 typedef struct kmem_hash_walk {
775 	uintptr_t *kmhw_table;
776 	size_t kmhw_nelems;
777 	size_t kmhw_pos;
778 	kmem_bufctl_t kmhw_cur;
779 } kmem_hash_walk_t;
780 
781 int
782 kmem_hash_walk_init(mdb_walk_state_t *wsp)
783 {
784 	kmem_hash_walk_t *kmhw;
785 	uintptr_t *hash;
786 	kmem_cache_t c;
787 	uintptr_t haddr, addr = wsp->walk_addr;
788 	size_t nelems;
789 	size_t hsize;
790 
791 	if (addr == NULL) {
792 		mdb_warn("kmem_hash doesn't support global walks\n");
793 		return (WALK_ERR);
794 	}
795 
796 	if (mdb_vread(&c, sizeof (c), addr) == -1) {
797 		mdb_warn("couldn't read cache at addr %p", addr);
798 		return (WALK_ERR);
799 	}
800 
801 	if (!(c.cache_flags & KMF_HASH)) {
802 		mdb_warn("cache %p doesn't have a hash table\n", addr);
803 		return (WALK_DONE);		/* nothing to do */
804 	}
805 
806 	kmhw = mdb_zalloc(sizeof (kmem_hash_walk_t), UM_SLEEP);
807 	kmhw->kmhw_cur.bc_next = NULL;
808 	kmhw->kmhw_pos = 0;
809 
810 	kmhw->kmhw_nelems = nelems = c.cache_hash_mask + 1;
811 	hsize = nelems * sizeof (uintptr_t);
812 	haddr = (uintptr_t)c.cache_hash_table;
813 
814 	kmhw->kmhw_table = hash = mdb_alloc(hsize, UM_SLEEP);
815 	if (mdb_vread(hash, hsize, haddr) == -1) {
816 		mdb_warn("failed to read hash table at %p", haddr);
817 		mdb_free(hash, hsize);
818 		mdb_free(kmhw, sizeof (kmem_hash_walk_t));
819 		return (WALK_ERR);
820 	}
821 
822 	wsp->walk_data = kmhw;
823 
824 	return (WALK_NEXT);
825 }
826 
827 int
828 kmem_hash_walk_step(mdb_walk_state_t *wsp)
829 {
830 	kmem_hash_walk_t *kmhw = wsp->walk_data;
831 	uintptr_t addr = NULL;
832 
833 	if ((addr = (uintptr_t)kmhw->kmhw_cur.bc_next) == NULL) {
834 		while (kmhw->kmhw_pos < kmhw->kmhw_nelems) {
835 			if ((addr = kmhw->kmhw_table[kmhw->kmhw_pos++]) != NULL)
836 				break;
837 		}
838 	}
839 	if (addr == NULL)
840 		return (WALK_DONE);
841 
842 	if (mdb_vread(&kmhw->kmhw_cur, sizeof (kmem_bufctl_t), addr) == -1) {
843 		mdb_warn("couldn't read kmem_bufctl_t at addr %p", addr);
844 		return (WALK_ERR);
845 	}
846 
847 	return (wsp->walk_callback(addr, &kmhw->kmhw_cur, wsp->walk_cbdata));
848 }
849 
850 void
851 kmem_hash_walk_fini(mdb_walk_state_t *wsp)
852 {
853 	kmem_hash_walk_t *kmhw = wsp->walk_data;
854 
855 	if (kmhw == NULL)
856 		return;
857 
858 	mdb_free(kmhw->kmhw_table, kmhw->kmhw_nelems * sizeof (uintptr_t));
859 	mdb_free(kmhw, sizeof (kmem_hash_walk_t));
860 }
861 
862 /*
863  * Find the address of the bufctl structure for the address 'buf' in cache
864  * 'cp', which is at address caddr, and place it in *out.
865  */
866 static int
867 kmem_hash_lookup(kmem_cache_t *cp, uintptr_t caddr, void *buf, uintptr_t *out)
868 {
869 	uintptr_t bucket = (uintptr_t)KMEM_HASH(cp, buf);
870 	kmem_bufctl_t *bcp;
871 	kmem_bufctl_t bc;
872 
873 	if (mdb_vread(&bcp, sizeof (kmem_bufctl_t *), bucket) == -1) {
874 		mdb_warn("unable to read hash bucket for %p in cache %p",
875 		    buf, caddr);
876 		return (-1);
877 	}
878 
879 	while (bcp != NULL) {
880 		if (mdb_vread(&bc, sizeof (kmem_bufctl_t),
881 		    (uintptr_t)bcp) == -1) {
882 			mdb_warn("unable to read bufctl at %p", bcp);
883 			return (-1);
884 		}
885 		if (bc.bc_addr == buf) {
886 			*out = (uintptr_t)bcp;
887 			return (0);
888 		}
889 		bcp = bc.bc_next;
890 	}
891 
892 	mdb_warn("unable to find bufctl for %p in cache %p\n", buf, caddr);
893 	return (-1);
894 }
895 
896 int
897 kmem_get_magsize(const kmem_cache_t *cp)
898 {
899 	uintptr_t addr = (uintptr_t)cp->cache_magtype;
900 	GElf_Sym mt_sym;
901 	kmem_magtype_t mt;
902 	int res;
903 
904 	/*
905 	 * if cpu 0 has a non-zero magsize, it must be correct.  caches
906 	 * with KMF_NOMAGAZINE have disabled their magazine layers, so
907 	 * it is okay to return 0 for them.
908 	 */
909 	if ((res = cp->cache_cpu[0].cc_magsize) != 0 ||
910 	    (cp->cache_flags & KMF_NOMAGAZINE))
911 		return (res);
912 
913 	if (mdb_lookup_by_name("kmem_magtype", &mt_sym) == -1) {
914 		mdb_warn("unable to read 'kmem_magtype'");
915 	} else if (addr < mt_sym.st_value ||
916 	    addr + sizeof (mt) - 1 > mt_sym.st_value + mt_sym.st_size - 1 ||
917 	    ((addr - mt_sym.st_value) % sizeof (mt)) != 0) {
918 		mdb_warn("cache '%s' has invalid magtype pointer (%p)\n",
919 		    cp->cache_name, addr);
920 		return (0);
921 	}
922 	if (mdb_vread(&mt, sizeof (mt), addr) == -1) {
923 		mdb_warn("unable to read magtype at %a", addr);
924 		return (0);
925 	}
926 	return (mt.mt_magsize);
927 }
928 
929 /*ARGSUSED*/
930 static int
931 kmem_estimate_slab(uintptr_t addr, const kmem_slab_t *sp, size_t *est)
932 {
933 	*est -= (sp->slab_chunks - sp->slab_refcnt);
934 
935 	return (WALK_NEXT);
936 }
937 
938 /*
939  * Returns an upper bound on the number of allocated buffers in a given
940  * cache.
941  */
942 size_t
943 kmem_estimate_allocated(uintptr_t addr, const kmem_cache_t *cp)
944 {
945 	int magsize;
946 	size_t cache_est;
947 
948 	cache_est = cp->cache_buftotal;
949 
950 	(void) mdb_pwalk("kmem_slab_partial",
951 	    (mdb_walk_cb_t)kmem_estimate_slab, &cache_est, addr);
952 
953 	if ((magsize = kmem_get_magsize(cp)) != 0) {
954 		size_t mag_est = cp->cache_full.ml_total * magsize;
955 
956 		if (cache_est >= mag_est) {
957 			cache_est -= mag_est;
958 		} else {
959 			mdb_warn("cache %p's magazine layer holds more buffers "
960 			    "than the slab layer.\n", addr);
961 		}
962 	}
963 	return (cache_est);
964 }
965 
966 #define	READMAG_ROUNDS(rounds) { \
967 	if (mdb_vread(mp, magbsize, (uintptr_t)kmp) == -1) { \
968 		mdb_warn("couldn't read magazine at %p", kmp); \
969 		goto fail; \
970 	} \
971 	for (i = 0; i < rounds; i++) { \
972 		maglist[magcnt++] = mp->mag_round[i]; \
973 		if (magcnt == magmax) { \
974 			mdb_warn("%d magazines exceeds fudge factor\n", \
975 			    magcnt); \
976 			goto fail; \
977 		} \
978 	} \
979 }
980 
981 int
982 kmem_read_magazines(kmem_cache_t *cp, uintptr_t addr, int ncpus,
983     void ***maglistp, size_t *magcntp, size_t *magmaxp, int alloc_flags)
984 {
985 	kmem_magazine_t *kmp, *mp;
986 	void **maglist = NULL;
987 	int i, cpu;
988 	size_t magsize, magmax, magbsize;
989 	size_t magcnt = 0;
990 
991 	/*
992 	 * Read the magtype out of the cache, after verifying the pointer's
993 	 * correctness.
994 	 */
995 	magsize = kmem_get_magsize(cp);
996 	if (magsize == 0) {
997 		*maglistp = NULL;
998 		*magcntp = 0;
999 		*magmaxp = 0;
1000 		return (WALK_NEXT);
1001 	}
1002 
1003 	/*
1004 	 * There are several places where we need to go buffer hunting:
1005 	 * the per-CPU loaded magazine, the per-CPU spare full magazine,
1006 	 * and the full magazine list in the depot.
1007 	 *
1008 	 * For an upper bound on the number of buffers in the magazine
1009 	 * layer, we have the number of magazines on the cache_full
1010 	 * list plus at most two magazines per CPU (the loaded and the
1011 	 * spare).  Toss in 100 magazines as a fudge factor in case this
1012 	 * is live (the number "100" comes from the same fudge factor in
1013 	 * crash(1M)).
1014 	 */
1015 	magmax = (cp->cache_full.ml_total + 2 * ncpus + 100) * magsize;
1016 	magbsize = offsetof(kmem_magazine_t, mag_round[magsize]);
1017 
1018 	if (magbsize >= PAGESIZE / 2) {
1019 		mdb_warn("magazine size for cache %p unreasonable (%x)\n",
1020 		    addr, magbsize);
1021 		return (WALK_ERR);
1022 	}
1023 
1024 	maglist = mdb_alloc(magmax * sizeof (void *), alloc_flags);
1025 	mp = mdb_alloc(magbsize, alloc_flags);
1026 	if (mp == NULL || maglist == NULL)
1027 		goto fail;
1028 
1029 	/*
1030 	 * First up: the magazines in the depot (i.e. on the cache_full list).
1031 	 */
1032 	for (kmp = cp->cache_full.ml_list; kmp != NULL; ) {
1033 		READMAG_ROUNDS(magsize);
1034 		kmp = mp->mag_next;
1035 
1036 		if (kmp == cp->cache_full.ml_list)
1037 			break; /* cache_full list loop detected */
1038 	}
1039 
1040 	dprintf(("cache_full list done\n"));
1041 
1042 	/*
1043 	 * Now whip through the CPUs, snagging the loaded magazines
1044 	 * and full spares.
1045 	 *
1046 	 * In order to prevent inconsistent dumps, rounds and prounds
1047 	 * are copied aside before dumping begins.
1048 	 */
1049 	for (cpu = 0; cpu < ncpus; cpu++) {
1050 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu];
1051 		short rounds, prounds;
1052 
1053 		if (KMEM_DUMPCC(ccp)) {
1054 			rounds = ccp->cc_dump_rounds;
1055 			prounds = ccp->cc_dump_prounds;
1056 		} else {
1057 			rounds = ccp->cc_rounds;
1058 			prounds = ccp->cc_prounds;
1059 		}
1060 
1061 		dprintf(("reading cpu cache %p\n",
1062 		    (uintptr_t)ccp - (uintptr_t)cp + addr));
1063 
1064 		if (rounds > 0 &&
1065 		    (kmp = ccp->cc_loaded) != NULL) {
1066 			dprintf(("reading %d loaded rounds\n", rounds));
1067 			READMAG_ROUNDS(rounds);
1068 		}
1069 
1070 		if (prounds > 0 &&
1071 		    (kmp = ccp->cc_ploaded) != NULL) {
1072 			dprintf(("reading %d previously loaded rounds\n",
1073 			    prounds));
1074 			READMAG_ROUNDS(prounds);
1075 		}
1076 	}
1077 
1078 	dprintf(("magazine layer: %d buffers\n", magcnt));
1079 
1080 	if (!(alloc_flags & UM_GC))
1081 		mdb_free(mp, magbsize);
1082 
1083 	*maglistp = maglist;
1084 	*magcntp = magcnt;
1085 	*magmaxp = magmax;
1086 
1087 	return (WALK_NEXT);
1088 
1089 fail:
1090 	if (!(alloc_flags & UM_GC)) {
1091 		if (mp)
1092 			mdb_free(mp, magbsize);
1093 		if (maglist)
1094 			mdb_free(maglist, magmax * sizeof (void *));
1095 	}
1096 	return (WALK_ERR);
1097 }
1098 
1099 static int
1100 kmem_walk_callback(mdb_walk_state_t *wsp, uintptr_t buf)
1101 {
1102 	return (wsp->walk_callback(buf, NULL, wsp->walk_cbdata));
1103 }
1104 
1105 static int
1106 bufctl_walk_callback(kmem_cache_t *cp, mdb_walk_state_t *wsp, uintptr_t buf)
1107 {
1108 	kmem_bufctl_audit_t b;
1109 
1110 	/*
1111 	 * if KMF_AUDIT is not set, we know that we're looking at a
1112 	 * kmem_bufctl_t.
1113 	 */
1114 	if (!(cp->cache_flags & KMF_AUDIT) ||
1115 	    mdb_vread(&b, sizeof (kmem_bufctl_audit_t), buf) == -1) {
1116 		(void) memset(&b, 0, sizeof (b));
1117 		if (mdb_vread(&b, sizeof (kmem_bufctl_t), buf) == -1) {
1118 			mdb_warn("unable to read bufctl at %p", buf);
1119 			return (WALK_ERR);
1120 		}
1121 	}
1122 
1123 	return (wsp->walk_callback(buf, &b, wsp->walk_cbdata));
1124 }
1125 
1126 typedef struct kmem_walk {
1127 	int kmw_type;
1128 
1129 	uintptr_t kmw_addr;		/* cache address */
1130 	kmem_cache_t *kmw_cp;
1131 	size_t kmw_csize;
1132 
1133 	/*
1134 	 * magazine layer
1135 	 */
1136 	void **kmw_maglist;
1137 	size_t kmw_max;
1138 	size_t kmw_count;
1139 	size_t kmw_pos;
1140 
1141 	/*
1142 	 * slab layer
1143 	 */
1144 	char *kmw_valid;	/* to keep track of freed buffers */
1145 	char *kmw_ubase;	/* buffer for slab data */
1146 } kmem_walk_t;
1147 
1148 static int
1149 kmem_walk_init_common(mdb_walk_state_t *wsp, int type)
1150 {
1151 	kmem_walk_t *kmw;
1152 	int ncpus, csize;
1153 	kmem_cache_t *cp;
1154 	size_t vm_quantum;
1155 
1156 	size_t magmax, magcnt;
1157 	void **maglist = NULL;
1158 	uint_t chunksize, slabsize;
1159 	int status = WALK_ERR;
1160 	uintptr_t addr = wsp->walk_addr;
1161 	const char *layered;
1162 
1163 	type &= ~KM_HASH;
1164 
1165 	if (addr == NULL) {
1166 		mdb_warn("kmem walk doesn't support global walks\n");
1167 		return (WALK_ERR);
1168 	}
1169 
1170 	dprintf(("walking %p\n", addr));
1171 
1172 	/*
1173 	 * First we need to figure out how many CPUs are configured in the
1174 	 * system to know how much to slurp out.
1175 	 */
1176 	mdb_readvar(&ncpus, "max_ncpus");
1177 
1178 	csize = KMEM_CACHE_SIZE(ncpus);
1179 	cp = mdb_alloc(csize, UM_SLEEP);
1180 
1181 	if (mdb_vread(cp, csize, addr) == -1) {
1182 		mdb_warn("couldn't read cache at addr %p", addr);
1183 		goto out2;
1184 	}
1185 
1186 	/*
1187 	 * It's easy for someone to hand us an invalid cache address.
1188 	 * Unfortunately, it is hard for this walker to survive an
1189 	 * invalid cache cleanly.  So we make sure that:
1190 	 *
1191 	 *	1. the vmem arena for the cache is readable,
1192 	 *	2. the vmem arena's quantum is a power of 2,
1193 	 *	3. our slabsize is a multiple of the quantum, and
1194 	 *	4. our chunksize is >0 and less than our slabsize.
1195 	 */
1196 	if (mdb_vread(&vm_quantum, sizeof (vm_quantum),
1197 	    (uintptr_t)&cp->cache_arena->vm_quantum) == -1 ||
1198 	    vm_quantum == 0 ||
1199 	    (vm_quantum & (vm_quantum - 1)) != 0 ||
1200 	    cp->cache_slabsize < vm_quantum ||
1201 	    P2PHASE(cp->cache_slabsize, vm_quantum) != 0 ||
1202 	    cp->cache_chunksize == 0 ||
1203 	    cp->cache_chunksize > cp->cache_slabsize) {
1204 		mdb_warn("%p is not a valid kmem_cache_t\n", addr);
1205 		goto out2;
1206 	}
1207 
1208 	dprintf(("buf total is %d\n", cp->cache_buftotal));
1209 
1210 	if (cp->cache_buftotal == 0) {
1211 		mdb_free(cp, csize);
1212 		return (WALK_DONE);
1213 	}
1214 
1215 	/*
1216 	 * If they ask for bufctls, but it's a small-slab cache,
1217 	 * there is nothing to report.
1218 	 */
1219 	if ((type & KM_BUFCTL) && !(cp->cache_flags & KMF_HASH)) {
1220 		dprintf(("bufctl requested, not KMF_HASH (flags: %p)\n",
1221 		    cp->cache_flags));
1222 		mdb_free(cp, csize);
1223 		return (WALK_DONE);
1224 	}
1225 
1226 	/*
1227 	 * If they want constructed buffers, but there's no constructor or
1228 	 * the cache has DEADBEEF checking enabled, there is nothing to report.
1229 	 */
1230 	if ((type & KM_CONSTRUCTED) && (!(type & KM_FREE) ||
1231 	    cp->cache_constructor == NULL ||
1232 	    (cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) == KMF_DEADBEEF)) {
1233 		mdb_free(cp, csize);
1234 		return (WALK_DONE);
1235 	}
1236 
1237 	/*
1238 	 * Read in the contents of the magazine layer
1239 	 */
1240 	if (kmem_read_magazines(cp, addr, ncpus, &maglist, &magcnt,
1241 	    &magmax, UM_SLEEP) == WALK_ERR)
1242 		goto out2;
1243 
1244 	/*
1245 	 * We have all of the buffers from the magazines;  if we are walking
1246 	 * allocated buffers, sort them so we can bsearch them later.
1247 	 */
1248 	if (type & KM_ALLOCATED)
1249 		qsort(maglist, magcnt, sizeof (void *), addrcmp);
1250 
1251 	wsp->walk_data = kmw = mdb_zalloc(sizeof (kmem_walk_t), UM_SLEEP);
1252 
1253 	kmw->kmw_type = type;
1254 	kmw->kmw_addr = addr;
1255 	kmw->kmw_cp = cp;
1256 	kmw->kmw_csize = csize;
1257 	kmw->kmw_maglist = maglist;
1258 	kmw->kmw_max = magmax;
1259 	kmw->kmw_count = magcnt;
1260 	kmw->kmw_pos = 0;
1261 
1262 	/*
1263 	 * When walking allocated buffers in a KMF_HASH cache, we walk the
1264 	 * hash table instead of the slab layer.
1265 	 */
1266 	if ((cp->cache_flags & KMF_HASH) && (type & KM_ALLOCATED)) {
1267 		layered = "kmem_hash";
1268 
1269 		kmw->kmw_type |= KM_HASH;
1270 	} else {
1271 		/*
1272 		 * If we are walking freed buffers, we only need the
1273 		 * magazine layer plus the partially allocated slabs.
1274 		 * To walk allocated buffers, we need all of the slabs.
1275 		 */
1276 		if (type & KM_ALLOCATED)
1277 			layered = "kmem_slab";
1278 		else
1279 			layered = "kmem_slab_partial";
1280 
1281 		/*
1282 		 * for small-slab caches, we read in the entire slab.  For
1283 		 * freed buffers, we can just walk the freelist.  For
1284 		 * allocated buffers, we use a 'valid' array to track
1285 		 * the freed buffers.
1286 		 */
1287 		if (!(cp->cache_flags & KMF_HASH)) {
1288 			chunksize = cp->cache_chunksize;
1289 			slabsize = cp->cache_slabsize;
1290 
1291 			kmw->kmw_ubase = mdb_alloc(slabsize +
1292 			    sizeof (kmem_bufctl_t), UM_SLEEP);
1293 
1294 			if (type & KM_ALLOCATED)
1295 				kmw->kmw_valid =
1296 				    mdb_alloc(slabsize / chunksize, UM_SLEEP);
1297 		}
1298 	}
1299 
1300 	status = WALK_NEXT;
1301 
1302 	if (mdb_layered_walk(layered, wsp) == -1) {
1303 		mdb_warn("unable to start layered '%s' walk", layered);
1304 		status = WALK_ERR;
1305 	}
1306 
1307 out1:
1308 	if (status == WALK_ERR) {
1309 		if (kmw->kmw_valid)
1310 			mdb_free(kmw->kmw_valid, slabsize / chunksize);
1311 
1312 		if (kmw->kmw_ubase)
1313 			mdb_free(kmw->kmw_ubase, slabsize +
1314 			    sizeof (kmem_bufctl_t));
1315 
1316 		if (kmw->kmw_maglist)
1317 			mdb_free(kmw->kmw_maglist,
1318 			    kmw->kmw_max * sizeof (uintptr_t));
1319 
1320 		mdb_free(kmw, sizeof (kmem_walk_t));
1321 		wsp->walk_data = NULL;
1322 	}
1323 
1324 out2:
1325 	if (status == WALK_ERR)
1326 		mdb_free(cp, csize);
1327 
1328 	return (status);
1329 }
1330 
1331 int
1332 kmem_walk_step(mdb_walk_state_t *wsp)
1333 {
1334 	kmem_walk_t *kmw = wsp->walk_data;
1335 	int type = kmw->kmw_type;
1336 	kmem_cache_t *cp = kmw->kmw_cp;
1337 
1338 	void **maglist = kmw->kmw_maglist;
1339 	int magcnt = kmw->kmw_count;
1340 
1341 	uintptr_t chunksize, slabsize;
1342 	uintptr_t addr;
1343 	const kmem_slab_t *sp;
1344 	const kmem_bufctl_t *bcp;
1345 	kmem_bufctl_t bc;
1346 
1347 	int chunks;
1348 	char *kbase;
1349 	void *buf;
1350 	int i, ret;
1351 
1352 	char *valid, *ubase;
1353 
1354 	/*
1355 	 * first, handle the 'kmem_hash' layered walk case
1356 	 */
1357 	if (type & KM_HASH) {
1358 		/*
1359 		 * We have a buffer which has been allocated out of the
1360 		 * global layer. We need to make sure that it's not
1361 		 * actually sitting in a magazine before we report it as
1362 		 * an allocated buffer.
1363 		 */
1364 		buf = ((const kmem_bufctl_t *)wsp->walk_layer)->bc_addr;
1365 
1366 		if (magcnt > 0 &&
1367 		    bsearch(&buf, maglist, magcnt, sizeof (void *),
1368 		    addrcmp) != NULL)
1369 			return (WALK_NEXT);
1370 
1371 		if (type & KM_BUFCTL)
1372 			return (bufctl_walk_callback(cp, wsp, wsp->walk_addr));
1373 
1374 		return (kmem_walk_callback(wsp, (uintptr_t)buf));
1375 	}
1376 
1377 	ret = WALK_NEXT;
1378 
1379 	addr = kmw->kmw_addr;
1380 
1381 	/*
1382 	 * If we're walking freed buffers, report everything in the
1383 	 * magazine layer before processing the first slab.
1384 	 */
1385 	if ((type & KM_FREE) && magcnt != 0) {
1386 		kmw->kmw_count = 0;		/* only do this once */
1387 		for (i = 0; i < magcnt; i++) {
1388 			buf = maglist[i];
1389 
1390 			if (type & KM_BUFCTL) {
1391 				uintptr_t out;
1392 
1393 				if (cp->cache_flags & KMF_BUFTAG) {
1394 					kmem_buftag_t *btp;
1395 					kmem_buftag_t tag;
1396 
1397 					/* LINTED - alignment */
1398 					btp = KMEM_BUFTAG(cp, buf);
1399 					if (mdb_vread(&tag, sizeof (tag),
1400 					    (uintptr_t)btp) == -1) {
1401 						mdb_warn("reading buftag for "
1402 						    "%p at %p", buf, btp);
1403 						continue;
1404 					}
1405 					out = (uintptr_t)tag.bt_bufctl;
1406 				} else {
1407 					if (kmem_hash_lookup(cp, addr, buf,
1408 					    &out) == -1)
1409 						continue;
1410 				}
1411 				ret = bufctl_walk_callback(cp, wsp, out);
1412 			} else {
1413 				ret = kmem_walk_callback(wsp, (uintptr_t)buf);
1414 			}
1415 
1416 			if (ret != WALK_NEXT)
1417 				return (ret);
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * If they want constructed buffers, we're finished, since the
1423 	 * magazine layer holds them all.
1424 	 */
1425 	if (type & KM_CONSTRUCTED)
1426 		return (WALK_DONE);
1427 
1428 	/*
1429 	 * Handle the buffers in the current slab
1430 	 */
1431 	chunksize = cp->cache_chunksize;
1432 	slabsize = cp->cache_slabsize;
1433 
1434 	sp = wsp->walk_layer;
1435 	chunks = sp->slab_chunks;
1436 	kbase = sp->slab_base;
1437 
1438 	dprintf(("kbase is %p\n", kbase));
1439 
1440 	if (!(cp->cache_flags & KMF_HASH)) {
1441 		valid = kmw->kmw_valid;
1442 		ubase = kmw->kmw_ubase;
1443 
1444 		if (mdb_vread(ubase, chunks * chunksize,
1445 		    (uintptr_t)kbase) == -1) {
1446 			mdb_warn("failed to read slab contents at %p", kbase);
1447 			return (WALK_ERR);
1448 		}
1449 
1450 		/*
1451 		 * Set up the valid map as fully allocated -- we'll punch
1452 		 * out the freelist.
1453 		 */
1454 		if (type & KM_ALLOCATED)
1455 			(void) memset(valid, 1, chunks);
1456 	} else {
1457 		valid = NULL;
1458 		ubase = NULL;
1459 	}
1460 
1461 	/*
1462 	 * walk the slab's freelist
1463 	 */
1464 	bcp = sp->slab_head;
1465 
1466 	dprintf(("refcnt is %d; chunks is %d\n", sp->slab_refcnt, chunks));
1467 
1468 	/*
1469 	 * since we could be in the middle of allocating a buffer,
1470 	 * our refcnt could be one higher than it aught.  So we
1471 	 * check one further on the freelist than the count allows.
1472 	 */
1473 	for (i = sp->slab_refcnt; i <= chunks; i++) {
1474 		uint_t ndx;
1475 
1476 		dprintf(("bcp is %p\n", bcp));
1477 
1478 		if (bcp == NULL) {
1479 			if (i == chunks)
1480 				break;
1481 			mdb_warn(
1482 			    "slab %p in cache %p freelist too short by %d\n",
1483 			    sp, addr, chunks - i);
1484 			break;
1485 		}
1486 
1487 		if (cp->cache_flags & KMF_HASH) {
1488 			if (mdb_vread(&bc, sizeof (bc), (uintptr_t)bcp) == -1) {
1489 				mdb_warn("failed to read bufctl ptr at %p",
1490 				    bcp);
1491 				break;
1492 			}
1493 			buf = bc.bc_addr;
1494 		} else {
1495 			/*
1496 			 * Otherwise the buffer is (or should be) in the slab
1497 			 * that we've read in; determine its offset in the
1498 			 * slab, validate that it's not corrupt, and add to
1499 			 * our base address to find the umem_bufctl_t.  (Note
1500 			 * that we don't need to add the size of the bufctl
1501 			 * to our offset calculation because of the slop that's
1502 			 * allocated for the buffer at ubase.)
1503 			 */
1504 			uintptr_t offs = (uintptr_t)bcp - (uintptr_t)kbase;
1505 
1506 			if (offs > chunks * chunksize) {
1507 				mdb_warn("found corrupt bufctl ptr %p"
1508 				    " in slab %p in cache %p\n", bcp,
1509 				    wsp->walk_addr, addr);
1510 				break;
1511 			}
1512 
1513 			bc = *((kmem_bufctl_t *)((uintptr_t)ubase + offs));
1514 			buf = KMEM_BUF(cp, bcp);
1515 		}
1516 
1517 		ndx = ((uintptr_t)buf - (uintptr_t)kbase) / chunksize;
1518 
1519 		if (ndx > slabsize / cp->cache_bufsize) {
1520 			/*
1521 			 * This is very wrong; we have managed to find
1522 			 * a buffer in the slab which shouldn't
1523 			 * actually be here.  Emit a warning, and
1524 			 * try to continue.
1525 			 */
1526 			mdb_warn("buf %p is out of range for "
1527 			    "slab %p, cache %p\n", buf, sp, addr);
1528 		} else if (type & KM_ALLOCATED) {
1529 			/*
1530 			 * we have found a buffer on the slab's freelist;
1531 			 * clear its entry
1532 			 */
1533 			valid[ndx] = 0;
1534 		} else {
1535 			/*
1536 			 * Report this freed buffer
1537 			 */
1538 			if (type & KM_BUFCTL) {
1539 				ret = bufctl_walk_callback(cp, wsp,
1540 				    (uintptr_t)bcp);
1541 			} else {
1542 				ret = kmem_walk_callback(wsp, (uintptr_t)buf);
1543 			}
1544 			if (ret != WALK_NEXT)
1545 				return (ret);
1546 		}
1547 
1548 		bcp = bc.bc_next;
1549 	}
1550 
1551 	if (bcp != NULL) {
1552 		dprintf(("slab %p in cache %p freelist too long (%p)\n",
1553 		    sp, addr, bcp));
1554 	}
1555 
1556 	/*
1557 	 * If we are walking freed buffers, the loop above handled reporting
1558 	 * them.
1559 	 */
1560 	if (type & KM_FREE)
1561 		return (WALK_NEXT);
1562 
1563 	if (type & KM_BUFCTL) {
1564 		mdb_warn("impossible situation: small-slab KM_BUFCTL walk for "
1565 		    "cache %p\n", addr);
1566 		return (WALK_ERR);
1567 	}
1568 
1569 	/*
1570 	 * Report allocated buffers, skipping buffers in the magazine layer.
1571 	 * We only get this far for small-slab caches.
1572 	 */
1573 	for (i = 0; ret == WALK_NEXT && i < chunks; i++) {
1574 		buf = (char *)kbase + i * chunksize;
1575 
1576 		if (!valid[i])
1577 			continue;		/* on slab freelist */
1578 
1579 		if (magcnt > 0 &&
1580 		    bsearch(&buf, maglist, magcnt, sizeof (void *),
1581 		    addrcmp) != NULL)
1582 			continue;		/* in magazine layer */
1583 
1584 		ret = kmem_walk_callback(wsp, (uintptr_t)buf);
1585 	}
1586 	return (ret);
1587 }
1588 
1589 void
1590 kmem_walk_fini(mdb_walk_state_t *wsp)
1591 {
1592 	kmem_walk_t *kmw = wsp->walk_data;
1593 	uintptr_t chunksize;
1594 	uintptr_t slabsize;
1595 
1596 	if (kmw == NULL)
1597 		return;
1598 
1599 	if (kmw->kmw_maglist != NULL)
1600 		mdb_free(kmw->kmw_maglist, kmw->kmw_max * sizeof (void *));
1601 
1602 	chunksize = kmw->kmw_cp->cache_chunksize;
1603 	slabsize = kmw->kmw_cp->cache_slabsize;
1604 
1605 	if (kmw->kmw_valid != NULL)
1606 		mdb_free(kmw->kmw_valid, slabsize / chunksize);
1607 	if (kmw->kmw_ubase != NULL)
1608 		mdb_free(kmw->kmw_ubase, slabsize + sizeof (kmem_bufctl_t));
1609 
1610 	mdb_free(kmw->kmw_cp, kmw->kmw_csize);
1611 	mdb_free(kmw, sizeof (kmem_walk_t));
1612 }
1613 
1614 /*ARGSUSED*/
1615 static int
1616 kmem_walk_all(uintptr_t addr, const kmem_cache_t *c, mdb_walk_state_t *wsp)
1617 {
1618 	/*
1619 	 * Buffers allocated from NOTOUCH caches can also show up as freed
1620 	 * memory in other caches.  This can be a little confusing, so we
1621 	 * don't walk NOTOUCH caches when walking all caches (thereby assuring
1622 	 * that "::walk kmem" and "::walk freemem" yield disjoint output).
1623 	 */
1624 	if (c->cache_cflags & KMC_NOTOUCH)
1625 		return (WALK_NEXT);
1626 
1627 	if (mdb_pwalk(wsp->walk_data, wsp->walk_callback,
1628 	    wsp->walk_cbdata, addr) == -1)
1629 		return (WALK_DONE);
1630 
1631 	return (WALK_NEXT);
1632 }
1633 
1634 #define	KMEM_WALK_ALL(name, wsp) { \
1635 	wsp->walk_data = (name); \
1636 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmem_walk_all, wsp) == -1) \
1637 		return (WALK_ERR); \
1638 	return (WALK_DONE); \
1639 }
1640 
1641 int
1642 kmem_walk_init(mdb_walk_state_t *wsp)
1643 {
1644 	if (wsp->walk_arg != NULL)
1645 		wsp->walk_addr = (uintptr_t)wsp->walk_arg;
1646 
1647 	if (wsp->walk_addr == NULL)
1648 		KMEM_WALK_ALL("kmem", wsp);
1649 	return (kmem_walk_init_common(wsp, KM_ALLOCATED));
1650 }
1651 
1652 int
1653 bufctl_walk_init(mdb_walk_state_t *wsp)
1654 {
1655 	if (wsp->walk_addr == NULL)
1656 		KMEM_WALK_ALL("bufctl", wsp);
1657 	return (kmem_walk_init_common(wsp, KM_ALLOCATED | KM_BUFCTL));
1658 }
1659 
1660 int
1661 freemem_walk_init(mdb_walk_state_t *wsp)
1662 {
1663 	if (wsp->walk_addr == NULL)
1664 		KMEM_WALK_ALL("freemem", wsp);
1665 	return (kmem_walk_init_common(wsp, KM_FREE));
1666 }
1667 
1668 int
1669 freemem_constructed_walk_init(mdb_walk_state_t *wsp)
1670 {
1671 	if (wsp->walk_addr == NULL)
1672 		KMEM_WALK_ALL("freemem_constructed", wsp);
1673 	return (kmem_walk_init_common(wsp, KM_FREE | KM_CONSTRUCTED));
1674 }
1675 
1676 int
1677 freectl_walk_init(mdb_walk_state_t *wsp)
1678 {
1679 	if (wsp->walk_addr == NULL)
1680 		KMEM_WALK_ALL("freectl", wsp);
1681 	return (kmem_walk_init_common(wsp, KM_FREE | KM_BUFCTL));
1682 }
1683 
1684 int
1685 freectl_constructed_walk_init(mdb_walk_state_t *wsp)
1686 {
1687 	if (wsp->walk_addr == NULL)
1688 		KMEM_WALK_ALL("freectl_constructed", wsp);
1689 	return (kmem_walk_init_common(wsp,
1690 	    KM_FREE | KM_BUFCTL | KM_CONSTRUCTED));
1691 }
1692 
1693 typedef struct bufctl_history_walk {
1694 	void		*bhw_next;
1695 	kmem_cache_t	*bhw_cache;
1696 	kmem_slab_t	*bhw_slab;
1697 	hrtime_t	bhw_timestamp;
1698 } bufctl_history_walk_t;
1699 
1700 int
1701 bufctl_history_walk_init(mdb_walk_state_t *wsp)
1702 {
1703 	bufctl_history_walk_t *bhw;
1704 	kmem_bufctl_audit_t bc;
1705 	kmem_bufctl_audit_t bcn;
1706 
1707 	if (wsp->walk_addr == NULL) {
1708 		mdb_warn("bufctl_history walk doesn't support global walks\n");
1709 		return (WALK_ERR);
1710 	}
1711 
1712 	if (mdb_vread(&bc, sizeof (bc), wsp->walk_addr) == -1) {
1713 		mdb_warn("unable to read bufctl at %p", wsp->walk_addr);
1714 		return (WALK_ERR);
1715 	}
1716 
1717 	bhw = mdb_zalloc(sizeof (*bhw), UM_SLEEP);
1718 	bhw->bhw_timestamp = 0;
1719 	bhw->bhw_cache = bc.bc_cache;
1720 	bhw->bhw_slab = bc.bc_slab;
1721 
1722 	/*
1723 	 * sometimes the first log entry matches the base bufctl;  in that
1724 	 * case, skip the base bufctl.
1725 	 */
1726 	if (bc.bc_lastlog != NULL &&
1727 	    mdb_vread(&bcn, sizeof (bcn), (uintptr_t)bc.bc_lastlog) != -1 &&
1728 	    bc.bc_addr == bcn.bc_addr &&
1729 	    bc.bc_cache == bcn.bc_cache &&
1730 	    bc.bc_slab == bcn.bc_slab &&
1731 	    bc.bc_timestamp == bcn.bc_timestamp &&
1732 	    bc.bc_thread == bcn.bc_thread)
1733 		bhw->bhw_next = bc.bc_lastlog;
1734 	else
1735 		bhw->bhw_next = (void *)wsp->walk_addr;
1736 
1737 	wsp->walk_addr = (uintptr_t)bc.bc_addr;
1738 	wsp->walk_data = bhw;
1739 
1740 	return (WALK_NEXT);
1741 }
1742 
1743 int
1744 bufctl_history_walk_step(mdb_walk_state_t *wsp)
1745 {
1746 	bufctl_history_walk_t *bhw = wsp->walk_data;
1747 	uintptr_t addr = (uintptr_t)bhw->bhw_next;
1748 	uintptr_t baseaddr = wsp->walk_addr;
1749 	kmem_bufctl_audit_t bc;
1750 
1751 	if (addr == NULL)
1752 		return (WALK_DONE);
1753 
1754 	if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
1755 		mdb_warn("unable to read bufctl at %p", bhw->bhw_next);
1756 		return (WALK_ERR);
1757 	}
1758 
1759 	/*
1760 	 * The bufctl is only valid if the address, cache, and slab are
1761 	 * correct.  We also check that the timestamp is decreasing, to
1762 	 * prevent infinite loops.
1763 	 */
1764 	if ((uintptr_t)bc.bc_addr != baseaddr ||
1765 	    bc.bc_cache != bhw->bhw_cache ||
1766 	    bc.bc_slab != bhw->bhw_slab ||
1767 	    (bhw->bhw_timestamp != 0 && bc.bc_timestamp >= bhw->bhw_timestamp))
1768 		return (WALK_DONE);
1769 
1770 	bhw->bhw_next = bc.bc_lastlog;
1771 	bhw->bhw_timestamp = bc.bc_timestamp;
1772 
1773 	return (wsp->walk_callback(addr, &bc, wsp->walk_cbdata));
1774 }
1775 
1776 void
1777 bufctl_history_walk_fini(mdb_walk_state_t *wsp)
1778 {
1779 	bufctl_history_walk_t *bhw = wsp->walk_data;
1780 
1781 	mdb_free(bhw, sizeof (*bhw));
1782 }
1783 
1784 typedef struct kmem_log_walk {
1785 	kmem_bufctl_audit_t *klw_base;
1786 	kmem_bufctl_audit_t **klw_sorted;
1787 	kmem_log_header_t klw_lh;
1788 	size_t klw_size;
1789 	size_t klw_maxndx;
1790 	size_t klw_ndx;
1791 } kmem_log_walk_t;
1792 
1793 int
1794 kmem_log_walk_init(mdb_walk_state_t *wsp)
1795 {
1796 	uintptr_t lp = wsp->walk_addr;
1797 	kmem_log_walk_t *klw;
1798 	kmem_log_header_t *lhp;
1799 	int maxndx, i, j, k;
1800 
1801 	/*
1802 	 * By default (global walk), walk the kmem_transaction_log.  Otherwise
1803 	 * read the log whose kmem_log_header_t is stored at walk_addr.
1804 	 */
1805 	if (lp == NULL && mdb_readvar(&lp, "kmem_transaction_log") == -1) {
1806 		mdb_warn("failed to read 'kmem_transaction_log'");
1807 		return (WALK_ERR);
1808 	}
1809 
1810 	if (lp == NULL) {
1811 		mdb_warn("log is disabled\n");
1812 		return (WALK_ERR);
1813 	}
1814 
1815 	klw = mdb_zalloc(sizeof (kmem_log_walk_t), UM_SLEEP);
1816 	lhp = &klw->klw_lh;
1817 
1818 	if (mdb_vread(lhp, sizeof (kmem_log_header_t), lp) == -1) {
1819 		mdb_warn("failed to read log header at %p", lp);
1820 		mdb_free(klw, sizeof (kmem_log_walk_t));
1821 		return (WALK_ERR);
1822 	}
1823 
1824 	klw->klw_size = lhp->lh_chunksize * lhp->lh_nchunks;
1825 	klw->klw_base = mdb_alloc(klw->klw_size, UM_SLEEP);
1826 	maxndx = lhp->lh_chunksize / sizeof (kmem_bufctl_audit_t) - 1;
1827 
1828 	if (mdb_vread(klw->klw_base, klw->klw_size,
1829 	    (uintptr_t)lhp->lh_base) == -1) {
1830 		mdb_warn("failed to read log at base %p", lhp->lh_base);
1831 		mdb_free(klw->klw_base, klw->klw_size);
1832 		mdb_free(klw, sizeof (kmem_log_walk_t));
1833 		return (WALK_ERR);
1834 	}
1835 
1836 	klw->klw_sorted = mdb_alloc(maxndx * lhp->lh_nchunks *
1837 	    sizeof (kmem_bufctl_audit_t *), UM_SLEEP);
1838 
1839 	for (i = 0, k = 0; i < lhp->lh_nchunks; i++) {
1840 		kmem_bufctl_audit_t *chunk = (kmem_bufctl_audit_t *)
1841 		    ((uintptr_t)klw->klw_base + i * lhp->lh_chunksize);
1842 
1843 		for (j = 0; j < maxndx; j++)
1844 			klw->klw_sorted[k++] = &chunk[j];
1845 	}
1846 
1847 	qsort(klw->klw_sorted, k, sizeof (kmem_bufctl_audit_t *),
1848 	    (int(*)(const void *, const void *))bufctlcmp);
1849 
1850 	klw->klw_maxndx = k;
1851 	wsp->walk_data = klw;
1852 
1853 	return (WALK_NEXT);
1854 }
1855 
1856 int
1857 kmem_log_walk_step(mdb_walk_state_t *wsp)
1858 {
1859 	kmem_log_walk_t *klw = wsp->walk_data;
1860 	kmem_bufctl_audit_t *bcp;
1861 
1862 	if (klw->klw_ndx == klw->klw_maxndx)
1863 		return (WALK_DONE);
1864 
1865 	bcp = klw->klw_sorted[klw->klw_ndx++];
1866 
1867 	return (wsp->walk_callback((uintptr_t)bcp - (uintptr_t)klw->klw_base +
1868 	    (uintptr_t)klw->klw_lh.lh_base, bcp, wsp->walk_cbdata));
1869 }
1870 
1871 void
1872 kmem_log_walk_fini(mdb_walk_state_t *wsp)
1873 {
1874 	kmem_log_walk_t *klw = wsp->walk_data;
1875 
1876 	mdb_free(klw->klw_base, klw->klw_size);
1877 	mdb_free(klw->klw_sorted, klw->klw_maxndx *
1878 	    sizeof (kmem_bufctl_audit_t *));
1879 	mdb_free(klw, sizeof (kmem_log_walk_t));
1880 }
1881 
1882 typedef struct allocdby_bufctl {
1883 	uintptr_t abb_addr;
1884 	hrtime_t abb_ts;
1885 } allocdby_bufctl_t;
1886 
1887 typedef struct allocdby_walk {
1888 	const char *abw_walk;
1889 	uintptr_t abw_thread;
1890 	size_t abw_nbufs;
1891 	size_t abw_size;
1892 	allocdby_bufctl_t *abw_buf;
1893 	size_t abw_ndx;
1894 } allocdby_walk_t;
1895 
1896 int
1897 allocdby_walk_bufctl(uintptr_t addr, const kmem_bufctl_audit_t *bcp,
1898     allocdby_walk_t *abw)
1899 {
1900 	if ((uintptr_t)bcp->bc_thread != abw->abw_thread)
1901 		return (WALK_NEXT);
1902 
1903 	if (abw->abw_nbufs == abw->abw_size) {
1904 		allocdby_bufctl_t *buf;
1905 		size_t oldsize = sizeof (allocdby_bufctl_t) * abw->abw_size;
1906 
1907 		buf = mdb_zalloc(oldsize << 1, UM_SLEEP);
1908 
1909 		bcopy(abw->abw_buf, buf, oldsize);
1910 		mdb_free(abw->abw_buf, oldsize);
1911 
1912 		abw->abw_size <<= 1;
1913 		abw->abw_buf = buf;
1914 	}
1915 
1916 	abw->abw_buf[abw->abw_nbufs].abb_addr = addr;
1917 	abw->abw_buf[abw->abw_nbufs].abb_ts = bcp->bc_timestamp;
1918 	abw->abw_nbufs++;
1919 
1920 	return (WALK_NEXT);
1921 }
1922 
1923 /*ARGSUSED*/
1924 int
1925 allocdby_walk_cache(uintptr_t addr, const kmem_cache_t *c, allocdby_walk_t *abw)
1926 {
1927 	if (mdb_pwalk(abw->abw_walk, (mdb_walk_cb_t)allocdby_walk_bufctl,
1928 	    abw, addr) == -1) {
1929 		mdb_warn("couldn't walk bufctl for cache %p", addr);
1930 		return (WALK_DONE);
1931 	}
1932 
1933 	return (WALK_NEXT);
1934 }
1935 
1936 static int
1937 allocdby_cmp(const allocdby_bufctl_t *lhs, const allocdby_bufctl_t *rhs)
1938 {
1939 	if (lhs->abb_ts < rhs->abb_ts)
1940 		return (1);
1941 	if (lhs->abb_ts > rhs->abb_ts)
1942 		return (-1);
1943 	return (0);
1944 }
1945 
1946 static int
1947 allocdby_walk_init_common(mdb_walk_state_t *wsp, const char *walk)
1948 {
1949 	allocdby_walk_t *abw;
1950 
1951 	if (wsp->walk_addr == NULL) {
1952 		mdb_warn("allocdby walk doesn't support global walks\n");
1953 		return (WALK_ERR);
1954 	}
1955 
1956 	abw = mdb_zalloc(sizeof (allocdby_walk_t), UM_SLEEP);
1957 
1958 	abw->abw_thread = wsp->walk_addr;
1959 	abw->abw_walk = walk;
1960 	abw->abw_size = 128;	/* something reasonable */
1961 	abw->abw_buf =
1962 	    mdb_zalloc(abw->abw_size * sizeof (allocdby_bufctl_t), UM_SLEEP);
1963 
1964 	wsp->walk_data = abw;
1965 
1966 	if (mdb_walk("kmem_cache",
1967 	    (mdb_walk_cb_t)allocdby_walk_cache, abw) == -1) {
1968 		mdb_warn("couldn't walk kmem_cache");
1969 		allocdby_walk_fini(wsp);
1970 		return (WALK_ERR);
1971 	}
1972 
1973 	qsort(abw->abw_buf, abw->abw_nbufs, sizeof (allocdby_bufctl_t),
1974 	    (int(*)(const void *, const void *))allocdby_cmp);
1975 
1976 	return (WALK_NEXT);
1977 }
1978 
1979 int
1980 allocdby_walk_init(mdb_walk_state_t *wsp)
1981 {
1982 	return (allocdby_walk_init_common(wsp, "bufctl"));
1983 }
1984 
1985 int
1986 freedby_walk_init(mdb_walk_state_t *wsp)
1987 {
1988 	return (allocdby_walk_init_common(wsp, "freectl"));
1989 }
1990 
1991 int
1992 allocdby_walk_step(mdb_walk_state_t *wsp)
1993 {
1994 	allocdby_walk_t *abw = wsp->walk_data;
1995 	kmem_bufctl_audit_t bc;
1996 	uintptr_t addr;
1997 
1998 	if (abw->abw_ndx == abw->abw_nbufs)
1999 		return (WALK_DONE);
2000 
2001 	addr = abw->abw_buf[abw->abw_ndx++].abb_addr;
2002 
2003 	if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
2004 		mdb_warn("couldn't read bufctl at %p", addr);
2005 		return (WALK_DONE);
2006 	}
2007 
2008 	return (wsp->walk_callback(addr, &bc, wsp->walk_cbdata));
2009 }
2010 
2011 void
2012 allocdby_walk_fini(mdb_walk_state_t *wsp)
2013 {
2014 	allocdby_walk_t *abw = wsp->walk_data;
2015 
2016 	mdb_free(abw->abw_buf, sizeof (allocdby_bufctl_t) * abw->abw_size);
2017 	mdb_free(abw, sizeof (allocdby_walk_t));
2018 }
2019 
2020 /*ARGSUSED*/
2021 int
2022 allocdby_walk(uintptr_t addr, const kmem_bufctl_audit_t *bcp, void *ignored)
2023 {
2024 	char c[MDB_SYM_NAMLEN];
2025 	GElf_Sym sym;
2026 	int i;
2027 
2028 	mdb_printf("%0?p %12llx ", addr, bcp->bc_timestamp);
2029 	for (i = 0; i < bcp->bc_depth; i++) {
2030 		if (mdb_lookup_by_addr(bcp->bc_stack[i],
2031 		    MDB_SYM_FUZZY, c, sizeof (c), &sym) == -1)
2032 			continue;
2033 		if (strncmp(c, "kmem_", 5) == 0)
2034 			continue;
2035 		mdb_printf("%s+0x%lx",
2036 		    c, bcp->bc_stack[i] - (uintptr_t)sym.st_value);
2037 		break;
2038 	}
2039 	mdb_printf("\n");
2040 
2041 	return (WALK_NEXT);
2042 }
2043 
2044 static int
2045 allocdby_common(uintptr_t addr, uint_t flags, const char *w)
2046 {
2047 	if (!(flags & DCMD_ADDRSPEC))
2048 		return (DCMD_USAGE);
2049 
2050 	mdb_printf("%-?s %12s %s\n", "BUFCTL", "TIMESTAMP", "CALLER");
2051 
2052 	if (mdb_pwalk(w, (mdb_walk_cb_t)allocdby_walk, NULL, addr) == -1) {
2053 		mdb_warn("can't walk '%s' for %p", w, addr);
2054 		return (DCMD_ERR);
2055 	}
2056 
2057 	return (DCMD_OK);
2058 }
2059 
2060 /*ARGSUSED*/
2061 int
2062 allocdby(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2063 {
2064 	return (allocdby_common(addr, flags, "allocdby"));
2065 }
2066 
2067 /*ARGSUSED*/
2068 int
2069 freedby(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2070 {
2071 	return (allocdby_common(addr, flags, "freedby"));
2072 }
2073 
2074 /*
2075  * Return a string describing the address in relation to the given thread's
2076  * stack.
2077  *
2078  * - If the thread state is TS_FREE, return " (inactive interrupt thread)".
2079  *
2080  * - If the address is above the stack pointer, return an empty string
2081  *   signifying that the address is active.
2082  *
2083  * - If the address is below the stack pointer, and the thread is not on proc,
2084  *   return " (below sp)".
2085  *
2086  * - If the address is below the stack pointer, and the thread is on proc,
2087  *   return " (possibly below sp)".  Depending on context, we may or may not
2088  *   have an accurate t_sp.
2089  */
2090 static const char *
2091 stack_active(const kthread_t *t, uintptr_t addr)
2092 {
2093 	uintptr_t panicstk;
2094 	GElf_Sym sym;
2095 
2096 	if (t->t_state == TS_FREE)
2097 		return (" (inactive interrupt thread)");
2098 
2099 	/*
2100 	 * Check to see if we're on the panic stack.  If so, ignore t_sp, as it
2101 	 * no longer relates to the thread's real stack.
2102 	 */
2103 	if (mdb_lookup_by_name("panic_stack", &sym) == 0) {
2104 		panicstk = (uintptr_t)sym.st_value;
2105 
2106 		if (t->t_sp >= panicstk && t->t_sp < panicstk + PANICSTKSIZE)
2107 			return ("");
2108 	}
2109 
2110 	if (addr >= t->t_sp + STACK_BIAS)
2111 		return ("");
2112 
2113 	if (t->t_state == TS_ONPROC)
2114 		return (" (possibly below sp)");
2115 
2116 	return (" (below sp)");
2117 }
2118 
2119 /*
2120  * Additional state for the kmem and vmem ::whatis handlers
2121  */
2122 typedef struct whatis_info {
2123 	mdb_whatis_t *wi_w;
2124 	const kmem_cache_t *wi_cache;
2125 	const vmem_t *wi_vmem;
2126 	vmem_t *wi_msb_arena;
2127 	size_t wi_slab_size;
2128 	uint_t wi_slab_found;
2129 	uint_t wi_kmem_lite_count;
2130 	uint_t wi_freemem;
2131 } whatis_info_t;
2132 
2133 /* call one of our dcmd functions with "-v" and the provided address */
2134 static void
2135 whatis_call_printer(mdb_dcmd_f *dcmd, uintptr_t addr)
2136 {
2137 	mdb_arg_t a;
2138 	a.a_type = MDB_TYPE_STRING;
2139 	a.a_un.a_str = "-v";
2140 
2141 	mdb_printf(":\n");
2142 	(void) (*dcmd)(addr, DCMD_ADDRSPEC, 1, &a);
2143 }
2144 
2145 static void
2146 whatis_print_kmf_lite(uintptr_t btaddr, size_t count)
2147 {
2148 #define	KMEM_LITE_MAX	16
2149 	pc_t callers[KMEM_LITE_MAX];
2150 	pc_t uninit = (pc_t)KMEM_UNINITIALIZED_PATTERN;
2151 
2152 	kmem_buftag_t bt;
2153 	intptr_t stat;
2154 	const char *plural = "";
2155 	int i;
2156 
2157 	/* validate our arguments and read in the buftag */
2158 	if (count == 0 || count > KMEM_LITE_MAX ||
2159 	    mdb_vread(&bt, sizeof (bt), btaddr) == -1)
2160 		return;
2161 
2162 	/* validate the buffer state and read in the callers */
2163 	stat = (intptr_t)bt.bt_bufctl ^ bt.bt_bxstat;
2164 
2165 	if (stat != KMEM_BUFTAG_ALLOC && stat != KMEM_BUFTAG_FREE)
2166 		return;
2167 
2168 	if (mdb_vread(callers, count * sizeof (pc_t),
2169 	    btaddr + offsetof(kmem_buftag_lite_t, bt_history)) == -1)
2170 		return;
2171 
2172 	/* If there aren't any filled in callers, bail */
2173 	if (callers[0] == uninit)
2174 		return;
2175 
2176 	plural = (callers[1] == uninit) ? "" : "s";
2177 
2178 	/* Everything's done and checked; print them out */
2179 	mdb_printf(":\n");
2180 
2181 	mdb_inc_indent(8);
2182 	mdb_printf("recent caller%s: %a", plural, callers[0]);
2183 	for (i = 1; i < count; i++) {
2184 		if (callers[i] == uninit)
2185 			break;
2186 		mdb_printf(", %a", callers[i]);
2187 	}
2188 	mdb_dec_indent(8);
2189 }
2190 
2191 static void
2192 whatis_print_kmem(whatis_info_t *wi, uintptr_t maddr, uintptr_t addr,
2193     uintptr_t baddr)
2194 {
2195 	mdb_whatis_t *w = wi->wi_w;
2196 
2197 	const kmem_cache_t *cp = wi->wi_cache;
2198 	/* LINTED pointer cast may result in improper alignment */
2199 	uintptr_t btaddr = (uintptr_t)KMEM_BUFTAG(cp, addr);
2200 	int quiet = (mdb_whatis_flags(w) & WHATIS_QUIET);
2201 	int call_printer = (!quiet && (cp->cache_flags & KMF_AUDIT));
2202 
2203 	mdb_whatis_report_object(w, maddr, addr, "");
2204 
2205 	if (baddr != 0 && !call_printer)
2206 		mdb_printf("bufctl %p ", baddr);
2207 
2208 	mdb_printf("%s from %s",
2209 	    (wi->wi_freemem == FALSE) ? "allocated" : "freed", cp->cache_name);
2210 
2211 	if (baddr != 0 && call_printer) {
2212 		whatis_call_printer(bufctl, baddr);
2213 		return;
2214 	}
2215 
2216 	/* for KMF_LITE caches, try to print out the previous callers */
2217 	if (!quiet && (cp->cache_flags & KMF_LITE))
2218 		whatis_print_kmf_lite(btaddr, wi->wi_kmem_lite_count);
2219 
2220 	mdb_printf("\n");
2221 }
2222 
2223 /*ARGSUSED*/
2224 static int
2225 whatis_walk_kmem(uintptr_t addr, void *ignored, whatis_info_t *wi)
2226 {
2227 	mdb_whatis_t *w = wi->wi_w;
2228 
2229 	uintptr_t cur;
2230 	size_t size = wi->wi_cache->cache_bufsize;
2231 
2232 	while (mdb_whatis_match(w, addr, size, &cur))
2233 		whatis_print_kmem(wi, cur, addr, NULL);
2234 
2235 	return (WHATIS_WALKRET(w));
2236 }
2237 
2238 /*ARGSUSED*/
2239 static int
2240 whatis_walk_bufctl(uintptr_t baddr, const kmem_bufctl_t *bcp, whatis_info_t *wi)
2241 {
2242 	mdb_whatis_t *w = wi->wi_w;
2243 
2244 	uintptr_t cur;
2245 	uintptr_t addr = (uintptr_t)bcp->bc_addr;
2246 	size_t size = wi->wi_cache->cache_bufsize;
2247 
2248 	while (mdb_whatis_match(w, addr, size, &cur))
2249 		whatis_print_kmem(wi, cur, addr, baddr);
2250 
2251 	return (WHATIS_WALKRET(w));
2252 }
2253 
2254 static int
2255 whatis_walk_seg(uintptr_t addr, const vmem_seg_t *vs, whatis_info_t *wi)
2256 {
2257 	mdb_whatis_t *w = wi->wi_w;
2258 
2259 	size_t size = vs->vs_end - vs->vs_start;
2260 	uintptr_t cur;
2261 
2262 	/* We're not interested in anything but alloc and free segments */
2263 	if (vs->vs_type != VMEM_ALLOC && vs->vs_type != VMEM_FREE)
2264 		return (WALK_NEXT);
2265 
2266 	while (mdb_whatis_match(w, vs->vs_start, size, &cur)) {
2267 		mdb_whatis_report_object(w, cur, vs->vs_start, "");
2268 
2269 		/*
2270 		 * If we're not printing it seperately, provide the vmem_seg
2271 		 * pointer if it has a stack trace.
2272 		 */
2273 		if ((mdb_whatis_flags(w) & WHATIS_QUIET) &&
2274 		    (!(mdb_whatis_flags(w) & WHATIS_BUFCTL) ||
2275 		    (vs->vs_type == VMEM_ALLOC && vs->vs_depth != 0))) {
2276 			mdb_printf("vmem_seg %p ", addr);
2277 		}
2278 
2279 		mdb_printf("%s from the %s vmem arena",
2280 		    (vs->vs_type == VMEM_ALLOC) ? "allocated" : "freed",
2281 		    wi->wi_vmem->vm_name);
2282 
2283 		if (!(mdb_whatis_flags(w) & WHATIS_QUIET))
2284 			whatis_call_printer(vmem_seg, addr);
2285 		else
2286 			mdb_printf("\n");
2287 	}
2288 
2289 	return (WHATIS_WALKRET(w));
2290 }
2291 
2292 static int
2293 whatis_walk_vmem(uintptr_t addr, const vmem_t *vmem, whatis_info_t *wi)
2294 {
2295 	mdb_whatis_t *w = wi->wi_w;
2296 	const char *nm = vmem->vm_name;
2297 
2298 	int identifier = ((vmem->vm_cflags & VMC_IDENTIFIER) != 0);
2299 	int idspace = ((mdb_whatis_flags(w) & WHATIS_IDSPACE) != 0);
2300 
2301 	if (identifier != idspace)
2302 		return (WALK_NEXT);
2303 
2304 	wi->wi_vmem = vmem;
2305 
2306 	if (mdb_whatis_flags(w) & WHATIS_VERBOSE)
2307 		mdb_printf("Searching vmem arena %s...\n", nm);
2308 
2309 	if (mdb_pwalk("vmem_seg",
2310 	    (mdb_walk_cb_t)whatis_walk_seg, wi, addr) == -1) {
2311 		mdb_warn("can't walk vmem_seg for %p", addr);
2312 		return (WALK_NEXT);
2313 	}
2314 
2315 	return (WHATIS_WALKRET(w));
2316 }
2317 
2318 /*ARGSUSED*/
2319 static int
2320 whatis_walk_slab(uintptr_t saddr, const kmem_slab_t *sp, whatis_info_t *wi)
2321 {
2322 	mdb_whatis_t *w = wi->wi_w;
2323 
2324 	/* It must overlap with the slab data, or it's not interesting */
2325 	if (mdb_whatis_overlaps(w,
2326 	    (uintptr_t)sp->slab_base, wi->wi_slab_size)) {
2327 		wi->wi_slab_found++;
2328 		return (WALK_DONE);
2329 	}
2330 	return (WALK_NEXT);
2331 }
2332 
2333 static int
2334 whatis_walk_cache(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi)
2335 {
2336 	mdb_whatis_t *w = wi->wi_w;
2337 
2338 	char *walk, *freewalk;
2339 	mdb_walk_cb_t func;
2340 	int do_bufctl;
2341 
2342 	int identifier = ((c->cache_flags & KMC_IDENTIFIER) != 0);
2343 	int idspace = ((mdb_whatis_flags(w) & WHATIS_IDSPACE) != 0);
2344 
2345 	if (identifier != idspace)
2346 		return (WALK_NEXT);
2347 
2348 	/* Override the '-b' flag as necessary */
2349 	if (!(c->cache_flags & KMF_HASH))
2350 		do_bufctl = FALSE;	/* no bufctls to walk */
2351 	else if (c->cache_flags & KMF_AUDIT)
2352 		do_bufctl = TRUE;	/* we always want debugging info */
2353 	else
2354 		do_bufctl = ((mdb_whatis_flags(w) & WHATIS_BUFCTL) != 0);
2355 
2356 	if (do_bufctl) {
2357 		walk = "bufctl";
2358 		freewalk = "freectl";
2359 		func = (mdb_walk_cb_t)whatis_walk_bufctl;
2360 	} else {
2361 		walk = "kmem";
2362 		freewalk = "freemem";
2363 		func = (mdb_walk_cb_t)whatis_walk_kmem;
2364 	}
2365 
2366 	wi->wi_cache = c;
2367 
2368 	if (mdb_whatis_flags(w) & WHATIS_VERBOSE)
2369 		mdb_printf("Searching %s...\n", c->cache_name);
2370 
2371 	/*
2372 	 * If more then two buffers live on each slab, figure out if we're
2373 	 * interested in anything in any slab before doing the more expensive
2374 	 * kmem/freemem (bufctl/freectl) walkers.
2375 	 */
2376 	wi->wi_slab_size = c->cache_slabsize - c->cache_maxcolor;
2377 	if (!(c->cache_flags & KMF_HASH))
2378 		wi->wi_slab_size -= sizeof (kmem_slab_t);
2379 
2380 	if ((wi->wi_slab_size / c->cache_chunksize) > 2) {
2381 		wi->wi_slab_found = 0;
2382 		if (mdb_pwalk("kmem_slab", (mdb_walk_cb_t)whatis_walk_slab, wi,
2383 		    addr) == -1) {
2384 			mdb_warn("can't find kmem_slab walker");
2385 			return (WALK_DONE);
2386 		}
2387 		if (wi->wi_slab_found == 0)
2388 			return (WALK_NEXT);
2389 	}
2390 
2391 	wi->wi_freemem = FALSE;
2392 	if (mdb_pwalk(walk, func, wi, addr) == -1) {
2393 		mdb_warn("can't find %s walker", walk);
2394 		return (WALK_DONE);
2395 	}
2396 
2397 	if (mdb_whatis_done(w))
2398 		return (WALK_DONE);
2399 
2400 	/*
2401 	 * We have searched for allocated memory; now search for freed memory.
2402 	 */
2403 	if (mdb_whatis_flags(w) & WHATIS_VERBOSE)
2404 		mdb_printf("Searching %s for free memory...\n", c->cache_name);
2405 
2406 	wi->wi_freemem = TRUE;
2407 	if (mdb_pwalk(freewalk, func, wi, addr) == -1) {
2408 		mdb_warn("can't find %s walker", freewalk);
2409 		return (WALK_DONE);
2410 	}
2411 
2412 	return (WHATIS_WALKRET(w));
2413 }
2414 
2415 static int
2416 whatis_walk_touch(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi)
2417 {
2418 	if (c->cache_arena == wi->wi_msb_arena ||
2419 	    (c->cache_cflags & KMC_NOTOUCH))
2420 		return (WALK_NEXT);
2421 
2422 	return (whatis_walk_cache(addr, c, wi));
2423 }
2424 
2425 static int
2426 whatis_walk_metadata(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi)
2427 {
2428 	if (c->cache_arena != wi->wi_msb_arena)
2429 		return (WALK_NEXT);
2430 
2431 	return (whatis_walk_cache(addr, c, wi));
2432 }
2433 
2434 static int
2435 whatis_walk_notouch(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi)
2436 {
2437 	if (c->cache_arena == wi->wi_msb_arena ||
2438 	    !(c->cache_cflags & KMC_NOTOUCH))
2439 		return (WALK_NEXT);
2440 
2441 	return (whatis_walk_cache(addr, c, wi));
2442 }
2443 
2444 static int
2445 whatis_walk_thread(uintptr_t addr, const kthread_t *t, mdb_whatis_t *w)
2446 {
2447 	uintptr_t cur;
2448 	uintptr_t saddr;
2449 	size_t size;
2450 
2451 	/*
2452 	 * Often, one calls ::whatis on an address from a thread structure.
2453 	 * We use this opportunity to short circuit this case...
2454 	 */
2455 	while (mdb_whatis_match(w, addr, sizeof (kthread_t), &cur))
2456 		mdb_whatis_report_object(w, cur, addr,
2457 		    "allocated as a thread structure\n");
2458 
2459 	/*
2460 	 * Now check the stack
2461 	 */
2462 	if (t->t_stkbase == NULL)
2463 		return (WALK_NEXT);
2464 
2465 	/*
2466 	 * This assumes that t_stk is the end of the stack, but it's really
2467 	 * only the initial stack pointer for the thread.  Arguments to the
2468 	 * initial procedure, SA(MINFRAME), etc. are all after t_stk.  So
2469 	 * that 't->t_stk::whatis' reports "part of t's stack", we include
2470 	 * t_stk in the range (the "+ 1", below), but the kernel should
2471 	 * really include the full stack bounds where we can find it.
2472 	 */
2473 	saddr = (uintptr_t)t->t_stkbase;
2474 	size = (uintptr_t)t->t_stk - saddr + 1;
2475 	while (mdb_whatis_match(w, saddr, size, &cur))
2476 		mdb_whatis_report_object(w, cur, cur,
2477 		    "in thread %p's stack%s\n", addr, stack_active(t, cur));
2478 
2479 	return (WHATIS_WALKRET(w));
2480 }
2481 
2482 static void
2483 whatis_modctl_match(mdb_whatis_t *w, const char *name,
2484     uintptr_t base, size_t size, const char *where)
2485 {
2486 	uintptr_t cur;
2487 
2488 	/*
2489 	 * Since we're searching for addresses inside a module, we report
2490 	 * them as symbols.
2491 	 */
2492 	while (mdb_whatis_match(w, base, size, &cur))
2493 		mdb_whatis_report_address(w, cur, "in %s's %s\n", name, where);
2494 }
2495 
2496 static int
2497 whatis_walk_modctl(uintptr_t addr, const struct modctl *m, mdb_whatis_t *w)
2498 {
2499 	char name[MODMAXNAMELEN];
2500 	struct module mod;
2501 	Shdr shdr;
2502 
2503 	if (m->mod_mp == NULL)
2504 		return (WALK_NEXT);
2505 
2506 	if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) {
2507 		mdb_warn("couldn't read modctl %p's module", addr);
2508 		return (WALK_NEXT);
2509 	}
2510 
2511 	if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1)
2512 		(void) mdb_snprintf(name, sizeof (name), "0x%p", addr);
2513 
2514 	whatis_modctl_match(w, name,
2515 	    (uintptr_t)mod.text, mod.text_size, "text segment");
2516 	whatis_modctl_match(w, name,
2517 	    (uintptr_t)mod.data, mod.data_size, "data segment");
2518 	whatis_modctl_match(w, name,
2519 	    (uintptr_t)mod.bss, mod.bss_size, "bss segment");
2520 
2521 	if (mdb_vread(&shdr, sizeof (shdr), (uintptr_t)mod.symhdr) == -1) {
2522 		mdb_warn("couldn't read symbol header for %p's module", addr);
2523 		return (WALK_NEXT);
2524 	}
2525 
2526 	whatis_modctl_match(w, name,
2527 	    (uintptr_t)mod.symtbl, mod.nsyms * shdr.sh_entsize, "symtab");
2528 	whatis_modctl_match(w, name,
2529 	    (uintptr_t)mod.symspace, mod.symsize, "symtab");
2530 
2531 	return (WHATIS_WALKRET(w));
2532 }
2533 
2534 /*ARGSUSED*/
2535 static int
2536 whatis_walk_memseg(uintptr_t addr, const struct memseg *seg, mdb_whatis_t *w)
2537 {
2538 	uintptr_t cur;
2539 
2540 	uintptr_t base = (uintptr_t)seg->pages;
2541 	size_t size = (uintptr_t)seg->epages - base;
2542 
2543 	while (mdb_whatis_match(w, base, size, &cur)) {
2544 		/* round our found pointer down to the page_t base. */
2545 		size_t offset = (cur - base) % sizeof (page_t);
2546 
2547 		mdb_whatis_report_object(w, cur, cur - offset,
2548 		    "allocated as a page structure\n");
2549 	}
2550 
2551 	return (WHATIS_WALKRET(w));
2552 }
2553 
2554 /*ARGSUSED*/
2555 static int
2556 whatis_run_modules(mdb_whatis_t *w, void *arg)
2557 {
2558 	if (mdb_walk("modctl", (mdb_walk_cb_t)whatis_walk_modctl, w) == -1) {
2559 		mdb_warn("couldn't find modctl walker");
2560 		return (1);
2561 	}
2562 	return (0);
2563 }
2564 
2565 /*ARGSUSED*/
2566 static int
2567 whatis_run_threads(mdb_whatis_t *w, void *ignored)
2568 {
2569 	/*
2570 	 * Now search all thread stacks.  Yes, this is a little weak; we
2571 	 * can save a lot of work by first checking to see if the
2572 	 * address is in segkp vs. segkmem.  But hey, computers are
2573 	 * fast.
2574 	 */
2575 	if (mdb_walk("thread", (mdb_walk_cb_t)whatis_walk_thread, w) == -1) {
2576 		mdb_warn("couldn't find thread walker");
2577 		return (1);
2578 	}
2579 	return (0);
2580 }
2581 
2582 /*ARGSUSED*/
2583 static int
2584 whatis_run_pages(mdb_whatis_t *w, void *ignored)
2585 {
2586 	if (mdb_walk("memseg", (mdb_walk_cb_t)whatis_walk_memseg, w) == -1) {
2587 		mdb_warn("couldn't find memseg walker");
2588 		return (1);
2589 	}
2590 	return (0);
2591 }
2592 
2593 /*ARGSUSED*/
2594 static int
2595 whatis_run_kmem(mdb_whatis_t *w, void *ignored)
2596 {
2597 	whatis_info_t wi;
2598 
2599 	bzero(&wi, sizeof (wi));
2600 	wi.wi_w = w;
2601 
2602 	if (mdb_readvar(&wi.wi_msb_arena, "kmem_msb_arena") == -1)
2603 		mdb_warn("unable to readvar \"kmem_msb_arena\"");
2604 
2605 	if (mdb_readvar(&wi.wi_kmem_lite_count,
2606 	    "kmem_lite_count") == -1 || wi.wi_kmem_lite_count > 16)
2607 		wi.wi_kmem_lite_count = 0;
2608 
2609 	/*
2610 	 * We process kmem caches in the following order:
2611 	 *
2612 	 *	non-KMC_NOTOUCH, non-metadata	(typically the most interesting)
2613 	 *	metadata			(can be huge with KMF_AUDIT)
2614 	 *	KMC_NOTOUCH, non-metadata	(see kmem_walk_all())
2615 	 */
2616 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_touch,
2617 	    &wi) == -1 ||
2618 	    mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_metadata,
2619 	    &wi) == -1 ||
2620 	    mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_notouch,
2621 	    &wi) == -1) {
2622 		mdb_warn("couldn't find kmem_cache walker");
2623 		return (1);
2624 	}
2625 	return (0);
2626 }
2627 
2628 /*ARGSUSED*/
2629 static int
2630 whatis_run_vmem(mdb_whatis_t *w, void *ignored)
2631 {
2632 	whatis_info_t wi;
2633 
2634 	bzero(&wi, sizeof (wi));
2635 	wi.wi_w = w;
2636 
2637 	if (mdb_walk("vmem_postfix",
2638 	    (mdb_walk_cb_t)whatis_walk_vmem, &wi) == -1) {
2639 		mdb_warn("couldn't find vmem_postfix walker");
2640 		return (1);
2641 	}
2642 	return (0);
2643 }
2644 
2645 typedef struct kmem_log_cpu {
2646 	uintptr_t kmc_low;
2647 	uintptr_t kmc_high;
2648 } kmem_log_cpu_t;
2649 
2650 typedef struct kmem_log_data {
2651 	uintptr_t kmd_addr;
2652 	kmem_log_cpu_t *kmd_cpu;
2653 } kmem_log_data_t;
2654 
2655 int
2656 kmem_log_walk(uintptr_t addr, const kmem_bufctl_audit_t *b,
2657     kmem_log_data_t *kmd)
2658 {
2659 	int i;
2660 	kmem_log_cpu_t *kmc = kmd->kmd_cpu;
2661 	size_t bufsize;
2662 
2663 	for (i = 0; i < NCPU; i++) {
2664 		if (addr >= kmc[i].kmc_low && addr < kmc[i].kmc_high)
2665 			break;
2666 	}
2667 
2668 	if (kmd->kmd_addr) {
2669 		if (b->bc_cache == NULL)
2670 			return (WALK_NEXT);
2671 
2672 		if (mdb_vread(&bufsize, sizeof (bufsize),
2673 		    (uintptr_t)&b->bc_cache->cache_bufsize) == -1) {
2674 			mdb_warn(
2675 			    "failed to read cache_bufsize for cache at %p",
2676 			    b->bc_cache);
2677 			return (WALK_ERR);
2678 		}
2679 
2680 		if (kmd->kmd_addr < (uintptr_t)b->bc_addr ||
2681 		    kmd->kmd_addr >= (uintptr_t)b->bc_addr + bufsize)
2682 			return (WALK_NEXT);
2683 	}
2684 
2685 	if (i == NCPU)
2686 		mdb_printf("   ");
2687 	else
2688 		mdb_printf("%3d", i);
2689 
2690 	mdb_printf(" %0?p %0?p %16llx %0?p\n", addr, b->bc_addr,
2691 	    b->bc_timestamp, b->bc_thread);
2692 
2693 	return (WALK_NEXT);
2694 }
2695 
2696 /*ARGSUSED*/
2697 int
2698 kmem_log(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2699 {
2700 	kmem_log_header_t lh;
2701 	kmem_cpu_log_header_t clh;
2702 	uintptr_t lhp, clhp;
2703 	int ncpus;
2704 	uintptr_t *cpu;
2705 	GElf_Sym sym;
2706 	kmem_log_cpu_t *kmc;
2707 	int i;
2708 	kmem_log_data_t kmd;
2709 	uint_t opt_b = FALSE;
2710 
2711 	if (mdb_getopts(argc, argv,
2712 	    'b', MDB_OPT_SETBITS, TRUE, &opt_b, NULL) != argc)
2713 		return (DCMD_USAGE);
2714 
2715 	if (mdb_readvar(&lhp, "kmem_transaction_log") == -1) {
2716 		mdb_warn("failed to read 'kmem_transaction_log'");
2717 		return (DCMD_ERR);
2718 	}
2719 
2720 	if (lhp == NULL) {
2721 		mdb_warn("no kmem transaction log\n");
2722 		return (DCMD_ERR);
2723 	}
2724 
2725 	mdb_readvar(&ncpus, "ncpus");
2726 
2727 	if (mdb_vread(&lh, sizeof (kmem_log_header_t), lhp) == -1) {
2728 		mdb_warn("failed to read log header at %p", lhp);
2729 		return (DCMD_ERR);
2730 	}
2731 
2732 	clhp = lhp + ((uintptr_t)&lh.lh_cpu[0] - (uintptr_t)&lh);
2733 
2734 	cpu = mdb_alloc(sizeof (uintptr_t) * NCPU, UM_SLEEP | UM_GC);
2735 
2736 	if (mdb_lookup_by_name("cpu", &sym) == -1) {
2737 		mdb_warn("couldn't find 'cpu' array");
2738 		return (DCMD_ERR);
2739 	}
2740 
2741 	if (sym.st_size != NCPU * sizeof (uintptr_t)) {
2742 		mdb_warn("expected 'cpu' to be of size %d; found %d\n",
2743 		    NCPU * sizeof (uintptr_t), sym.st_size);
2744 		return (DCMD_ERR);
2745 	}
2746 
2747 	if (mdb_vread(cpu, sym.st_size, (uintptr_t)sym.st_value) == -1) {
2748 		mdb_warn("failed to read cpu array at %p", sym.st_value);
2749 		return (DCMD_ERR);
2750 	}
2751 
2752 	kmc = mdb_zalloc(sizeof (kmem_log_cpu_t) * NCPU, UM_SLEEP | UM_GC);
2753 	kmd.kmd_addr = NULL;
2754 	kmd.kmd_cpu = kmc;
2755 
2756 	for (i = 0; i < NCPU; i++) {
2757 
2758 		if (cpu[i] == NULL)
2759 			continue;
2760 
2761 		if (mdb_vread(&clh, sizeof (clh), clhp) == -1) {
2762 			mdb_warn("cannot read cpu %d's log header at %p",
2763 			    i, clhp);
2764 			return (DCMD_ERR);
2765 		}
2766 
2767 		kmc[i].kmc_low = clh.clh_chunk * lh.lh_chunksize +
2768 		    (uintptr_t)lh.lh_base;
2769 		kmc[i].kmc_high = (uintptr_t)clh.clh_current;
2770 
2771 		clhp += sizeof (kmem_cpu_log_header_t);
2772 	}
2773 
2774 	mdb_printf("%3s %-?s %-?s %16s %-?s\n", "CPU", "ADDR", "BUFADDR",
2775 	    "TIMESTAMP", "THREAD");
2776 
2777 	/*
2778 	 * If we have been passed an address, print out only log entries
2779 	 * corresponding to that address.  If opt_b is specified, then interpret
2780 	 * the address as a bufctl.
2781 	 */
2782 	if (flags & DCMD_ADDRSPEC) {
2783 		kmem_bufctl_audit_t b;
2784 
2785 		if (opt_b) {
2786 			kmd.kmd_addr = addr;
2787 		} else {
2788 			if (mdb_vread(&b,
2789 			    sizeof (kmem_bufctl_audit_t), addr) == -1) {
2790 				mdb_warn("failed to read bufctl at %p", addr);
2791 				return (DCMD_ERR);
2792 			}
2793 
2794 			(void) kmem_log_walk(addr, &b, &kmd);
2795 
2796 			return (DCMD_OK);
2797 		}
2798 	}
2799 
2800 	if (mdb_walk("kmem_log", (mdb_walk_cb_t)kmem_log_walk, &kmd) == -1) {
2801 		mdb_warn("can't find kmem log walker");
2802 		return (DCMD_ERR);
2803 	}
2804 
2805 	return (DCMD_OK);
2806 }
2807 
2808 typedef struct bufctl_history_cb {
2809 	int		bhc_flags;
2810 	int		bhc_argc;
2811 	const mdb_arg_t	*bhc_argv;
2812 	int		bhc_ret;
2813 } bufctl_history_cb_t;
2814 
2815 /*ARGSUSED*/
2816 static int
2817 bufctl_history_callback(uintptr_t addr, const void *ign, void *arg)
2818 {
2819 	bufctl_history_cb_t *bhc = arg;
2820 
2821 	bhc->bhc_ret =
2822 	    bufctl(addr, bhc->bhc_flags, bhc->bhc_argc, bhc->bhc_argv);
2823 
2824 	bhc->bhc_flags &= ~DCMD_LOOPFIRST;
2825 
2826 	return ((bhc->bhc_ret == DCMD_OK)? WALK_NEXT : WALK_DONE);
2827 }
2828 
2829 void
2830 bufctl_help(void)
2831 {
2832 	mdb_printf("%s",
2833 "Display the contents of kmem_bufctl_audit_ts, with optional filtering.\n\n");
2834 	mdb_dec_indent(2);
2835 	mdb_printf("%<b>OPTIONS%</b>\n");
2836 	mdb_inc_indent(2);
2837 	mdb_printf("%s",
2838 "  -v    Display the full content of the bufctl, including its stack trace\n"
2839 "  -h    retrieve the bufctl's transaction history, if available\n"
2840 "  -a addr\n"
2841 "        filter out bufctls not involving the buffer at addr\n"
2842 "  -c caller\n"
2843 "        filter out bufctls without the function/PC in their stack trace\n"
2844 "  -e earliest\n"
2845 "        filter out bufctls timestamped before earliest\n"
2846 "  -l latest\n"
2847 "        filter out bufctls timestamped after latest\n"
2848 "  -t thread\n"
2849 "        filter out bufctls not involving thread\n");
2850 }
2851 
2852 int
2853 bufctl(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2854 {
2855 	kmem_bufctl_audit_t bc;
2856 	uint_t verbose = FALSE;
2857 	uint_t history = FALSE;
2858 	uint_t in_history = FALSE;
2859 	uintptr_t caller = NULL, thread = NULL;
2860 	uintptr_t laddr, haddr, baddr = NULL;
2861 	hrtime_t earliest = 0, latest = 0;
2862 	int i, depth;
2863 	char c[MDB_SYM_NAMLEN];
2864 	GElf_Sym sym;
2865 
2866 	if (mdb_getopts(argc, argv,
2867 	    'v', MDB_OPT_SETBITS, TRUE, &verbose,
2868 	    'h', MDB_OPT_SETBITS, TRUE, &history,
2869 	    'H', MDB_OPT_SETBITS, TRUE, &in_history,		/* internal */
2870 	    'c', MDB_OPT_UINTPTR, &caller,
2871 	    't', MDB_OPT_UINTPTR, &thread,
2872 	    'e', MDB_OPT_UINT64, &earliest,
2873 	    'l', MDB_OPT_UINT64, &latest,
2874 	    'a', MDB_OPT_UINTPTR, &baddr, NULL) != argc)
2875 		return (DCMD_USAGE);
2876 
2877 	if (!(flags & DCMD_ADDRSPEC))
2878 		return (DCMD_USAGE);
2879 
2880 	if (in_history && !history)
2881 		return (DCMD_USAGE);
2882 
2883 	if (history && !in_history) {
2884 		mdb_arg_t *nargv = mdb_zalloc(sizeof (*nargv) * (argc + 1),
2885 		    UM_SLEEP | UM_GC);
2886 		bufctl_history_cb_t bhc;
2887 
2888 		nargv[0].a_type = MDB_TYPE_STRING;
2889 		nargv[0].a_un.a_str = "-H";		/* prevent recursion */
2890 
2891 		for (i = 0; i < argc; i++)
2892 			nargv[i + 1] = argv[i];
2893 
2894 		/*
2895 		 * When in history mode, we treat each element as if it
2896 		 * were in a seperate loop, so that the headers group
2897 		 * bufctls with similar histories.
2898 		 */
2899 		bhc.bhc_flags = flags | DCMD_LOOP | DCMD_LOOPFIRST;
2900 		bhc.bhc_argc = argc + 1;
2901 		bhc.bhc_argv = nargv;
2902 		bhc.bhc_ret = DCMD_OK;
2903 
2904 		if (mdb_pwalk("bufctl_history", bufctl_history_callback, &bhc,
2905 		    addr) == -1) {
2906 			mdb_warn("unable to walk bufctl_history");
2907 			return (DCMD_ERR);
2908 		}
2909 
2910 		if (bhc.bhc_ret == DCMD_OK && !(flags & DCMD_PIPE_OUT))
2911 			mdb_printf("\n");
2912 
2913 		return (bhc.bhc_ret);
2914 	}
2915 
2916 	if (DCMD_HDRSPEC(flags) && !(flags & DCMD_PIPE_OUT)) {
2917 		if (verbose) {
2918 			mdb_printf("%16s %16s %16s %16s\n"
2919 			    "%<u>%16s %16s %16s %16s%</u>\n",
2920 			    "ADDR", "BUFADDR", "TIMESTAMP", "THREAD",
2921 			    "", "CACHE", "LASTLOG", "CONTENTS");
2922 		} else {
2923 			mdb_printf("%<u>%-?s %-?s %-12s %-?s %s%</u>\n",
2924 			    "ADDR", "BUFADDR", "TIMESTAMP", "THREAD", "CALLER");
2925 		}
2926 	}
2927 
2928 	if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
2929 		mdb_warn("couldn't read bufctl at %p", addr);
2930 		return (DCMD_ERR);
2931 	}
2932 
2933 	/*
2934 	 * Guard against bogus bc_depth in case the bufctl is corrupt or
2935 	 * the address does not really refer to a bufctl.
2936 	 */
2937 	depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH);
2938 
2939 	if (caller != NULL) {
2940 		laddr = caller;
2941 		haddr = caller + sizeof (caller);
2942 
2943 		if (mdb_lookup_by_addr(caller, MDB_SYM_FUZZY, c, sizeof (c),
2944 		    &sym) != -1 && caller == (uintptr_t)sym.st_value) {
2945 			/*
2946 			 * We were provided an exact symbol value; any
2947 			 * address in the function is valid.
2948 			 */
2949 			laddr = (uintptr_t)sym.st_value;
2950 			haddr = (uintptr_t)sym.st_value + sym.st_size;
2951 		}
2952 
2953 		for (i = 0; i < depth; i++)
2954 			if (bc.bc_stack[i] >= laddr && bc.bc_stack[i] < haddr)
2955 				break;
2956 
2957 		if (i == depth)
2958 			return (DCMD_OK);
2959 	}
2960 
2961 	if (thread != NULL && (uintptr_t)bc.bc_thread != thread)
2962 		return (DCMD_OK);
2963 
2964 	if (earliest != 0 && bc.bc_timestamp < earliest)
2965 		return (DCMD_OK);
2966 
2967 	if (latest != 0 && bc.bc_timestamp > latest)
2968 		return (DCMD_OK);
2969 
2970 	if (baddr != 0 && (uintptr_t)bc.bc_addr != baddr)
2971 		return (DCMD_OK);
2972 
2973 	if (flags & DCMD_PIPE_OUT) {
2974 		mdb_printf("%#lr\n", addr);
2975 		return (DCMD_OK);
2976 	}
2977 
2978 	if (verbose) {
2979 		mdb_printf(
2980 		    "%<b>%16p%</b> %16p %16llx %16p\n"
2981 		    "%16s %16p %16p %16p\n",
2982 		    addr, bc.bc_addr, bc.bc_timestamp, bc.bc_thread,
2983 		    "", bc.bc_cache, bc.bc_lastlog, bc.bc_contents);
2984 
2985 		mdb_inc_indent(17);
2986 		for (i = 0; i < depth; i++)
2987 			mdb_printf("%a\n", bc.bc_stack[i]);
2988 		mdb_dec_indent(17);
2989 		mdb_printf("\n");
2990 	} else {
2991 		mdb_printf("%0?p %0?p %12llx %0?p", addr, bc.bc_addr,
2992 		    bc.bc_timestamp, bc.bc_thread);
2993 
2994 		for (i = 0; i < depth; i++) {
2995 			if (mdb_lookup_by_addr(bc.bc_stack[i],
2996 			    MDB_SYM_FUZZY, c, sizeof (c), &sym) == -1)
2997 				continue;
2998 			if (strncmp(c, "kmem_", 5) == 0)
2999 				continue;
3000 			mdb_printf(" %a\n", bc.bc_stack[i]);
3001 			break;
3002 		}
3003 
3004 		if (i >= depth)
3005 			mdb_printf("\n");
3006 	}
3007 
3008 	return (DCMD_OK);
3009 }
3010 
3011 typedef struct kmem_verify {
3012 	uint64_t *kmv_buf;		/* buffer to read cache contents into */
3013 	size_t kmv_size;		/* number of bytes in kmv_buf */
3014 	int kmv_corruption;		/* > 0 if corruption found. */
3015 	int kmv_besilent;		/* report actual corruption sites */
3016 	struct kmem_cache kmv_cache;	/* the cache we're operating on */
3017 } kmem_verify_t;
3018 
3019 /*
3020  * verify_pattern()
3021  * 	verify that buf is filled with the pattern pat.
3022  */
3023 static int64_t
3024 verify_pattern(uint64_t *buf_arg, size_t size, uint64_t pat)
3025 {
3026 	/*LINTED*/
3027 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
3028 	uint64_t *buf;
3029 
3030 	for (buf = buf_arg; buf < bufend; buf++)
3031 		if (*buf != pat)
3032 			return ((uintptr_t)buf - (uintptr_t)buf_arg);
3033 	return (-1);
3034 }
3035 
3036 /*
3037  * verify_buftag()
3038  *	verify that btp->bt_bxstat == (bcp ^ pat)
3039  */
3040 static int
3041 verify_buftag(kmem_buftag_t *btp, uintptr_t pat)
3042 {
3043 	return (btp->bt_bxstat == ((intptr_t)btp->bt_bufctl ^ pat) ? 0 : -1);
3044 }
3045 
3046 /*
3047  * verify_free()
3048  * 	verify the integrity of a free block of memory by checking
3049  * 	that it is filled with 0xdeadbeef and that its buftag is sane.
3050  */
3051 /*ARGSUSED1*/
3052 static int
3053 verify_free(uintptr_t addr, const void *data, void *private)
3054 {
3055 	kmem_verify_t *kmv = (kmem_verify_t *)private;
3056 	uint64_t *buf = kmv->kmv_buf;	/* buf to validate */
3057 	int64_t corrupt;		/* corruption offset */
3058 	kmem_buftag_t *buftagp;		/* ptr to buftag */
3059 	kmem_cache_t *cp = &kmv->kmv_cache;
3060 	int besilent = kmv->kmv_besilent;
3061 
3062 	/*LINTED*/
3063 	buftagp = KMEM_BUFTAG(cp, buf);
3064 
3065 	/*
3066 	 * Read the buffer to check.
3067 	 */
3068 	if (mdb_vread(buf, kmv->kmv_size, addr) == -1) {
3069 		if (!besilent)
3070 			mdb_warn("couldn't read %p", addr);
3071 		return (WALK_NEXT);
3072 	}
3073 
3074 	if ((corrupt = verify_pattern(buf, cp->cache_verify,
3075 	    KMEM_FREE_PATTERN)) >= 0) {
3076 		if (!besilent)
3077 			mdb_printf("buffer %p (free) seems corrupted, at %p\n",
3078 			    addr, (uintptr_t)addr + corrupt);
3079 		goto corrupt;
3080 	}
3081 	/*
3082 	 * When KMF_LITE is set, buftagp->bt_redzone is used to hold
3083 	 * the first bytes of the buffer, hence we cannot check for red
3084 	 * zone corruption.
3085 	 */
3086 	if ((cp->cache_flags & (KMF_HASH | KMF_LITE)) == KMF_HASH &&
3087 	    buftagp->bt_redzone != KMEM_REDZONE_PATTERN) {
3088 		if (!besilent)
3089 			mdb_printf("buffer %p (free) seems to "
3090 			    "have a corrupt redzone pattern\n", addr);
3091 		goto corrupt;
3092 	}
3093 
3094 	/*
3095 	 * confirm bufctl pointer integrity.
3096 	 */
3097 	if (verify_buftag(buftagp, KMEM_BUFTAG_FREE) == -1) {
3098 		if (!besilent)
3099 			mdb_printf("buffer %p (free) has a corrupt "
3100 			    "buftag\n", addr);
3101 		goto corrupt;
3102 	}
3103 
3104 	return (WALK_NEXT);
3105 corrupt:
3106 	kmv->kmv_corruption++;
3107 	return (WALK_NEXT);
3108 }
3109 
3110 /*
3111  * verify_alloc()
3112  * 	Verify that the buftag of an allocated buffer makes sense with respect
3113  * 	to the buffer.
3114  */
3115 /*ARGSUSED1*/
3116 static int
3117 verify_alloc(uintptr_t addr, const void *data, void *private)
3118 {
3119 	kmem_verify_t *kmv = (kmem_verify_t *)private;
3120 	kmem_cache_t *cp = &kmv->kmv_cache;
3121 	uint64_t *buf = kmv->kmv_buf;	/* buf to validate */
3122 	/*LINTED*/
3123 	kmem_buftag_t *buftagp = KMEM_BUFTAG(cp, buf);
3124 	uint32_t *ip = (uint32_t *)buftagp;
3125 	uint8_t *bp = (uint8_t *)buf;
3126 	int looks_ok = 0, size_ok = 1;	/* flags for finding corruption */
3127 	int besilent = kmv->kmv_besilent;
3128 
3129 	/*
3130 	 * Read the buffer to check.
3131 	 */
3132 	if (mdb_vread(buf, kmv->kmv_size, addr) == -1) {
3133 		if (!besilent)
3134 			mdb_warn("couldn't read %p", addr);
3135 		return (WALK_NEXT);
3136 	}
3137 
3138 	/*
3139 	 * There are two cases to handle:
3140 	 * 1. If the buf was alloc'd using kmem_cache_alloc, it will have
3141 	 *    0xfeedfacefeedface at the end of it
3142 	 * 2. If the buf was alloc'd using kmem_alloc, it will have
3143 	 *    0xbb just past the end of the region in use.  At the buftag,
3144 	 *    it will have 0xfeedface (or, if the whole buffer is in use,
3145 	 *    0xfeedface & bb000000 or 0xfeedfacf & 000000bb depending on
3146 	 *    endianness), followed by 32 bits containing the offset of the
3147 	 *    0xbb byte in the buffer.
3148 	 *
3149 	 * Finally, the two 32-bit words that comprise the second half of the
3150 	 * buftag should xor to KMEM_BUFTAG_ALLOC
3151 	 */
3152 
3153 	if (buftagp->bt_redzone == KMEM_REDZONE_PATTERN)
3154 		looks_ok = 1;
3155 	else if (!KMEM_SIZE_VALID(ip[1]))
3156 		size_ok = 0;
3157 	else if (bp[KMEM_SIZE_DECODE(ip[1])] == KMEM_REDZONE_BYTE)
3158 		looks_ok = 1;
3159 	else
3160 		size_ok = 0;
3161 
3162 	if (!size_ok) {
3163 		if (!besilent)
3164 			mdb_printf("buffer %p (allocated) has a corrupt "
3165 			    "redzone size encoding\n", addr);
3166 		goto corrupt;
3167 	}
3168 
3169 	if (!looks_ok) {
3170 		if (!besilent)
3171 			mdb_printf("buffer %p (allocated) has a corrupt "
3172 			    "redzone signature\n", addr);
3173 		goto corrupt;
3174 	}
3175 
3176 	if (verify_buftag(buftagp, KMEM_BUFTAG_ALLOC) == -1) {
3177 		if (!besilent)
3178 			mdb_printf("buffer %p (allocated) has a "
3179 			    "corrupt buftag\n", addr);
3180 		goto corrupt;
3181 	}
3182 
3183 	return (WALK_NEXT);
3184 corrupt:
3185 	kmv->kmv_corruption++;
3186 	return (WALK_NEXT);
3187 }
3188 
3189 /*ARGSUSED2*/
3190 int
3191 kmem_verify(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3192 {
3193 	if (flags & DCMD_ADDRSPEC) {
3194 		int check_alloc = 0, check_free = 0;
3195 		kmem_verify_t kmv;
3196 
3197 		if (mdb_vread(&kmv.kmv_cache, sizeof (kmv.kmv_cache),
3198 		    addr) == -1) {
3199 			mdb_warn("couldn't read kmem_cache %p", addr);
3200 			return (DCMD_ERR);
3201 		}
3202 
3203 		kmv.kmv_size = kmv.kmv_cache.cache_buftag +
3204 		    sizeof (kmem_buftag_t);
3205 		kmv.kmv_buf = mdb_alloc(kmv.kmv_size, UM_SLEEP | UM_GC);
3206 		kmv.kmv_corruption = 0;
3207 
3208 		if ((kmv.kmv_cache.cache_flags & KMF_REDZONE)) {
3209 			check_alloc = 1;
3210 			if (kmv.kmv_cache.cache_flags & KMF_DEADBEEF)
3211 				check_free = 1;
3212 		} else {
3213 			if (!(flags & DCMD_LOOP)) {
3214 				mdb_warn("cache %p (%s) does not have "
3215 				    "redzone checking enabled\n", addr,
3216 				    kmv.kmv_cache.cache_name);
3217 			}
3218 			return (DCMD_ERR);
3219 		}
3220 
3221 		if (flags & DCMD_LOOP) {
3222 			/*
3223 			 * table mode, don't print out every corrupt buffer
3224 			 */
3225 			kmv.kmv_besilent = 1;
3226 		} else {
3227 			mdb_printf("Summary for cache '%s'\n",
3228 			    kmv.kmv_cache.cache_name);
3229 			mdb_inc_indent(2);
3230 			kmv.kmv_besilent = 0;
3231 		}
3232 
3233 		if (check_alloc)
3234 			(void) mdb_pwalk("kmem", verify_alloc, &kmv, addr);
3235 		if (check_free)
3236 			(void) mdb_pwalk("freemem", verify_free, &kmv, addr);
3237 
3238 		if (flags & DCMD_LOOP) {
3239 			if (kmv.kmv_corruption == 0) {
3240 				mdb_printf("%-*s %?p clean\n",
3241 				    KMEM_CACHE_NAMELEN,
3242 				    kmv.kmv_cache.cache_name, addr);
3243 			} else {
3244 				char *s = "";	/* optional s in "buffer[s]" */
3245 				if (kmv.kmv_corruption > 1)
3246 					s = "s";
3247 
3248 				mdb_printf("%-*s %?p %d corrupt buffer%s\n",
3249 				    KMEM_CACHE_NAMELEN,
3250 				    kmv.kmv_cache.cache_name, addr,
3251 				    kmv.kmv_corruption, s);
3252 			}
3253 		} else {
3254 			/*
3255 			 * This is the more verbose mode, when the user has
3256 			 * type addr::kmem_verify.  If the cache was clean,
3257 			 * nothing will have yet been printed. So say something.
3258 			 */
3259 			if (kmv.kmv_corruption == 0)
3260 				mdb_printf("clean\n");
3261 
3262 			mdb_dec_indent(2);
3263 		}
3264 	} else {
3265 		/*
3266 		 * If the user didn't specify a cache to verify, we'll walk all
3267 		 * kmem_cache's, specifying ourself as a callback for each...
3268 		 * this is the equivalent of '::walk kmem_cache .::kmem_verify'
3269 		 */
3270 		mdb_printf("%<u>%-*s %-?s %-20s%</b>\n", KMEM_CACHE_NAMELEN,
3271 		    "Cache Name", "Addr", "Cache Integrity");
3272 		(void) (mdb_walk_dcmd("kmem_cache", "kmem_verify", 0, NULL));
3273 	}
3274 
3275 	return (DCMD_OK);
3276 }
3277 
3278 typedef struct vmem_node {
3279 	struct vmem_node *vn_next;
3280 	struct vmem_node *vn_parent;
3281 	struct vmem_node *vn_sibling;
3282 	struct vmem_node *vn_children;
3283 	uintptr_t vn_addr;
3284 	int vn_marked;
3285 	vmem_t vn_vmem;
3286 } vmem_node_t;
3287 
3288 typedef struct vmem_walk {
3289 	vmem_node_t *vw_root;
3290 	vmem_node_t *vw_current;
3291 } vmem_walk_t;
3292 
3293 int
3294 vmem_walk_init(mdb_walk_state_t *wsp)
3295 {
3296 	uintptr_t vaddr, paddr;
3297 	vmem_node_t *head = NULL, *root = NULL, *current = NULL, *parent, *vp;
3298 	vmem_walk_t *vw;
3299 
3300 	if (mdb_readvar(&vaddr, "vmem_list") == -1) {
3301 		mdb_warn("couldn't read 'vmem_list'");
3302 		return (WALK_ERR);
3303 	}
3304 
3305 	while (vaddr != NULL) {
3306 		vp = mdb_zalloc(sizeof (vmem_node_t), UM_SLEEP);
3307 		vp->vn_addr = vaddr;
3308 		vp->vn_next = head;
3309 		head = vp;
3310 
3311 		if (vaddr == wsp->walk_addr)
3312 			current = vp;
3313 
3314 		if (mdb_vread(&vp->vn_vmem, sizeof (vmem_t), vaddr) == -1) {
3315 			mdb_warn("couldn't read vmem_t at %p", vaddr);
3316 			goto err;
3317 		}
3318 
3319 		vaddr = (uintptr_t)vp->vn_vmem.vm_next;
3320 	}
3321 
3322 	for (vp = head; vp != NULL; vp = vp->vn_next) {
3323 
3324 		if ((paddr = (uintptr_t)vp->vn_vmem.vm_source) == NULL) {
3325 			vp->vn_sibling = root;
3326 			root = vp;
3327 			continue;
3328 		}
3329 
3330 		for (parent = head; parent != NULL; parent = parent->vn_next) {
3331 			if (parent->vn_addr != paddr)
3332 				continue;
3333 			vp->vn_sibling = parent->vn_children;
3334 			parent->vn_children = vp;
3335 			vp->vn_parent = parent;
3336 			break;
3337 		}
3338 
3339 		if (parent == NULL) {
3340 			mdb_warn("couldn't find %p's parent (%p)\n",
3341 			    vp->vn_addr, paddr);
3342 			goto err;
3343 		}
3344 	}
3345 
3346 	vw = mdb_zalloc(sizeof (vmem_walk_t), UM_SLEEP);
3347 	vw->vw_root = root;
3348 
3349 	if (current != NULL)
3350 		vw->vw_current = current;
3351 	else
3352 		vw->vw_current = root;
3353 
3354 	wsp->walk_data = vw;
3355 	return (WALK_NEXT);
3356 err:
3357 	for (vp = head; head != NULL; vp = head) {
3358 		head = vp->vn_next;
3359 		mdb_free(vp, sizeof (vmem_node_t));
3360 	}
3361 
3362 	return (WALK_ERR);
3363 }
3364 
3365 int
3366 vmem_walk_step(mdb_walk_state_t *wsp)
3367 {
3368 	vmem_walk_t *vw = wsp->walk_data;
3369 	vmem_node_t *vp;
3370 	int rval;
3371 
3372 	if ((vp = vw->vw_current) == NULL)
3373 		return (WALK_DONE);
3374 
3375 	rval = wsp->walk_callback(vp->vn_addr, &vp->vn_vmem, wsp->walk_cbdata);
3376 
3377 	if (vp->vn_children != NULL) {
3378 		vw->vw_current = vp->vn_children;
3379 		return (rval);
3380 	}
3381 
3382 	do {
3383 		vw->vw_current = vp->vn_sibling;
3384 		vp = vp->vn_parent;
3385 	} while (vw->vw_current == NULL && vp != NULL);
3386 
3387 	return (rval);
3388 }
3389 
3390 /*
3391  * The "vmem_postfix" walk walks the vmem arenas in post-fix order; all
3392  * children are visited before their parent.  We perform the postfix walk
3393  * iteratively (rather than recursively) to allow mdb to regain control
3394  * after each callback.
3395  */
3396 int
3397 vmem_postfix_walk_step(mdb_walk_state_t *wsp)
3398 {
3399 	vmem_walk_t *vw = wsp->walk_data;
3400 	vmem_node_t *vp = vw->vw_current;
3401 	int rval;
3402 
3403 	/*
3404 	 * If this node is marked, then we know that we have already visited
3405 	 * all of its children.  If the node has any siblings, they need to
3406 	 * be visited next; otherwise, we need to visit the parent.  Note
3407 	 * that vp->vn_marked will only be zero on the first invocation of
3408 	 * the step function.
3409 	 */
3410 	if (vp->vn_marked) {
3411 		if (vp->vn_sibling != NULL)
3412 			vp = vp->vn_sibling;
3413 		else if (vp->vn_parent != NULL)
3414 			vp = vp->vn_parent;
3415 		else {
3416 			/*
3417 			 * We have neither a parent, nor a sibling, and we
3418 			 * have already been visited; we're done.
3419 			 */
3420 			return (WALK_DONE);
3421 		}
3422 	}
3423 
3424 	/*
3425 	 * Before we visit this node, visit its children.
3426 	 */
3427 	while (vp->vn_children != NULL && !vp->vn_children->vn_marked)
3428 		vp = vp->vn_children;
3429 
3430 	vp->vn_marked = 1;
3431 	vw->vw_current = vp;
3432 	rval = wsp->walk_callback(vp->vn_addr, &vp->vn_vmem, wsp->walk_cbdata);
3433 
3434 	return (rval);
3435 }
3436 
3437 void
3438 vmem_walk_fini(mdb_walk_state_t *wsp)
3439 {
3440 	vmem_walk_t *vw = wsp->walk_data;
3441 	vmem_node_t *root = vw->vw_root;
3442 	int done;
3443 
3444 	if (root == NULL)
3445 		return;
3446 
3447 	if ((vw->vw_root = root->vn_children) != NULL)
3448 		vmem_walk_fini(wsp);
3449 
3450 	vw->vw_root = root->vn_sibling;
3451 	done = (root->vn_sibling == NULL && root->vn_parent == NULL);
3452 	mdb_free(root, sizeof (vmem_node_t));
3453 
3454 	if (done) {
3455 		mdb_free(vw, sizeof (vmem_walk_t));
3456 	} else {
3457 		vmem_walk_fini(wsp);
3458 	}
3459 }
3460 
3461 typedef struct vmem_seg_walk {
3462 	uint8_t vsw_type;
3463 	uintptr_t vsw_start;
3464 	uintptr_t vsw_current;
3465 } vmem_seg_walk_t;
3466 
3467 /*ARGSUSED*/
3468 int
3469 vmem_seg_walk_common_init(mdb_walk_state_t *wsp, uint8_t type, char *name)
3470 {
3471 	vmem_seg_walk_t *vsw;
3472 
3473 	if (wsp->walk_addr == NULL) {
3474 		mdb_warn("vmem_%s does not support global walks\n", name);
3475 		return (WALK_ERR);
3476 	}
3477 
3478 	wsp->walk_data = vsw = mdb_alloc(sizeof (vmem_seg_walk_t), UM_SLEEP);
3479 
3480 	vsw->vsw_type = type;
3481 	vsw->vsw_start = wsp->walk_addr + offsetof(vmem_t, vm_seg0);
3482 	vsw->vsw_current = vsw->vsw_start;
3483 
3484 	return (WALK_NEXT);
3485 }
3486 
3487 /*
3488  * vmem segments can't have type 0 (this should be added to vmem_impl.h).
3489  */
3490 #define	VMEM_NONE	0
3491 
3492 int
3493 vmem_alloc_walk_init(mdb_walk_state_t *wsp)
3494 {
3495 	return (vmem_seg_walk_common_init(wsp, VMEM_ALLOC, "alloc"));
3496 }
3497 
3498 int
3499 vmem_free_walk_init(mdb_walk_state_t *wsp)
3500 {
3501 	return (vmem_seg_walk_common_init(wsp, VMEM_FREE, "free"));
3502 }
3503 
3504 int
3505 vmem_span_walk_init(mdb_walk_state_t *wsp)
3506 {
3507 	return (vmem_seg_walk_common_init(wsp, VMEM_SPAN, "span"));
3508 }
3509 
3510 int
3511 vmem_seg_walk_init(mdb_walk_state_t *wsp)
3512 {
3513 	return (vmem_seg_walk_common_init(wsp, VMEM_NONE, "seg"));
3514 }
3515 
3516 int
3517 vmem_seg_walk_step(mdb_walk_state_t *wsp)
3518 {
3519 	vmem_seg_t seg;
3520 	vmem_seg_walk_t *vsw = wsp->walk_data;
3521 	uintptr_t addr = vsw->vsw_current;
3522 	static size_t seg_size = 0;
3523 	int rval;
3524 
3525 	if (!seg_size) {
3526 		if (mdb_readvar(&seg_size, "vmem_seg_size") == -1) {
3527 			mdb_warn("failed to read 'vmem_seg_size'");
3528 			seg_size = sizeof (vmem_seg_t);
3529 		}
3530 	}
3531 
3532 	if (seg_size < sizeof (seg))
3533 		bzero((caddr_t)&seg + seg_size, sizeof (seg) - seg_size);
3534 
3535 	if (mdb_vread(&seg, seg_size, addr) == -1) {
3536 		mdb_warn("couldn't read vmem_seg at %p", addr);
3537 		return (WALK_ERR);
3538 	}
3539 
3540 	vsw->vsw_current = (uintptr_t)seg.vs_anext;
3541 	if (vsw->vsw_type != VMEM_NONE && seg.vs_type != vsw->vsw_type) {
3542 		rval = WALK_NEXT;
3543 	} else {
3544 		rval = wsp->walk_callback(addr, &seg, wsp->walk_cbdata);
3545 	}
3546 
3547 	if (vsw->vsw_current == vsw->vsw_start)
3548 		return (WALK_DONE);
3549 
3550 	return (rval);
3551 }
3552 
3553 void
3554 vmem_seg_walk_fini(mdb_walk_state_t *wsp)
3555 {
3556 	vmem_seg_walk_t *vsw = wsp->walk_data;
3557 
3558 	mdb_free(vsw, sizeof (vmem_seg_walk_t));
3559 }
3560 
3561 #define	VMEM_NAMEWIDTH	22
3562 
3563 int
3564 vmem(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3565 {
3566 	vmem_t v, parent;
3567 	vmem_kstat_t *vkp = &v.vm_kstat;
3568 	uintptr_t paddr;
3569 	int ident = 0;
3570 	char c[VMEM_NAMEWIDTH];
3571 
3572 	if (!(flags & DCMD_ADDRSPEC)) {
3573 		if (mdb_walk_dcmd("vmem", "vmem", argc, argv) == -1) {
3574 			mdb_warn("can't walk vmem");
3575 			return (DCMD_ERR);
3576 		}
3577 		return (DCMD_OK);
3578 	}
3579 
3580 	if (DCMD_HDRSPEC(flags))
3581 		mdb_printf("%-?s %-*s %10s %12s %9s %5s\n",
3582 		    "ADDR", VMEM_NAMEWIDTH, "NAME", "INUSE",
3583 		    "TOTAL", "SUCCEED", "FAIL");
3584 
3585 	if (mdb_vread(&v, sizeof (v), addr) == -1) {
3586 		mdb_warn("couldn't read vmem at %p", addr);
3587 		return (DCMD_ERR);
3588 	}
3589 
3590 	for (paddr = (uintptr_t)v.vm_source; paddr != NULL; ident += 2) {
3591 		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
3592 			mdb_warn("couldn't trace %p's ancestry", addr);
3593 			ident = 0;
3594 			break;
3595 		}
3596 		paddr = (uintptr_t)parent.vm_source;
3597 	}
3598 
3599 	(void) mdb_snprintf(c, VMEM_NAMEWIDTH, "%*s%s", ident, "", v.vm_name);
3600 
3601 	mdb_printf("%0?p %-*s %10llu %12llu %9llu %5llu\n",
3602 	    addr, VMEM_NAMEWIDTH, c,
3603 	    vkp->vk_mem_inuse.value.ui64, vkp->vk_mem_total.value.ui64,
3604 	    vkp->vk_alloc.value.ui64, vkp->vk_fail.value.ui64);
3605 
3606 	return (DCMD_OK);
3607 }
3608 
3609 void
3610 vmem_seg_help(void)
3611 {
3612 	mdb_printf("%s",
3613 "Display the contents of vmem_seg_ts, with optional filtering.\n\n"
3614 "\n"
3615 "A vmem_seg_t represents a range of addresses (or arbitrary numbers),\n"
3616 "representing a single chunk of data.  Only ALLOC segments have debugging\n"
3617 "information.\n");
3618 	mdb_dec_indent(2);
3619 	mdb_printf("%<b>OPTIONS%</b>\n");
3620 	mdb_inc_indent(2);
3621 	mdb_printf("%s",
3622 "  -v    Display the full content of the vmem_seg, including its stack trace\n"
3623 "  -s    report the size of the segment, instead of the end address\n"
3624 "  -c caller\n"
3625 "        filter out segments without the function/PC in their stack trace\n"
3626 "  -e earliest\n"
3627 "        filter out segments timestamped before earliest\n"
3628 "  -l latest\n"
3629 "        filter out segments timestamped after latest\n"
3630 "  -m minsize\n"
3631 "        filer out segments smaller than minsize\n"
3632 "  -M maxsize\n"
3633 "        filer out segments larger than maxsize\n"
3634 "  -t thread\n"
3635 "        filter out segments not involving thread\n"
3636 "  -T type\n"
3637 "        filter out segments not of type 'type'\n"
3638 "        type is one of: ALLOC/FREE/SPAN/ROTOR/WALKER\n");
3639 }
3640 
3641 /*ARGSUSED*/
3642 int
3643 vmem_seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3644 {
3645 	vmem_seg_t vs;
3646 	pc_t *stk = vs.vs_stack;
3647 	uintptr_t sz;
3648 	uint8_t t;
3649 	const char *type = NULL;
3650 	GElf_Sym sym;
3651 	char c[MDB_SYM_NAMLEN];
3652 	int no_debug;
3653 	int i;
3654 	int depth;
3655 	uintptr_t laddr, haddr;
3656 
3657 	uintptr_t caller = NULL, thread = NULL;
3658 	uintptr_t minsize = 0, maxsize = 0;
3659 
3660 	hrtime_t earliest = 0, latest = 0;
3661 
3662 	uint_t size = 0;
3663 	uint_t verbose = 0;
3664 
3665 	if (!(flags & DCMD_ADDRSPEC))
3666 		return (DCMD_USAGE);
3667 
3668 	if (mdb_getopts(argc, argv,
3669 	    'c', MDB_OPT_UINTPTR, &caller,
3670 	    'e', MDB_OPT_UINT64, &earliest,
3671 	    'l', MDB_OPT_UINT64, &latest,
3672 	    's', MDB_OPT_SETBITS, TRUE, &size,
3673 	    'm', MDB_OPT_UINTPTR, &minsize,
3674 	    'M', MDB_OPT_UINTPTR, &maxsize,
3675 	    't', MDB_OPT_UINTPTR, &thread,
3676 	    'T', MDB_OPT_STR, &type,
3677 	    'v', MDB_OPT_SETBITS, TRUE, &verbose,
3678 	    NULL) != argc)
3679 		return (DCMD_USAGE);
3680 
3681 	if (DCMD_HDRSPEC(flags) && !(flags & DCMD_PIPE_OUT)) {
3682 		if (verbose) {
3683 			mdb_printf("%16s %4s %16s %16s %16s\n"
3684 			    "%<u>%16s %4s %16s %16s %16s%</u>\n",
3685 			    "ADDR", "TYPE", "START", "END", "SIZE",
3686 			    "", "", "THREAD", "TIMESTAMP", "");
3687 		} else {
3688 			mdb_printf("%?s %4s %?s %?s %s\n", "ADDR", "TYPE",
3689 			    "START", size? "SIZE" : "END", "WHO");
3690 		}
3691 	}
3692 
3693 	if (mdb_vread(&vs, sizeof (vs), addr) == -1) {
3694 		mdb_warn("couldn't read vmem_seg at %p", addr);
3695 		return (DCMD_ERR);
3696 	}
3697 
3698 	if (type != NULL) {
3699 		if (strcmp(type, "ALLC") == 0 || strcmp(type, "ALLOC") == 0)
3700 			t = VMEM_ALLOC;
3701 		else if (strcmp(type, "FREE") == 0)
3702 			t = VMEM_FREE;
3703 		else if (strcmp(type, "SPAN") == 0)
3704 			t = VMEM_SPAN;
3705 		else if (strcmp(type, "ROTR") == 0 ||
3706 		    strcmp(type, "ROTOR") == 0)
3707 			t = VMEM_ROTOR;
3708 		else if (strcmp(type, "WLKR") == 0 ||
3709 		    strcmp(type, "WALKER") == 0)
3710 			t = VMEM_WALKER;
3711 		else {
3712 			mdb_warn("\"%s\" is not a recognized vmem_seg type\n",
3713 			    type);
3714 			return (DCMD_ERR);
3715 		}
3716 
3717 		if (vs.vs_type != t)
3718 			return (DCMD_OK);
3719 	}
3720 
3721 	sz = vs.vs_end - vs.vs_start;
3722 
3723 	if (minsize != 0 && sz < minsize)
3724 		return (DCMD_OK);
3725 
3726 	if (maxsize != 0 && sz > maxsize)
3727 		return (DCMD_OK);
3728 
3729 	t = vs.vs_type;
3730 	depth = vs.vs_depth;
3731 
3732 	/*
3733 	 * debug info, when present, is only accurate for VMEM_ALLOC segments
3734 	 */
3735 	no_debug = (t != VMEM_ALLOC) ||
3736 	    (depth == 0 || depth > VMEM_STACK_DEPTH);
3737 
3738 	if (no_debug) {
3739 		if (caller != NULL || thread != NULL || earliest != 0 ||
3740 		    latest != 0)
3741 			return (DCMD_OK);		/* not enough info */
3742 	} else {
3743 		if (caller != NULL) {
3744 			laddr = caller;
3745 			haddr = caller + sizeof (caller);
3746 
3747 			if (mdb_lookup_by_addr(caller, MDB_SYM_FUZZY, c,
3748 			    sizeof (c), &sym) != -1 &&
3749 			    caller == (uintptr_t)sym.st_value) {
3750 				/*
3751 				 * We were provided an exact symbol value; any
3752 				 * address in the function is valid.
3753 				 */
3754 				laddr = (uintptr_t)sym.st_value;
3755 				haddr = (uintptr_t)sym.st_value + sym.st_size;
3756 			}
3757 
3758 			for (i = 0; i < depth; i++)
3759 				if (vs.vs_stack[i] >= laddr &&
3760 				    vs.vs_stack[i] < haddr)
3761 					break;
3762 
3763 			if (i == depth)
3764 				return (DCMD_OK);
3765 		}
3766 
3767 		if (thread != NULL && (uintptr_t)vs.vs_thread != thread)
3768 			return (DCMD_OK);
3769 
3770 		if (earliest != 0 && vs.vs_timestamp < earliest)
3771 			return (DCMD_OK);
3772 
3773 		if (latest != 0 && vs.vs_timestamp > latest)
3774 			return (DCMD_OK);
3775 	}
3776 
3777 	type = (t == VMEM_ALLOC ? "ALLC" :
3778 	    t == VMEM_FREE ? "FREE" :
3779 	    t == VMEM_SPAN ? "SPAN" :
3780 	    t == VMEM_ROTOR ? "ROTR" :
3781 	    t == VMEM_WALKER ? "WLKR" :
3782 	    "????");
3783 
3784 	if (flags & DCMD_PIPE_OUT) {
3785 		mdb_printf("%#lr\n", addr);
3786 		return (DCMD_OK);
3787 	}
3788 
3789 	if (verbose) {
3790 		mdb_printf("%<b>%16p%</b> %4s %16p %16p %16d\n",
3791 		    addr, type, vs.vs_start, vs.vs_end, sz);
3792 
3793 		if (no_debug)
3794 			return (DCMD_OK);
3795 
3796 		mdb_printf("%16s %4s %16p %16llx\n",
3797 		    "", "", vs.vs_thread, vs.vs_timestamp);
3798 
3799 		mdb_inc_indent(17);
3800 		for (i = 0; i < depth; i++) {
3801 			mdb_printf("%a\n", stk[i]);
3802 		}
3803 		mdb_dec_indent(17);
3804 		mdb_printf("\n");
3805 	} else {
3806 		mdb_printf("%0?p %4s %0?p %0?p", addr, type,
3807 		    vs.vs_start, size? sz : vs.vs_end);
3808 
3809 		if (no_debug) {
3810 			mdb_printf("\n");
3811 			return (DCMD_OK);
3812 		}
3813 
3814 		for (i = 0; i < depth; i++) {
3815 			if (mdb_lookup_by_addr(stk[i], MDB_SYM_FUZZY,
3816 			    c, sizeof (c), &sym) == -1)
3817 				continue;
3818 			if (strncmp(c, "vmem_", 5) == 0)
3819 				continue;
3820 			break;
3821 		}
3822 		mdb_printf(" %a\n", stk[i]);
3823 	}
3824 	return (DCMD_OK);
3825 }
3826 
3827 typedef struct kmalog_data {
3828 	uintptr_t	kma_addr;
3829 	hrtime_t	kma_newest;
3830 } kmalog_data_t;
3831 
3832 /*ARGSUSED*/
3833 static int
3834 showbc(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmalog_data_t *kma)
3835 {
3836 	char name[KMEM_CACHE_NAMELEN + 1];
3837 	hrtime_t delta;
3838 	int i, depth;
3839 	size_t bufsize;
3840 
3841 	if (bcp->bc_timestamp == 0)
3842 		return (WALK_DONE);
3843 
3844 	if (kma->kma_newest == 0)
3845 		kma->kma_newest = bcp->bc_timestamp;
3846 
3847 	if (kma->kma_addr) {
3848 		if (mdb_vread(&bufsize, sizeof (bufsize),
3849 		    (uintptr_t)&bcp->bc_cache->cache_bufsize) == -1) {
3850 			mdb_warn(
3851 			    "failed to read cache_bufsize for cache at %p",
3852 			    bcp->bc_cache);
3853 			return (WALK_ERR);
3854 		}
3855 
3856 		if (kma->kma_addr < (uintptr_t)bcp->bc_addr ||
3857 		    kma->kma_addr >= (uintptr_t)bcp->bc_addr + bufsize)
3858 			return (WALK_NEXT);
3859 	}
3860 
3861 	delta = kma->kma_newest - bcp->bc_timestamp;
3862 	depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH);
3863 
3864 	if (mdb_readstr(name, sizeof (name), (uintptr_t)
3865 	    &bcp->bc_cache->cache_name) <= 0)
3866 		(void) mdb_snprintf(name, sizeof (name), "%a", bcp->bc_cache);
3867 
3868 	mdb_printf("\nT-%lld.%09lld  addr=%p  %s\n",
3869 	    delta / NANOSEC, delta % NANOSEC, bcp->bc_addr, name);
3870 
3871 	for (i = 0; i < depth; i++)
3872 		mdb_printf("\t %a\n", bcp->bc_stack[i]);
3873 
3874 	return (WALK_NEXT);
3875 }
3876 
3877 int
3878 kmalog(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3879 {
3880 	const char *logname = "kmem_transaction_log";
3881 	kmalog_data_t kma;
3882 
3883 	if (argc > 1)
3884 		return (DCMD_USAGE);
3885 
3886 	kma.kma_newest = 0;
3887 	if (flags & DCMD_ADDRSPEC)
3888 		kma.kma_addr = addr;
3889 	else
3890 		kma.kma_addr = NULL;
3891 
3892 	if (argc > 0) {
3893 		if (argv->a_type != MDB_TYPE_STRING)
3894 			return (DCMD_USAGE);
3895 		if (strcmp(argv->a_un.a_str, "fail") == 0)
3896 			logname = "kmem_failure_log";
3897 		else if (strcmp(argv->a_un.a_str, "slab") == 0)
3898 			logname = "kmem_slab_log";
3899 		else
3900 			return (DCMD_USAGE);
3901 	}
3902 
3903 	if (mdb_readvar(&addr, logname) == -1) {
3904 		mdb_warn("failed to read %s log header pointer");
3905 		return (DCMD_ERR);
3906 	}
3907 
3908 	if (mdb_pwalk("kmem_log", (mdb_walk_cb_t)showbc, &kma, addr) == -1) {
3909 		mdb_warn("failed to walk kmem log");
3910 		return (DCMD_ERR);
3911 	}
3912 
3913 	return (DCMD_OK);
3914 }
3915 
3916 /*
3917  * As the final lure for die-hard crash(1M) users, we provide ::kmausers here.
3918  * The first piece is a structure which we use to accumulate kmem_cache_t
3919  * addresses of interest.  The kmc_add is used as a callback for the kmem_cache
3920  * walker; we either add all caches, or ones named explicitly as arguments.
3921  */
3922 
3923 typedef struct kmclist {
3924 	const char *kmc_name;			/* Name to match (or NULL) */
3925 	uintptr_t *kmc_caches;			/* List of kmem_cache_t addrs */
3926 	int kmc_nelems;				/* Num entries in kmc_caches */
3927 	int kmc_size;				/* Size of kmc_caches array */
3928 } kmclist_t;
3929 
3930 static int
3931 kmc_add(uintptr_t addr, const kmem_cache_t *cp, kmclist_t *kmc)
3932 {
3933 	void *p;
3934 	int s;
3935 
3936 	if (kmc->kmc_name == NULL ||
3937 	    strcmp(cp->cache_name, kmc->kmc_name) == 0) {
3938 		/*
3939 		 * If we have a match, grow our array (if necessary), and then
3940 		 * add the virtual address of the matching cache to our list.
3941 		 */
3942 		if (kmc->kmc_nelems >= kmc->kmc_size) {
3943 			s = kmc->kmc_size ? kmc->kmc_size * 2 : 256;
3944 			p = mdb_alloc(sizeof (uintptr_t) * s, UM_SLEEP | UM_GC);
3945 
3946 			bcopy(kmc->kmc_caches, p,
3947 			    sizeof (uintptr_t) * kmc->kmc_size);
3948 
3949 			kmc->kmc_caches = p;
3950 			kmc->kmc_size = s;
3951 		}
3952 
3953 		kmc->kmc_caches[kmc->kmc_nelems++] = addr;
3954 		return (kmc->kmc_name ? WALK_DONE : WALK_NEXT);
3955 	}
3956 
3957 	return (WALK_NEXT);
3958 }
3959 
3960 /*
3961  * The second piece of ::kmausers is a hash table of allocations.  Each
3962  * allocation owner is identified by its stack trace and data_size.  We then
3963  * track the total bytes of all such allocations, and the number of allocations
3964  * to report at the end.  Once we have a list of caches, we walk through the
3965  * allocated bufctls of each, and update our hash table accordingly.
3966  */
3967 
3968 typedef struct kmowner {
3969 	struct kmowner *kmo_head;		/* First hash elt in bucket */
3970 	struct kmowner *kmo_next;		/* Next hash elt in chain */
3971 	size_t kmo_signature;			/* Hash table signature */
3972 	uint_t kmo_num;				/* Number of allocations */
3973 	size_t kmo_data_size;			/* Size of each allocation */
3974 	size_t kmo_total_size;			/* Total bytes of allocation */
3975 	int kmo_depth;				/* Depth of stack trace */
3976 	uintptr_t kmo_stack[KMEM_STACK_DEPTH];	/* Stack trace */
3977 } kmowner_t;
3978 
3979 typedef struct kmusers {
3980 	uintptr_t kmu_addr;			/* address of interest */
3981 	const kmem_cache_t *kmu_cache;		/* Current kmem cache */
3982 	kmowner_t *kmu_hash;			/* Hash table of owners */
3983 	int kmu_nelems;				/* Number of entries in use */
3984 	int kmu_size;				/* Total number of entries */
3985 } kmusers_t;
3986 
3987 static void
3988 kmu_add(kmusers_t *kmu, const kmem_bufctl_audit_t *bcp,
3989     size_t size, size_t data_size)
3990 {
3991 	int i, depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH);
3992 	size_t bucket, signature = data_size;
3993 	kmowner_t *kmo, *kmoend;
3994 
3995 	/*
3996 	 * If the hash table is full, double its size and rehash everything.
3997 	 */
3998 	if (kmu->kmu_nelems >= kmu->kmu_size) {
3999 		int s = kmu->kmu_size ? kmu->kmu_size * 2 : 1024;
4000 
4001 		kmo = mdb_alloc(sizeof (kmowner_t) * s, UM_SLEEP | UM_GC);
4002 		bcopy(kmu->kmu_hash, kmo, sizeof (kmowner_t) * kmu->kmu_size);
4003 		kmu->kmu_hash = kmo;
4004 		kmu->kmu_size = s;
4005 
4006 		kmoend = kmu->kmu_hash + kmu->kmu_size;
4007 		for (kmo = kmu->kmu_hash; kmo < kmoend; kmo++)
4008 			kmo->kmo_head = NULL;
4009 
4010 		kmoend = kmu->kmu_hash + kmu->kmu_nelems;
4011 		for (kmo = kmu->kmu_hash; kmo < kmoend; kmo++) {
4012 			bucket = kmo->kmo_signature & (kmu->kmu_size - 1);
4013 			kmo->kmo_next = kmu->kmu_hash[bucket].kmo_head;
4014 			kmu->kmu_hash[bucket].kmo_head = kmo;
4015 		}
4016 	}
4017 
4018 	/*
4019 	 * Finish computing the hash signature from the stack trace, and then
4020 	 * see if the owner is in the hash table.  If so, update our stats.
4021 	 */
4022 	for (i = 0; i < depth; i++)
4023 		signature += bcp->bc_stack[i];
4024 
4025 	bucket = signature & (kmu->kmu_size - 1);
4026 
4027 	for (kmo = kmu->kmu_hash[bucket].kmo_head; kmo; kmo = kmo->kmo_next) {
4028 		if (kmo->kmo_signature == signature) {
4029 			size_t difference = 0;
4030 
4031 			difference |= kmo->kmo_data_size - data_size;
4032 			difference |= kmo->kmo_depth - depth;
4033 
4034 			for (i = 0; i < depth; i++) {
4035 				difference |= kmo->kmo_stack[i] -
4036 				    bcp->bc_stack[i];
4037 			}
4038 
4039 			if (difference == 0) {
4040 				kmo->kmo_total_size += size;
4041 				kmo->kmo_num++;
4042 				return;
4043 			}
4044 		}
4045 	}
4046 
4047 	/*
4048 	 * If the owner is not yet hashed, grab the next element and fill it
4049 	 * in based on the allocation information.
4050 	 */
4051 	kmo = &kmu->kmu_hash[kmu->kmu_nelems++];
4052 	kmo->kmo_next = kmu->kmu_hash[bucket].kmo_head;
4053 	kmu->kmu_hash[bucket].kmo_head = kmo;
4054 
4055 	kmo->kmo_signature = signature;
4056 	kmo->kmo_num = 1;
4057 	kmo->kmo_data_size = data_size;
4058 	kmo->kmo_total_size = size;
4059 	kmo->kmo_depth = depth;
4060 
4061 	for (i = 0; i < depth; i++)
4062 		kmo->kmo_stack[i] = bcp->bc_stack[i];
4063 }
4064 
4065 /*
4066  * When ::kmausers is invoked without the -f flag, we simply update our hash
4067  * table with the information from each allocated bufctl.
4068  */
4069 /*ARGSUSED*/
4070 static int
4071 kmause1(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmusers_t *kmu)
4072 {
4073 	const kmem_cache_t *cp = kmu->kmu_cache;
4074 
4075 	kmu_add(kmu, bcp, cp->cache_bufsize, cp->cache_bufsize);
4076 	return (WALK_NEXT);
4077 }
4078 
4079 /*
4080  * When ::kmausers is invoked with the -f flag, we print out the information
4081  * for each bufctl as well as updating the hash table.
4082  */
4083 static int
4084 kmause2(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmusers_t *kmu)
4085 {
4086 	int i, depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH);
4087 	const kmem_cache_t *cp = kmu->kmu_cache;
4088 	kmem_bufctl_t bufctl;
4089 
4090 	if (kmu->kmu_addr) {
4091 		if (mdb_vread(&bufctl, sizeof (bufctl),  addr) == -1)
4092 			mdb_warn("couldn't read bufctl at %p", addr);
4093 		else if (kmu->kmu_addr < (uintptr_t)bufctl.bc_addr ||
4094 		    kmu->kmu_addr >= (uintptr_t)bufctl.bc_addr +
4095 		    cp->cache_bufsize)
4096 			return (WALK_NEXT);
4097 	}
4098 
4099 	mdb_printf("size %d, addr %p, thread %p, cache %s\n",
4100 	    cp->cache_bufsize, addr, bcp->bc_thread, cp->cache_name);
4101 
4102 	for (i = 0; i < depth; i++)
4103 		mdb_printf("\t %a\n", bcp->bc_stack[i]);
4104 
4105 	kmu_add(kmu, bcp, cp->cache_bufsize, cp->cache_bufsize);
4106 	return (WALK_NEXT);
4107 }
4108 
4109 /*
4110  * We sort our results by allocation size before printing them.
4111  */
4112 static int
4113 kmownercmp(const void *lp, const void *rp)
4114 {
4115 	const kmowner_t *lhs = lp;
4116 	const kmowner_t *rhs = rp;
4117 
4118 	return (rhs->kmo_total_size - lhs->kmo_total_size);
4119 }
4120 
4121 /*
4122  * The main engine of ::kmausers is relatively straightforward: First we
4123  * accumulate our list of kmem_cache_t addresses into the kmclist_t. Next we
4124  * iterate over the allocated bufctls of each cache in the list.  Finally,
4125  * we sort and print our results.
4126  */
4127 /*ARGSUSED*/
4128 int
4129 kmausers(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4130 {
4131 	int mem_threshold = 8192;	/* Minimum # bytes for printing */
4132 	int cnt_threshold = 100;	/* Minimum # blocks for printing */
4133 	int audited_caches = 0;		/* Number of KMF_AUDIT caches found */
4134 	int do_all_caches = 1;		/* Do all caches (no arguments) */
4135 	int opt_e = FALSE;		/* Include "small" users */
4136 	int opt_f = FALSE;		/* Print stack traces */
4137 
4138 	mdb_walk_cb_t callback = (mdb_walk_cb_t)kmause1;
4139 	kmowner_t *kmo, *kmoend;
4140 	int i, oelems;
4141 
4142 	kmclist_t kmc;
4143 	kmusers_t kmu;
4144 
4145 	bzero(&kmc, sizeof (kmc));
4146 	bzero(&kmu, sizeof (kmu));
4147 
4148 	while ((i = mdb_getopts(argc, argv,
4149 	    'e', MDB_OPT_SETBITS, TRUE, &opt_e,
4150 	    'f', MDB_OPT_SETBITS, TRUE, &opt_f, NULL)) != argc) {
4151 
4152 		argv += i;	/* skip past options we just processed */
4153 		argc -= i;	/* adjust argc */
4154 
4155 		if (argv->a_type != MDB_TYPE_STRING || *argv->a_un.a_str == '-')
4156 			return (DCMD_USAGE);
4157 
4158 		oelems = kmc.kmc_nelems;
4159 		kmc.kmc_name = argv->a_un.a_str;
4160 		(void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmc_add, &kmc);
4161 
4162 		if (kmc.kmc_nelems == oelems) {
4163 			mdb_warn("unknown kmem cache: %s\n", kmc.kmc_name);
4164 			return (DCMD_ERR);
4165 		}
4166 
4167 		do_all_caches = 0;
4168 		argv++;
4169 		argc--;
4170 	}
4171 
4172 	if (flags & DCMD_ADDRSPEC) {
4173 		opt_f = TRUE;
4174 		kmu.kmu_addr = addr;
4175 	} else {
4176 		kmu.kmu_addr = NULL;
4177 	}
4178 
4179 	if (opt_e)
4180 		mem_threshold = cnt_threshold = 0;
4181 
4182 	if (opt_f)
4183 		callback = (mdb_walk_cb_t)kmause2;
4184 
4185 	if (do_all_caches) {
4186 		kmc.kmc_name = NULL; /* match all cache names */
4187 		(void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmc_add, &kmc);
4188 	}
4189 
4190 	for (i = 0; i < kmc.kmc_nelems; i++) {
4191 		uintptr_t cp = kmc.kmc_caches[i];
4192 		kmem_cache_t c;
4193 
4194 		if (mdb_vread(&c, sizeof (c), cp) == -1) {
4195 			mdb_warn("failed to read cache at %p", cp);
4196 			continue;
4197 		}
4198 
4199 		if (!(c.cache_flags & KMF_AUDIT)) {
4200 			if (!do_all_caches) {
4201 				mdb_warn("KMF_AUDIT is not enabled for %s\n",
4202 				    c.cache_name);
4203 			}
4204 			continue;
4205 		}
4206 
4207 		kmu.kmu_cache = &c;
4208 		(void) mdb_pwalk("bufctl", callback, &kmu, cp);
4209 		audited_caches++;
4210 	}
4211 
4212 	if (audited_caches == 0 && do_all_caches) {
4213 		mdb_warn("KMF_AUDIT is not enabled for any caches\n");
4214 		return (DCMD_ERR);
4215 	}
4216 
4217 	qsort(kmu.kmu_hash, kmu.kmu_nelems, sizeof (kmowner_t), kmownercmp);
4218 	kmoend = kmu.kmu_hash + kmu.kmu_nelems;
4219 
4220 	for (kmo = kmu.kmu_hash; kmo < kmoend; kmo++) {
4221 		if (kmo->kmo_total_size < mem_threshold &&
4222 		    kmo->kmo_num < cnt_threshold)
4223 			continue;
4224 		mdb_printf("%lu bytes for %u allocations with data size %lu:\n",
4225 		    kmo->kmo_total_size, kmo->kmo_num, kmo->kmo_data_size);
4226 		for (i = 0; i < kmo->kmo_depth; i++)
4227 			mdb_printf("\t %a\n", kmo->kmo_stack[i]);
4228 	}
4229 
4230 	return (DCMD_OK);
4231 }
4232 
4233 void
4234 kmausers_help(void)
4235 {
4236 	mdb_printf(
4237 	    "Displays the largest users of the kmem allocator, sorted by \n"
4238 	    "trace.  If one or more caches is specified, only those caches\n"
4239 	    "will be searched.  By default, all caches are searched.  If an\n"
4240 	    "address is specified, then only those allocations which include\n"
4241 	    "the given address are displayed.  Specifying an address implies\n"
4242 	    "-f.\n"
4243 	    "\n"
4244 	    "\t-e\tInclude all users, not just the largest\n"
4245 	    "\t-f\tDisplay individual allocations.  By default, users are\n"
4246 	    "\t\tgrouped by stack\n");
4247 }
4248 
4249 static int
4250 kmem_ready_check(void)
4251 {
4252 	int ready;
4253 
4254 	if (mdb_readvar(&ready, "kmem_ready") < 0)
4255 		return (-1); /* errno is set for us */
4256 
4257 	return (ready);
4258 }
4259 
4260 void
4261 kmem_statechange(void)
4262 {
4263 	static int been_ready = 0;
4264 
4265 	if (been_ready)
4266 		return;
4267 
4268 	if (kmem_ready_check() <= 0)
4269 		return;
4270 
4271 	been_ready = 1;
4272 	(void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmem_init_walkers, NULL);
4273 }
4274 
4275 void
4276 kmem_init(void)
4277 {
4278 	mdb_walker_t w = {
4279 		"kmem_cache", "walk list of kmem caches", kmem_cache_walk_init,
4280 		list_walk_step, list_walk_fini
4281 	};
4282 
4283 	/*
4284 	 * If kmem is ready, we'll need to invoke the kmem_cache walker
4285 	 * immediately.  Walkers in the linkage structure won't be ready until
4286 	 * _mdb_init returns, so we'll need to add this one manually.  If kmem
4287 	 * is ready, we'll use the walker to initialize the caches.  If kmem
4288 	 * isn't ready, we'll register a callback that will allow us to defer
4289 	 * cache walking until it is.
4290 	 */
4291 	if (mdb_add_walker(&w) != 0) {
4292 		mdb_warn("failed to add kmem_cache walker");
4293 		return;
4294 	}
4295 
4296 	kmem_statechange();
4297 
4298 	/* register our ::whatis handlers */
4299 	mdb_whatis_register("modules", whatis_run_modules, NULL,
4300 	    WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID);
4301 	mdb_whatis_register("threads", whatis_run_threads, NULL,
4302 	    WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID);
4303 	mdb_whatis_register("pages", whatis_run_pages, NULL,
4304 	    WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID);
4305 	mdb_whatis_register("kmem", whatis_run_kmem, NULL,
4306 	    WHATIS_PRIO_ALLOCATOR, 0);
4307 	mdb_whatis_register("vmem", whatis_run_vmem, NULL,
4308 	    WHATIS_PRIO_ALLOCATOR, 0);
4309 }
4310 
4311 typedef struct whatthread {
4312 	uintptr_t	wt_target;
4313 	int		wt_verbose;
4314 } whatthread_t;
4315 
4316 static int
4317 whatthread_walk_thread(uintptr_t addr, const kthread_t *t, whatthread_t *w)
4318 {
4319 	uintptr_t current, data;
4320 
4321 	if (t->t_stkbase == NULL)
4322 		return (WALK_NEXT);
4323 
4324 	/*
4325 	 * Warn about swapped out threads, but drive on anyway
4326 	 */
4327 	if (!(t->t_schedflag & TS_LOAD)) {
4328 		mdb_warn("thread %p's stack swapped out\n", addr);
4329 		return (WALK_NEXT);
4330 	}
4331 
4332 	/*
4333 	 * Search the thread's stack for the given pointer.  Note that it would
4334 	 * be more efficient to follow ::kgrep's lead and read in page-sized
4335 	 * chunks, but this routine is already fast and simple.
4336 	 */
4337 	for (current = (uintptr_t)t->t_stkbase; current < (uintptr_t)t->t_stk;
4338 	    current += sizeof (uintptr_t)) {
4339 		if (mdb_vread(&data, sizeof (data), current) == -1) {
4340 			mdb_warn("couldn't read thread %p's stack at %p",
4341 			    addr, current);
4342 			return (WALK_ERR);
4343 		}
4344 
4345 		if (data == w->wt_target) {
4346 			if (w->wt_verbose) {
4347 				mdb_printf("%p in thread %p's stack%s\n",
4348 				    current, addr, stack_active(t, current));
4349 			} else {
4350 				mdb_printf("%#lr\n", addr);
4351 				return (WALK_NEXT);
4352 			}
4353 		}
4354 	}
4355 
4356 	return (WALK_NEXT);
4357 }
4358 
4359 int
4360 whatthread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4361 {
4362 	whatthread_t w;
4363 
4364 	if (!(flags & DCMD_ADDRSPEC))
4365 		return (DCMD_USAGE);
4366 
4367 	w.wt_verbose = FALSE;
4368 	w.wt_target = addr;
4369 
4370 	if (mdb_getopts(argc, argv,
4371 	    'v', MDB_OPT_SETBITS, TRUE, &w.wt_verbose, NULL) != argc)
4372 		return (DCMD_USAGE);
4373 
4374 	if (mdb_walk("thread", (mdb_walk_cb_t)whatthread_walk_thread, &w)
4375 	    == -1) {
4376 		mdb_warn("couldn't walk threads");
4377 		return (DCMD_ERR);
4378 	}
4379 
4380 	return (DCMD_OK);
4381 }
4382